1
|
Moccia V, Tucciarone CM, Garutti S, Milazzo M, Ferri F, Palizzotto C, Mazza M, Basset M, Zini E, Ricagno S, Ferro S. AA amyloidosis in vertebrates: epidemiology, pathology and molecular aspects. Amyloid 2025; 32:3-13. [PMID: 39427299 DOI: 10.1080/13506129.2024.2417219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
AA amyloidosis is a prototypic example of systemic amyloidosis: it results from the prolonged overproduction of SAA protein produced in response to chronic inflammation. AA amyloidosis primarily affects the kidneys, liver, spleen, gastrointestinal tract, leading to a variety of symptoms. First, this review examines AA amyloidosis in humans, focusing on pathogenesis, clinical presentation, and diagnosis and then in animals. In fact AA amyloidosis is the only systemic amyloidosis that has been largely documented in a remarkable number of vertebrate species: mammals, birds, and fishes, especially in individuals with comorbidities, chronic stress, or held in captivity. Secondly, here, we summarise independent sets of evidence obtained on different animal species, exploring the possible transmissibility of AA amyloidosis especially in crowded or confined populations. Finally, biochemical and structural data on native SAA and on AA amyloid fibrils from human, murine, and cat ex vivo samples are discussed. The available structural data depict a complex scenario, where SAA can misfold forming highly different amyloid assemblies. This review highlights the complexity of AA amyloidosis, emphasising the need for further research into its spread in the animal kingdom, its structural aspects, and pathogenetic mechanisms to evaluate its impact on human and animal health.
Collapse
Affiliation(s)
- Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
- Department of Physics and Astronomy, University of Padua, Padua, Italy
| | | | - Silvia Garutti
- Ambulatorio Veterinario Libia, Bologna, Italy
- Ambulatorio Veterinario Pievese, Pieve di Cento, BO, Italy
| | - Melissa Milazzo
- Department of Biosciences, University of Milan, Milan, Italy
| | - Filippo Ferri
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
- AniCura Istituto Veterinario Novara, Granozzo con Monticello, NO, Italy
- Studio Veterinario Associato Vet2Vet di Ferri e Porporato, Orbassano, TO, Italy
| | - Carlo Palizzotto
- AniCura Istituto Veterinario Novara, Granozzo con Monticello, NO, Italy
| | - Maria Mazza
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta
| | - Marco Basset
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Foundation "Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo", Pavia, Italy
| | - Eric Zini
- Department of Animal Medicine, Production and Health, University of Padua, Padua, Italy
- AniCura Istituto Veterinario Novara, Granozzo con Monticello, NO, Italy
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Stefano Ricagno
- Department of Biosciences, University of Milan, Milan, Italy
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| |
Collapse
|
2
|
Vishwakarma S, Tiwari OS, Shukla R, Gazit E, Makam P. Amyloid inspired single amino acid (phenylalanine)-based supramolecular functional assemblies: from disease to device applications. Chem Soc Rev 2025; 54:465-483. [PMID: 39585081 DOI: 10.1039/d4cs00996g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
In the evolving landscape of biomolecular supramolecular chemistry, recent studies on phenylalanine (Phe) have revealed important insights into the versatile nature of this essential aromatic amino acid. Phe can spontaneously self-assemble into fibrils with amyloid-like properties linked to the neurological disorder phenylketonuria (PKU). Apart from its pathological implications, Phe also displays complex phase behavior and can undergo structural changes in response to external stimuli. Its ability to co-assemble with other amino acids opens up new possibilities for studying biomolecular interactions. Furthermore, Phe's coordination with metal ions has led to the development of enzyme-mimicking catalytic systems for applications in organic chemistry, environmental monitoring, and healthcare. Research on L and D enantiomers of Phe, particularly on bio-MOFs, has highlighted their potential in advanced technologies, including bioelectronic devices. This review provides a comprehensive overview of the advancements in Phe-based supramolecular assemblies, emphasizing their interdisciplinary relevance. The Phe assemblies show great potential for future therapeutic and functional biomaterial developments, from disease treatments to innovations in bionanozymes and bioelectronics. This review presents a compelling case for the ongoing exploration of Phe's biomolecular supramolecular chemistry as a fundamental framework for developing sustainable and efficient methodologies across various scientific disciplines.
Collapse
Affiliation(s)
- Subrat Vishwakarma
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India.
| | - Om Shanker Tiwari
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ruchi Shukla
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India.
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Pandeeswar Makam
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP, 221005, India.
| |
Collapse
|
3
|
Mizukawa M, Tanaka K, Kashimura A, Uchida Y, Shiga T, Aihara N, Kamiie J. Identification and characterization of spontaneous AA amyloidosis in CD-1 mice used in toxicity studies: implications of SAA1 and SAA2 copy number variations. J Toxicol Pathol 2025; 38:69-82. [PMID: 39839724 PMCID: PMC11745502 DOI: 10.1293/tox.2024-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/26/2024] [Indexed: 01/23/2025] Open
Abstract
Amyloidosis is characterized by the extracellular deposition of insoluble protein fibrils that cause cellular damage and dysfunction in organs and tissues. Multiple types of amyloidosis and their causative precursor proteins have been identified in humans and animals. In toxicological studies, a high incidence of spontaneous amyloidosis has been reported in CD-1 mice; however, the precursor protein responsible remains unclear. In contrast, B6C3F1 mice have a low incidence of amyloidosis. This study aimed to identify the types of amyloidosis and causative precursor proteins in CD-1 mice and investigate the role of copy number variations (CNVs) in genes encoding precursor proteins in different mouse species. Histopathological examination revealed amyloids in multiple organs, which were confirmed by direct fast scarlet staining. Immunohistochemistry and liquid chromatography-tandem mass spectrometry analyses revealed that the deposition was derived from serum amyloid A (SAA1 and 2), suggesting that the CD-1 mice had AA amyloidosis. Copy number variation assays demonstrated higher copy numbers of SAA1 and SAA2 in CD-1 mice with amyloidosis than in C3H/He mice (the parent strain of B6C3F1 mice). These findings suggest that the high copy numbers of SAA1 and SAA2 may contribute to the high incidence of AA amyloidosis in CD-1 mice. This study examined spontaneous amyloidosis in CD-1 mice and revealed the correlation between SAA1 and SAA2 CNVs in the pathogenesis of the disease and the genetic factors influencing amyloidosis in mice.
Collapse
Affiliation(s)
- Mao Mizukawa
- Safety Research Laboratories, Research Division, Mitsubishi
Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1 Muraoka-Higashi,
Fujisawa-shi, Kanagawa 251-8555, Japan
- Laboratory of Veterinary Pathology, School of Veterinary
Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201,
Japan
| | - Kohei Tanaka
- DMPK Research Laboratories, Research Division, Mitsubishi
Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-0033,
Japan
| | - Akane Kashimura
- Safety Research Laboratories, Research Division, Mitsubishi
Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1 Muraoka-Higashi,
Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Yu Uchida
- Laboratory of Veterinary Pathology, School of Veterinary
Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201,
Japan
| | - Takanori Shiga
- Laboratory of Veterinary Pathology, School of Veterinary
Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201,
Japan
| | - Naoyuki Aihara
- Laboratory of Veterinary Pathology, School of Veterinary
Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201,
Japan
| | - Junichi Kamiie
- Laboratory of Veterinary Pathology, School of Veterinary
Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201,
Japan
| |
Collapse
|
4
|
Abraham CB, Lewkowicz E, Gursky O, Straub JE. Elucidating the Mechanism of Recognition and Binding of Heparin to Amyloid Fibrils of Serum Amyloid A. Biochemistry 2024. [PMID: 39688935 DOI: 10.1021/acs.biochem.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Amyloid diseases feature pathologic deposition of normally soluble proteins and peptides as insoluble fibrils in vital organs. Amyloid fibrils co-deposit with various nonfibrillar components including heparan sulfate (HS), a glycosaminoglycan that promotes amyloid formation in vitro for many unrelated proteins. HS-amyloid interactions have been proposed as a therapeutic target for inflammation-linked amyloidosis wherein N-terminal fragments of serum amyloid A (SAA) protein deposit in the kidney and liver. The structural basis for these interactions is unclear. Here, we exploit the high-resolution cryoelectron microscopy (cryo-EM) structures of ex vivo murine and human SAA fibrils in a computational study employing molecular docking, Brownian dynamics simulations, and molecular dynamics simulations to elucidate how heparin, a highly sulfated HS mimetic, recognizes and binds to amyloid protein fibrils. Our results demonstrate that negatively charged heparin chains bind to linear arrays of uncompensated positively charged basic residues along the spines of amyloid fibrils facilitated by electrostatic steering. The predicted heparin binding sites match the location of unidentified densities observed in cryo-EM maps of SAA amyloids, suggesting that these extra densities represent bound HS. Since HS is constitutively found in various amyloid deposits, our results suggest a common mechanism for HS-amyloid recognition and binding.
Collapse
Affiliation(s)
- Conor B Abraham
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Emily Lewkowicz
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Olga Gursky
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
5
|
Buxbaum JN, Eisenberg DS, Fändrich M, McPhail ED, Merlini G, Saraiva MJM, Sekijima Y, Westermark P. Amyloid nomenclature 2024: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid 2024; 31:249-256. [PMID: 39350582 DOI: 10.1080/13506129.2024.2405948] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The ISA Nomenclature Committee met at the XIX International Symposium of Amyloidosis in Rochester, MN, 27 May 2024. The in-person event was followed by many electronic discussions, resulting in the current updated recommendations. The general nomenclature principles are unchanged. The total number of human amyloid fibril proteins is now 42 of which 19 are associated with systemic deposition, while 4 occur with either localised or systemic deposits. Most systemic amyloidoses are caused by the presence of protein variants which promote misfolding. However, in the cases of AA and ATTR the deposits most commonly consist of wild-type proteins and/or their fragments. One peptide drug, previously reported to create local iatrogenic amyloid deposits at its injection site, has been shown to induce rare instances of systemic deposition. The number of described animal amyloid fibril proteins is now 16, 2 of which are unknown in humans. Recognition of the importance of intracellular protein aggregates, which may have amyloid or amyloid-like properties, in many neurodegenerative diseases is rapidly increasing and their significance is discussed.
Collapse
Affiliation(s)
- Joel N Buxbaum
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Protego Biopharma, San Diego, CA, USA
| | - David S Eisenberg
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Ellen D McPhail
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Giampaolo Merlini
- Amyloid Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Maria J M Saraiva
- Institute of Molecular and Cellular Biology, University of Porto, Porto, Portugal
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, SE, Sweden
| |
Collapse
|
6
|
Perets EA, Santiago T, Neu J, Yan ECY. Water-protein interactions as a driver of phase separation, biology, and disease. Biophys J 2024; 123:3859-3862. [PMID: 39402838 PMCID: PMC11617622 DOI: 10.1016/j.bpj.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/27/2024] Open
Affiliation(s)
- Ethan A Perets
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas.
| | - Ty Santiago
- Department of Chemistry, Yale University, New Haven, Connecticut
| | - Jens Neu
- Department of Physics, University of North Texas, Denton, Texas
| | - Elsa C Y Yan
- Department of Chemistry, Yale University, New Haven, Connecticut.
| |
Collapse
|
7
|
Karimi-Farsijani S, Sharma K, Ugrina M, Kuhn L, Pfeiffer PB, Haupt C, Wiese S, Hegenbart U, Schönland SO, Schwierz N, Schmidt M, Fändrich M. Cryo-EM structure of a lysozyme-derived amyloid fibril from hereditary amyloidosis. Nat Commun 2024; 15:9648. [PMID: 39511224 PMCID: PMC11543692 DOI: 10.1038/s41467-024-54091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
Systemic ALys amyloidosis is a debilitating protein misfolding disease that arises from the formation of amyloid fibrils from C-type lysozyme. We here present a 2.8 Å cryo-electron microscopy structure of an amyloid fibril, which was isolated from the abdominal fat tissue of a patient who expressed the D87G variant of human lysozyme. We find that the fibril possesses a stable core that is formed by all 130 residues of the fibril precursor protein. There are four disulfide bonds in each fibril protein that connect the same residues as in the globularly folded protein. As the conformation of lysozyme in the fibril is otherwise fundamentally different from native lysozyme, our data provide a structural rationale for the need of protein unfolding in the development of systemic ALys amyloidosis.
Collapse
Affiliation(s)
| | - Kartikay Sharma
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Marijana Ugrina
- Institute of Physics, University of Augsburg, Augsburg, Germany
| | - Lukas Kuhn
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | | | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Medical Faculty, Ulm University, Ulm, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan O Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Nadine Schwierz
- Institute of Physics, University of Augsburg, Augsburg, Germany
| | | | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Shi L, Huanood G, Miura S, Kuragano M, Tokuraku K. Real-Time 3D Imaging and Inhibition Analysis of Human Serum Amyloid A Aggregations Using Quantum Dots. Int J Mol Sci 2024; 25:11128. [PMID: 39456910 PMCID: PMC11508868 DOI: 10.3390/ijms252011128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Serum amyloid A (SAA) is one of the most important precursor amyloid proteins discovered during the study of amyloidosis, but its underlying aggregation mechanism has not yet been well elucidated. Since SAA aggregation is a key step in the pathogenesis of AA amyloidosis, amyloid inhibitors can be used as a tool to study its pathogenesis. Previously, we reported a novel microliter-scale high-throughput screening (MSHTS) system for screening amyloid β (Aβ) aggregation inhibitors based on quantum dot (QD) fluorescence imaging technology. In this study, we report the aggregation of human SAA (hSAA) in phosphate-buffered saline, in which we successfully visualized hSAA aggregation by QD using fluorescence microscopy and confocal microscopy. Two-dimensional and three-dimensional image analyses showed that most aggregations were observed at 40 μM hSAA, which was the optimal aggregation concentration in vitro. The accuracy of this finding was verified by a Thioflavin T assay. The transmission electron microscopy results showed that QD uniformly bound to hSAA aggregation. hSAA aggregation inhibitory activity was also evaluated by rosmarinic acid (RA). The results showed that RA, which is a compound with high inhibitory activity against Aβ aggregation, also exhibited high inhibitory activity against 40 μM hSAA. These results indicate that the MSHTS system is an effective tool for visualizing hSAA aggregation and for screening highly active inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Kiyotaka Tokuraku
- Graduate School of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan; (L.S.); (G.H.); (S.M.); (M.K.)
| |
Collapse
|
9
|
Katina N, Marchenkov V, Lapteva Y, Balobanov V, Ilyina N, Ryabova N, Evdokimov S, Suvorina M, Surin A, Glukhov A. Authentic hSAA related with AA amyloidosis: New method of purification, folding and amyloid polymorphism. Biophys Chem 2024; 313:107293. [PMID: 39004034 DOI: 10.1016/j.bpc.2024.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The secondary amyloidosis of humans is caused by the formation of hSAA fibrils in different organs and tissues. Until now hSAA was thought to have low amyloidogenicity in vitro and the majority of SAA aggregation experiments were done using murine protein or hSAA non-pathogenic isoforms. In this work a novel purification method for recombinant hSAA was introduced, enabling to obtain monomeric protein capable of amyloid aggregation under physiological conditions. The stability and amyloid aggregation of hSAA have been examined using a wide range of biophysical methods. It was shown that the unfolding of monomeric protein occurs through the formation of molten globule-like intermediate state. Polymorphism of hSAA amyloids was discovered to depend on the solution pH. At pH 8.5, rapid protein aggregation occurs, which leads to the formation of twisted short fibrils. Even a slight decrease of the pH to 7.8 results in delayed aggregation with the formation of long straight amyloids composed of laterally associated protofilaments. Limited proteolysis experiments have shown that full-length hSAA is involved in the formation of intermolecular interactions in both amyloid polymorphs. The results obtained, and the experimental approach used in this study can serve as a basis for further research on the mechanism of authentic hSAA amyloid formation.
Collapse
Affiliation(s)
- Natalya Katina
- Branch of the Institute of Bioorganic Chemistry RAS, Prospekt Nauki, 6, Pushchino, 142290, Russia; Institute of Protein Research RAS, Institutskaya, 4, Pushchino, 142290, Russia.
| | - Victor Marchenkov
- Institute of Protein Research RAS, Institutskaya, 4, Pushchino, 142290, Russia.
| | - Yulia Lapteva
- Institute for Biological Instrumentation RAS, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Nauki av., 3, Pushchino, 142290, Russia.
| | - Vitalii Balobanov
- Institute of Protein Research RAS, Institutskaya, 4, Pushchino, 142290, Russia.
| | - Nelly Ilyina
- Institute of Protein Research RAS, Institutskaya, 4, Pushchino, 142290, Russia.
| | - Natalya Ryabova
- Institute of Protein Research RAS, Institutskaya, 4, Pushchino, 142290, Russia.
| | | | - Mariya Suvorina
- Institute of Protein Research RAS, Institutskaya, 4, Pushchino, 142290, Russia.
| | - Alexey Surin
- Branch of the Institute of Bioorganic Chemistry RAS, Prospekt Nauki, 6, Pushchino, 142290, Russia; Institute of Protein Research RAS, Institutskaya, 4, Pushchino, 142290, Russia; State Research Center for Applied Microbiology and Biotechnology, Kvartal A, 24, Obolensk, 142279, Russia.
| | - Anatoly Glukhov
- Institute of Protein Research RAS, Institutskaya, 4, Pushchino, 142290, Russia.
| |
Collapse
|
10
|
Malone MAV, Castillo DAA, Santos HT, Kaur A, Elrafei T, Steinberg L, Kumar A. A systematic review of the literature on localized gastrointestinal tract amyloidosis: Presentation, management and outcomes. Eur J Haematol 2024; 113:400-415. [PMID: 39030954 DOI: 10.1111/ejh.14269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE Localized gastrointestinal tract amyloidosis is uncommon and little is known regarding this entity. There is no current standard of care for the management of localized amyloidosis. The objective of this study was to evaluate the characteristics, available treatments, outcomes and surveillance of these patients. METHODS We conducted a systematic review of cases reported in the literature from 1962 to 2021. Patients with gastrointestinal amyloidosis reported in English literature were included in the analysis. We described and summarized the patient's characteristics, treatments, clinical presentations, outcomes and surveillance. RESULTS The systematic review of reported clinical cases included 62 patients. In these patients, the most common site of amyloid deposition was the stomach (42%). The median age of diagnosis is 64.4 years old; there is a 2:1 prevalence among males (63%) to females (37%); abdominal pain is the most common type of presentation (41%), although patients could also be asymptomatic. There is a high curative rate (100%) with resection alone. Among patients treated with a type of systemic therapy, 80% achieved a complete response. The minority of cases reported a type of surveillance post treatment, and among those 62% pursued serial clinical evaluations alone. CONCLUSION To our knowledge, this is the first and largest systematic review of the literature in gastrointestinal tract amyloidosis. This is more common among males and seems to have an excellent curative rate (100%) with surgery alone. Systemic therapy is an option for those with non-resectable amyloidomas. Serial clinical evaluations should be part of the standard surveillance care in these patients.
Collapse
Affiliation(s)
| | | | - Heitor Tavares Santos
- Department of Medicine, Division of Internal Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Anahat Kaur
- Department of Medicine, Division of Oncology and Hematology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tarek Elrafei
- Department of Medicine, Division of Oncology and Hematology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Lewis Steinberg
- Department of Medicine, Division of Oncology and Hematology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Abhishek Kumar
- Department of Medicine, Division of Oncology and Hematology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
11
|
Zhou J, Assenza S, Tatli M, Tian J, Ilie IM, Starostin EL, Caflisch A, Knowles TPJ, Dietler G, Ruggeri FS, Stahlberg H, Sekatskii SK, Mezzenga R. Hierarchical Protofilament Intertwining Rules the Formation of Mixed-Curvature Amyloid Polymorphs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402740. [PMID: 38899849 PMCID: PMC11348146 DOI: 10.1002/advs.202402740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/19/2024] [Indexed: 06/21/2024]
Abstract
Amyloid polymorphism is a hallmark of almost all amyloid species, yet the mechanisms underlying the formation of amyloid polymorphs and their complex architectures remain elusive. Commonly, two main mesoscopic topologies are found in amyloid polymorphs characterized by non-zero Gaussian and mean curvatures: twisted ribbons and helical fibrils, respectively. Here, a rich heterogeneity of configurations is demonstrated on insulin amyloid fibrils, where protofilament packing can occur, besides the common polymorphs, also in a combined mode forming mixed-curvature polymorphs. Through AFM statistical analysis, an extended array of heterogeneous architectures that are rationalized by mesoscopic theoretical arguments are identified. Notably, an unusual fibrillization pathway is also unraveled toward mixed-curvature polymorphs via the widespread recruitment and intertwining of protofilaments and protofibrils. The results present an original view of amyloid polymorphism and advance the fundamental understanding of the fibrillization mechanism from single protofilaments into mature amyloid fibrils.
Collapse
Affiliation(s)
- Jiangtao Zhou
- Laboratory of Physics of Living Matter, Institute of PhysicsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneCH‐1015Switzerland
- Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Salvatore Assenza
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadrid28049Spain
- Instituto Nicolás CabreraUniversidad Autónoma de MadridMadrid28049Spain
| | - Meltem Tatli
- Laboratory of Biological Electron MicroscopyInstitute of PhysicsSBEPFLand Dep. of Fund. Microbiol.Faculty of Biology and MedicineUNILRt. de la SorgeLausanne1015Switzerland
| | - Jiawen Tian
- Laboratory of Biological Electron MicroscopyInstitute of PhysicsSBEPFLand Dep. of Fund. Microbiol.Faculty of Biology and MedicineUNILRt. de la SorgeLausanne1015Switzerland
| | - Ioana M. Ilie
- van't Hoff Institute for Molecular SciencesUniversity of AmsterdamP.O. Box 94157Amsterdam1090 GDThe Netherlands
- Amsterdam Center for Multiscale Modeling (ACMM)University of AmsterdamP.O. Box 94157Amsterdam1090 GDThe Netherlands
| | - Eugene L. Starostin
- Department of CivilEnvironmental & Geomatic EngineeringUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Amedeo Caflisch
- Department of BiochemistryUniversity of ZürichZürichCH‐8057Switzerland
| | | | - Giovanni Dietler
- Laboratory of Physics of Living Matter, Institute of PhysicsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneCH‐1015Switzerland
| | - Francesco S. Ruggeri
- Laboratory of Organic ChemistryWageningen University & ResearchStippeneng 4Wageningen6703 WEThe Netherlands
- Physical Chemistry and Soft MatterWageningen University & ResearchStippeneng 4Wageningen6703 WEThe Netherlands
| | - Henning Stahlberg
- Laboratory of Biological Electron MicroscopyInstitute of PhysicsSBEPFLand Dep. of Fund. Microbiol.Faculty of Biology and MedicineUNILRt. de la SorgeLausanne1015Switzerland
| | - Sergey K. Sekatskii
- Laboratory of Physics of Living Matter, Institute of PhysicsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneCH‐1015Switzerland
- Laboratory of Biological Electron MicroscopyInstitute of PhysicsSBEPFLand Dep. of Fund. Microbiol.Faculty of Biology and MedicineUNILRt. de la SorgeLausanne1015Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Department of MaterialsETH ZurichZurich8093Switzerland
| |
Collapse
|
12
|
Mirioglu S, Uludag O, Hurdogan O, Kumru G, Berke I, Doumas SA, Frangou E, Gul A. AA Amyloidosis: A Contemporary View. Curr Rheumatol Rep 2024; 26:248-259. [PMID: 38568326 PMCID: PMC11219434 DOI: 10.1007/s11926-024-01147-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 07/03/2024]
Abstract
PURPOSE OF REVIEW Amyloid A (AA) amyloidosis is an organ- or life-threatening complication of chronic inflammatory disorders. Here, we review the epidemiology, causes, pathogenesis, clinical features, and diagnostic and therapeutic strategies of AA amyloidosis. RECENT FINDINGS The incidence of AA amyloidosis has declined due to better treatment of the underlying diseases. Histopathological examination is the gold standard of diagnosis, but magnetic resonance imaging can be used to detect cardiac involvement. There is yet no treatment option for the clearance of amyloid fibril deposits; therefore, the management strategy primarily aims to reduce serum amyloid A protein. Anti-inflammatory biologic agents have drastically expanded our therapeutic armamentarium. Kidney transplantation is preferred in patients with kidney failure, and the recurrence of amyloidosis in the allograft has become rare as transplant recipients have started to benefit from the new agents. The management of AA amyloidosis has been considerably changed over the recent years due to the novel therapeutic options aiming to control inflammatory activity. New agents capable of clearing amyloid deposits from the tissues are still needed.
Collapse
Affiliation(s)
- Safak Mirioglu
- Division of Nephrology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Omer Uludag
- Division of Rheumatology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ozge Hurdogan
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gizem Kumru
- Division of Nephrology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ilay Berke
- Division of Nephrology, Marmara University School of Medicine, Istanbul, Turkey
| | - Stavros A Doumas
- Department of Medicine, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Eleni Frangou
- Department of Nephrology, Limassol General Hospital, State Health Services Organization, Limassol, Cyprus
- University of Nicosia Medical School, Nicosia, Cyprus
| | - Ahmet Gul
- Division of Rheumatology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
13
|
Bu F, Dee DR, Liu B. Structural insight into Escherichia coli CsgA amyloid fibril assembly. mBio 2024; 15:e0041924. [PMID: 38501920 PMCID: PMC11005368 DOI: 10.1128/mbio.00419-24] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
The discovery of functional amyloids in bacteria dates back several decades, and our understanding of the Escherichia coli curli biogenesis system has gradually expanded over time. However, due to its high aggregation propensity and intrinsically disordered nature, CsgA, the main structural component of curli fibrils, has eluded comprehensive structural characterization. Recent advancements in cryo-electron microscopy (cryo-EM) offer a promising tool to achieve high-resolution structural insights into E. coli CsgA fibrils. In this study, we outline an approach to addressing the colloidal instability challenges associated with CsgA, achieved through engineering and electrostatic repulsion. Then, we present the cryo-EM structure of CsgA fibrils at 3.62 Å resolution. This structure provides new insights into the cross-β structure of E. coli CsgA. Additionally, our study identifies two distinct spatial arrangements within several CsgA fibrils, a 2-CsgA-fibril pair and a 3-CsgA-fibril bundle, shedding light on the intricate hierarchy of the biofilm extracellular matrix and laying the foundation for precise manipulation of CsgA-derived biomaterials.IMPORTANCEThe visualization of the architecture of Escherichia coli CsgA amyloid fibril has been a longstanding research question, for which a high-resolution structure is still unavailable. CsgA serves as a major subunit of curli, the primary component of the extracellular matrix generated by bacteria. The support provided by this extracellular matrix enables bacterial biofilms to resist antibiotic treatment, significantly impacting human health. CsgA has been identified in members of Enterobacteriaceae, with pathogenic E. coli being the most well-known model system. Our novel insights into the structure of E. coli CsgA protofilaments form the basis for drug design targeting diseases associated with biofilms. Additionally, CsgA is widely researched in biomaterials due to its self-assembly characteristics. The resolved spatial arrangements of CsgA amyloids revealed in our study will further enhance the precision design of functional biomaterials. Therefore, our study uniquely contributes to the understanding of CsgA amyloids for both microbiology and material science.
Collapse
Affiliation(s)
- Fan Bu
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Derek R. Dee
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bin Liu
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| |
Collapse
|
14
|
Alfano C, Fichou Y, Huber K, Weiss M, Spruijt E, Ebbinghaus S, De Luca G, Morando MA, Vetri V, Temussi PA, Pastore A. Molecular Crowding: The History and Development of a Scientific Paradigm. Chem Rev 2024; 124:3186-3219. [PMID: 38466779 PMCID: PMC10979406 DOI: 10.1021/acs.chemrev.3c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
It is now generally accepted that macromolecules do not act in isolation but "live" in a crowded environment, that is, an environment populated by numerous different molecules. The field of molecular crowding has its origins in the far 80s but became accepted only by the end of the 90s. In the present issue, we discuss various aspects that are influenced by crowding and need to consider its effects. This Review is meant as an introduction to the theme and an analysis of the evolution of the crowding concept through time from colloidal and polymer physics to a more biological perspective. We introduce themes that will be more thoroughly treated in other Reviews of the present issue. In our intentions, each Review may stand by itself, but the complete collection has the aspiration to provide different but complementary perspectives to propose a more holistic view of molecular crowding.
Collapse
Affiliation(s)
- Caterina Alfano
- Structural
Biology and Biophysics Unit, Fondazione
Ri.MED, 90100 Palermo, Italy
| | - Yann Fichou
- CNRS,
Bordeaux INP, CBMN UMR 5248, IECB, University
of Bordeaux, F-33600 Pessac, France
| | - Klaus Huber
- Department
of Chemistry, University of Paderborn, 33098 Paderborn, Germany
| | - Matthias Weiss
- Experimental
Physics I, Physics of Living Matter, University
of Bayreuth, 95440 Bayreuth, Germany
| | - Evan Spruijt
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Simon Ebbinghaus
- Lehrstuhl
für Biophysikalische Chemie and Research Center Chemical Sciences
and Sustainability, Research Alliance Ruhr, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Giuseppe De Luca
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Valeria Vetri
- Dipartimento
di Fisica e Chimica − Emilio Segrè, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Annalisa Pastore
- King’s
College London, Denmark
Hill Campus, SE5 9RT London, United Kingdom
| |
Collapse
|
15
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
16
|
Pfeiffer PB, Ugrina M, Schwierz N, Sigurdson CJ, Schmidt M, Fändrich M. Cryo-EM Analysis of the Effect of Seeding with Brain-derived Aβ Amyloid Fibrils. J Mol Biol 2024; 436:168422. [PMID: 38158175 DOI: 10.1016/j.jmb.2023.168422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Aβ amyloid fibrils from Alzheimer's brain tissue are polymorphic and structurally different from typical in vitro formed Aβ fibrils. Here, we show that brain-derived (ex vivo) fibril structures can be proliferated by seeding in vitro. The proliferation reaction is only efficient for one of the three abundant ex vivo Aβ fibril morphologies, which consists of two peptide stacks, while the inefficiently proliferated fibril morphologies contain four or six peptide stacks. In addition to the seeded fibril structures, we find that de novo nucleated fibril structures can emerge in seeded samples if the seeding reaction is continued over multiple generations. These data imply a competition between de novo nucleation and seed extension and suggest further that seeding favours the outgrowth of fibril morphologies that contain fewer peptide stacks.
Collapse
Affiliation(s)
| | - Marijana Ugrina
- Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany
| | - Nadine Schwierz
- Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany
| | - Christina J Sigurdson
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0612, USA
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany
| |
Collapse
|
17
|
Andreotti G, Baur J, Ugrina M, Pfeiffer PB, Hartmann M, Wiese S, Miyahara H, Higuchi K, Schwierz N, Schmidt M, Fändrich M. Insights into the Structural Basis of Amyloid Resistance Provided by Cryo-EM Structures of AApoAII Amyloid Fibrils. J Mol Biol 2024; 436:168441. [PMID: 38199491 DOI: 10.1016/j.jmb.2024.168441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Amyloid resistance is the inability or the reduced susceptibility of an organism to develop amyloidosis. In this study we have analysed the molecular basis of the resistance to systemic AApoAII amyloidosis, which arises from the formation of amyloid fibrils from apolipoprotein A-II (ApoA-II). The disease affects humans and animals, including SAMR1C mice that express the C allele of ApoA-II protein, whereas other mouse strains are resistant to development of amyloidosis due to the expression of other ApoA-II alleles, such as ApoA-IIF. Using cryo-electron microscopy, molecular dynamics simulations and other methods, we have determined the structures of pathogenic AApoAII amyloid fibrils from SAMR1C mice and analysed the structural effects of ApoA-IIF-specific mutational changes. Our data show that these changes render ApoA-IIF incompatible with the specific fibril morphologies, with which ApoA-II protein can become pathogenic in vivo.
Collapse
Affiliation(s)
- Giada Andreotti
- Institute of Protein Biochemistry, Ulm University, 89081 Ulm, Germany.
| | - Julian Baur
- Institute of Protein Biochemistry, Ulm University, 89081 Ulm, Germany
| | - Marijana Ugrina
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
| | | | - Max Hartmann
- Institute of Protein Biochemistry, Ulm University, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, 89081 Ulm, Germany
| | - Hiroki Miyahara
- Institute for Biomedical Science, Shinshu University, Matsumoto 390-8621, Japan
| | - Keiichi Higuchi
- Institute for Biomedical Science, Shinshu University, Matsumoto 390-8621, Japan; Faculty of Human Health Sciences, Meio University, Nago 905-8585, Japan
| | - Nadine Schwierz
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, 89081 Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
18
|
Sharma K, Stockert F, Shenoy J, Berbon M, Abdul-Shukkoor MB, Habenstein B, Loquet A, Schmidt M, Fändrich M. Cryo-EM observation of the amyloid key structure of polymorphic TDP-43 amyloid fibrils. Nat Commun 2024; 15:486. [PMID: 38212334 PMCID: PMC10784485 DOI: 10.1038/s41467-023-44489-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024] Open
Abstract
The transactive response DNA-binding protein-43 (TDP-43) is a multi-facet protein involved in phase separation, RNA-binding, and alternative splicing. In the context of neurodegenerative diseases, abnormal aggregation of TDP-43 has been linked to amyotrophic lateral sclerosis and frontotemporal lobar degeneration through the aggregation of its C-terminal domain. Here, we report a cryo-electron microscopy (cryo-EM)-based structural characterization of TDP-43 fibrils obtained from the full-length protein. We find that the fibrils are polymorphic and contain three different amyloid structures. The structures differ in the number and relative orientation of the protofilaments, although they share a similar fold containing an amyloid key motif. The observed fibril structures differ from previously described conformations of TDP-43 fibrils and help to better understand the structural landscape of the amyloid fibril structures derived from this protein.
Collapse
Affiliation(s)
- Kartikay Sharma
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany.
| | - Fabian Stockert
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Jayakrishna Shenoy
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Mélanie Berbon
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | | | - Birgit Habenstein
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Antoine Loquet
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
19
|
Wilkinson M, Xu Y, Thacker D, Taylor AIP, Fisher DG, Gallardo RU, Radford SE, Ranson NA. Structural evolution of fibril polymorphs during amyloid assembly. Cell 2023; 186:5798-5811.e26. [PMID: 38134875 PMCID: PMC7617692 DOI: 10.1016/j.cell.2023.11.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Cryoelectron microscopy (cryo-EM) has provided unprecedented insights into amyloid fibril structures, including those associated with disease. However, these structures represent the endpoints of long assembly processes, and their relationship to fibrils formed early in assembly is unknown. Consequently, whether different fibril architectures, with potentially different pathological properties, form during assembly remains unknown. Here, we used cryo-EM to determine structures of amyloid fibrils at different times during in vitro fibrillation of a disease-related variant of human islet amyloid polypeptide (IAPP-S20G). Strikingly, the fibrils formed in the lag, growth, and plateau phases have different structures, with new forms appearing and others disappearing as fibrillation proceeds. A time course with wild-type hIAPP also shows fibrils changing with time, suggesting that this is a general property of IAPP amyloid assembly. The observation of transiently populated fibril structures has implications for understanding amyloid assembly mechanisms with potential new insights into amyloid progression in disease.
Collapse
Affiliation(s)
- Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Dev Thacker
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alexander I P Taylor
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Declan G Fisher
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
20
|
Yang B, Lin Y, Huang Y, Zhu N, Shen YQ. Extracellular vesicles modulate key signalling pathways in refractory wound healing. BURNS & TRAUMA 2023; 11:tkad039. [PMID: 38026441 PMCID: PMC10654481 DOI: 10.1093/burnst/tkad039] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/10/2023] [Accepted: 06/22/2023] [Indexed: 12/01/2023]
Abstract
Chronic wounds are wounds that cannot heal properly due to various factors, such as underlying diseases, infection or reinjury, and improper healing of skin wounds and ulcers can cause a serious economic burden. Numerous studies have shown that extracellular vesicles (EVs) derived from stem/progenitor cells promote wound healing, reduce scar formation and have significant advantages over traditional treatment methods. EVs are membranous particles that carry various bioactive molecules from their cellular origins, such as cytokines, nucleic acids, enzymes, lipids and proteins. EVs can mediate cell-to-cell communication and modulate various physiological processes, such as cell differentiation, angiogenesis, immune response and tissue remodelling. In this review, we summarize the recent advances in EV-based wound healing, focusing on the signalling pathways that are regulated by EVs and their cargos. We discuss how EVs derived from different types of stem/progenitor cells can promote wound healing and reduce scar formation by modulating the Wnt/β-catenin, phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin, vascular endothelial growth factor, transforming growth factor β and JAK-STAT pathways. Moreover, we also highlight the challenges and opportunities for engineering or modifying EVs to enhance their efficacy and specificity for wound healing.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Nanxi Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, Wuhou District, Chengdu 610041, China
| |
Collapse
|
21
|
Puri S, Schulte T, Chaves-Sanjuan A, Mazzini G, Caminito S, Pappone C, Anastasia L, Milani P, Merlini G, Bolognesi M, Nuvolone M, Palladini G, Ricagno S. The Cryo-EM STRUCTURE of Renal Amyloid Fibril Suggests Structurally Homogeneous Multiorgan Aggregation in AL Amyloidosis. J Mol Biol 2023; 435:168215. [PMID: 37516426 DOI: 10.1016/j.jmb.2023.168215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Immunoglobulin light chain amyloidosis (AL) is caused by the aberrant production of amyloidogenic light chains (LC) that accumulate as amyloid deposits in vital organs. Distinct LC sequences in each patient yield distinct amyloid structures. However different tissue microenvironments may also cause identical protein precursors to adopt distinct amyloid structures. To address the impact of the tissue environment on the structural polymorphism of amyloids, we extracted fibrils from the kidney of an AL patient (AL55) whose cardiac amyloid structure was previously determined by our group. Here we show that the 4.0 Å resolution cryo-EM structure of the renal fibril is virtually identical to that reported for the cardiac fibril. These results provide the first structural evidence that LC amyloids independently deposited in different organs of the same AL patient share a common fold.
Collapse
Affiliation(s)
- Sarita Puri
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy. https://twitter.com/@Saritapuri1504
| | - Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy. https://twitter.com/@timpaul81
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy. https://twitter.com/@ChavesSanjuan
| | - Giulia Mazzini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Serena Caminito
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Carlo Pappone
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy; Faculty of Medicine, University of Vita-Salute San Raffaele, 20132 Milan, Italy; Arrhythmia and Electrophysiology Department, IRCCS Policlinico San Donato, San Donato, 20097 Milan, Italy
| | - Luigi Anastasia
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy; Faculty of Medicine, University of Vita-Salute San Raffaele, 20132 Milan, Italy. https://twitter.com/@skinski74
| | - Paolo Milani
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Martino Bolognesi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy. https://twitter.com/@Martinobologne2
| | - Mario Nuvolone
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Ricagno
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097 Milan, Italy.
| |
Collapse
|
22
|
Heerde T, Schütz D, Lin YJ, Münch J, Schmidt M, Fändrich M. Cryo-EM structure and polymorphic maturation of a viral transduction enhancing amyloid fibril. Nat Commun 2023; 14:4293. [PMID: 37464004 DOI: 10.1038/s41467-023-40042-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
Amyloid fibrils have emerged as innovative tools to enhance the transduction efficiency of retroviral vectors in gene therapy strategies. In this study, we used cryo-electron microscopy to analyze the structure of a biotechnologically engineered peptide fibril that enhances retroviral infectivity. Our findings show that the peptide undergoes a time-dependent morphological maturation into polymorphic amyloid fibril structures. The fibrils consist of mated cross-β sheets that interact by the hydrophobic residues of the amphipathic fibril-forming peptide. The now available structural data help to explain the mechanism of retroviral infectivity enhancement, provide insights into the molecular plasticity of amyloid structures and illuminate the thermodynamic basis of their morphological maturation.
Collapse
Affiliation(s)
- Thomas Heerde
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany.
| | - Desiree Schütz
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Yu-Jie Lin
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081, Ulm, Germany
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
23
|
Majid N, Khan RH. Protein aggregation: Consequences, mechanism, characterization and inhibitory strategies. Int J Biol Macromol 2023; 242:125123. [PMID: 37270122 DOI: 10.1016/j.ijbiomac.2023.125123] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/01/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Proteins play a major role in the regulation of various cellular functions including the synthesis of structural components. But proteins are stable under physiological conditions only. A slight variation in environmental conditions can cost them huge in terms of conformational stability ultimately leading to aggregation. Under normal conditions, aggregated proteins are degraded or removed from the cell by a quality control system including ubiquitin-proteasomal machinery and autophagy. But they are burdened under diseased conditions or are impaired by the aggregated proteins leading to the generation of toxicity. The misfolding and aggregation of protein such as amyloid-β, α-synuclein, human lysozyme etc., are responsible for certain diseases including Alzheimer, Parkinson, and non- neuropathic systemic amyloidosis respectively. Extensive research has been done to find the therapeutics for such diseases but till now we have got only symptomatic treatment that will reduce the disease severity but will not target the initial formation of nucleus responsible for disease progression and propagation. Hence there is an urgent need to develop the drugs targeting the cause of the disease. For this, a wide knowledge related to misfolding and aggregation under the same heading is required as described in this review alongwith the strategies hypothesized and implemented till now. This will contribute a lot to the work of researchers in the field of neuroscience.
Collapse
Affiliation(s)
- Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
24
|
Hosseini AN, van der Spoel D. Simulations of Amyloid-Forming Peptides in the Crystal State. Protein J 2023:10.1007/s10930-023-10119-3. [PMID: 37145206 DOI: 10.1007/s10930-023-10119-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
There still is little treatment available for amyloid diseases, despite their significant impact on individuals and the social and economic implications for society. One reason for this is that the physical nature of amyloid formation is not understood sufficiently well. Therefore, fundamental research at the molecular level remains necessary to support the development of therapeutics. A few structures of short peptides from amyloid-forming proteins have been determined. These can in principle be used as scaffolds for designing aggregation inhibitors. Attempts to this end have often used the tools of computational chemistry, in particular molecular simulation. However, few simulation studies of these peptides in the crystal state have been presented so far. Hence, to validate the capability of common force fields (AMBER19SB, CHARMM36m, and OPLS-AA/M) to yield insight into the dynamics and structural stability of amyloid peptide aggregates, we have performed molecular dynamics simulations of twelve different peptide crystals at two different temperatures. From the simulations, we evaluate the hydrogen bonding patterns, the isotropic B-factors, the change in energy, the Ramachandran plots, and the unit cell parameters and compare the results with the crystal structures. Most crystals are stable in the simulations but for all force fields there is at least one that deviates from the experimental crystal, suggesting more work is needed on these models.
Collapse
Affiliation(s)
- A Najla Hosseini
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE, 75124, Uppsala, Sweden
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE, 75124, Uppsala, Sweden.
| |
Collapse
|
25
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
26
|
Wilkinson M, Gallardo RU, Martinez RM, Guthertz N, So M, Aubrey LD, Radford SE, Ranson NA. Disease-relevant β 2-microglobulin variants share a common amyloid fold. Nat Commun 2023; 14:1190. [PMID: 36864041 PMCID: PMC9981686 DOI: 10.1038/s41467-023-36791-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
β2-microglobulin (β2m) and its truncated variant ΔΝ6 are co-deposited in amyloid fibrils in the joints, causing the disorder dialysis-related amyloidosis (DRA). Point mutations of β2m result in diseases with distinct pathologies. β2m-D76N causes a rare systemic amyloidosis with protein deposited in the viscera in the absence of renal failure, whilst β2m-V27M is associated with renal failure, with amyloid deposits forming predominantly in the tongue. Here we use cryoEM to determine the structures of fibrils formed from these variants under identical conditions in vitro. We show that each fibril sample is polymorphic, with diversity arising from a 'lego-like' assembly of a common amyloid building block. These results suggest a 'many sequences, one amyloid fold' paradigm in contrast with the recently reported 'one sequence, many amyloid folds' behaviour of intrinsically disordered proteins such as tau and Aβ.
Collapse
Affiliation(s)
- Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Aelin Therapeutics, Bio-Incubator Leuven, Gaston Geenslaan 1, 3001, Leuven, Belgium
| | - Roberto Maya Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Peak Proteins, Birchwood House, Larkwood Way, Macclesfield, Cheshire, SK10 2XR, UK
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Bicycle Therapeutics, Blocks A & B, Portway Building, Grant Park, Abingdon, Cambridge, CB21 6GS, UK
| | - Masatomo So
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Liam D Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
27
|
Aggregation mechanism and branched 3D morphologies of pathological human light chain proteins under reducing conditions. Colloids Surf B Biointerfaces 2023; 221:112983. [DOI: 10.1016/j.colsurfb.2022.112983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
|
28
|
A new polymorphism of human amylin fibrils with similar protofilaments and a conserved core. iScience 2022; 25:105705. [PMID: 36567711 PMCID: PMC9772857 DOI: 10.1016/j.isci.2022.105705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic amyloid deposits composed of a fibrillar form of the human islet amyloid polypeptide (hIAPP) are the pathological hallmark of type 2 diabetes (T2D). Although various cryo-EM structures of polymorphic hIAPP fibrils were reported, the underlying polymorphic mechanism of hIAPP remains elusive. Meanwhile, the structure of hIAPP fibrils with all residues visible in the fibril core is not available. Here, we report the full-length structures of two different polymorphs of hIAPP fibrils, namely slim form (SF, dimer) and thick form (TF, tetramer), formed in a salt-free environment, which share a similar ζ-shaped protofilament but differ in inter-protofilament interfaces. In the absence of salt, electrostatic interactions were found to play a dominant role in stabilizing the fibril structure, suggesting an antagonistic effect between electrostatic and hydrophobic interactions in different salt concentrations environments. Our results shed light on understanding the mechanism of amyloid fibril polymorphism.
Collapse
|
29
|
Banerjee S, Baur J, Daniel C, Pfeiffer PB, Hitzenberger M, Kuhn L, Wiese S, Bijzet J, Haupt C, Amann KU, Zacharias M, Hazenberg BPC, Westermark GT, Schmidt M, Fändrich M. Amyloid fibril structure from the vascular variant of systemic AA amyloidosis. Nat Commun 2022; 13:7261. [PMID: 36433936 PMCID: PMC9700864 DOI: 10.1038/s41467-022-34636-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
Systemic AA amyloidosis is a debilitating protein misfolding disease in humans and animals. In humans, it occurs in two variants that are called 'vascular' and 'glomerular', depending on the main amyloid deposition site in the kidneys. Using cryo electron microscopy, we here show the amyloid fibril structure underlying the vascular disease variant. Fibrils purified from the tissue of such patients are mainly left-hand twisted and contain two non-equal stacks of fibril proteins. They contrast in these properties to the fibrils from the glomerular disease variant which are right-hand twisted and consist of two structurally equal stacks of fibril proteins. Our data demonstrate that the different disease variants in systemic AA amyloidosis are associated with different fibril morphologies.
Collapse
Affiliation(s)
- Sambhasan Banerjee
- grid.6582.90000 0004 1936 9748Institute of Protein Biochemistry, Ulm University, 89081 Ulm, Germany
| | - Julian Baur
- grid.6582.90000 0004 1936 9748Institute of Protein Biochemistry, Ulm University, 89081 Ulm, Germany
| | - Christoph Daniel
- grid.5330.50000 0001 2107 3311Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Peter Benedikt Pfeiffer
- grid.6582.90000 0004 1936 9748Institute of Protein Biochemistry, Ulm University, 89081 Ulm, Germany
| | - Manuel Hitzenberger
- grid.6936.a0000000123222966Physics Department (T38), Technical University of Munich, 85748 Garching, Germany
| | - Lukas Kuhn
- grid.6582.90000 0004 1936 9748Institute of Protein Biochemistry, Ulm University, 89081 Ulm, Germany
| | - Sebastian Wiese
- grid.6582.90000 0004 1936 9748Core Unit Mass Spectrometry and Proteomics, Ulm University, 89081 Ulm, Germany
| | - Johan Bijzet
- grid.4830.f0000 0004 0407 1981Amyloidosis Center of Expertise, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Christian Haupt
- grid.6582.90000 0004 1936 9748Institute of Protein Biochemistry, Ulm University, 89081 Ulm, Germany
| | - Kerstin U. Amann
- grid.5330.50000 0001 2107 3311Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Martin Zacharias
- grid.6936.a0000000123222966Physics Department (T38), Technical University of Munich, 85748 Garching, Germany
| | - Bouke P. C. Hazenberg
- grid.4830.f0000 0004 0407 1981Amyloidosis Center of Expertise, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, The Netherlands
| | - Gunilla T. Westermark
- grid.8993.b0000 0004 1936 9457Department of Medical Cell Biology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Matthias Schmidt
- grid.6582.90000 0004 1936 9748Institute of Protein Biochemistry, Ulm University, 89081 Ulm, Germany
| | - Marcus Fändrich
- grid.6582.90000 0004 1936 9748Institute of Protein Biochemistry, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
30
|
Schulte T, Chaves-Sanjuan A, Mazzini G, Speranzini V, Lavatelli F, Ferri F, Palizzotto C, Mazza M, Milani P, Nuvolone M, Vogt AC, Vogel M, Palladini G, Merlini G, Bolognesi M, Ferro S, Zini E, Ricagno S. Cryo-EM structure of ex vivo fibrils associated with extreme AA amyloidosis prevalence in a cat shelter. Nat Commun 2022; 13:7041. [PMID: 36396658 PMCID: PMC9672049 DOI: 10.1038/s41467-022-34743-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
AA amyloidosis is a systemic disease characterized by deposition of misfolded serum amyloid A protein (SAA) into cross-β amyloid in multiple organs in humans and animals. AA amyloidosis occurs at high SAA serum levels during chronic inflammation. Prion-like transmission was reported as possible cause of extreme AA amyloidosis prevalence in captive animals, e.g. 70% in cheetah and 57-73% in domestic short hair (DSH) cats kept in zoos and shelters, respectively. Herein, we present the 3.3 Å cryo-EM structure of AA amyloid extracted post-mortem from the kidney of a DSH cat with renal failure, deceased in a shelter with extreme disease prevalence. The structure reveals a cross-β architecture assembled from two 76-residue long proto-filaments. Despite >70% sequence homology to mouse and human SAA, the cat SAA variant adopts a distinct amyloid fold. Inclusion of an eight-residue insert unique to feline SAA contributes to increased amyloid stability. The presented feline AA amyloid structure is fully compatible with the 99% identical amino acid sequence of amyloid fragments of captive cheetah.
Collapse
Affiliation(s)
- Tim Schulte
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097, Milan, Italy
| | - Antonio Chaves-Sanjuan
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy
| | - Giulia Mazzini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | - Filippo Ferri
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060, Granozzo con Monticello, Novara, Italy
| | - Carlo Palizzotto
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060, Granozzo con Monticello, Novara, Italy
| | - Maria Mazza
- Istituto Zooprofilattico Sperimentale del Piemonte Liguria e Valle d'Aosta, S.C. Diagnostica Specialistica, Via Bologna 148, 10154, Torino, Italy
| | - Paolo Milani
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Mario Nuvolone
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anne-Cathrine Vogt
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, 3010, Bern, Switzerland
| | - Monique Vogel
- Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, 3010, Bern, Switzerland
| | - Giovanni Palladini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giampaolo Merlini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Amyloidosis Research and Treatment Center, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Martino Bolognesi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
- Pediatric Research Center Fondazione R.E. Invernizzi and NOLIMITS Center, Università degli Studi di Milano, Milan, Italy
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Sciences, University of Padova, viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Eric Zini
- AniCura Istituto Veterinario Novara, Strada Provinciale 9, 28060, Granozzo con Monticello, Novara, Italy
- Department of Animal Medicine, Production and Health, University of Padua, viale dell'Università 16, 35020, Legnaro, Padua, Italy
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Stefano Ricagno
- Institute of Molecular and Translational Cardiology, IRCCS Policlinico San Donato, 20097, Milan, Italy.
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
31
|
Torres-Huerta AL, Antonio-Pérez A, García-Huante Y, Alcázar-Ramírez NJ, Rueda-Silva JC. Biomolecule-Based Optical Metamaterials: Design and Applications. BIOSENSORS 2022; 12:962. [PMID: 36354471 PMCID: PMC9688573 DOI: 10.3390/bios12110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Metamaterials are broadly defined as artificial, electromagnetically homogeneous structures that exhibit unusual physical properties that are not present in nature. They possess extraordinary capabilities to bend electromagnetic waves. Their size, shape and composition can be engineered to modify their characteristics, such as iridescence, color shift, absorbance at different wavelengths, etc., and harness them as biosensors. Metamaterial construction from biological sources such as carbohydrates, proteins and nucleic acids represents a low-cost alternative, rendering high quantities and yields. In addition, the malleability of these biomaterials makes it possible to fabricate an endless number of structured materials such as composited nanoparticles, biofilms, nanofibers, quantum dots, and many others, with very specific, invaluable and tremendously useful optical characteristics. The intrinsic characteristics observed in biomaterials make them suitable for biomedical applications. This review addresses the optical characteristics of metamaterials obtained from the major macromolecules found in nature: carbohydrates, proteins and DNA, highlighting their biosensor field use, and pointing out their physical properties and production paths.
Collapse
Affiliation(s)
- Ana Laura Torres-Huerta
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Aurora Antonio-Pérez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Yolanda García-Huante
- Departamento de Ciencias Básicas, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional (UPIITA-IPN), Mexico City 07340, Mexico
| | - Nayelhi Julieta Alcázar-Ramírez
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
| | - Juan Carlos Rueda-Silva
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Cd. López Mateos, Atizapán de Zaragoza 52926, Mexico
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
32
|
Shintani-Domoto Y, Sugiura Y, Ogawa M, Sugiyama E, Abe H, Sakatani T, Ohashi R, Ushiku T, Fukayama M. N-terminal peptide fragment constitutes core of amyloid deposition of serum amyloid A: An imaging mass spectrometry study. PLoS One 2022; 17:e0275993. [PMID: 36240260 PMCID: PMC9565386 DOI: 10.1371/journal.pone.0275993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Serum amyloid A (SAA) is an acute phase protein, which undergoes structural changes and deposits in the extracellular matrix, causing organ damage. Systemic AA amyloidosis is a relatively common amyloid subtype among the more than 30 amyloid subtypes, but the mechanism of amyloid fibril formation remains unclear. In this study, we investigated the tissue distribution of SAA derived peptides in formalin-fixed paraffin embedded (FFPE) specimens of human myocardium with amyloidosis using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). In the whole SAA protein, four trypsin-digested peptides in the range of SAA2-67 were visualized and the N-terminal peptide; SAA2-15, was selectively localized in the Congo red-positive region. The C-terminal peptides; SAA47-62, SAA48-62, and SAA63-67 were detected not only in the Congo red-positive region but also in the surrounding negative region. Our results demonstrate that the N-terminal SAA2-15 plays a critical role in the formation of AA amyloid fibril, as previously reported. Roles of the C-terminal peptides require further investigation.
Collapse
Affiliation(s)
- Yukako Shintani-Domoto
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Diagnostic Pathology, Nippon Medical School Hospital, Tokyo, Japan
- * E-mail:
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Makiko Ogawa
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Eiji Sugiyama
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Sakatani
- Department of Diagnostic Pathology, Nippon Medical School Hospital, Tokyo, Japan
| | - Ryuji Ohashi
- Department of Diagnostic Pathology, Nippon Medical School Hospital, Tokyo, Japan
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Asahi Tele Pathology Center, Asahi General Hospital, Asahi-City, Chiba, Japan
| |
Collapse
|
33
|
Cryo-EM structure of disease-related prion fibrils provides insights into seeding barriers. Nat Struct Mol Biol 2022; 29:962-965. [PMID: 36097290 PMCID: PMC9639217 DOI: 10.1038/s41594-022-00833-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/03/2022] [Indexed: 11/08/2022]
Abstract
One of the least understood aspects of prion diseases is the structure of infectious prion protein aggregates. Here we report a high-resolution cryo-EM structure of amyloid fibrils formed by human prion protein with the Y145Stop mutation that is associated with a familial prion disease. This structural insight allows us not only to explain previous biochemical findings, but also provides direct support for the conformational adaptability model of prion transmissibility barriers.
Collapse
|
34
|
Vinayagam V, Murugan S, Kumaresan R, Narayanan M, Sillanpää M, Vo DVN, Kushwaha OS. Protein nanofibrils as versatile and sustainable adsorbents for an effective removal of heavy metals from wastewater: A review. CHEMOSPHERE 2022; 301:134635. [PMID: 35447212 DOI: 10.1016/j.chemosphere.2022.134635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/26/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Water is a valuable natural resource, which plays a crucial role in ecological survival as well as economic progress. However, the water quality has deteriorated in recent years as a result of urbanization, industrialization and human activities due to the uncontrolled release of industrial wastes, which can be extremely carcinogenic and non-degradable, in air, water and soil bodies. Such wastes showed the presence of organic and inorganic pollutants in high dosages. Heavy metals are the most obstinate contaminants, and they can be harmful because of having a variety of detrimental consequences to the ecosystem. The existing water treatment methods in many situations may not be sustainable or effective because of their high energy requirements and ecological impacts. In this review, state-of-the-art water treatment methods for the elimination of heavy metals with the help of protein nanofibrils are covered featuring a discussion on the strategies and possibilities of developing protein nanofibrils for the active elimination of heavy metals using kitchen waste as well as residues from the cattle, agriculture, and dairy industries. Further, the emphasis has been given to their environmental sustainability and economical aspects are also discussed.
Collapse
Affiliation(s)
- Vignesh Vinayagam
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Shrima Murugan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Rishikeswaran Kumaresan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Meyyappan Narayanan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark; Sustainable Membrane Technology Research Group (SMTRG), Chemical Engineering Department, Persian Gulf University, P.O. Box 75169-13817, Bushehr, Iran; Zhejiang Rongsheng Environmental Protection Paper Co. Ltd, No. 588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, PR China
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - Omkar Singh Kushwaha
- Department of Chemical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
35
|
Naeimi WR, Serio TR. Beyond Amyloid Fibers: Accumulation, Biological Relevance, and Regulation of Higher-Order Prion Architectures. Viruses 2022; 14:v14081635. [PMID: 35893700 PMCID: PMC9332770 DOI: 10.3390/v14081635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/19/2022] Open
Abstract
The formation of amyloid fibers is associated with a diverse range of disease and phenotypic states. These amyloid fibers often assemble into multi-protofibril, high-order architectures in vivo and in vitro. Prion propagation in yeast, an amyloid-based process, represents an attractive model to explore the link between these aggregation states and the biological consequences of amyloid dynamics. Here, we integrate the current state of knowledge, highlight opportunities for further insight, and draw parallels to more complex systems in vitro. Evidence suggests that high-order fibril architectures are present ex vivo from disease relevant environments and under permissive conditions in vivo in yeast, including but not limited to those leading to prion formation or instability. The biological significance of these latter amyloid architectures or how they may be regulated is, however, complicated by inconsistent experimental conditions and analytical methods, although the Hsp70 chaperone Ssa1/2 is likely involved. Transition between assembly states could form a mechanistic basis to explain some confounding observations surrounding prion regulation but is limited by a lack of unified methodology to biophysically compare these assembly states. Future exciting experimental entryways may offer opportunities for further insight.
Collapse
|
36
|
Taylor AIP, Staniforth RA. General Principles Underpinning Amyloid Structure. Front Neurosci 2022; 16:878869. [PMID: 35720732 PMCID: PMC9201691 DOI: 10.3389/fnins.2022.878869] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/11/2022] [Indexed: 12/14/2022] Open
Abstract
Amyloid fibrils are a pathologically and functionally relevant state of protein folding, which is generally accessible to polypeptide chains and differs fundamentally from the globular state in terms of molecular symmetry, long-range conformational order, and supramolecular scale. Although amyloid structures are challenging to study, recent developments in techniques such as cryo-EM, solid-state NMR, and AFM have led to an explosion of information about the molecular and supramolecular organization of these assemblies. With these rapid advances, it is now possible to assess the prevalence and significance of proposed general structural features in the context of a diverse body of high-resolution models, and develop a unified view of the principles that control amyloid formation and give rise to their unique properties. Here, we show that, despite system-specific differences, there is a remarkable degree of commonality in both the structural motifs that amyloids adopt and the underlying principles responsible for them. We argue that the inherent geometric differences between amyloids and globular proteins shift the balance of stabilizing forces, predisposing amyloids to distinct molecular interaction motifs with a particular tendency for massive, lattice-like networks of mutually supporting interactions. This general property unites previously characterized structural features such as steric and polar zippers, and contributes to the long-range molecular order that gives amyloids many of their unique properties. The shared features of amyloid structures support the existence of shared structure-activity principles that explain their self-assembly, function, and pathogenesis, and instill hope in efforts to develop broad-spectrum modifiers of amyloid function and pathology.
Collapse
|
37
|
Matiiv AB, Trubitsina NP, Matveenko AG, Barbitoff YA, Zhouravleva GA, Bondarev SA. Structure and Polymorphism of Amyloid and Amyloid-Like Aggregates. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:450-463. [PMID: 35790379 DOI: 10.1134/s0006297922050066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 06/15/2023]
Abstract
Amyloids are protein aggregates with the cross-β structure. The interest in amyloids is explained, on the one hand, by their role in the development of socially significant human neurodegenerative diseases, and on the other hand, by the discovery of functional amyloids, whose formation is an integral part of cellular processes. To date, more than a hundred proteins with the amyloid or amyloid-like properties have been identified. Studying the structure of amyloid aggregates has revealed a wide variety of protein conformations. In the review, we discuss the diversity of protein folds in the amyloid-like aggregates and the characteristic features of amyloid aggregates that determine their unusual properties, including stability and interaction with amyloid-specific dyes. The review also describes the diversity of amyloid aggregates and its significance for living organisms.
Collapse
Affiliation(s)
- Anton B Matiiv
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Nina P Trubitsina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Andrew G Matveenko
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Yury A Barbitoff
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Bioinformatics Institute, Saint Petersburg, 197342, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia.
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| |
Collapse
|
38
|
Lutter L, Al-Hilaly YK, Serpell CJ, Tuite MF, Wischik CM, Serpell LC, Xue WF. Structural Identification of Individual Helical Amyloid Filaments by Integration of Cryo-Electron Microscopy-Derived Maps in Comparative Morphometric Atomic Force Microscopy Image Analysis. J Mol Biol 2022; 434:167466. [PMID: 35077765 PMCID: PMC9005780 DOI: 10.1016/j.jmb.2022.167466] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 11/27/2022]
Abstract
The presence of amyloid fibrils is a hallmark of more than 50 human disorders, including neurodegenerative diseases and systemic amyloidoses. A key unresolved challenge in understanding the involvement of amyloid in disease is to explain the relationship between individual structural polymorphs of amyloid fibrils, in potentially mixed populations, and the specific pathologies with which they are associated. Although cryo-electron microscopy (cryo-EM) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy methods have been successfully employed in recent years to determine the structures of amyloid fibrils with high resolution detail, they rely on ensemble averaging of fibril structures in the entire sample or significant subpopulations. Here, we report a method for structural identification of individual fibril structures imaged by atomic force microscopy (AFM) by integration of high-resolution maps of amyloid fibrils determined by cryo-EM in comparative AFM image analysis. This approach was demonstrated using the hitherto structurally unresolved amyloid fibrils formed in vitro from a fragment of tau (297-391), termed 'dGAE'. Our approach established unequivocally that dGAE amyloid fibrils bear no structural relationship to heparin-induced tau fibrils formed in vitro. Furthermore, our comparative analysis resulted in the prediction that dGAE fibrils are structurally closely related to the paired helical filaments (PHFs) isolated from Alzheimer's disease (AD) brain tissue characterised by cryo-EM. These results show the utility of individual particle structural analysis using AFM, provide a workflow of how cryo-EM data can be incorporated into AFM image analysis and facilitate an integrated structural analysis of amyloid polymorphism.
Collapse
Affiliation(s)
- Liisa Lutter
- School of Biosciences, Division of Natural Sciences, University of Kent, CT2 7NJ Canterbury, UK. https://twitter.com/LiisaLutter
| | - Youssra K Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, BN1 9QG Falmer, Brighton, UK; Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Christopher J Serpell
- School of Physical Sciences, Division of Natural Sciences, University of Kent, CT2 7NH Canterbury, UK. https://twitter.com/@SerpellLab
| | - Mick F Tuite
- School of Biosciences, Division of Natural Sciences, University of Kent, CT2 7NJ Canterbury, UK
| | - Claude M Wischik
- Institute of Medical Sciences, University of Aberdeen, UK; TauRx Therapeutics Ltd., Aberdeen, UK
| | - Louise C Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, BN1 9QG Falmer, Brighton, UK. https://twitter.com/@Serpell1
| | - Wei-Feng Xue
- School of Biosciences, Division of Natural Sciences, University of Kent, CT2 7NJ Canterbury, UK.
| |
Collapse
|
39
|
Yasar F, Sheridan MS, Hansmann UHE. Interconversion between Serum Amyloid A Native and Fibril Conformations. ACS OMEGA 2022; 7:12186-12192. [PMID: 35449919 PMCID: PMC9016813 DOI: 10.1021/acsomega.2c00566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Overexpression of serum amyloid A (SAA) can lead to a form of amyloidosis where the fibrils are made of SAA fragments, most often SAA1-76. Using Replica Exchange with Tunneling, we study the conversion of a SAA1-76 chain between the folded conformation and a fibril conformation. We find that the basins in the free energy landscape corresponding to the two motifs are separated by barriers of only about 2-3 k B T. Crucial for the assembly into the fibril structure is the salt bridge 26E-34K that provides a scaffold for forming the fibril conformation.
Collapse
Affiliation(s)
| | - Miranda S. Sheridan
- Department of Chemistry &
Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ulrich H. E. Hansmann
- Department of Chemistry &
Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
40
|
Miki T, Kajiwara K, Nakayama S, Hashimoto M, Mihara H. Effects of Hydrophobic Residues on the Intracellular Self-Assembly of De Novo Designed Peptide Tags and Their Orthogonality. ACS Synth Biol 2022; 11:2144-2153. [PMID: 35302350 DOI: 10.1021/acssynbio.2c00058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein assemblies forming nano- to micro-sized structures underlie versatile biological events in living systems. For mimicking and engineering these protein assemblies through a bottom-up approach, self-assembling peptides (SAPs) that form nanofibril structures via β-sheets serve as potential practical tags. Nevertheless, the development of SAP tags is still in its infancy, and insight into the relationship between peptide sequences and intracellular self-assembly is limited. In this study, we focused on hydrophobic residues in SAPs and examined the self-assembly of SAP-tagged superfolder GFPs (green fluorescent proteins) in COS-7 cells. Based on XEXK (X; hydrophobic amino acids: F, L, I, V, W, or Y) sequence units, we designed a panel of Xn peptides with different hydrophobic residues (X) and chain lengths (n). We observed that the self-assembly propensity, the size of the assemblies, the influence on protein denaturation, and the subcellular localization differed significantly depending on the hydrophobic amino acid. F9, L9, I7, and V13 peptides formed μm-scaled granules, W13 formed small oligomeric clusters in the cytoplasm, and Y15 formed assemblies in the nucleus. In addition, we investigated the orthogonality of their interaction. Strikingly, W13- and Y15-tagged proteins interacted independently and formed two distinct assemblies in cells. Herein, we have demonstrated the great opportunities for rationalizing artificial protein assemblies and orthogonal structures in an intracellular context using the designed SAPs.
Collapse
Affiliation(s)
- Takayuki Miki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Keigo Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Sae Nakayama
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masahiro Hashimoto
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hisakazu Mihara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
41
|
Barrios A, Estrada M, Moon JH. Carbamoylated Guanidine-Containing Polymers for Non-Covalent Functional Protein Delivery in Serum-Containing Media. Angew Chem Int Ed Engl 2022; 61:e202116722. [PMID: 34995405 DOI: 10.1002/anie.202116722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 11/08/2022]
Abstract
Despite the high potential of controlling cellular processes and treating various diseases by intracellularly delivered proteins, current delivery systems exhibit poor efficiency due to poor serum stability, cellular entry, and cytosolic availability of proteins. Here, we report a novel functional group, phenyl carbamoylated guanidine (Ph-CG), that greatly enhances the delivery efficiency to various types of cells. Owing to the substantially lowered pKa , the hydrophobic Ph-CG offers optimized inter-macromolecular interactions via enhanced hydrogen-bonding and hydrophobic interactions. The coplanarity of Ph-CG also leads to the better intracellular entry of protein complexes. Intracellularly delivered apoptosis-inducing enzymes and antibodies significantly induce cell viability inhibitions in a serum-containing medium. The newly developed Ph-CG can be introduced to various existing carriers, leading to the realization of future therapeutic protein delivery.
Collapse
Affiliation(s)
- Alfonso Barrios
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institutes, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Marilen Estrada
- Department of Natural and Applied Sciences, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Joong Ho Moon
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institutes, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| |
Collapse
|
42
|
Louros N, van der Kant R, Schymkowitz J, Rousseau F. StAmP-DB: A platform for structures of polymorphic amyloid fibril cores. Bioinformatics 2022; 38:2636-2638. [PMID: 35199146 DOI: 10.1093/bioinformatics/btac126] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/20/2022] [Accepted: 02/22/2022] [Indexed: 11/12/2022] Open
Abstract
SUMMARY Amyloid polymorphism is emerging as a key property that is differentially linked to various conformational diseases, including major neurodegenerative disorders, but also as a feature that potentially relates to complex structural mechanisms mediating transmissibility barriers and selective vulnerability of amyloids. In response to the rapidly expanding number of amyloid fibril structures formed by full-length proteins, we here have developed StAmP-DB, a public database that supports the curation and cross-comparison of experimentally determined three-dimensional amyloid polymorph structures. AVAILABILITY StAmP-DB is freely accessible for queries and downloads at https://stamp.switchlab.org.
Collapse
Affiliation(s)
- Nikolaos Louros
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, Leuven, 3000, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, box 802, 3000, Belgium
| | - Rob van der Kant
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, Leuven, 3000, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, box 802, 3000, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, Leuven, 3000, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, box 802, 3000, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, Leuven, 3000, Belgium.,Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, Leuven, box 802, 3000, Belgium
| |
Collapse
|
43
|
Abstract
Structures of amyloid-β fibrils suggest Alzheimer’s disease–modifying strategies.
Collapse
Affiliation(s)
- Michael Willem
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| |
Collapse
|
44
|
Cryo-EM demonstrates the in vitro proliferation of an ex vivo amyloid fibril morphology by seeding. Nat Commun 2022; 13:85. [PMID: 35013242 PMCID: PMC8748726 DOI: 10.1038/s41467-021-27688-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/15/2021] [Indexed: 11/08/2022] Open
Abstract
Several studies showed that seeding of solutions of monomeric fibril proteins with ex vivo amyloid fibrils accelerated the kinetics of fibril formation in vitro but did not necessarily replicate the seed structure. In this research we use cryo-electron microscopy and other methods to analyze the ability of serum amyloid A (SAA)1.1-derived amyloid fibrils, purified from systemic AA amyloidosis tissue, to seed solutions of recombinant SAA1.1 protein. We show that 98% of the seeded fibrils remodel the full fibril structure of the main ex vivo fibril morphology, which we used for seeding, while they are notably different from unseeded in vitro fibrils. The seeded fibrils show a similar proteinase K resistance as ex vivo fibrils and are substantially more stable to proteolytic digestion than unseeded in vitro fibrils. Our data support the view that the fibril morphology contributes to determining proteolytic stability and that pathogenic amyloid fibrils arise from proteolytic selection.
Collapse
|
45
|
Barrios A, Estrada M, Moon JH. Carbamoylated Guanidine‐Containing Polymers for Non‐Covalent Functional Protein Delivery in Serum‐Containing Media. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alfonso Barrios
- Florida International University chemistry and biochemistry UNITED STATES
| | - Marilen Estrada
- Florida International University Natural and Applied Sciences UNITED STATES
| | - Joong Ho Moon
- Florida International University Chemistry and Biochemistry 11200 SW 8th St.MMC CP311 33199 Miami UNITED STATES
| |
Collapse
|
46
|
Sundaria A, Liberta F, Savran D, Sarkar R, Rodina N, Peters C, Schwierz N, Haupt C, Schmidt M, Reif B. SAA fibrils involved in AA amyloidosis are similar in bulk and by single particle reconstitution: A MAS solid-state NMR study. J Struct Biol X 2022; 6:100069. [PMID: 35924280 PMCID: PMC9340516 DOI: 10.1016/j.yjsbx.2022.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
AA amyloidosis is one of the most prevalent forms of systemic amyloidosis and affects both humans and other vertebrates. In this study, we compare MAS solid-state NMR data with a recent cryo-EM study of fibrils involving full-length murine SAA1.1. We address the question whether the specific requirements for the reconstitution of an amyloid fibril structure by cryo-EM can potentially yield a bias towards a particular fibril polymorph. We employ fibril seeds extracted from in to vivo material to imprint the fibril structure onto the biochemically produced protein. Sequential assignments yield the secondary structure elements in the fibril state. Long-range DARR and PAR experiments confirm largely the topology observed in the ex-vivo cryo-EM study. We find that the β-sheets identified in the NMR experiments are similar to the β-sheets found in the cryo-EM study, with the exception of amino acids 33–42. These residues cannot be assigned by solid-state NMR, while they adopt a stable β-sheet in the cryo-EM structure. We suggest that the differences between MAS solid-state NMR and cryo-EM data are a consequence of a second conformer involving residues 33–42. Moreover, we were able to characterize the dynamic C-terminal tail of SAA in the fibril state. The C-terminus is flexible, remains detached from the fibrils, and does not affect the SAA fibril structure as confirmed further by molecular dynamics simulations. As the C-terminus can potentially interact with other cellular components, binding to cellular targets can affect its accessibility for protease digestion.
Collapse
|
47
|
Lewkowicz E, Gursky O. Dynamic protein structures in normal function and pathologic misfolding in systemic amyloidosis. Biophys Chem 2022; 280:106699. [PMID: 34773861 PMCID: PMC9416430 DOI: 10.1016/j.bpc.2021.106699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Dynamic and disordered regions in native proteins are often critical for their function, particularly in ligand binding and signaling. In certain proteins, however, such regions can contribute to misfolding and pathologic deposition as amyloid fibrils in vivo. For example, dynamic and disordered regions can promote amyloid formation by destabilizing the native structure, by directly triggering the aggregation, by promoting protein condensation, or by acting as sites of early proteolytic cleavage that favor a release of aggregation-prone fragments or facilitate fibril maturation. At the same time, enhanced dynamics in the native protein state accelerates proteolytic degradation that counteracts amyloid accumulation in vivo. Therefore, the functional need for dynamic protein regions must be balanced against their inherently labile nature. How exactly this balance is achieved and how is it shifted upon amyloidogenic mutations or post-translational modifications? To illustrate possible scenarios, here we review the beneficial and pathologic roles of dynamic and disordered regions in the native states of three families of human plasma proteins that form amyloid precursors in systemic amyloidoses: immunoglobulin light chain, apolipoproteins, and serum amyloid A. Analysis of structure, stability and local dynamics of these diverse proteins and their amyloidogenic variants exemplifies how disordered/dynamic regions can provide a functional advantage as well as an Achilles heel in pathologic amyloid formation.
Collapse
|
48
|
Heterotypic amyloid interactions: Clues to polymorphic bias and selective cellular vulnerability? Curr Opin Struct Biol 2021; 72:176-186. [PMID: 34942566 DOI: 10.1016/j.sbi.2021.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022]
Abstract
The number of atomic-resolution structures of disease-associated amyloids has greatly increased in recent years. These structures have confirmed not only the polymorphic nature of amyloids but also the association of specific polymorphs to particular proteinopathies. These observations are strengthening the view that amyloid polymorphism is a marker for specific pathological subtypes (e.g. in tauopathies or synucleinopathies). The nature of this association and how it relates to the selective cellular vulnerability of amyloid nucleation, propagation and toxicity are still unclear. Here, we provide an overview of the mechanistic insights provided by recent patient-derived amyloid structures. We discuss the framework organisation of amyloid polymorphism and how heterotypic amyloid interactions with the physiological environment could modify the solubility and assembly of amyloidogenic proteins. We conclude by hypothesising how such interactions could contribute to selective cellular vulnerability.
Collapse
|
49
|
Roterman I, Stapor K, Gądek K, Gubała T, Nowakowski P, Fabian P, Konieczny L. On the Dependence of Prion and Amyloid Structure on the Folding Environment. Int J Mol Sci 2021; 22:ijms222413494. [PMID: 34948291 PMCID: PMC8707753 DOI: 10.3390/ijms222413494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 01/22/2023] Open
Abstract
Currently available analyses of amyloid proteins reveal the necessity of the existence of radical structural changes in amyloid transformation processes. The analysis carried out in this paper based on the model called fuzzy oil drop (FOD) and its modified form (FOD-M) allows quantifying the role of the environment, particularly including the aquatic environment. The starting point and basis for the present presentation is the statement about the presence of two fundamentally different methods of organizing polypeptides into ordered conformations—globular proteins and amyloids. The present study shows the source of the differences between these two paths resulting from the specificity of the external force field coming from the environment, including the aquatic and hydrophobic one. The water environment expressed in the fuzzy oil drop model using the 3D Gauss function directs the folding process towards the construction of a micelle-like system with a hydrophobic core in the central part and the exposure of polarity on the surface. The hydrophobicity distribution of membrane proteins has the opposite characteristic: Exposure of hydrophobicity at the surface of the membrane protein with an often polar center (as in the case of ion channels) is expected. The structure of most proteins is influenced by a more or less modified force field generated by water through the appropriate presence of a non-polar (membrane-like) environment. The determination of the proportion of a factor different from polar water enables the assessment of the protein status by indicating factors favoring the structure it represents.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, 31-034 Kopernika 7, 30-688 Krakow, Poland
- Correspondence:
| | - Katarzyna Stapor
- Department of Applied Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
| | - Krzysztof Gądek
- Sano Centre for Computation Medicine, Czarnowiejska 36, 30-054 Kraków, Poland; (K.G.); (T.G.); (P.N.)
| | - Tomasz Gubała
- Sano Centre for Computation Medicine, Czarnowiejska 36, 30-054 Kraków, Poland; (K.G.); (T.G.); (P.N.)
| | - Piotr Nowakowski
- Sano Centre for Computation Medicine, Czarnowiejska 36, 30-054 Kraków, Poland; (K.G.); (T.G.); (P.N.)
| | - Piotr Fabian
- Department of Algorithmics and Software, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland;
| | - Leszek Konieczny
- Department of Medical Biochemistry, Jagiellonian University Medical College, 31-034 Kopernika 7, 31-034 Krakow, Poland;
| |
Collapse
|
50
|
Schönfelder J, Pfeiffer PB, Pradhan T, Bijzet J, Hazenberg BPC, Schönland SO, Hegenbart U, Reif B, Haupt C, Fändrich M. Protease resistance of ex vivo amyloid fibrils implies the proteolytic selection of disease-associated fibril morphologies. Amyloid 2021; 28:243-251. [PMID: 34338090 DOI: 10.1080/13506129.2021.1960501] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Several studies recently showed that ex vivo fibrils from patient or animal tissue were structurally different from in vitro formed fibrils from the same polypeptide chain. Analysis of serum amyloid A (SAA) and Aβ-derived amyloid fibrils additionally revealed that ex vivo fibrils were more protease stable than in vitro fibrils. These observations gave rise to the proteolytic selection hypothesis that suggested that disease-associated amyloid fibrils were selected inside the body by their ability to resist endogenous clearance mechanisms. We here show, for more than twenty different fibril samples, that ex vivo fibrils are more protease stable than in vitro fibrils. These data support the idea of a proteolytic selection of pathogenic amyloid fibril morphologies and help to explain why only few amino acid sequences lead to amyloid diseases, although many, if not all, polypeptide chains can form amyloid fibrils in vitro.
Collapse
Affiliation(s)
| | | | - Tejaswini Pradhan
- Bayerisches NMR Zentrum at the Department Chemie, Technische Universität München, Garching, Germany
| | - Johan Bijzet
- Department of Rheumatology & Clinical Immunology, AA21, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bouke P C Hazenberg
- Department of Rheumatology & Clinical Immunology, AA21, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan O Schönland
- Department of Internal Medicine V (Hematology, Oncology and Rheumatology), Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Ute Hegenbart
- Department of Internal Medicine V (Hematology, Oncology and Rheumatology), Amyloidosis Center, University Hospital Heidelberg, Heidelberg, Germany
| | - Bernd Reif
- Bayerisches NMR Zentrum at the Department Chemie, Technische Universität München, Garching, Germany
| | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| |
Collapse
|