1
|
Li P, Li Q, Tang W, Wang W, Zhang W, Little BE, Chu ST, Shore KA, Qin Y, Wang Y. Scalable parallel ultrafast optical random bit generation based on a single chaotic microcomb. LIGHT, SCIENCE & APPLICATIONS 2024; 13:66. [PMID: 38438369 PMCID: PMC10912654 DOI: 10.1038/s41377-024-01411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/06/2024]
Abstract
Random bit generators are critical for information security, cryptography, stochastic modeling, and simulations. Speed and scalability are key challenges faced by current physical random bit generation. Herein, we propose a massively parallel scheme for ultrafast random bit generation towards rates of order 100 terabit per second based on a single micro-ring resonator. A modulation-instability-driven chaotic comb in a micro-ring resonator enables the simultaneous generation of hundreds of independent and unbiased random bit streams. A proof-of-concept experiment demonstrates that using our method, random bit streams beyond 2 terabit per second can be successfully generated with only 7 comb lines. This bit rate can be easily enhanced by further increasing the number of comb lines used. Our approach provides a chip-scale solution to random bit generation for secure communication and high-performance computation, and offers superhigh speed and large scalability.
Collapse
Affiliation(s)
- Pu Li
- Institute of Advanced Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou, 51006, China
- Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education of China, Guangdong University of Technology, Guangzhou, 51006, China
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 51006, China
| | - Qizhi Li
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Wenye Tang
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Weiqiang Wang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Wenfu Zhang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Brent E Little
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Sai Tek Chu
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
| | - K Alan Shore
- School of Electronic Engineering, Bangor University, Bangor, Wales, LL57 1UT, UK
| | - Yuwen Qin
- Institute of Advanced Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou, 51006, China
- Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education of China, Guangdong University of Technology, Guangzhou, 51006, China
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 51006, China
| | - Yuncai Wang
- Institute of Advanced Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou, 51006, China.
- Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education of China, Guangdong University of Technology, Guangzhou, 51006, China.
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 51006, China.
| |
Collapse
|
2
|
Li JT, Chang B, Du JT, Tan T, Geng Y, Zhou H, Liang YP, Zhang H, Yan GF, Ma LM, Ran ZL, Wang ZN, Yao BC, Rao YJ. Coherently parallel fiber-optic distributed acoustic sensing using dual Kerr soliton microcombs. SCIENCE ADVANCES 2024; 10:eadf8666. [PMID: 38241376 PMCID: PMC10798552 DOI: 10.1126/sciadv.adf8666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Fiber-optic distributed acoustic sensing (DAS) has proven to be a revolutionary technology for the detection of seismic and acoustic waves with ultralarge scale and ultrahigh sensitivity, and is widely used in oil/gas industry and intrusion monitoring. Nowadays, the single-frequency laser source in DAS becomes one of the bottlenecks limiting its advance. Here, we report a dual-comb-based coherently parallel DAS concept, enabling linear superposition of sensing signals scaling with the comb-line number to result in unprecedented sensitivity enhancement, straightforward fading suppression, and high-power Brillouin-free transmission that can extend the detection distance considerably. Leveraging 10-line comb pairs, a world-class detection limit of 560 fε/√Hz@1 kHz with 5 m spatial resolution is achieved. Such a combination of dual-comb metrology and DAS technology may open an era of extremely sensitive DAS at the fε/√Hz level, leading to the creation of next-generation distributed geophones and sonars.
Collapse
Affiliation(s)
- Jian-Ting Li
- Fiber Optics Research Center, Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Centre for Optical Fiber Sensing, Zhejiang Laboratory, Hangzhou 310000, China
| | - Bing Chang
- Fiber Optics Research Center, Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jun-Ting Du
- Fiber Optics Research Center, Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Teng Tan
- Fiber Optics Research Center, Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yong Geng
- Fiber Optics Research Center, Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Heng Zhou
- Fiber Optics Research Center, Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yu-Pei Liang
- Fiber Optics Research Center, Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hao Zhang
- Fiber Optics Research Center, Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guo-Feng Yan
- Research Centre for Optical Fiber Sensing, Zhejiang Laboratory, Hangzhou 310000, China
| | - Ling-Mei Ma
- Research Centre for Optical Fiber Sensing, Zhejiang Laboratory, Hangzhou 310000, China
| | - Zeng-Ling Ran
- Fiber Optics Research Center, Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zi-Nan Wang
- Fiber Optics Research Center, Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bai-Cheng Yao
- Fiber Optics Research Center, Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yun-Jiang Rao
- Fiber Optics Research Center, Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Centre for Optical Fiber Sensing, Zhejiang Laboratory, Hangzhou 310000, China
| |
Collapse
|
3
|
Xu GT, Zhang M, Wang Y, Shen Z, Guo GC, Dong CH. Magnonic Frequency Comb in the Magnomechanical Resonator. PHYSICAL REVIEW LETTERS 2023; 131:243601. [PMID: 38181134 DOI: 10.1103/physrevlett.131.243601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/16/2023] [Indexed: 01/07/2024]
Abstract
An optical frequency comb is a spectrum of optical radiation which consists of evenly spaced and phase-coherent narrow spectral lines and is initially invented in a laser for frequency metrology purposes. A direct analog of frequency combs in the magnonic systems has not been demonstrated to date. In our experiment, we generate a new magnonic frequency comb in the resonator with giant mechanical oscillations through the magnomechanical interaction. We observe the magnonic frequency comb contains up to 20 comb lines, which are separated by the mechanical frequency of 10.08 MHz. The thermal effect based on the strong pump power induces the cyclic oscillation of the magnon frequency shift, which leads to a periodic oscillation of the magnonic frequency comb. Moreover, we demonstrate the stabilization and control of the frequency spacing of the magnonic frequency comb via injection locking. Our Letter lays the groundwork for magnonic frequency combs in the fields of sensing and metrology.
Collapse
Affiliation(s)
- Guan-Ting Xu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230088, People's Republic of China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, People's Republic of China
| | - Mai Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230088, People's Republic of China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, People's Republic of China
| | - Yu Wang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230088, People's Republic of China
| | - Zhen Shen
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230088, People's Republic of China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, People's Republic of China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230088, People's Republic of China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, People's Republic of China
| | - Chun-Hua Dong
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230088, People's Republic of China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, People's Republic of China
| |
Collapse
|
4
|
Dong X, Renninger WH. Design and pulse-formation properties of chirped pulse Kerr solitons. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. B, OPTICAL PHYSICS 2023; 40:3255-3261. [PMID: 39465216 PMCID: PMC11501087 DOI: 10.1364/josab.502453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/30/2023] [Indexed: 10/29/2024]
Abstract
Kerr resonators generate stable frequency combs and ultrashort pulses with applications in telecommunications, biomedicine, and metrology. Chirped pulse solitons recently observed in normal dispersion Kerr resonators with an intracavity spectral filter can enable new material design freedom, reduced fabrication requirements, and the potential for improved ultrashort pulse peak powers. This study examines the design and formation properties of chirped-pulse Kerr solitons essential for enabling these advances. First, prior theoretical predictions that chirped pulse solitons are relatively insensitive to cavity loss and the strength of the dispersion map are experimentally validated. The loss insensitivity property is applied toward demonstrating high energy pulses in a cavity with large output coupling and the map insensitivity property is applied toward demonstrating femtosecond pulses, for the first time from chirped-pulse solitons, in a dispersion-mapped cavity with small net-normal dispersion. The relationship between chirped pulses and bright pulses enabled by higher order dispersion is examined with respect to pulse formation, cavity design parameters, and performance properties. Finally, guidelines for additional improvements are detailed for chirped pulse soliton-based high-performance pulse generation.
Collapse
Affiliation(s)
- Xue Dong
- Institute of Optics, University of Rochester, Rochester, New York
14627, USA
| | | |
Collapse
|
5
|
Qureshi PC, Ng V, Azeem F, Trainor LS, Schwefel HG, Coen S, Erkintalo M, Murdoch SG. Kerr microresonator dual-comb source with adjustable line-spacing. OPTICS EXPRESS 2023; 31:36236-36244. [PMID: 38017778 DOI: 10.1364/oe.501110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/05/2023] [Indexed: 11/30/2023]
Abstract
Optical microresonators offer a highly-attractive new platform for the generation of optical frequency combs. Recently, several groups have been able to demonstrate the generation of dual-frequency combs in a single microresonator driven by two optical pumps. This opens the possibility for microresonator-based dual-comb systems suitable for measurement applications such as spectroscopy, ranging and imaging. Key to the performance of these systems are the parameters of the radio-frequency comb spectrum that arises from the interference of the two optical combs. In this work, we present a simple mechanism to enable the discrete fine-tuning of these parameters by driving the two optical combs with optical pumps with different azimuthal mode numbers. The mechanism consists of tuning the difference in azimuthal mode number between the two pumps by selection of the pumps' frequencies. We are able to implement this technique when the two counter-propagating pumps are set to drive resonances of the same spatial mode family, as well as different mode families. In each case, we experimentally observe ∼1 MHz of discrete tunability in the line-spacing of the radio-frequency comb as the frequency offset between the two pumps is scanned between 0 to 80 free-spectral-ranges.
Collapse
|
6
|
Cui W, Liu X, Zhou H, Wang W, Qiu K, Geng Y. Ultra-low time jitter transform-limited dissipative Kerr soliton microcomb. OPTICS EXPRESS 2023; 31:37154-37161. [PMID: 38017850 DOI: 10.1364/oe.503691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
Microresonator soliton frequency combs offer unique flexibility in synthesizing microwaves over a wide range of frequencies. Therefore, it is very important to study the time jitter of soliton microcombs. Here, we fabricate optical microresonators with perfect transmission spectrum that characterizes highly uniform extinction ratio and absence of mode interactions by laser machining high-purity silica fiber preforms. Based on such perfect whispering-gallery-mode cavity, We demonstrate that K-band microwave with ultra-low phase noise (-83 dBc/Hz@100 Hz; -112 dBc/Hz@1kHz; -133 dBc/Hz@10kHz) can be generated by photo-detecting the repetition rate of a soliton microcomb. Also, with the Raman scattering and dispersive wave emission largely restricted, we show that ultra-low time jitter soliton has a wide existence range. Our work illuminates a pathway toward low-noise photonic microwave generation as well as the quantum regime of soliton microcombs.
Collapse
|
7
|
Huang J, Fan J, He Y, Shi G. Physical compensation method for dispersion of multiple materials in swept source optical coherence tomography. JOURNAL OF BIOPHOTONICS 2023; 16:e202300167. [PMID: 37378423 DOI: 10.1002/jbio.202300167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
An ophthalmic swept source-optical coherence tomography (SS-OCT) system based on a high-speed scanning laser at 1060 nm with a scanning rate of 100 KHz is constructed. Since the sample arm of the interferometer is comprised of multiple glass materials, the ensuing dispersion severely degrades imaging quality. In this article, second-order dispersion simulation analysis for various materials was performed first, and dispersion equilibrium was implemented utilizing physical compensation methods. After dispersion compensation, an imaging depth in air of 4.013 mm was achieved in model eye experiments, and signal-to-noise ratio was enhanced by 11.6%, with a value of 53.8 dB. In vivo imaging of the human retina was performed to demonstrate structurally distinguishable retinal images, characterized by an axial resolution improvement of 19.8%, with a value of 7.7 μm close to the theoretical value of 7.5 μm. The proposed physical dispersion compensation method enhances imaging performance in SS-OCT systems, enabling visualization of several low scattering mediums.
Collapse
Affiliation(s)
- Jiangjie Huang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jinyu Fan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yi He
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Guohua Shi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Myopia of State Health Ministry, Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| |
Collapse
|
8
|
Liu M, Dang Y, Huang H, Lu Z, Mei S, Cai Y, Zhou W, Zhao W. Vector solitonic pulses excitation in microresonators via free carrier effects. OPTICS EXPRESS 2023; 31:32172-32187. [PMID: 37859026 DOI: 10.1364/oe.498671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/02/2023] [Indexed: 10/21/2023]
Abstract
We numerically investigate the excitation of vector solitonic pulse with orthogonally polarized components via free-carrier effects in microresonators with normal group velocity dispersion (GVD). The dynamics of single, dual and oscillated vector pulses are unveiled under turn-key excitation with a single frequency-fixed CW laser source. Parameter spaces associated with detuning, polarization angle, interval between the pumped orthogonal resonances and pump amplitude have been revealed. Different vector pulse states can also be observed exploiting the traditional pump scanning scheme. Simultaneous and independent excitation regimes are identified due to varying interval of the orthogonal pump modes. The nonlinear coupling between two modes contributes to the distortion of the vector pulses' profile. The free-carrier effects and the pump polarization angle provide additional degrees of freedom for efficiently controlling the properties of the vector solitonic microcombs. Moreover, the crucial thermal dynamics in microcavities is discussed and weak thermal effects are found to be favorable for delayed vector pulse formation. These findings reveal complex excitation mechanism of solitonic structures and could provide novel routes for microcomb generation.
Collapse
|
9
|
Shen B, Shu H, Xie W, Chen R, Liu Z, Ge Z, Zhang X, Wang Y, Zhang Y, Cheng B, Yu S, Chang L, Wang X. Harnessing microcomb-based parallel chaos for random number generation and optical decision making. Nat Commun 2023; 14:4590. [PMID: 37524697 PMCID: PMC10390475 DOI: 10.1038/s41467-023-40152-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/14/2023] [Indexed: 08/02/2023] Open
Abstract
Optical chaos is vital for various applications such as private communication, encryption, anti-interference sensing, and reinforcement learning. Chaotic microcombs have emerged as promising sources for generating massive optical chaos. However, their inter-channel correlation behavior remains elusive, limiting their potential for on-chip parallel chaotic systems with high throughput. In this study, we present massively parallel chaos based on chaotic microcombs and high-nonlinearity AlGaAsOI platforms. We demonstrate the feasibility of generating parallel chaotic signals with inter-channel correlation <0.04 and a high random number generation rate of 3.84 Tbps. We further show the application of our approach by demonstrating a 15-channel integrated random bit generator with a 20 Gbps channel rate using silicon photonic chips. Additionally, we achieved a scalable decision-making accelerator for up to 256-armed bandit problems. Our work opens new possibilities for chaos-based information processing systems using integrated photonics, and potentially can revolutionize the current architecture of communication, sensing and computations.
Collapse
Affiliation(s)
- Bitao Shen
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, 100871, Beijing, China
| | - Haowen Shu
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, 100871, Beijing, China.
| | - Weiqiang Xie
- Department of Electronic Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Ruixuan Chen
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, 100871, Beijing, China
| | - Zhi Liu
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhangfeng Ge
- Peking University Yangtze Delta Institute of Optoelectronics, 226010, Nantong, China
| | - Xuguang Zhang
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, 100871, Beijing, China
| | - Yimeng Wang
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, 100871, Beijing, China
| | - Yunhao Zhang
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, 100871, Beijing, China
| | - Buwen Cheng
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shaohua Yu
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, 100871, Beijing, China
- Peng Cheng Laboratory, 518055, Shenzhen, China
| | - Lin Chang
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, 100871, Beijing, China.
- Frontiers Science Center for Nano-optoelectronics, Peking University, 100871, Beijing, China.
| | - Xingjun Wang
- State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, 100871, Beijing, China.
- Peking University Yangtze Delta Institute of Optoelectronics, 226010, Nantong, China.
- Peng Cheng Laboratory, 518055, Shenzhen, China.
- Frontiers Science Center for Nano-optoelectronics, Peking University, 100871, Beijing, China.
| |
Collapse
|
10
|
Zhang J, Mazlin V, Fei K, Boccara AC, Yuan J, Xiao P. Time-domain full-field optical coherence tomography (TD-FF-OCT) in ophthalmic imaging. Ther Adv Chronic Dis 2023; 14:20406223231170146. [PMID: 37152350 PMCID: PMC10161339 DOI: 10.1177/20406223231170146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Ocular imaging plays an irreplaceable role in the evaluation of eye diseases. Developing cellular-resolution ophthalmic imaging technique for more accurate and effective diagnosis and pathogenesis analysis of ocular diseases is a hot topic in the cross-cutting areas of ophthalmology and imaging. Currently, ocular imaging with traditional optical coherence tomography (OCT) is limited in lateral resolution and thus can hardly resolve cellular structures. Conventional OCT technology obtains ultra-high resolution at the expense of a certain imaging range and cannot achieve full field of view imaging. In the early years, Time-domain full-field OCT (TD-FF-OCT) has been mainly used for ex vivo ophthalmic tissue studies, limited by the low speed and low full-well capacity of existing two-dimensional (2D) cameras. The recent improvements in system design opened new imaging possibilities for in vivo applications thanks to its distinctive optical properties of TD-FF-OCT such as a spatial resolution almost insensitive to aberrations, and the possibility to control the curvature of the optical slice. This review also attempts to look at the future directions of TD-FF-OCT evolution, for example, the potential transfer of the functional-imaging dynamic TD-FF-OCT from the ex vivo into in vivo use and its expected benefit in basic and clinical ophthalmic research. Through non-invasive, wide-field, and cellular-resolution imaging, TD-FF-OCT has great potential to be the next-generation imaging modality to improve our understanding of human eye physiology and pathology.
Collapse
Affiliation(s)
- Jinze Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Viacheslav Mazlin
- ESPCI Paris, PSL University, CNRS, Langevin Institute, Paris, France
| | - Keyi Fei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | | | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Jinsui Road 7, Guangzhou 510060, Guangdong, China
| | - Peng Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Jinsui Road 7, Guangzhou 510060, Guangdong, China
| |
Collapse
|
11
|
Liang Y, Zhao L, Li C, Du J, Shang Q, Wei Z, Zhang Q. Strong Exciton-Exciton Scattering of Exfoliated van der Waals InSe toward Efficient Continuous-Wave Near-Infrared P-Band Emission. NANO LETTERS 2023; 23:4058-4065. [PMID: 37083440 DOI: 10.1021/acs.nanolett.3c00932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
P-band emission is a superlinear low-coherence emission through exciton-exciton (X-X) scattering into photon-like states. It occurs without the prerequisites of population inversion or macroscopical coherence, rendering lower power consumption than the widely explored superlinear low-coherence emissions including superfluorescence, amplified spontaneous emission, and random lasing, and holds great potential for speckle-free imaging and interferometric sensing. However, competition processes including exciton dissociation and annihilation undermine its operation at room temperature and/or low excitation conditions. Here we report room-temperature P-band emission from InSe microflakes with excitation density of 1010 cm-2, offering 2-orders-of-magnitude lower operation density compared to the state-of-the-art superlinear low-coherence emissions. The efficient P-band emission is attributed to a large X-X scattering strength of 0.25 μeV μm2 due to enhanced spatial confinement along with intrinsic material metrics of 3D/2D exciton complex and asymmetric electron/hole mass. These findings open an avenue toward strong low-coherence near-infrared light sources based on van der Waals semiconductors.
Collapse
Affiliation(s)
- Yin Liang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Liyun Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Chun Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jiaxing Du
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Qiuyu Shang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Wang ZY, Wang PY, Li M, Wan S, Guo GC, Dong CH. Numerical characterization of soliton microcomb in an athermal hybrid Si 3N 4-TiO 2 microring. APPLIED OPTICS 2022; 61:4329-4335. [PMID: 36256269 DOI: 10.1364/ao.457471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/24/2022] [Indexed: 06/16/2023]
Abstract
We theoretically investigate the athermal constructions to cancel the thermorefractive effect of a hybrid Si3N4-TiO2 microring, which merges two materials with opposite thermo-optical coefficients (TOCs). The analytical and numerical results predict that the thermorefractive effect can be reduced under the appropriate parameters. In addition, the soliton state is easily accessed under the athermal condition. The thermorefractive noise due to the fluctuation of the microresonator temperature caused by the heat exchange between the microresonator and the surrounding environment is also suppressed by one order of magnitude, which is critical for the potential applications of soliton microcombs, such as spectroscopy, optical clocks and microwave generation.
Collapse
|
13
|
Twayana K, Rebolledo-Salgado I, Deriushkina E, Schröder J, Karlsson M, Torres-Company V. Spectral Interferometry with Frequency Combs. MICROMACHINES 2022; 13:614. [PMID: 35457918 PMCID: PMC9026469 DOI: 10.3390/mi13040614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 02/01/2023]
Abstract
In this review paper, we provide an overview of the state of the art in linear interferometric techniques using laser frequency comb sources. Diverse techniques including Fourier transform spectroscopy, linear spectral interferometry and swept-wavelength interferometry are covered in detail. The unique features brought by laser frequency comb sources are shown, and specific applications highlighted in molecular spectroscopy, optical coherence tomography and the characterization of photonic integrated devices and components. Finally, the possibilities enabled by advances in chip scale swept sources and frequency combs are discussed.
Collapse
Affiliation(s)
- Krishna Twayana
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
| | - Israel Rebolledo-Salgado
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
- Measurement Science and Technology, RISE Research Institutes of Sweden, SE-50115 Borås, Sweden
| | - Ekaterina Deriushkina
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
| | - Jochen Schröder
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
| | - Magnus Karlsson
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
| | - Victor Torres-Company
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
| |
Collapse
|
14
|
Lippok N, Vakoc BJ. RF properties of circular-ranging OCT signals. OPTICS LETTERS 2022; 47:1903-1906. [PMID: 35363765 PMCID: PMC9027934 DOI: 10.1364/ol.450318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Circular-ranging optical coherence tomography (CR-OCT) systems that use a time-stepped frequency comb source generate interference fringe signals that are more complex than those of a conventional swept-source OCT system. Here, we define a common terminology for describing these signals, and we develop a mathematical framework that relates the radio-frequency (RF) properties of these fringe signals to the parameters of the frequency comb source. With this framework, we highlight non-intuitive mechanisms whereby the design of the frequency comb source can affect imaging performance. We show, for example, that amplitude-pulsed time-stepped frequency comb sources have a sensitivity advantage over constant power time-stepped frequency comb sources. More broadly, this framework and associated terminology provide a foundation on which to design and optimize time-stepped frequency comb sources and systems.
Collapse
Affiliation(s)
- Norman Lippok
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Benjamin J. Vakoc
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
15
|
Raja AS, Lange S, Karpov M, Shi K, Fu X, Behrendt R, Cletheroe D, Lukashchuk A, Haller I, Karinou F, Thomsen B, Jozwik K, Liu J, Costa P, Kippenberg TJ, Ballani H. Ultrafast optical circuit switching for data centers using integrated soliton microcombs. Nat Commun 2021; 12:5867. [PMID: 34654810 PMCID: PMC8520010 DOI: 10.1038/s41467-021-25841-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 07/20/2021] [Indexed: 11/08/2022] Open
Abstract
Due to the slowdown of Moore's law, it will become increasingly challenging to efficiently scale the network in current data centers utilizing electrical packet switches as data rates grow. Optical circuit switches (OCS) represent an appealing option to overcome this issue by eliminating the need for expensive and power-hungry transceivers and electrical switches in the core of the network. In particular, optical switches based on tunable lasers and arrayed waveguide grating routers are quite promising due to the use of a passive core, which increases fault tolerance and reduces management overhead. Such an OCS-network can offer high bandwidth, low network latency and an energy-efficient and scalable data center network. To support dynamic data center workloads efficiently, however, it is critical to switch between wavelengths at nanosecond (ns) timescales. Here we demonstrate ultrafast OCS based on a microcomb and semiconductor optical amplifiers (SOAs). Using a photonic integrated Si3N4 microcomb, sub-ns (<520 ps) switching along with the 25-Gbps non-return-to-zero (NRZ) and 50-Gbps four-level pulse amplitude modulation (PAM-4) burst mode data transmission is achieved. Further, we use a photonic integrated circuit comprising an Indium phosphide based SOA array and an arrayed waveguide grating to show sub-ns switching (<900 ps) along with 25-Gbps NRZ burst mode transmission providing a path towards a more scalable and energy-efficient wavelength-switched network for data centers in the post Moore's Law era.
Collapse
Affiliation(s)
- Arslan Sajid Raja
- Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Sophie Lange
- Microsoft Research, 21 Station Road, Cambridge, CB1 2FB, UK
| | - Maxim Karpov
- Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Kai Shi
- Microsoft Research, 21 Station Road, Cambridge, CB1 2FB, UK
| | - Xin Fu
- Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | | | | | - Anton Lukashchuk
- Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Istvan Haller
- Microsoft Research, 21 Station Road, Cambridge, CB1 2FB, UK
| | - Fotini Karinou
- Microsoft Research, 21 Station Road, Cambridge, CB1 2FB, UK
| | - Benn Thomsen
- Microsoft Research, 21 Station Road, Cambridge, CB1 2FB, UK
| | | | - Junqiu Liu
- Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Paolo Costa
- Microsoft Research, 21 Station Road, Cambridge, CB1 2FB, UK
| | - Tobias Jan Kippenberg
- Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| | - Hitesh Ballani
- Microsoft Research, 21 Station Road, Cambridge, CB1 2FB, UK.
| |
Collapse
|
16
|
Leitgeb R, Placzek F, Rank E, Krainz L, Haindl R, Li Q, Liu M, Andreana M, Unterhuber A, Schmoll T, Drexler W. Enhanced medical diagnosis for dOCTors: a perspective of optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210150-PER. [PMID: 34672145 PMCID: PMC8528212 DOI: 10.1117/1.jbo.26.10.100601] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 05/17/2023]
Abstract
SIGNIFICANCE After three decades, more than 75,000 publications, tens of companies being involved in its commercialization, and a global market perspective of about USD 1.5 billion in 2023, optical coherence tomography (OCT) has become one of the fastest successfully translated imaging techniques with substantial clinical and economic impacts and acceptance. AIM Our perspective focuses on disruptive forward-looking innovations and key technologies to further boost OCT performance and therefore enable significantly enhanced medical diagnosis. APPROACH A comprehensive review of state-of-the-art accomplishments in OCT has been performed. RESULTS The most disruptive future OCT innovations include imaging resolution and speed (single-beam raster scanning versus parallelization) improvement, new implementations for dual modality or even multimodality systems, and using endogenous or exogenous contrast in these hybrid OCT systems targeting molecular and metabolic imaging. Aside from OCT angiography, no other functional or contrast enhancing OCT extension has accomplished comparable clinical and commercial impacts. Some more recently developed extensions, e.g., optical coherence elastography, dynamic contrast OCT, optoretinography, and artificial intelligence enhanced OCT are also considered with high potential for the future. In addition, OCT miniaturization for portable, compact, handheld, and/or cost-effective capsule-based OCT applications, home-OCT, and self-OCT systems based on micro-optic assemblies or photonic integrated circuits will revolutionize new applications and availability in the near future. Finally, clinical translation of OCT including medical device regulatory challenges will continue to be absolutely essential. CONCLUSIONS With its exquisite non-invasive, micrometer resolution depth sectioning capability, OCT has especially revolutionized ophthalmic diagnosis and hence is the fastest adopted imaging technology in the history of ophthalmology. Nonetheless, OCT has not been completely exploited and has substantial growth potential-in academics as well as in industry. This applies not only to the ophthalmic application field, but also especially to the original motivation of OCT to enable optical biopsy, i.e., the in situ imaging of tissue microstructure with a resolution approaching that of histology but without the need for tissue excision.
Collapse
Affiliation(s)
- Rainer Leitgeb
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Medical University of Vienna, Christian Doppler Laboratory OPTRAMED, Vienna, Austria
| | - Fabian Placzek
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Elisabet Rank
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Lisa Krainz
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Richard Haindl
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Qian Li
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Mengyang Liu
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Marco Andreana
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Angelika Unterhuber
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Tilman Schmoll
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Carl Zeiss Meditec, Inc., Dublin, California, United States
| | - Wolfgang Drexler
- Medical University of Vienna, Center for Medical Physics and Biomedical Engineering, Vienna, Austria
- Address all correspondence to Wolfgang Drexler,
| |
Collapse
|