1
|
Roh S, Cheong DY, Lee S, Son J, Park I, Lee G. Controlled ligation and elongation of uniformly truncated amyloid nanofibrils. NANOSCALE 2025; 17:6993-7001. [PMID: 39810594 DOI: 10.1039/d4nr04667f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This study investigates the production and inter-fibril interactions of uniformly truncated amyloid nanofibrils. By varying extrusion cycles (0, 50, and 100) and using carbonate filters with 100 nm and 200 nm pore sizes, precise fibril length control was achieved. Atomic force microscopy (AFM) confirmed that the mean length of the truncated fibrils corresponded to the respective pore size as extrusion cycles increased. AFM imaging combined with bicinchoninic acid assay analysis elucidated the mechanism underlying fibril truncation during extrusion. Subsequent incubation at 60 °C revealed that 200 nm-long fibrils assembled into denser structures than 100 nm-long fibrils, likely due to strain energy introduced during truncation, which appears to facilitate twisting during ligation and elongation between truncated fibrils. These findings advance understanding of the end-to-end elongation mechanisms of amyloid nanofibrils, shedding light on their structural dynamics and polymorphic properties.
Collapse
Affiliation(s)
- Seokbeom Roh
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Da Yeon Cheong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Sangwoo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.
| | - Jongsang Son
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Insu Park
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea.
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea.
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
2
|
Liu J, Chen L, Zhang ZL, Wen W, Zhang X, Wu Z, Wang S. Nano-Collision Electrochemistry for Real-Time Monitoring of Amyloid-β Oligomerization and Rapid Screening of Degrading Drugs. Anal Chem 2025; 97:4898-4905. [PMID: 39992990 DOI: 10.1021/acs.analchem.4c04598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Toxic oligomers of amyloid-β (Aβ) are important in the pathology of Alzheimer's disease (AD), and degradation of Aβ oligomers (AβO) in the brain is considered a promising strategy for drug development. However, conventional drug screening techniques face challenges in the rapid and real-time assessment of AβO. Here, we report a simple and reliable nanocollision electrochemical method based on silver nanoparticles (AgNPs) "tagging" that can in situ monitor Aβ oligomerization and screen potential AβO-degrading drugs. The differences in collision signals between AgNPs-Aβ complexes and AgNPs were compared to achieve rapid identification of Aβ complexes with different aggregation degrees. The degradation effect following the addition of AβO-degrading drugs can be quickly evaluated by the recovery of collision frequency (f, number of peaks per unit time), which is effective if f > 0.15. Degradation efficiency was further quantified using current lifetimes (τ, the time required for the current to decay to 1/e of the original), based on the percentage of τ ≤ 10 ms. The practicability of the method was tested using Aβ-degrading protease and several small molecules, confirming the rapid screening of AβO-degrading drugs and offering a novel strategy to accelerate the development of drugs for AD treatment.
Collapse
Affiliation(s)
- Jinrong Liu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Luan Chen
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | - Wei Wen
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiuhua Zhang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Zhen Wu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shengfu Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals & Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
3
|
Sabu A, Huang YC, Sharmila R, Sun CY, Shen MY, Chiu HC. Magnetic stirring with iron oxide nanospinners accretes neurotoxic Aβ 42 oligomers into phagocytic clearable plaques for Alzheimer's disease treatment. Mater Today Bio 2024; 28:101213. [PMID: 39280110 PMCID: PMC11402446 DOI: 10.1016/j.mtbio.2024.101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
An increasing number of medications have been explored to treat the progressive and irreversible Alzheimer's disease (AD) that stands as the predominant form of dementia among neurodegenerative ailments. However, assertions about toxic side effects of these drugs are a significant hurdle to overcome, calling for drug-free nanotherapeutics. Herein, a new therapeutic strategy devoid of conventional drugs or other cytotoxic species was developed. The constructed superparamagnetic iron oxide nanoparticles (SPIONs) nanospinners can accrete neurotoxic β-amyloid 42 oligomers (oAβ42) into aggregated magnetic plaques (mpAβ) by mechanical rotating force via remote interaction between nanoparticles and the applied magnetic field. While the cellular uptake of mpAβ attained from the magnetic stirring treatment by neuronal cells is severely limited, the facile phagocytic uptake of mpAβ by microglial cells leads to the polarization of the brain macrophages to M2 phenotype and thus the increased anti-inflammatory responses to the treatment. The SPION stirring treatment protects the AD mice from memory deterioration and maintain cognitive ability as evidenced from both nesting and Barnes maze tests. The examination of the oAβ42 injected brain tissues with the stirring treatment showed significant amelioration of functional impairment of neurons, microglia, astrocytes and oligodendrocytes alongside no obvious tissue damage caused by stirring meanwhile complete degradation of SPION was observed at day 7 after the treatment. The in vitro and animal data of this work strongly corroborate that this new modality of undruggable stirring treatment with SPIONs provides a new feasible strategy for developing novel AD treatments.
Collapse
Affiliation(s)
- Arjun Sabu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City, Taiwan
| | - Yu Ching Huang
- Department of Neurology, Taoyuan General Hospital, Ministry of Health and Welfare, Taiwan
- Department of Industrial Engineering and Management, Yuan-Ze University, Taoyuan City 320315 Taiwan
| | - Ramalingam Sharmila
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City, Taiwan
| | - Chih-Yuan Sun
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City, Taiwan
| | - Min-Ying Shen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City, Taiwan
- Department of Surgery, China Medical University Hsinchu Hospital, Hsinchu County 30272, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu City, Taiwan
| |
Collapse
|
4
|
Lee T, Cheong DY, Lee KH, You JH, Park J, Lee G. Capillary Flow-Based One-Minute Quantification of Amyloid Proteolysis. BIOSENSORS 2024; 14:400. [PMID: 39194629 DOI: 10.3390/bios14080400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Quantifying the formation and decomposition of amyloid is a crucial issue in the development of new drugs and therapies for treating amyloidosis. The current technologies for grasping amyloid formation and decomposition include fluorescence analysis using thioflavin-T, secondary structure analysis using circular dichroism, and image analysis using atomic force microscopy or transmission electron microscopy. These technologies typically require spectroscopic devices or expensive nanoscale imaging equipment and involve lengthy analysis, which limits the rapid screening of amyloid-degrading drugs. In this study, we introduce a technology for rapidly assessing amyloid decomposition using capillary flow-based paper (CFP). Amyloid solutions exhibit gel-like physical properties due to insoluble denatured polymers, resulting in a shorter flow distance on CFP compared to pure water. Experimental conditions were established to consistently control the flow distance based on a hen-egg-white lysozyme amyloid solution. It was confirmed that as amyloid is decomposed by trypsin, the flow distance increases on the CFP. Our method is highly useful for detecting changes in the gel properties of amyloid solutions within a minute, and we anticipate its use in the rapid, large-scale screening of anti-amyloid agents in the future.
Collapse
Affiliation(s)
- Taeha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Da Yeon Cheong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| | - Kang Hyun Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Jae Hyun You
- Department of Digital Management, Korea University, Sejong 30019, Republic of Korea
| | - Jinsung Park
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of MetaBioHealth, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
5
|
Yang J, Liang Y, Li X, Zhang Y, Qian L, Ke Y, Zhang C. A Spatially Programmable DNA Nanorobot Arm to Modulate Anisotropic Gold Nanoparticle Assembly by Enzymatic Excision. Angew Chem Int Ed Engl 2023; 62:e202308797. [PMID: 37691009 DOI: 10.1002/anie.202308797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Programmable assembly of gold nanoparticle superstructures with precise spatial arrangement has drawn much attention for their unique characteristics in plasmonics and biomedicine. Bio-inspired methods have already provided programmable, molecular approaches to direct AuNP assemblies using biopolymers. The existing methods, however, predominantly use DNA as scaffolds to directly guide the AuNP interactions to produce intended superstructures. New paradigms for regulating AuNP assembly will greatly enrich the toolbox for DNA-directed AuNP manipulation and fabrication. Here, we developed a strategy of using a spatially programmable enzymatic nanorobot arm to modulate anisotropic DNA surface modifications and assembly of AuNPs. Through spatial controls of the proximity of the reactants, the locations of the modifications were precisely regulated. We demonstrated the control of the modifications on a single 15 nm AuNP, as well as on a rectangular DNA origami platform, to direct unique anisotropic AuNP assemblies. This method adds an alternative enzymatic manipulation to DNA-directed AuNP superstructure assembly.
Collapse
Affiliation(s)
- Jing Yang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing, 100871, China
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yuan Liang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing, 100871, China
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Xiang Li
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yongpeng Zhang
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Long Qian
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Cheng Zhang
- School of Computer Science, Key Lab of High Confidence Software Technologies, Peking University, Beijing, 100871, China
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Ali SA, Chung KHK, Forgham H, Olsen WP, Kakinen A, Balaji A, Otzen DE, Davis TP, Javed I. Alzheimer's Progenitor Amyloid-β Targets and Dissolves Microbial Amyloids and Impairs Biofilm Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301423. [PMID: 37594661 PMCID: PMC10582422 DOI: 10.1002/advs.202301423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/03/2023] [Indexed: 08/19/2023]
Abstract
Alzheimer's disease (AD) is a leading form of dementia where the presence of extra-neuronal plaques of Amyloid-β (Aβ) is a pathological hallmark. However, Aβ peptide is also observed in the intestinal tissues of AD patients and animal models. In this study, it is reported that Aβ monomers can target and disintegrate microbial amyloids of FapC and CsgA formed by opportunistic gut pathogens, Pseudomonas aeruginosa and Escherichia coli, explaining a potential role of Aβ in the gut-brain axis. Employing a zebrafish-based transparent in vivo system and whole-mount live-imaging, Aβ is observed to diffuse into the vasculature and subsequently localize with FapC or CsgA fibrils that were injected into the tail muscles of the fish. FapC aggregates, produced after Aβ treatment (Faβ), present selective toxicity to SH-SY5Y neuronal cells while the intestinal Caco-2 cells are shown to phagocytose Faβ in a non-toxic cellular process. After remodeling by Aβ, microbial fibrils lose their native function of cell adhesion with intestinal Caco-2 cells and Aβ dissolves and detaches the microbial fibrils already attached to the cell membrane. Taken together, this study strongly indicates an anti-biofilm role for Aβ monomers that can help aid in the future development of selective anti-Alzheimer's and anti-infective medicine.
Collapse
Affiliation(s)
- Syed Aoun Ali
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - Ka Hang Karen Chung
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - Helen Forgham
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - William P. Olsen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 14Aarhus C8000Denmark
- Sino‐Danish Center (SDC)Eastern Yanqihu CampusUniversity of Chinese Academy of Sciences380 Huaibeizhuang, Huairou DistrictBeijing101400China
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
- Institute of BiotechnologyHiLIFEUniversity of HelsinkiHelsinki00014Finland
| | - Arunpandian Balaji
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - Daniel E. Otzen
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 14Aarhus C8000Denmark
| | - Thomas Paul Davis
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQld4072Australia
| |
Collapse
|
7
|
Luo B, Wang W, Zhao Y, Zhao Y. Hot-Electron Dynamics Mediated Medical Diagnosis and Therapy. Chem Rev 2023; 123:10808-10833. [PMID: 37603096 DOI: 10.1021/acs.chemrev.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Surface plasmon resonance excitation significantly enhances the absorption of light and increases the generation of "hot" electrons, i.e., conducting electrons that are raised from their steady states to excited states. These excited electrons rapidly decay and equilibrate via radiative and nonradiative damping over several hundred femtoseconds. During the hot-electron dynamics, from their generation to the ultimate nonradiative decay, the electromagnetic field enhancement, hot electron density increase, and local heating effect are sequentially induced. Over the past decade, these physical phenomena have attracted considerable attention in the biomedical field, e.g., the rapid and accurate identification of biomolecules, precise synthesis and release of drugs, and elimination of tumors. This review highlights the recent developments in the application of hot-electron dynamics in medical diagnosis and therapy, particularly fully integrated device techniques with good application prospects. In addition, we discuss the latest experimental and theoretical studies of underlying mechanisms. From a practical standpoint, the pioneering modeling analyses and quantitative measurements in the extreme near field are summarized to illustrate the quantification of hot-electron dynamics. Finally, the prospects and remaining challenges associated with biomedical engineering based on hot-electron dynamics are presented.
Collapse
Affiliation(s)
- Bing Luo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Wei Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yuxin Zhao
- The State Key Laboratory of Service Behavior and Structural Safety of Petroleum Pipe and Equipment Materials, CNPC Tubular Goods Research Institute (TGRI), Xi'an 710077, People's Republic of China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
8
|
Xiao Y, Zhang Z, Yin S, Ma X. Nanoplasmonic biosensors for precision medicine. Front Chem 2023; 11:1209744. [PMID: 37483272 PMCID: PMC10359043 DOI: 10.3389/fchem.2023.1209744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Nanoplasmonic biosensors have a huge boost for precision medicine, which allows doctors to better understand diseases at the molecular level and to improve the earlier diagnosis and develop treatment programs. Unlike traditional biosensors, nanoplasmonic biosensors meet the global health industry's need for low-cost, rapid and portable aspects, while offering multiplexing, high sensitivity and real-time detection. In this review, we describe the common detection schemes used based on localized plasmon resonance (LSPR) and highlight three sensing classes based on LSPR. Then, we present the recent applications of nanoplasmonic in other sensing methods such as isothermal amplification, CRISPR/Cas systems, lab on a chip and enzyme-linked immunosorbent assay. The advantages of nanoplasmonic-based integrated sensing for multiple methods are discussed. Finally, we review the current applications of nanoplasmonic biosensors in precision medicine, such as DNA mutation, vaccine evaluation and drug delivery. The obstacles faced by nanoplasmonic biosensors and the current countermeasures are discussed.
Collapse
Affiliation(s)
- Yiran Xiao
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | | | - Shi Yin
- Briteley Institute of Life Sciences, Yantai, Shandong, China
| | - Xingyi Ma
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, China
- Biosen International, Jinan, Shandong, China
- Briteley Institute of Life Sciences, Yantai, Shandong, China
| |
Collapse
|
9
|
Lee D, Jung HG, Park D, Bang J, Hong JH, Lee SW, Roh S, Jang JW, Kim Y, Hwang KS, Lee YS, Park JY, Jung ID, Lee JH, Lee G, Yoon DS. Biomimetically Engineered Amyloid-Shelled Gold Nanocomplexes for Discovering α-Synuclein Oligomer-Degrading Drugs. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2538-2551. [PMID: 36548054 DOI: 10.1021/acsami.2c14650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The assembly of α-synuclein (αS) oligomers is recognized as the main pathological driver of synucleinopathies. While the elimination of toxic αS oligomers shows promise for the treatment of Parkinson's disease (PD), the discovery of αS oligomer degradation drugs has been hindered by the lack of proper drug screening tools. Here, we report a drug screening platform for monitoring the efficacy of αS-oligomer-degrading drugs using amyloid-shelled gold nanocomplexes (ASGNs). We fabricate ASGNs in the presence of dopamine, mimicking the in vivo generation process of pathological αS oligomers. To test our platform, the first of its kind for PD drugs, we use αS-degrading proteases and various small molecular substances that have shown efficacy in PD treatment. We demonstrate that the ASGN-based in vitro platform has strong potential to discover effective αS-oligomer-targeting drugs, and thus it may reduce the attrition problem in drug discovery for PD treatment.
Collapse
Affiliation(s)
- Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul02841, South Korea
| | - Hyo Gi Jung
- School of Biomedical Engineering, Korea University, Seoul02841, South Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul02841, South Korea
| | - Dongsung Park
- School of Biomedical Engineering, Korea University, Seoul02841, South Korea
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul02447, South Korea
| | - Junho Bang
- School of Biomedical Engineering, Korea University, Seoul02841, South Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul02841, South Korea
| | - Ji Hye Hong
- School of Biomedical Engineering, Korea University, Seoul02841, South Korea
| | - Sang Won Lee
- School of Biomedical Engineering, Korea University, Seoul02841, South Korea
| | - Seokbeom Roh
- Department of Biotechnology and Bioinformatics, Korea University, Sejong30019, South Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong30019, South Korea
| | - Jae Won Jang
- School of Biomedical Engineering, Korea University, Seoul02841, South Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul02841, South Korea
| | - Yonghwan Kim
- School of Biomedical Engineering, Korea University, Seoul02841, South Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul02841, South Korea
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul02447, South Korea
| | - Young-Sun Lee
- ASTRION, 47, Gaeunsa-gil, Seongbuk-gu, Seoul02842, Republic of Korea
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul02841, Republic of Korea
| | - Jae-Yong Park
- ASTRION, 47, Gaeunsa-gil, Seongbuk-gu, Seoul02842, Republic of Korea
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul02841, Republic of Korea
| | - In Duk Jung
- ASTRION, 47, Gaeunsa-gil, Seongbuk-gu, Seoul02842, Republic of Korea
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul01897, South Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong30019, South Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong30019, South Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul02841, South Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul02841, South Korea
- ASTRION, 47, Gaeunsa-gil, Seongbuk-gu, Seoul02842, Republic of Korea
| |
Collapse
|
10
|
Jang J, Jo Y, Park CB. Metal-Organic Framework-Derived Carbon as a Photoacoustic Modulator of Alzheimer's β-Amyloid Aggregate Structure. ACS NANO 2022; 16:18515-18525. [PMID: 36260563 DOI: 10.1021/acsnano.2c06759] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photoacoustic materials emit acoustic waves into the surrounding by absorbing photon energy. In an aqueous environment, light-induced acoustic waves form cavitation bubbles by altering the localized pressure to trigger the phase transition of liquid water into vapor. In this study, we report photoacoustic dissociation of beta-amyloid (Aβ) aggregates, a hallmark of Alzheimer's disease, by metal-organic framework-derived carbon (MOFC). MOFC exhibits a near-infrared (NIR) light-responsive photoacoustic characteristic that possesses defect-rich and entangled graphitic layers that generate intense cavitation bubbles by absorbing tissue-penetrable NIR light. According to our video analysis, the photoacoustic cavitation by MOFC occurs within milliseconds in the water, which was controllable by NIR light dose. The photoacoustic cavitation successfully transforms robust, β-sheet-dominant neurotoxic Aβ aggregates into nontoxic debris by changing the asymmetric distribution of water molecules around the Aβ's amino acid residues. This work unveils the therapeutic potential of NIR-triggered photoacoustic cavitation as a modulator of the Aβ aggregate structure.
Collapse
Affiliation(s)
- Jinhyeong Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| | - Yonghan Jo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Jeon B, Jung HG, Lee SW, Lee G, Shim JH, Kim MO, Kim BJ, Kim SH, Lee H, Lee SW, Yoon DS, Jo SJ, Choi TH, Lee W. Melanoma Detection by AFM Indentation of Histological Specimens. Diagnostics (Basel) 2022; 12:1736. [PMID: 35885640 PMCID: PMC9323377 DOI: 10.3390/diagnostics12071736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is visible unlike other types of cancer, but it is still challenging to diagnose correctly because of the difficulty in distinguishing between benign nevus and melanoma. We conducted a robust investigation of melanoma, identifying considerable differences in local elastic properties between nevus and melanoma tissues by using atomic force microscopy (AFM) indentation of histological specimens. Specifically, the histograms of the elastic modulus of melanoma displayed multimodal Gaussian distributions, exhibiting heterogeneous mechanical properties, in contrast with the unimodal distributions of elastic modulus in the benign nevus. We identified this notable signature was consistent regardless of blotch incidence by sex, age, anatomical site (e.g., thigh, calf, arm, eyelid, and cheek), or cancer stage (I, IV, and V). In addition, we found that the non-linearity of the force-distance curves for melanoma is increased compared to benign nevus. We believe that AFM indentation of histological specimens may technically complement conventional histopathological analysis for earlier and more precise melanoma detection.
Collapse
Affiliation(s)
- Byoungjun Jeon
- Interdisciplinary Program for Bioengineering, Graduate School, Seoul National University, Seoul 08826, Korea;
| | - Hyo Gi Jung
- School of Biomedical Engineering, Korea University, Seoul 02841, Korea; (H.G.J.); (S.W.L.); (D.S.Y.)
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Korea
| | - Sang Won Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, Korea; (H.G.J.); (S.W.L.); (D.S.Y.)
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Korea;
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, Korea
| | - Jung Hee Shim
- Department of Plastic and Reconstructive Surgery, Research Services, Seoul National University Bundang Hospital, Seongnam 13620, Korea;
| | - Mi Ok Kim
- Department of Plastic and Reconstructive Surgery, Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul 03087, Korea; (M.O.K.); (B.J.K.)
| | - Byung Jun Kim
- Department of Plastic and Reconstructive Surgery, Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul 03087, Korea; (M.O.K.); (B.J.K.)
| | - Sang-Hyon Kim
- Department of Internal Medicine, Keimyung University Dongsan Medical Center, Daegu 41931, Korea;
| | - Hyungbeen Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (H.L.); (S.W.L.)
- R&D Center of Curigin Ltd., Seoul 04778, Korea
| | - Sang Woo Lee
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Korea; (H.L.); (S.W.L.)
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul 02841, Korea; (H.G.J.); (S.W.L.); (D.S.Y.)
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Korea
- Astrion Inc., Seoul 02841, Korea
| | - Seong Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03087, Korea
| | - Tae Hyun Choi
- Department of Plastic and Reconstructive Surgery, Institute of Human Environment Interface Biology, Seoul National University College of Medicine, Seoul 03087, Korea; (M.O.K.); (B.J.K.)
| | - Wonseok Lee
- Department of Electrical Engineering, Korea National University of Transportation, Chungju 27469, Korea
| |
Collapse
|
12
|
Scalable Functionalization of Polyaniline-Grafted rGO Field-Effect Transistors for a Highly Sensitive Enzymatic Acetylcholine Biosensor. BIOSENSORS 2022; 12:bios12050279. [PMID: 35624580 PMCID: PMC9138234 DOI: 10.3390/bios12050279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
Abstract
For decades, acetylcholine (Ach) has been considered a critical biomarker for several degenerative brain diseases, including Alzheimer’s, Parkinson’s disease, Huntington’s disease, and schizophrenia. Here, we propose a wafer-scale fabrication of polyaniline (PAni)-grafted graphene-based field-effect transistors (PGFET) and their biosensing applications for highly sensitive and reliable real-time monitoring of Ach in flow configuration. The grafted PAni provides suitable electrostatic binding sites for enzyme immobilization and enhances the pH sensitivity (2.68%/pH), compared to that of bare graphene-FET (1.81%/pH) for a pH range of 3–9 without any pH-hysteresis. We further evaluated the PGFET’s sensing performance for Ach detection with a limit of detection at the nanomolar level and significantly improved sensitivity (~103%) in the concentration range of 108 nM to 2 mM. Moreover, the PGFET exhibits excellent selectivity against various interferences, including glucose, ascorbic acid, and neurotransmitters dopamine and serotonin. Finally, we investigated the effects of an inhibitor (rivastigmine) on the AchE activity of the PGFET. From the results, we demonstrated that the PGFET has great potential as a real-time drug-screening platform by monitoring the inhibitory effects on enzymatic activity.
Collapse
|
13
|
Jang JW, Kim H, Kim I, Lee SW, Jung HG, Hwang KS, Lee JH, Lee G, Lee D, Yoon DS. Surface Functionalization of Enzyme-Coronated Gold Nanoparticles with an Erythrocyte Membrane for Highly Selective Glucose Assays. Anal Chem 2022; 94:6473-6481. [PMID: 35438972 DOI: 10.1021/acs.analchem.1c04541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colorimetric glucose sensors using enzyme-coronated gold nanoparticles have been developed for high-throughput assays to monitor the blood glucose levels of diabetic patients. Although those sensors have shown sensitivity and wide linear detection ranges, they suffer from poor selectivity and stability in detecting blood glucose, which has limited their practical use. To address this limitation, herein, we functionalized glucose-oxidase-coronated gold nanoparticles with an erythrocyte membrane (EM-GOx-GNPs). Because the erythrocyte membrane (EM) selectively facilitates the permeation of glucose via glucose transporter-1 (GLUT1), the functionalization of GOx-GNPs with EM improved the stability, selectivity (3.3- to 15.8-fold higher), and limit of detection (LOD). Both membrane proteins, GLUT1 and aquaporin-1 (AQP1), on EM were shown to be key components for selective glucose detection by treatment with their inhibitors. Moreover, we demonstrated the stability of EM-GOx-GNPs in high-antioxidant-concentration conditions, under long-term storage (∼4 weeks) and a freeze-thaw cycle. Selectivity of the EM-GOx-GNPs against other saccharides was increased, which improved the LOD in phosphate-buffered saline and human serum. Our results indicated that the functionalization of colorimetric glucose sensors with EM is beneficial for improving selectivity and stability, which may make them candidates for use in a practical glucose sensor.
Collapse
Affiliation(s)
- Jae Won Jang
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea.,Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| | - Hyunji Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea.,Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| | - Insu Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Sang Won Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Hyo Gi Jung
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea.,Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul 02453, South Korea
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea.,Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea.,Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| |
Collapse
|
14
|
Park HJ, Hong H, Thangam R, Song MG, Kim JE, Jo EH, Jang YJ, Choi WH, Lee MY, Kang H, Lee KB. Static and Dynamic Biomaterial Engineering for Cell Modulation. NANOMATERIALS 2022; 12:nano12081377. [PMID: 35458085 PMCID: PMC9028203 DOI: 10.3390/nano12081377] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
In the biological microenvironment, cells are surrounded by an extracellular matrix (ECM), with which they dynamically interact during various biological processes. Specifically, the physical and chemical properties of the ECM work cooperatively to influence the behavior and fate of cells directly and indirectly, which invokes various physiological responses in the body. Hence, efficient strategies to modulate cellular responses for a specific purpose have become important for various scientific fields such as biology, pharmacy, and medicine. Among many approaches, the utilization of biomaterials has been studied the most because they can be meticulously engineered to mimic cellular modulatory behavior. For such careful engineering, studies on physical modulation (e.g., ECM topography, stiffness, and wettability) and chemical manipulation (e.g., composition and soluble and surface biosignals) have been actively conducted. At present, the scope of research is being shifted from static (considering only the initial environment and the effects of each element) to biomimetic dynamic (including the concepts of time and gradient) modulation in both physical and chemical manipulations. This review provides an overall perspective on how the static and dynamic biomaterials are actively engineered to modulate targeted cellular responses while highlighting the importance and advance from static modulation to biomimetic dynamic modulation for biomedical applications.
Collapse
Affiliation(s)
- Hyung-Joon Park
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
| | - Hyunsik Hong
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
| | - Ramar Thangam
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Min-Gyo Song
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Ju-Eun Kim
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Eun-Hae Jo
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Yun-Jeong Jang
- Department of Biomedical Engineering, Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Won-Hyoung Choi
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Min-Young Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Heemin Kang
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Correspondence: (H.K.); (K.-B.L.)
| | - Kyu-Back Lee
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
- Correspondence: (H.K.); (K.-B.L.)
| |
Collapse
|
15
|
Arad E, Jelinek R, Rapaport H. Amyloid fishing: β-Amyloid adsorption using tailor-made coated titania nanoparticles. Colloids Surf B Biointerfaces 2022; 212:112374. [PMID: 35121429 DOI: 10.1016/j.colsurfb.2022.112374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/19/2022]
Abstract
Amyloidoses are a family of diseases characterized by abnormal protein folding that leads to fibril aggregates, amyloids. Extensive research efforts are devoted to developing inhibitors to amyloid aggregates. Here we set to explore functionalized titania (TiO2) nanoparticles (NPs) as potential amyloid inhibiting agents. TiO2 NPs were coated by a catechol derivative, dihydroxy-phenylalanine propanoic acid (DPA), and further conjugated to the amyloids' specific dye Congo-Red (CR). TiO2-DPA-CR NPs were found to target mature fibrils of β-amyloid (Aβ). Moreover, coated NPs incubated with Aβ proteins suppressed amyloid fibrillation. TiO2-DPA-CR were found to target amyloids in solution and induce their sedimentation upon centrifugation. This work demonstrates the potential utilization of TiO2-DPA NPs for labeling and facilely separating from solution mature amyloid fibrils.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Raz Jelinek
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Hanna Rapaport
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
16
|
Hao S, Yang Y, Han A, Chen J, Luo X, Fang G, Liu J, Wang S. Glycosides and Their Corresponding Small Molecules Inhibit Aggregation and Alleviate Cytotoxicity of Aβ40. ACS Chem Neurosci 2022; 13:766-775. [PMID: 35230090 DOI: 10.1021/acschemneuro.1c00729] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyphenols are the class of naturally synthesized compounds in the secondary metabolism of plants, which are widely distributed in fruits and vegetables. Their potential health treatment strategies have attracted wide attention in the scientific community. The abnormal aggregation of Aβ to form mature fibrils is pathologically related to Alzheimer's disease (AD). Therefore, inhibiting Aβ40 fibrillogenesis was considered to be the major method for the intervention and therapy of AD. Glycosides, as a cluster of natural phenolic compounds, are widely distributed in Chinese herbs, fruits, and vegetables. The inhibitory effect of glycosides (phloridzin, salidroside, polydatin, geniposide, and gastrodin) and their corresponding small molecules (phloretin, 4-hydroxyphenyl ethanol, resveratrol, genipin, and 4-hydroxybenzyl alcohol) on Aβ40 aggregation and fibrils prolongation, disaggregation against mature fibrils, and the resulting cytotoxicity were studied by systematical biochemical, cell biology and molecular docking techniques, respectively. As a result, all inhibitors were observed against Aβ40 aggregation and fibrils prolongation and disaggregated mature Aβ40 fibrils in a dose-dependent manner. Besides, the cell validity experiments also showed that all inhibitors could effectively alleviate the cytotoxicity induced by Aβ40 aggregates, and the glycoside groups played important roles in this inhibiting process. Finally, molecular docking was performed to study the interactions between these inhibitors and Aβ40. Docking showed that all inhibitors were bound to the similar region of Aβ40, and glycoside group formed hydrogen bonds with the pivotal residues Lys16. These results indicated that the glycoside groups could increase the inhibitory effects and reduce cytotoxicity. Glycosides have tremendous potential to be developed as an innovative type of aggregation inhibitor to control and treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Sijia Hao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yayu Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ailing Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jianan Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xiaoyu Luo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Health of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China
- Research Center of Food Science and Human Health, School of Medicine, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
17
|
Tao D, Xie C, Fu S, Rong S, Song S, Ye H, Jaffrezic-Renault N, Guo Z. Thionine-functionalized three-dimensional carbon nanomaterial-based aptasensor for analysis of Aβ oligomers in serum. Anal Chim Acta 2021; 1183:338990. [PMID: 34627525 DOI: 10.1016/j.aca.2021.338990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 01/07/2023]
Abstract
How to sensitively detect early biomarkers of Alzheimer's disease (AD) is nowadays, one of the major challenges. In this work, Aβ oligomers (AβO), one of the AD biomarkers, was analyzed using an electrochemical aptasensor, which was prepared based on thionine (Th) - functionalized three - dimensional carbon nanomaterials (reduced graphene oxide (rGO) and multi-wall carbon nanotubes (MWCNTs)) immobilized DNA-aptamer. Th, a positively charged planar aromatic molecule, form many π - π conjugated structures with rGO and MWCNTs, then improving the structural stability, electron transfer and the capacitive properties of Th-rGO-MWCNTs nanocomposites. Under the optimal conditions, differential pulse voltammetry (DPV) current responses decreased with the increase of AβO concentration. The obtained AβO aptasensor presented a wide linear range of 0.0443 pM-443.00 pM and limit of detection (LOD) was 10 fM. Meanwhile, AβO aptasensor displayed remarkable stability and selectivity. It has a great potential for early diagnosis of AD in human real serum samples.
Collapse
Affiliation(s)
- Dan Tao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, PR China; Resources and Environmental Engineering College, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Chang Xie
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Sinan Fu
- School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, Academy of Nutrition and Health, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Shizhen Song
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, PR China; Resources and Environmental Engineering College, Wuhan University of Science and Technology, Wuhan, 430081, PR China; School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Huarong Ye
- China Resources & Wisco General Hospital, Wuhan, 430080, PR China.
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5 La Doua Street, Villeurbanne, 69100, France.
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, PR China.
| |
Collapse
|
18
|
Lee J, Lee K, Lim CT. Surface Plasmon Resonance Assay for Identification of Small Molecules Capable of Inhibiting Aβ Aggregation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27845-27855. [PMID: 34110774 DOI: 10.1021/acsami.1c04833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Toxic aggregates of amyloid-beta (Aβ) have importance in the pathology of Alzheimer's disease, and inhibition of aggregate formation is considered to be a promising strategy for drug development. Here, we report a simple and rapid surface plasmon resonance (SPR) assay method that can identify potential Aβ aggregation inhibitors. Our assay is based on the SPR shifting of the Aβ-gold nanoparticle (Aβ-GNP) aggregates by size under the influence of an Aβ aggregation inhibitor. This user-friendly assay features a short assay time with a low reagent consumption that can be easily adapted as a high-throughput screen. We demonstrated that an effective Aβ aggregation inhibitor induces the blue-shifted SPR peaks of the Aβ-GNP aggregates by hindering the formation of long fibrillar aggregates. Moreover, the blue shifting was correlated to the efficacy and concentrations of an Aβ aggregation inhibitor. Overall, our findings suggest that our simple SPR assay can be a powerful tool to screen small molecules targeting Aβ aggregation.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
| | - Kwan Lee
- Department of Advanced Materials Engineering, College of Engineering, Kyungsung University, Busan 48434, Republic of Korea
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|