1
|
Fonta N, Page N, Klimek B, Piccinno M, Di Liberto G, Lemeille S, Kreutzfeldt M, Kastner AL, Ertuna YI, Vincenti I, Wagner I, Pinschewer DD, Merkler D. Oligodendrocyte-derived IL-33 regulates self-reactive CD8+ T cells in CNS autoimmunity. J Exp Med 2025; 222:e20241188. [PMID: 40227193 PMCID: PMC11995930 DOI: 10.1084/jem.20241188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 02/11/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
In chronic inflammatory disorders of the central nervous system (CNS), tissue-resident self-reactive T cells perpetuate disease. The specific tissue factors governing the persistence and continuous differentiation of these cells remain undefined but could represent attractive therapeutic targets. In a model of chronic CNS autoimmunity, we find that oligodendrocyte-derived IL-33, an alarmin, is key for locally regulating the pathogenicity of self-reactive CD8+ T cells. The selective ablation of IL-33 from neo-self-antigen-expressing oligodendrocytes mitigates CNS disease. In this context, fewer self-reactive CD8+ T cells persist in the inflamed CNS, and the remaining cells are impaired in generating TCF-1low effector cells. Importantly, interventional IL-33 blockade by locally administered somatic gene therapy reduces T cell infiltrates and improves the disease course. Our study identifies oligodendrocyte-derived IL-33 as a druggable tissue factor regulating the differentiation and survival of self-reactive CD8+ T cells in the inflamed CNS. This finding introduces tissue factors as a novel category of immune targets for treating chronic CNS autoimmune diseases.
Collapse
Affiliation(s)
- Nicolas Fonta
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Bogna Klimek
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Margot Piccinno
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Giovanni Di Liberto
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Anna Lena Kastner
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Yusuf I. Ertuna
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Daniel D. Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
2
|
Groh J, Feng R, Yuan X, Liu L, Klein D, Hutahaean G, Butz E, Wang Z, Steinbrecher L, Neher J, Martini R, Simons M. Microglia activation orchestrates CXCL10-mediated CD8 + T cell recruitment to promote aging-related white matter degeneration. Nat Neurosci 2025:10.1038/s41593-025-01955-w. [PMID: 40404995 DOI: 10.1038/s41593-025-01955-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/25/2025] [Indexed: 05/24/2025]
Abstract
Aging is the major risk factor for neurodegeneration and is associated with structural and functional alterations in white matter. Myelin is particularly vulnerable to aging, resulting in white matter-associated microglia activation. Here we used pharmacological and genetic approaches to investigate microglial functions related to aging-associated changes in myelinated axons of mice. Our results reveal that maladaptive microglia activation promotes the accumulation of harmful CD8+ T cells, leading to the degeneration of myelinated axons and subsequent impairment of brain function and behavior. We characterize glial heterogeneity and aging-related changes in white matter by single-cell and spatial transcriptomics and reveal elaborate glial-immune interactions. Mechanistically, we show that the CXCL10-CXCR3 axis is crucial for the recruitment and retention of CD8+ T cells in aged white matter, where they exert pathogenic effects. Our results indicate that myelin-related microglia dysfunction promotes adaptive immune reactions in aging and identify putative targets to mitigate their detrimental impact.
Collapse
Affiliation(s)
- Janos Groh
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany.
- German Center for Neurodegenerative Diseases, Munich, Germany.
- Munich Cluster of Systems Neurology, Munich, Germany.
| | - Ruoqing Feng
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Xidi Yuan
- German Center for Neurodegenerative Diseases, Munich, Germany
- Neuroimmunology and Neurodegenerative Disease, German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Lu Liu
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Dennis Klein
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gladis Hutahaean
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Elisabeth Butz
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Zhen Wang
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Lisa Steinbrecher
- Neuroimmunology and Neurodegenerative Disease, German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jonas Neher
- German Center for Neurodegenerative Diseases, Munich, Germany
- Neuroimmunology and Neurodegenerative Disease, German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rudolf Martini
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Mikael Simons
- Department of Neurology, Section of Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster of Systems Neurology, Munich, Germany
| |
Collapse
|
3
|
Huang S, Chen Z, Zhong S, Zhang Y, Zeng C, Zheng X, Li Y, Chen S. Inhibition of TOX exerts anti-tumor effects in acute myeloid leukemia by upregulating IRF7 expression. Eur J Pharmacol 2025; 987:177163. [PMID: 39615865 DOI: 10.1016/j.ejphar.2024.177163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
Thymocyte selection-associated high mobility group box protein (TOX) is regarded as a crucial transcription factor involved in T cell exhaustion in acute myeloid leukemia (AML). Previous studies have identified aberrant TOX expression as a major oncogenic driver in hematologic malignancies, indicating that TOX may potentially be both an immune biomarker and an immunotherapy target. However, due to heterogeneity in the distribution patterns of TOX and its correlation with clinical prognosis, the mechanism underlying TOX-mediated tumor immune responses remains unclear. In this study, we demonstrate that high TOX expression in AML patients is associated with poor prognosis, and TOX overexpression promotes AML cell proliferation and restricts apoptosis. In vitro TOX inhibition promoted the apoptosis of AML cells, suppressed cell viability, and induced cell cycle arrest in the G0/G1 phase. Moreover, TOX knockdown could reduce tumor burden in vivo in immunodeficient mice and prolong their survival. Furthermore, the anti-AML effects of inhibiting TOX may act through activation of the IFN-α signal pathway and upregulating IRF7 expression. In summary, we report for the first time that TOX knockdown exerts powerful anti-tumor effects in AML. These findings will provide a theoretical basis for targeted therapy in AML patients.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Humans
- Animals
- Interferon Regulatory Factor-7/genetics
- Interferon Regulatory Factor-7/metabolism
- High Mobility Group Proteins/genetics
- High Mobility Group Proteins/metabolism
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Up-Regulation/drug effects
- Mice
- Cell Line, Tumor
- Male
- Female
- Xenograft Model Antitumor Assays
- Gene Expression Regulation, Leukemic/drug effects
- Gene Knockdown Techniques
- Signal Transduction/drug effects
- Middle Aged
Collapse
Affiliation(s)
- Shuxin Huang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhixi Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shuxin Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yikai Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xue Zheng
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China; Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Shaohua Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Tan C, Wu D, Yang X, Zhang S, Liu S, Yu B, Yu X, Xiu Y, Huang Y. Low expression of TOX predicts poor prognosis of patients with breast cancer in the real world: A retrospective study. Heliyon 2025; 11:e41180. [PMID: 39758401 PMCID: PMC11699305 DOI: 10.1016/j.heliyon.2024.e41180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/11/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
Background TOX is a transcription factor that is implicated in the regulation of T cell exhaustion in tumors. TOX has been proven to have prognostic value in some malignant tumors. We aim to analyze the expression of TOX in breast cancer patients, and the association between TOX and prognostic significance in patients with breast cancer. Methods 313 breast cancer patients were enrolled into this study. The expression of TOX was determined by immunohistochemistry assay. Survival curves were performed by Kaplan-Meier and log-rank test. The potential independent factors were assessed by Cox regression analyses. Nomogram models, calibration curve, decision curve analyses were applied to analyze the clinical utility of predictive models. Results According to semi-quantitative scoring, 129 patients were classified into low group, and 184 patients were classified into high group. Patients with high expression of TOX had a longer survival than those with low expression of TOX (DFS: 71.70 vs. 64.05 months, χ2 = 11.6300, P = 0.00065; OS: 81.03 vs. 73.72 months, χ2 = 11.4200, P = 0.00073). Based on Cox regression analyses, multivariate analysis indicated that TOX was the potential prognostic factor for both DFS (HR: 0.412, 95 % CI: 0.248-0.684, P = 0.001) and OS (HR: 0.395, 95 % CI: 0.237-0.660, P < 0.0001). Calibration curve analysis showed that the predicted line was well-matched with baseline regarding postoperative 1-, 3-, and 5-year survival rate. Conclusions The expression of TOX is a potential prognostic factor, and can be a promising biomarker for predicting survival in breast cancer patients.
Collapse
Affiliation(s)
- Chunlei Tan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Danping Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Xiaotian Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Shiyuan Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Shuqiang Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Boqian Yu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Xiao Yu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Yuting Xiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| | - Yuanxi Huang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150081, PR China
| |
Collapse
|
5
|
Han J, Dai Y, Zhou J, Tian J, Chen Q, Kou X, Raza G, Zhang B, Wang K. Tissue-specific chromatin accessibility and transcriptional regulation in maize cold stress response. Genomics 2025; 117:110981. [PMID: 39701501 DOI: 10.1016/j.ygeno.2024.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Maize, a vital crop globally, faces significant yield losses due to its sensitivity to cold stress, especially in temperate regions. Understanding the molecular mechanisms governing maize response to cold stress is crucial for developing strategies to enhance cold tolerance. However, the precise chromatin-level regulatory mechanisms involved remain largely unknown. In this study, we employed DNase-seq and RNA-seq techniques to investigate chromatin accessibility and gene expression changes in maize root, stem, and leaf tissues subjected to cold treatment. We discovered widespread changes in chromatin accessibility and gene expression across these tissues, with strong tissue specificity. Cold stress-induced DNase I hypersensitive sites (coiDHSs) were associated with differentially expressed genes, suggesting a direct link between chromatin accessibility and gene regulation under cold stress. Motif enrichment analysis identified ERF transcription factors (TFs) as central regulators conserved across tissues, with ERF5 emerging as pivotal in the cold response regulatory network. Additionally, TF co-localization analysis highlighted six TF pairs (ERF115-SHN3, ERF9-LEP, ERF7-SHN3, LEP-SHN3, LOB-SHN3, and AS2-LOB) conserved across tissues but showing tissue-specific binding preferences. These findings indicate intricate regulatory networks in maize cold response. Overall, our study provides insights into the chromatin-level regulatory mechanisms underpinning maize adaptive response to cold stress, offering potential targets for enhancing cold tolerance in agricultural contexts.
Collapse
Affiliation(s)
- Jinlei Han
- School of Life Sciences, Nantong University, Nantong 226019, China.
| | - Yan Dai
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Jialiang Zhou
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Jingjing Tian
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xiaobing Kou
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, China.
| |
Collapse
|
6
|
Kim HJ, Ban JJ, Kang J, Im HR, Ko SH, Sung JJ, Park SH, Park JE, Choi SJ. Single-cell analysis reveals expanded CD8 + GZMK high T cells in CSF and shared peripheral clones in sporadic amyotrophic lateral sclerosis. Brain Commun 2024; 6:fcae428. [PMID: 39659975 PMCID: PMC11631212 DOI: 10.1093/braincomms/fcae428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects motor neurons in the brain and spinal cord. Despite the crucial role of aberrant immune responses in ALS pathogenesis, studies investigating immunological profiles in the cerebrospinal fluid (CSF) of patients with ALS have reported inconsistent findings. Herein, we explored the intrathecal adaptive immune response and features of circulating T cells between CSF and blood of patients with ALS using single-cell RNA and T-cell receptor (TCR) sequencing. This study comprised a total of 11 patients with apparently sporadic ALS and three controls with non-inflammatory diseases. We collected CSF from all participants, and for three patients with ALS, we additionally obtained paired samples of peripheral blood mononuclear cells (PBMCs). Utilizing droplet-based single-cell RNA and TCR sequencing, we analysed immunological profiles, gene expression characteristics and clonality. Furthermore, we examined T-cell characteristics in both PBMC and CSF samples, evaluating the shared T-cell clones across these compartments. In the CSF, patients with ALS exhibited a lower proportion of CD4+ T cells (45.2 versus 61.2%, P = 0.005) and a higher proportion of CD8+ GZMK hi effector memory T cells (TEMs) than controls (21.7 versus 16.8%, P = 0.060). Higher clonality was observed in CD8+ TEMs in patients with ALS compared with controls. In addition, CSF macrophages of patients with ALS exhibited a significant increase in chemokines recruiting CD8+ TEMs. Immunohistochemical analysis showed slightly higher proportions of T cells in the perivascular and parenchymal spaces in patients with ALS than in controls, and CD8+ TEMs co-localized with neurons or astrocytes in the motor cortices of patients with ALS. Clonally expanded CD8+ GZMK hi TEMs primarily comprised shared T-cell clones between CSF and PBMCs. Moreover, the shared CD8+ TEMs of PBMCs exhibited gene expression profiles similar to CSF T cells. Patients with ALS showed an increase in proportion and clonality of CD8+ GZMK hi TEMs and activated features of macrophages in CSF. The shared T-cell clone between CSF and blood was mainly composed of expanded CD8+ GZMK hi TEMs. In conclusion, single-cell immune profiling provided novel insights into the pathogenesis of ALS, characterized by activated macrophages and clonally expanded CD8+ T cells potentially communicating with the central nervous system and peripheral circulation.
Collapse
Affiliation(s)
- Hyo Jae Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jae-Jun Ban
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Junho Kang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hye-Ryeong Im
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sun Hi Ko
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seok-Jin Choi
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
7
|
Aliyu M, Zohora FT, Ceylan A, Hossain F, Yazdani R, Azizi G. Immunopathogenesis of multiple sclerosis: molecular and cellular mechanisms and new immunotherapeutic approaches. Immunopharmacol Immunotoxicol 2024; 46:355-377. [PMID: 38634438 DOI: 10.1080/08923973.2024.2330642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a central nervous system (CNS) demyelinating autoimmune disease with increasing global prevalence. It predominantly affects females, especially those of European descent. The interplay between environmental factors and genetic predisposition plays a crucial role in MS etiopathogenesis. METHODS We searched recent relevant literature on reputable databases, which include, PubMed, Embase, Web of Science, Scopus, and ScienceDirect using the following keywords: multiple sclerosis, pathogenesis, autoimmunity, demyelination, therapy, and immunotherapy. RESULTS Various animal models have been employed to investigate the MS etiopathogenesis and therapeutics. Autoreactive T cells within the CNS recruit myeloid cells through chemokine expression, leading to the secretion of inflammatory cytokines driving the MS pathogenesis, resulting in demyelination, gliosis, and axonal loss. Key players include T cell lymphocytes (CD4+ and CD8+), B cells, and neutrophils. Signaling dysregulation in inflammatory pathways and the immunogenetic basis of MS are essential considerations for any successful therapy to MS. Data indicates that B cells and neutrophils also have significant roles in MS, despite the common belief that T cells are essential. High neutrophil-to-lymphocyte ratios correlate with MS severity, indicating their contribution to disease progression. Dysregulated signaling pathways further exacerbate MS progression. CONCLUSION MS remains incurable, but disease-modifying therapies, monoclonal antibodies, and immunomodulatory drugs offer hope for patients. Research on the immunogenetics and immunoregulatory functions of gut microbiota is continuing to provide light on possible treatment avenues. Understanding the complex interplay between genetic predisposition, environmental factors, and immune dysregulation is critical for developing effective treatments for MS.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
- Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ayca Ceylan
- Medical Faculty, Department of Pediatrics, Division of Immunology and Allergy, Selcuk University, Konya, Turkey
| | - Fariha Hossain
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Reza Yazdani
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
8
|
Selck C, Jhala G, De George DJ, Kwong CTJ, Christensen MK, Pappas EG, Liu X, Ge T, Trivedi P, Kallies A, Thomas HE, Kay TWH, Krishnamurthy B. Extraislet expression of islet antigen boosts T cell exhaustion to partially prevent autoimmune diabetes. Proc Natl Acad Sci U S A 2024; 121:e2315419121. [PMID: 38285952 PMCID: PMC10861925 DOI: 10.1073/pnas.2315419121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024] Open
Abstract
Persistent antigen exposure results in the differentiation of functionally impaired, also termed exhausted, T cells which are maintained by a distinct population of precursors of exhausted T (TPEX) cells. T cell exhaustion is well studied in the context of chronic viral infections and cancer, but it is unclear whether and how antigen-driven T cell exhaustion controls progression of autoimmune diabetes and whether this process can be harnessed to prevent diabetes. Using nonobese diabetic (NOD) mice, we show that some CD8+ T cells specific for the islet antigen, islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) displayed terminal exhaustion characteristics within pancreatic islets but were maintained in the TPEX cell state in peripheral lymphoid organs (PLO). More IGRP-specific T cells resided in the PLO than in islets. To examine the impact of extraislet antigen exposure on T cell exhaustion in diabetes, we generated transgenic NOD mice with inducible IGRP expression in peripheral antigen-presenting cells. Antigen exposure in the extraislet environment induced severely exhausted IGRP-specific T cells with reduced ability to produce interferon (IFN)γ, which protected these mice from diabetes. Our data demonstrate that T cell exhaustion induced by delivery of antigen can be harnessed to prevent autoimmune diabetes.
Collapse
Affiliation(s)
- Claudia Selck
- Immunology and Diabetes Unit, St. Vincent’s Institute, Fitzroy, VIC3065, Australia
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Fitzroy, VIC3065, Australia
| | - Gaurang Jhala
- Immunology and Diabetes Unit, St. Vincent’s Institute, Fitzroy, VIC3065, Australia
| | - David J. De George
- Immunology and Diabetes Unit, St. Vincent’s Institute, Fitzroy, VIC3065, Australia
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Fitzroy, VIC3065, Australia
| | - Chun-Ting J. Kwong
- Immunology and Diabetes Unit, St. Vincent’s Institute, Fitzroy, VIC3065, Australia
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Fitzroy, VIC3065, Australia
| | - Marie K. Christensen
- Immunology and Diabetes Unit, St. Vincent’s Institute, Fitzroy, VIC3065, Australia
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Fitzroy, VIC3065, Australia
| | - Evan G. Pappas
- Immunology and Diabetes Unit, St. Vincent’s Institute, Fitzroy, VIC3065, Australia
| | - Xin Liu
- Immunology and Diabetes Unit, St. Vincent’s Institute, Fitzroy, VIC3065, Australia
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Fitzroy, VIC3065, Australia
| | - Tingting Ge
- Immunology and Diabetes Unit, St. Vincent’s Institute, Fitzroy, VIC3065, Australia
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Fitzroy, VIC3065, Australia
| | - Prerak Trivedi
- Immunology and Diabetes Unit, St. Vincent’s Institute, Fitzroy, VIC3065, Australia
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Fitzroy, VIC3065, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC3000, Australia
| | - Helen E. Thomas
- Immunology and Diabetes Unit, St. Vincent’s Institute, Fitzroy, VIC3065, Australia
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Fitzroy, VIC3065, Australia
| | - Thomas W. H. Kay
- Immunology and Diabetes Unit, St. Vincent’s Institute, Fitzroy, VIC3065, Australia
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Fitzroy, VIC3065, Australia
| | - Balasubramanian Krishnamurthy
- Immunology and Diabetes Unit, St. Vincent’s Institute, Fitzroy, VIC3065, Australia
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Fitzroy, VIC3065, Australia
| |
Collapse
|
9
|
Canaria DA, Rodriguez JA, Wang L, Yeo FJ, Yan B, Wang M, Campbell C, Kazemian M, Olson MR. Tox induces T cell IL-10 production in a BATF-dependent manner. Front Immunol 2023; 14:1275423. [PMID: 38054003 PMCID: PMC10694202 DOI: 10.3389/fimmu.2023.1275423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Tox is a member of the high mobility group (HMG)-Box transcription factors and plays important roles in thymic T cell development. Outside of the thymus, however, Tox is also highly expressed by CD8 and CD4 T cells in various states of activation and in settings of cancer and autoimmune disease. In CD4 T cells, Tox has been primarily studied in T follicular helper (TFH) cells where it, along with Tox2, promotes TFH differentiation by regulating key TFH-associated genes and suppressing CD4 cytotoxic T cell differentiation. However, the role of Tox in other T helper (Th) cell subtypes is less clear. Here, we show that Tox is expressed in several physiologically-activated Th subtypes and its ectopic expression enhances the in vitro differentiation of Th2 and T regulatory (Treg) cells. Tox overexpression in unpolarized Th cells also induced the expression of several genes involved in cell activation (Pdcd1), cellular trafficking (Ccl3, Ccl4, Xcl1) and suppressing inflammation (Il10) across multiple Th subtypes. We found that Tox binds the regulatory regions of these genes along with the transcription factors BATF, IRF4, and JunB and that Tox-induced expression of IL-10, but not PD-1, is BATF-dependent. Based on these data, we propose a model where Tox regulates Th cell chemotactic genes involved in facilitating dendritic cell-T cell interactions and aids in the resolution or prevention of inflammation through the production of IL-10.
Collapse
Affiliation(s)
- D. Alejandro Canaria
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | | | - Luopin Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Franklin J. Yeo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Bingyu Yan
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Mengbo Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Charlotte Campbell
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Majid Kazemian
- Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Matthew R. Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
10
|
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8:235. [PMID: 37332039 PMCID: PMC10277291 DOI: 10.1038/s41392-023-01471-y] [Citation(s) in RCA: 315] [Impact Index Per Article: 157.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
T cells are crucial for immune functions to maintain health and prevent disease. T cell development occurs in a stepwise process in the thymus and mainly generates CD4+ and CD8+ T cell subsets. Upon antigen stimulation, naïve T cells differentiate into CD4+ helper and CD8+ cytotoxic effector and memory cells, mediating direct killing, diverse immune regulatory function, and long-term protection. In response to acute and chronic infections and tumors, T cells adopt distinct differentiation trajectories and develop into a range of heterogeneous populations with various phenotype, differentiation potential, and functionality under precise and elaborate regulations of transcriptional and epigenetic programs. Abnormal T-cell immunity can initiate and promote the pathogenesis of autoimmune diseases. In this review, we summarize the current understanding of T cell development, CD4+ and CD8+ T cell classification, and differentiation in physiological settings. We further elaborate the heterogeneity, differentiation, functionality, and regulation network of CD4+ and CD8+ T cells in infectious disease, chronic infection and tumor, and autoimmune disease, highlighting the exhausted CD8+ T cell differentiation trajectory, CD4+ T cell helper function, T cell contributions to immunotherapy and autoimmune pathogenesis. We also discuss the development and function of γδ T cells in tissue surveillance, infection, and tumor immunity. Finally, we summarized current T-cell-based immunotherapies in both cancer and autoimmune diseases, with an emphasis on their clinical applications. A better understanding of T cell immunity provides insight into developing novel prophylactic and therapeutic strategies in human diseases.
Collapse
Affiliation(s)
- Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shannxi, 710061, China.
| |
Collapse
|
11
|
Agrafiotis A, Dizerens R, Vincenti I, Wagner I, Kuhn R, Shlesinger D, Manero-Carranza M, Cotet TS, Hong KL, Page N, Fonta N, Shammas G, Mariotte A, Piccinno M, Kreutzfeldt M, Gruntz B, Ehling R, Genovese A, Pedrioli A, Dounas A, Franzenburg S, Tumani H, Kümpfel T, Kavaka V, Gerdes LA, Dornmair K, Beltrán E, Oxenius A, Reddy ST, Merkler D, Yermanos A. Persistent virus-specific and clonally expanded antibody-secreting cells respond to induced self-antigen in the CNS. Acta Neuropathol 2023; 145:335-355. [PMID: 36695896 PMCID: PMC9925600 DOI: 10.1007/s00401-023-02537-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 01/26/2023]
Abstract
B cells contribute to the pathogenesis of both cellular- and humoral-mediated central nervous system (CNS) inflammatory diseases through a variety of mechanisms. In such conditions, B cells may enter the CNS parenchyma and contribute to local tissue destruction. It remains unexplored, however, how infection and autoimmunity drive transcriptional phenotypes, repertoire features, and antibody functionality. Here, we profiled B cells from the CNS of murine models of intracranial (i.c.) viral infections and autoimmunity. We identified a population of clonally expanded, antibody-secreting cells (ASCs) that had undergone class-switch recombination and extensive somatic hypermutation following i.c. infection with attenuated lymphocytic choriomeningitis virus (rLCMV). Recombinant expression and characterisation of these antibodies revealed specificity to viral antigens (LCMV glycoprotein GP), correlating with ASC persistence in the brain weeks after resolved infection. Furthermore, these virus-specific ASCs upregulated proliferation and expansion programs in response to the conditional and transient induction of the LCMV GP as a neo-self antigen by astrocytes. This class-switched, clonally expanded, and mutated population persisted and was even more pronounced when peripheral B cells were depleted prior to autoantigen induction in the CNS. In contrast, the most expanded B cell clones in mice with persistent expression of LCMV GP in the CNS did not exhibit neo-self antigen specificity, potentially a consequence of local tolerance induction. Finally, a comparable population of clonally expanded, class-switched, and proliferating ASCs was detected in the cerebrospinal fluid of relapsing multiple sclerosis (RMS) patients. Taken together, our findings support the existence of B cells that populate the CNS and are capable of responding to locally encountered autoantigens.
Collapse
Affiliation(s)
- Andreas Agrafiotis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Raphael Dizerens
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Raphael Kuhn
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Danielle Shlesinger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Tudor-Stefan Cotet
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kai-Lin Hong
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Nicolas Page
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nicolas Fonta
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ghazal Shammas
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Alexandre Mariotte
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Margot Piccinno
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Benedikt Gruntz
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Roy Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | - Andreas Dounas
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | | | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, Faculty of Medicine, University Hospital and Biomedical Center (BMC), LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Vladyslav Kavaka
- Institute of Clinical Neuroimmunology, Faculty of Medicine, University Hospital and Biomedical Center (BMC), LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, Faculty of Medicine, University Hospital and Biomedical Center (BMC), LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Faculty of Medicine, University Hospital and Biomedical Center (BMC), LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, Faculty of Medicine, University Hospital and Biomedical Center (BMC), LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | | | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
- Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland.
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
12
|
Saadey AA, Yousif A, Osborne N, Shahinfar R, Chen YL, Laster B, Rajeev M, Bauman P, Webb A, Ghoneim HE. Rebalancing TGFβ1/BMP signals in exhausted T cells unlocks responsiveness to immune checkpoint blockade therapy. Nat Immunol 2023; 24:280-294. [PMID: 36543960 DOI: 10.1038/s41590-022-01384-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
T cell dysfunctionality prevents the clearance of chronic infections and cancer. Furthermore, epigenetic programming in dysfunctional CD8+ T cells limits their response to immunotherapies, including immune checkpoint blockade (ICB). However, it is unclear which upstream signals drive acquisition of dysfunctional epigenetic programs, and whether therapeutically targeting these signals can remodel terminally dysfunctional T cells to an ICB-responsive state. Here we innovate an in vitro model system of stable human T cell dysfunction and show that chronic TGFβ1 signaling in posteffector CD8+ T cells accelerates their terminal dysfunction through stable epigenetic changes. Conversely, boosting bone morphogenetic protein (BMP) signaling while blocking TGFβ1 preserved effector and memory programs in chronically stimulated human CD8+ T cells, inducing superior responses to tumors and synergizing the ICB responses during chronic viral infection. Thus, rebalancing TGFβ1/BMP signals provides an exciting new approach to unleash dysfunctional CD8+ T cells and enhance T cell immunotherapies.
Collapse
Affiliation(s)
- Abbey A Saadey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Amir Yousif
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Nicole Osborne
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Roya Shahinfar
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yu-Lin Chen
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Brooke Laster
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Meera Rajeev
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Parker Bauman
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Amy Webb
- Biomedical Informatics Shared Resources, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA.
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA.
- The Pelotonia Institute for Immuno-Oncology, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Burke KP, Patterson DG, Liang D, Sharpe AH. Immune checkpoint receptors in autoimmunity. Curr Opin Immunol 2023; 80:102283. [PMID: 36709596 PMCID: PMC10019320 DOI: 10.1016/j.coi.2023.102283] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/04/2023] [Indexed: 01/30/2023]
Abstract
Immune checkpoint receptors such as programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), and T cell immunoglobulin and ITIM domain (TIGIT) have distinct and overlapping inhibitory functions that regulate Tcell activation, differentiation, and function. These inhibitory receptors also mediate tolerance, and dysregulation of these receptors can result in a breach of tolerance and the development of autoimmune syndromes. Similarly, antibody blockade of immune checkpoint receptors or their ligands for cancer immunotherapy may trigger a spectrum of organ inflammation that resembles autoimmunity, termed immune-related adverse events (irAE). In this review, we discuss recent advances in the regulation of autoimmunity by immune checkpoint receptors. We highlight coordinated gene expression programs linking checkpoint receptors, heterogeneity within autoreactive T-cell populations, parallels between irAE and autoimmunity, and bidirectional functional interactions between immune checkpoint receptors and their ligands.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dillon G Patterson
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dan Liang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
14
|
Attfield KE, Jensen LT, Kaufmann M, Friese MA, Fugger L. The immunology of multiple sclerosis. Nat Rev Immunol 2022; 22:734-750. [PMID: 35508809 DOI: 10.1038/s41577-022-00718-z] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Our incomplete understanding of the causes and pathways involved in the onset and progression of multiple sclerosis (MS) limits our ability to effectively treat this complex neurological disease. Recent studies explore the role of immune cells at different stages of MS and how they interact with cells of the central nervous system (CNS). The findings presented here begin to question the exclusivity of an antigen-specific cause and highlight how seemingly distinct immune cell types can share common functions that drive disease. Innovative techniques further expose new disease-associated immune cell populations and reinforce how environmental context is critical to their phenotype and subsequent role in disease. Importantly, the differentiation of immune cells into a pathogenic state is potentially reversible through therapeutic manipulation. As such, understanding the mechanisms that provide plasticity to causal cell types is likely key to uncoupling these disease processes and may identify novel therapeutic targets that replace the need for cell ablation.
Collapse
Affiliation(s)
- Kathrine E Attfield
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Oxford University Hospitals, University of Oxford, Oxford, UK
| | - Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Max Kaufmann
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Oxford University Hospitals, University of Oxford, Oxford, UK.
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Campisi L, Chizari S, Ho JSY, Gromova A, Arnold FJ, Mosca L, Mei X, Fstkchyan Y, Torre D, Beharry C, Garcia-Forn M, Jiménez-Alcázar M, Korobeynikov VA, Prazich J, Fayad ZA, Seldin MM, De Rubeis S, Bennett CL, Ostrow LW, Lunetta C, Squatrito M, Byun M, Shneider NA, Jiang N, La Spada AR, Marazzi I. Clonally expanded CD8 T cells characterize amyotrophic lateral sclerosis-4. Nature 2022; 606:945-952. [PMID: 35732742 PMCID: PMC10089623 DOI: 10.1038/s41586-022-04844-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/09/2022] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogenous neurodegenerative disorder that affects motor neurons and voluntary muscle control1. ALS heterogeneity includes the age of manifestation, the rate of progression and the anatomical sites of symptom onset. Disease-causing mutations in specific genes have been identified and define different subtypes of ALS1. Although several ALS-associated genes have been shown to affect immune functions2, whether specific immune features account for ALS heterogeneity is poorly understood. Amyotrophic lateral sclerosis-4 (ALS4) is characterized by juvenile onset and slow progression3. Patients with ALS4 show motor difficulties by the time that they are in their thirties, and most of them require devices to assist with walking by their fifties. ALS4 is caused by mutations in the senataxin gene (SETX). Here, using Setx knock-in mice that carry the ALS4-causative L389S mutation, we describe an immunological signature that consists of clonally expanded, terminally differentiated effector memory (TEMRA) CD8 T cells in the central nervous system and the blood of knock-in mice. Increased frequencies of antigen-specific CD8 T cells in knock-in mice mirror the progression of motor neuron disease and correlate with anti-glioma immunity. Furthermore, bone marrow transplantation experiments indicate that the immune system has a key role in ALS4 neurodegeneration. In patients with ALS4, clonally expanded TEMRA CD8 T cells circulate in the peripheral blood. Our results provide evidence of an antigen-specific CD8 T cell response in ALS4, which could be used to unravel disease mechanisms and as a potential biomarker of disease state.
Collapse
Affiliation(s)
- Laura Campisi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Shahab Chizari
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jessica S Y Ho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anastasia Gromova
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Frederick J Arnold
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Lorena Mosca
- Medical Genetics Unit, Department of Laboratory Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Xueyan Mei
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yesai Fstkchyan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denis Torre
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cindy Beharry
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miguel Jiménez-Alcázar
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Program, Spanish National Cancer Research Centre, Madrid, Spain
| | | | - Jack Prazich
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, CA, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Craig L Bennett
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Lyle W Ostrow
- Neuromuscular Division of the Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christian Lunetta
- NEMO Clinical Center, Fondazione Serena Onlus, Milan, Italy
- Neurorehabilitation Department, Istituti Clinici Scientifici Maugeri, IRCCS, Milan, Italy
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Program, Spanish National Cancer Research Centre, Madrid, Spain
| | - Minji Byun
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neil A Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Ning Jiang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Albert R La Spada
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA.
- Department of Neurology, University of California, Irvine, Irvine, CA, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
- UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA.
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
16
|
Frieser D, Pignata A, Khajavi L, Shlesinger D, Gonzalez-Fierro C, Nguyen XH, Yermanos A, Merkler D, Höftberger R, Desestret V, Mair KM, Bauer J, Masson F, Liblau RS. Tissue-resident CD8 + T cells drive compartmentalized and chronic autoimmune damage against CNS neurons. Sci Transl Med 2022; 14:eabl6157. [PMID: 35417189 DOI: 10.1126/scitranslmed.abl6157] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying the chronicity of autoimmune diseases of the central nervous system (CNS) are largely unknown. In particular, it is unclear whether tissue-resident memory T cells (TRM) contribute to lesion pathogenesis during chronic CNS autoimmunity. Here, we observed that a high frequency of brain-infiltrating CD8+ T cells exhibit a TRM-like phenotype in human autoimmune encephalitis. Using mouse models of neuronal autoimmunity and a combination of T single-cell transcriptomics, high-dimensional flow cytometry, and histopathology, we found that pathogenic CD8+ T cells behind the blood-brain barrier adopt a characteristic TRM differentiation program, and we revealed their phenotypic and functional heterogeneity. In the diseased CNS, autoreactive tissue-resident CD8+ T cells sustained focal neuroinflammation and progressive loss of neurons, independently of recirculating CD8+ T cells. Consistently, a large fraction of autoreactive tissue-resident CD8+ T cells exhibited proliferative potential as well as proinflammatory and cytotoxic properties. Persistence of tissue-resident CD8+ T cells in the CNS and their functional output, but not their initial differentiation, were crucially dependent on CD4+ T cells. Collectively, our results point to tissue-resident CD8+ T cells as essential drivers of chronic CNS autoimmunity and suggest that therapies targeting this compartmentalized autoreactive T cell subset might be effective for treating CNS autoimmune diseases.
Collapse
Affiliation(s)
- David Frieser
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | - Aurora Pignata
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | - Leila Khajavi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | | | - Carmen Gonzalez-Fierro
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | - Xuan-Hung Nguyen
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | - Alexander Yermanos
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland.,Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Virginie Desestret
- National Reference Center for Paraneoplastic Neurological Syndromes, MeLiS-UCBL-CNRS, INSERM, Hôpital Neurologique, Hospices Civils de Lyon, 69500 Lyon, France
| | - Katharina M Mair
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Jan Bauer
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Frederick Masson
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France
| | - Roland S Liblau
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), University of Toulouse, CNRS, INSERM, UPS, 31024 Toulouse, France.,Department of Immunology, Toulouse University Hospital, 31300 Toulouse, France
| |
Collapse
|
17
|
van Nijnatten J, Brandsma CA, Steiling K, Hiemstra PS, Timens W, van den Berge M, Faiz A. High miR203a-3p and miR-375 expression in the airways of smokers with and without COPD. Sci Rep 2022; 12:5610. [PMID: 35379844 PMCID: PMC8980043 DOI: 10.1038/s41598-022-09093-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Smoking is a leading cause of chronic obstructive pulmonary disease (COPD). It is known to have a significant impact on gene expression and (inflammatory) cell populations in the airways involved in COPD pathogenesis. In this study, we investigated the impact of smoking on the expression of miRNAs in healthy and COPD individuals. We aimed to elucidate the overall smoking-induced miRNA changes and those specific to COPD. In addition, we investigated the downstream effects on regulatory gene expression and the correlation to cellular composition. We performed a genome-wide miRNA expression analysis on a dataset of 40 current- and 22 ex-smoking COPD patients and a dataset of 35 current- and 38 non-smoking respiratory healthy controls and validated the results in an independent dataset. miRNA expression was then correlated with mRNA expression in the same patients to assess potential regulatory effects of the miRNAs. Finally, cellular deconvolution analysis was used to relate miRNAs changes to specific cell populations. Current smoking was associated with increased expression of three miRNAs in the COPD patients and 18 miRNAs in the asymptomatic smokers compared to respiratory healthy controls. In comparison, four miRNAs were lower expressed with current smoking in asymptomatic controls. Two of the three smoking-related miRNAs in COPD, miR-203a-3p and miR-375, were also higher expressed with current smoking in COPD patients and the asymptomatic controls. The other smoking-related miRNA in COPD patients, i.e. miR-31-3p, was not present in the respiratory healthy control dataset. miRNA-mRNA correlations demonstrated that miR-203a-3p, miR-375 and also miR-31-3p expression were negatively associated with genes involved in pro-inflammatory pathways and positively associated with genes involved in the xenobiotic pathway. Cellular deconvolution showed that higher levels of miR-203a-3p were associated with higher proportions of proliferating-basal cells and secretory (club and goblet) cells and lower levels of fibroblasts, luminal macrophages, endothelial cells, B-cells, amongst other cell types. MiR-375 expression was associated with lower levels of secretory cells, ionocytes and submucosal cells, but higher levels of endothelial cells, smooth muscle cells, and mast cells, amongst other cell types. In conclusion, we identified two smoking-induced miRNAs (miR-375 and miR-203a-3p) that play a role in regulating inflammation and detoxification pathways, regardless of the presence or absence of COPD. Additionally, in patients with COPD, we identified miR-31-3p as a miRNA induced by smoking. Our identified miRNAs should be studied further to unravel which smoking-induced inflammatory mechanisms are reactive and which are involved in COPD pathogenesis.
Collapse
|
18
|
Regulation of activated T cell survival in rheumatic autoimmune diseases. Nat Rev Rheumatol 2022; 18:232-244. [PMID: 35075294 DOI: 10.1038/s41584-021-00741-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/29/2022]
Abstract
Adaptive immune responses rely on the proliferation of T lymphocytes able to recognize and eliminate pathogens. The magnitude and duration of the expansion of activated T cell clones are finely regulated to minimize immunopathology and avoid autoimmunity. In patients with rheumatic autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis, activated lymphocytes survive and exert effector functions for prolonged periods, defying the mechanisms that normally curb their capacities during acute and chronic infections. Here, we review the molecular mechanisms that limit the duration of immune responses in health and discuss the factors that alter such regulation in the setting of systemic lupus erythematosus and rheumatoid arthritis. We highlight defects that could contribute to the development and progression of autoimmune disease and describe how chronic inflammation can alter the regulation of activated lymphocyte survival, promoting its perpetuation. These concepts might contribute to the understanding of the mechanisms that underlie the chronicity of inflammation in the context of autoimmunity.
Collapse
|
19
|
Karikari AA, McFleder RL, Ribechini E, Blum R, Bruttel V, Knorr S, Gehmeyr M, Volkmann J, Brotchie JM, Ahsan F, Haack B, Monoranu CM, Keber U, Yeghiazaryan R, Pagenstecher A, Heckel T, Bischler T, Wischhusen J, Koprich JB, Lutz MB, Ip CW. Neurodegeneration by α-synuclein-specific T cells in AAV-A53T-α-synuclein Parkinson's disease mice. Brain Behav Immun 2022; 101:194-210. [PMID: 35032575 DOI: 10.1016/j.bbi.2022.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Antigen-specific neuroinflammation and neurodegeneration are characteristic for neuroimmunological diseases. In Parkinson's disease (PD) pathogenesis, α-synuclein is a known culprit. Evidence for α-synuclein-specific T cell responses was recently obtained in PD. Still, a causative link between these α-synuclein responses and dopaminergic neurodegeneration had been lacking. We thus addressed the functional relevance of α-synuclein-specific immune responses in PD in a mouse model. METHODS We utilized a mouse model of PD in which an Adeno-associated Vector 1/2 serotype (AAV1/2) expressing human mutated A53T-α-Synuclein was stereotactically injected into the substantia nigra (SN) of either wildtype C57BL/6 or Recombination-activating gene 1 (RAG1)-/- mice. Brain, spleen, and lymph node tissues from different time points following injection were then analyzed via FACS, cytokine bead assay, immunohistochemistry and RNA-sequencing to determine the role of T cells and inflammation in this model. Bone marrow transfer from either CD4+/CD8-, CD4-/CD8+, or CD4+/CD8+ (JHD-/-) mice into the RAG-1-/- mice was also employed. In addition to the in vivo studies, a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay was utilized. RESULTS AAV-based overexpression of pathogenic human A53T-α-synuclein in dopaminergic neurons of the SN stimulated T cell infiltration. RNA-sequencing of immune cells from PD mouse brains confirmed a pro-inflammatory gene profile. T cell responses were directed against A53T-α-synuclein-peptides in the vicinity of position 53 (68-78) and surrounding the pathogenically relevant S129 (120-134). T cells were required for α-synuclein-induced neurodegeneration in vivo and in vitro, while B cell deficiency did not protect from dopaminergic neurodegeneration. CONCLUSIONS Using T cell and/or B cell deficient mice and a newly developed A53T-α-synuclein-expressing neuronal cell culture/immune cell assay, we confirmed in vivo and in vitro that pathogenic α-synuclein peptide-specific T cell responses can cause dopaminergic neurodegeneration and thereby contribute to PD-like pathology.
Collapse
Affiliation(s)
- Akua A Karikari
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Rhonda L McFleder
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Eliana Ribechini
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, Germany
| | - Valentin Bruttel
- Section for Experimental Tumor Immunology, Department of Obstetrics and Gynecology, University Hospital of Würzburg, Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Mona Gehmeyr
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Jonathan M Brotchie
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Fadhil Ahsan
- Section for Experimental Tumor Immunology, Department of Obstetrics and Gynecology, University Hospital of Würzburg, Würzburg, Germany
| | - Beatrice Haack
- Section for Experimental Tumor Immunology, Department of Obstetrics and Gynecology, University Hospital of Würzburg, Würzburg, Germany
| | - Camelia-Maria Monoranu
- Institute of Pathology, Department of Neuropathology, University of Würzburg, Würzburg, Germany
| | - Ursula Keber
- Department of Neuropathology, Philipps University and University Hospital of Marburg, Marburg, Germany
| | - Rima Yeghiazaryan
- Department of Neuropathology, Philipps University and University Hospital of Marburg, Marburg, Germany
| | - Axel Pagenstecher
- Department of Neuropathology, Philipps University and University Hospital of Marburg, Marburg, Germany
| | - Tobias Heckel
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany
| | - Jörg Wischhusen
- Section for Experimental Tumor Immunology, Department of Obstetrics and Gynecology, University Hospital of Würzburg, Würzburg, Germany
| | - James B Koprich
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany.
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany.
| |
Collapse
|
20
|
Saini A, Ghoneim HE, Lio CWJ, Collins PL, Oltz EM. Gene Regulatory Circuits in Innate and Adaptive Immune Cells. Annu Rev Immunol 2022; 40:387-411. [PMID: 35119910 DOI: 10.1146/annurev-immunol-101320-025949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell identity and function largely rely on the programming of transcriptomes during development and differentiation. Signature gene expression programs are orchestrated by regulatory circuits consisting of cis-acting promoters and enhancers, which respond to a plethora of cues via the action of transcription factors. In turn, transcription factors direct epigenetic modifications to revise chromatin landscapes, and drive contacts between distal promoter-enhancer combinations. In immune cells, regulatory circuits for effector genes are especially complex and flexible, utilizing distinct sets of transcription factors and enhancers, depending on the cues each cell type receives during an infection, after sensing cellular damage, or upon encountering a tumor. Here, we review major players in the coordination of gene regulatory programs within innate and adaptive immune cells, as well as integrative omics approaches that can be leveraged to decipher their underlying circuitry. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ankita Saini
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Chan-Wang Jerry Lio
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Patrick L Collins
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| | - Eugene M Oltz
- Department of Microbial Infection and Immunity and Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio, USA; ,
| |
Collapse
|
21
|
Gonzalez NM, Zou D, Gu A, Chen W. Schrödinger's T Cells: Molecular Insights Into Stemness and Exhaustion. Front Immunol 2021; 12:725618. [PMID: 34512656 PMCID: PMC8427607 DOI: 10.3389/fimmu.2021.725618] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/11/2021] [Indexed: 01/16/2023] Open
Abstract
T cell stemness and exhaustion coexist as two key contrasting phenomena during chronic antigen stimulation, such as infection, transplant, cancer, and autoimmunity. T cell exhaustion refers to the progressive loss of effector function caused by chronic antigen exposure. Exhausted T (TEX) cells highly express multiple inhibitory receptors and exhibit severe defects in cell proliferation and cytokine production. The term T cell stemness describes the stem cell-like behaviors of T cells, including self-renewal, multipotency, and functional persistence. It is well accepted that naïve and some memory T cell subsets have stem cell-like properties. When investigating the exhaustive differentiation of T cells in chronic infection and cancer, recent studies highlighted the stemness of "precursors of exhausted" T (TPEX) cells prior to their terminal differentiation to TEX cells. Clinically successful checkpoint blockades for cancer treatment appear to invigorate antitumor TPEX cells but not TEX cells. Here we discuss the transcriptional and epigenetic regulations of T cell stemness and exhaustion, with a focus on how systems immunology was and will be utilized to define the molecular basis underlying the transition of TPEX to TEX cells. We suggest a "stepwise model" of T cell stemness and exhaustion, in which loss of stemness and exhaustion progression are gradual multi-step processes. We provide perspectives on the research needed to define T cell stemness and exhaustion in the transplantation setting, in which allogenic T cells are also chronically exposed to alloantigens. A better understanding of T cell stemness and exhaustion will shed light on developing novel strategies for immunotherapies.
Collapse
Affiliation(s)
- Nancy M Gonzalez
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States.,College of Medicine, Texas A&M Health Science Center, College Station, TX, United States
| | - Dawei Zou
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Andy Gu
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Department of Surgery, Houston Methodist Research Institute & Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX, United States.,Department of Surgery, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
22
|
|
23
|
Collier JL, Weiss SA, Pauken KE, Sen DR, Sharpe AH. Not-so-opposite ends of the spectrum: CD8 + T cell dysfunction across chronic infection, cancer and autoimmunity. Nat Immunol 2021; 22:809-819. [PMID: 34140679 PMCID: PMC9197228 DOI: 10.1038/s41590-021-00949-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
CD8+ T cells are critical mediators of cytotoxic effector function in infection, cancer and autoimmunity. In cancer and chronic viral infection, CD8+ T cells undergo a progressive loss of cytokine production and cytotoxicity, a state termed T cell exhaustion. In autoimmunity, autoreactive CD8+ T cells retain the capacity to effectively mediate the destruction of host tissues. Although the clinical outcome differs in each context, CD8+ T cells are chronically exposed to antigen in all three. These chronically stimulated CD8+ T cells share some common phenotypic features, as well as transcriptional and epigenetic programming, across disease contexts. A better understanding of these CD8+ T cell states may reveal novel strategies to augment clearance of chronic viral infection and cancer and to mitigate self-reactivity leading to tissue damage in autoimmunity.
Collapse
Affiliation(s)
- Jenna L Collier
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
| | - Sarah A Weiss
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA.,Broad Institute of MIT and Harvard, Cambridge MA
| | - Kristen E Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
| | - Debattama R Sen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Broad Institute of MIT and Harvard, Cambridge MA
| |
Collapse
|