1
|
Lindner BG, Graham KE, Phaneuf JR, Hatt JK, Konstantinidis KT. SourceApp: A Novel Metagenomic Source Tracking Tool that can Distinguish between Fecal Microbiomes Using Genome-To-Source Associations Benchmarked Against Mixed Input Spike-In Mesocosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9507-9516. [PMID: 40326765 PMCID: PMC12101495 DOI: 10.1021/acs.est.5c03603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Methodologies utilizing metagenomics are attractive to fecal source tracking (FST) aims for assessing the presence and proportions of various fecal inputs simultaneously. Yet, compared to established culture- or PCR-based techniques, metagenomic approaches for these purposes are rarely benchmarked or contextualized for practice. We performed shotgun sequencing experiments (n = 35) of mesocosms constructed from the water of a well-studied recreational and drinking water reservoir spiked with various fecal (n = 6 animal sources, 3 wastewater sources, and 1 septage source) and synthetic microbiome spike-ins (n = 1) introduced at predetermined cell concentrations to simulate fecal pollution events of known composition. We built source-associated genome databases using publicly available reference genomes and metagenome assembled genomes (MAGs) recovered from short- and long-read sequencing of the fecal spike-ins, and then created an associated bioinformatic tool, called SourceApp, for inferring source attribution and apportionment by mapping the metagenomic data to these genome databases. SourceApp's performance varied substantially by source, with cows being underestimated due to under sampling of cow fecal microbiomes. Parameter tuning revealed sensitivity and specificity near 0.90 overall, which exceeded all alternative tools. SourceApp can assist researchers with analyzing and interpreting shotgun sequencing data and developing standard operating procedures on the frontiers of metagenomic FST.
Collapse
Affiliation(s)
- Blake G. Lindner
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta30332, Georgia, United States
| | - Katherine E. Graham
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta30332, Georgia, United States
| | - Jacob R. Phaneuf
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta30332, Georgia, United States
| | - Janet K. Hatt
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta30332, Georgia, United States
| | - Konstantinos T. Konstantinidis
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta30332, Georgia, United States
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta30332, Georgia, United States
| |
Collapse
|
2
|
Yang JT, Zhang Y, Xiong SY, Wei HJ, Zhang WT, Lian XL, Xu XL, Jiang HX, Sun J. Microplastics reduced the natural attenuation of antibiotic resistance genes in fertilized soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126144. [PMID: 40154870 DOI: 10.1016/j.envpol.2025.126144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The prolonged application of mulch and manure in agriculture has led to significant microplastic (MP) pollution in fertilized soils, raising global concerns about its potential impacts on soil health and ecosystem function. However, the effects of MP exposure on antibiotic resistance genes (ARGs) and microbial communities in fertilized soils are unknown. Therefore, we comprehensively explored the trends and drivers of ARGs during their natural abatement under the stress of conventional and biodegradable MP addition in fertilized soils using a soil microcosm experiment and metagenomic. The findings indicated that the presence of polybutylene succinate MPs (PBS-MPs) reduced the natural attenuation rate of ARGs in fertilized soils while increasing the fraction of high-risk ARGs in soils. Microbial communities and mobile genetic elements (MGEs) mainly drove the inhibitory effect of MPs on ARG abatement. Interestingly, most potential hosts for the coexistence of ARGs, metal resistance genes (MRGs), and MGEs were annotated as pathogens, such as Escherichia spp., Salmonella spp., and Klebsiella spp. In addition, MP stress in fertilized soil may lead to long-term contamination by highly virulent and antibiotic-resistant Escherichia coli. MPs influence the distribution of carbon sources, which in turn reduces the diversity and stability of soil microbial communities, while simultaneously promoting the colonization of crucial ARG hosts, like Dyella spp. This ultimately prolonged the high-risk state for ARG proliferation in the soil. This study highlights the significant risk posed by MPs to the persistence and spread of ARGs in fertilized soils. These results provide valuable insights for managing MP contamination in agricultural systems, emphasizing the need for sustainable practices to mitigate the long-term environmental risks associated with MP pollution.
Collapse
Affiliation(s)
- Jin-Tao Yang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Shi-Yu Xiong
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Hai-Jing Wei
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Wan-Ting Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xin-Lei Lian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiao-Li Xu
- Instrumental Analysis & Research Center, South China Agricultural University, Guangzhou, 510642, PR China
| | - Hong-Xia Jiang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Key Laboratory for Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
3
|
Zhou M, Wu L, Sun X, Liu M, Wang Y, Yang B, Ai H, Chen C, Huang L. Assessing the relationship between the gut microbiota and growth traits in Chinese indigenous pig breeds. BMC Vet Res 2025; 21:284. [PMID: 40264132 PMCID: PMC12013187 DOI: 10.1186/s12917-025-04739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Gut microbiota plays crucial roles in host metabolism, diseases and development. It has also been reported to be associated with growth performance in pigs. However, the bacterial species influencing pig growth performance have not been isolated, and the mechanisms remain unclear. RESULTS In this study, we collected 500 gut microbial samples from two Chinese indigenous pig breeds, including 244 fecal samples from Bamaxiang (BMX) pigs and 256 cecum content samples from Erhualian (EHL) pigs, to investigate the relationship between gut microbiota and pig growth traits. Bacterial compositions were determined by 16 S rRNA gene sequencing, and association analysis was performed using a two-part model. We found that the Firmicutes-to-Bacteroidota ratio in fecal samples from BMX pigs was negatively associated with average daily gain (P = 0.0085). Amplicon sequence variants (ASVs) belonging to Prevotella and three ASVs annotated to Oscillospiraceae were negatively associated with pig growth traits, while ASVs annotated to Muribaculaceae and Rikenellaceae showed positive correlations with growth traits in BMX fecal samples. In cecum content samples from EHL pigs, ASVs belonging to Prevotella, Lactobacillus delbrueckii, and Lachnospiraceae were negatively associated with growth performance, whereas one ASV belonging to Rikenellaceae demonstrated a positive association. Predicted functional capacity analysis revealed that metabolic pathways related to the digestive system, glycan biosynthesis and metabolism, signaling molecules and interactions, and xenobiotics biodegradation and metabolism were positively associated with pig growth traits. Conversely, the excretory system pathway showed a negative correlation. These pathways were found to correlate with growth trait-associated bacterial ASVs, suggesting that alterations in gut bacterial composition led to functional capacity shifts in the gut microbiome, subsequently affecting porcine growth. CONCLUSIONS Our results gave significant insights about the effect of gut microbiota on pig growth and provided important evidence to support further isolation of bacterial taxa that influence pig growth for elucidating their mechanisms.
Collapse
Affiliation(s)
- Mengqing Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Lin Wu
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Xiao Sun
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Min Liu
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Yaxiang Wang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Bin Yang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Huashui Ai
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China
| | - Congying Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China.
| | - Lusheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, China.
| |
Collapse
|
4
|
Wang Y, Wei C, Chen Z, Zhou M, Huang L, Chen C. Characterization of the diversity, genomic features, host bacteria, and distribution of crAss-like phages in the pig gut microbiome. Front Vet Sci 2025; 12:1582122. [PMID: 40331220 PMCID: PMC12053484 DOI: 10.3389/fvets.2025.1582122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Phages play an important role in shaping the gut microbiome. CrAss-like phages, which are key members of the gut virome, show high abundance in the human gut and have attracted increasing interest. However, few studies have been found in pigs, and the distribution of crAss-like phages across broader pig populations remains unknown. Here, we obtained 1,251 pig crAss-like phage genomes from 403 metagenomes publicly available and a pig gut virome dataset constructed by ourselves. These crAss-like phage genomes were further clustered into 533 virus operational taxonomic units (vOTUs). Phylogenetic analysis revealed that crAss-like phages in pig guts were distributed across four well-known family-level clusters (Alpha, Beta, Zeta, and Delta) but were absent in the Gamma and Epsilon clusters. Genomic structure analysis identified 149 pig crAss-like phage vOTUs that utilize alternative genetic codes. Gene blocks encoding replication and assembly proteins varied across crAss-like phage clusters. Approximately 64.73% of crAss-like phage genes lacked functional annotations, highlighting a gap in understanding their functional potential. Numerous anti-CRISPR protein genes were identified in crAss-like phage genomes, and CAZymes encoded by these phages were primarily lysozymes. Host prediction indicated that bacterial hosts of pig crAss-like phages primarily belonged to Prevotella, Parabacteroides, and UBA4372. We observed that interactions between crAss-like phages and Prevotella copri might have a possible effect on fat deposition in pigs. Finally, all detected vOTUs exhibited low prevalence across pig populations, suggesting heterogeneity in crAss-like phage compositions. This study provides key resources and novel insights for investigating crAss-like phage-bacteria interactions and benefits research on the effects of crAss-like phages on pig health and production traits.
Collapse
Affiliation(s)
| | | | | | | | - Lusheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, China
| | - Congying Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
5
|
Wang J, Tong T, Yu C, Wu Q. The research progress on the impact of pig gut microbiota on health and production performance. Front Vet Sci 2025; 12:1564519. [PMID: 40110428 PMCID: PMC11919827 DOI: 10.3389/fvets.2025.1564519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/20/2025] [Indexed: 03/22/2025] Open
Abstract
Porcine gut microbiota plays a crucial role in the health and productive performance of pigs, influencing nutrient absorption, feed conversion efficiency, and ultimately, production profitability. In addition to being the primary site of digestion, the intestine houses the pig's largest immune organ, where the microbial community is essential for overall well-being. During the piglet stage, the gut microbiota undergoes a dynamic evolution, gradually adapting to the host environment. This plasticity presents opportunities to intervene and optimize its composition from early stages, enhancing animal health and development. Among the key factors in this process, dietary fiber plays a fundamental role, as its fermentation by the gut microbiota directly affects its composition and functionality, particularly in the distal small intestine, colon, and rectum. The short-chain fatty acids produced during this process not only provide continuous energy to intestinal cells but also regulate immune responses, prevent infections, and contribute to the body's homeostasis, promoting healthy growth. Despite advancements in understanding host-microbiota interactions, there is still no clear consensus on the optimal balance of gut microbiota or a precise definition of a healthy microbiota. Current research aims to identify the factors that modulate the gastrointestinal microbiota and its physiological and immune functions. Future findings will aid in developing strategies to restore gut homeostasis after external disruptions, such as stress, antibiotic use, or infections, thereby improving productivity, reducing stress-related impacts, and preventing diseases in pig production.
Collapse
Affiliation(s)
- Jing Wang
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| | - Tiejin Tong
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| | - Changqing Yu
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| | - Qiang Wu
- School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| |
Collapse
|
6
|
Herazo-Álvarez J, Mora M, Cuadros-Orellana S, Vilches-Ponce K, Hernández-García R. A review of neural networks for metagenomic binning. Brief Bioinform 2025; 26:bbaf065. [PMID: 40131312 PMCID: PMC11934572 DOI: 10.1093/bib/bbaf065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/02/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
One of the main goals of metagenomic studies is to describe the taxonomic diversity of microbial communities. A crucial step in metagenomic analysis is metagenomic binning, which involves the (supervised) classification or (unsupervised) clustering of metagenomic sequences. Various machine learning models have been applied to address this task. In this review, the contributions of artificial neural networks (ANN) in the context of metagenomic binning are detailed, addressing both supervised, unsupervised, and semi-supervised approaches. 34 ANN-based binning tools are systematically compared, detailing their architectures, input features, datasets, advantages, disadvantages, and other relevant aspects. The findings reveal that deep learning approaches, such as convolutional neural networks and autoencoders, achieve higher accuracy and scalability than traditional methods. Gaps in benchmarking practices are highlighted, and future directions are proposed, including standardized datasets and optimization of architectures, for third-generation sequencing. This review provides support to researchers in identifying trends and selecting suitable tools for the metagenomic binning problem.
Collapse
Affiliation(s)
- Jair Herazo-Álvarez
- Doctorado en Modelamiento Matemático Aplicado, Universidad Católica del Maule, Talca, Maule 3480564, Chile
- Laboratory of Technological Research in Pattern Recognition (LITRP), Universidad Católica del Maule, Talca, Maule 3480564, Chile
| | - Marco Mora
- Laboratory of Technological Research in Pattern Recognition (LITRP), Universidad Católica del Maule, Talca, Maule 3480564, Chile
- Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca, Maule 3480564, Chile
| | - Sara Cuadros-Orellana
- Laboratory of Technological Research in Pattern Recognition (LITRP), Universidad Católica del Maule, Talca, Maule 3480564, Chile
- Centro de Biotecnología de los Recursos Naturales (CENBio), Universidad Católica del Maule, Talca, Maule 3480564, Chile
| | - Karina Vilches-Ponce
- Laboratory of Technological Research in Pattern Recognition (LITRP), Universidad Católica del Maule, Talca, Maule 3480564, Chile
| | - Ruber Hernández-García
- Laboratory of Technological Research in Pattern Recognition (LITRP), Universidad Católica del Maule, Talca, Maule 3480564, Chile
- Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca, Maule 3480564, Chile
| |
Collapse
|
7
|
Ladyhina V, Rajala E, Sternberg-Lewerin S, Nasirzadeh L, Bongcam-Rudloff E, Dicksved J. Methodological aspects of investigating the resistome in pig farm environments. J Microbiol Methods 2025; 230-231:107103. [PMID: 39954816 DOI: 10.1016/j.mimet.2025.107103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
A typical One Health issue, antimicrobial resistance (AMR) development and its spread among people, animals, and the environment attracts significant research attention. The animal sector is one of the major contributors to the development and dissemination of AMR and accounts for more than 50 % of global antibiotics usage. The use of antibiotics exerts a selective pressure for resistant bacteria in the exposed microbiome, but many questions about the epidemiology of AMR in farm environments remain unanswered. This is connected to several methodological challenges and limitations, such as inconsistent sampling methods, complexity of farm environment samples and the lack of standardized protocols for sample collection, processing and bioinformatical analysis. In this project, we combined metagenomics and bioinformatics to optimise the methodology for reproducible research on the resistome in complex samples from the indoor farm environment. The work included optimizing sample collection, transportation, and storage, as well as DNA extraction, sequencing, and bioinformatic analysis, such as metagenome assembly and antibiotic resistance gene (ARG) detection. Our studies suggest that the current most optimal and cost-effective pipeline for ARG search should be based on Illumina sequencing of sock sample material at high depth (at least 25 M 250 bp PE for AMR gene families and 43 M for gene variants). We present a computational analysis utilizing MEGAHIT assembly to balance the identification of bacteria carrying ARGs with the potential loss of diversity and abundance of resistance genes. Our findings indicate that searching against multiple ARG databases is essential for detecting the highest diversity of ARGs.
Collapse
Affiliation(s)
- Valeriia Ladyhina
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; Uppsala Antibiotic Center, Uppsala University, Uppsala, Sweden.
| | - Elisabeth Rajala
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | - Leila Nasirzadeh
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden; Bioinformatics Unit, Core Facility (KEF), Faculty of Medical and Health Sciences (BKV), Linköping University, Linköping, Sweden; Clinical Genomics Linköping, SciLife Laboratory, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Johan Dicksved
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
8
|
Liu X, Ding H, Zhang X, Ta N, Zhao J, Zhang Q, Liu H, Sun M, Zhang X. Dynamic changes in the gastrointestinal microbial communities of Gangba sheep and analysis of their functions in plant biomass degradation at high altitude. MICROBIOME 2025; 13:17. [PMID: 39838419 PMCID: PMC11748513 DOI: 10.1186/s40168-024-02022-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND While Gangba sheep being well known for their unique flavour and nutritional value, harsh environmental factors negatively affect their growth and development, leading to poor productivity. The gastrointestinal tract microbiota plays an important role in host nutrient absorption and metabolism. The identification of dynamic changes in the gastrointestinal microbial communities and their functions is an important step towards improving animal production performance and health. RESULTS A comprehensive multi-omics survey of the microbial communities of the Gangba sheep gastrointestinal tract was performed under three distinct feeding strategies: natural grazing, semi-grazing with supplementation, and barn feeding. The dynamic changes, cross-kingdom partnerships and functional potential profiles were analysed and the results revealed that the feeding strategies had a greater impact on the microbial communities than the site of the gastrointestinal tract. The different microbial associations among the groups were revealed by co-occurrence networks based on the amplicon sequence variants (ASVs). Moreover, a Gangba sheep gastrointestinal microbial genomic catalogue was constructed for the first time, including 1146 metagenome-assembled genomes (MAGs) with completeness > 50% and contamination < 10%, among which, 504 bacterial and 15 archaeal MAGs were of high quality with completeness > 80% and contamination < 10%. About 40% of the high-quality MAGs displaying enzyme activity were related to the microbial species that contribute to plant biomass degradation. Most of these enzymes were expressed in rumen metatranscriptome datasets, especially in Prevotella spp. and Ruminococcus spp., suggesting that gastrointestinal microbial communities in ruminants play major roles in the digestion of plant biomass to provide nutrition and energy for the host. CONCLUSIONS These findings suggest that feeding strategies are the primary cause of changes in the gastrointestinal microbiome. Diversification of livestock feed might be an effective strategy to maintain the diversity and ecological multifunctionality of microbial communities in the gastrointestinal tract. Additionally, the catalogue of microbial genomes and the encoded biomass-degrading enzymes identified here provide insights into the potential microbial functions of the gastrointestinal tract of Gangba sheep at high altitudes. This paves the way for microbial interventions to improve the growth performance, productivity and product quality of ruminant livestock. Video Abstract.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - He Ding
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Xiaoxue Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Na Ta
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Jinmei Zhao
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Qian Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Huiyun Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Mengjiao Sun
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Xiaoqing Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China.
- Institute of Practaculture Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 85000, China.
| |
Collapse
|
9
|
Obregon-Gutierrez P, Mahmmod Y, Barba-Vidal E, Sibila M, Correa-Fiz F, Aragón V. Pig nasal and rectal microbiotas are involved in the antibody response to Glaesserella parasuis. Sci Rep 2025; 15:2347. [PMID: 39824862 PMCID: PMC11742689 DOI: 10.1038/s41598-025-85867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
Vaccination stands as one of the most sustainable and promising strategies to control infectious diseases in animal production. Nevertheless, the causes for antibody response variation among individuals are poorly understood. The animal microbiota has been shown to be involved in the correct development and function of the host immunity, including the antibody response. Here, we studied the nasal and rectal microbiota composition in association with the antibody response against the pathobiont Glaesserella parasuis. The nasal and rectal microbiotas of 24 piglets were sampled in two farms before vaccination and in one unvaccinated farm (naturally exposed to the pathobiont) at similar time. Microbiota composition was inferred by V3V4 16S rRNA gene sequencing and bioinformatics analysis, and the antibody response was quantified using the variation between the levels before and after vaccination (normalized per farm). Piglets with higher antibody responses showed more diverse nasal and rectal microbial communities compared to piglets with lower responses. Moreover, swine nasal core microbiota colonizers were associated with higher antibody levels, such as several members from Bacteroidales and Clostridiales orders and genera including Moraxella, Staphylococcus, Fusobacterium and Neisseria. Regarding taxa found in the rectal microbiota, associations with antibody responses were detected only at order level, pointing towards a positive role for Clostridiales while negative for Enterobacteriales. Altogether, these results suggest that the microbiota is associated with the antibody response to G. parasuis (and probably to other pathogens) and serves as starting point to understand the factors that contribute to immunization in pigs.
Collapse
Affiliation(s)
- Pau Obregon-Gutierrez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- Institut de Recerca I Tecnologia Agroalimentàries, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | - Yasser Mahmmod
- Department of Veterinary Clinical Sciences, College of Veterinary, Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| | | | - Marina Sibila
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- Institut de Recerca I Tecnologia Agroalimentàries, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | - Florencia Correa-Fiz
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- Institut de Recerca I Tecnologia Agroalimentàries, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain.
| | - Virginia Aragón
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- Institut de Recerca I Tecnologia Agroalimentàries, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
10
|
Liu HY, Li S, Ogamune KJ, Ahmed AA, Kim IH, Zhang Y, Cai D. Fungi in the Gut Microbiota: Interactions, Homeostasis, and Host Physiology. Microorganisms 2025; 13:70. [PMID: 39858841 PMCID: PMC11767893 DOI: 10.3390/microorganisms13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
The mammalian gastrointestinal tract is a stage for dynamic inter-kingdom interactions among bacteria, fungi, viruses, and protozoa, which collectively shape the gut micro-ecology and influence host physiology. Despite being a modest fraction, the fungal community, also referred to as mycobiota, represents a critical component of the gut microbiota. Emerging evidence suggests that fungi act as early colonizers of the intestine, exerting a lasting influence on gut development. Meanwhile, the composition of the mycobiota is influenced by multiple factors, with diet, nutrition, drug use (e.g., antimicrobials), and physical condition standing as primary drivers. During its establishment, the mycobiota forms both antagonistic and synergistic relationships with bacterial communities within the host. For instance, intestinal fungi can inhibit bacterial colonization by producing alcohol, while certain bacterial pathogens exploit fungal iron carriers to enhance their growth. However, the regulatory mechanisms governing these complex interactions remain poorly understood. In this review, we first introduce the methodologies for studying the microbiota, then address the significance of the mycobiota in the mammalian intestine, especially during weaning when all 'primary drivers' change, and, finally, discuss interactions between fungi and bacteria under various influencing factors. Our review aims to shed light on the complex inter-kingdom dynamics between fungi and bacteria in gut homeostasis and provide insights into how they can be better understood and managed to improve host health and disease outcomes.
Collapse
Affiliation(s)
- Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.-Y.L.); (S.L.); (K.J.O.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Shicheng Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.-Y.L.); (S.L.); (K.J.O.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kennedy Jerry Ogamune
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.-Y.L.); (S.L.); (K.J.O.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Abdelkareem A. Ahmed
- Department of Veterinary Science, Botswana University of Agriculture and Natural Resources, Private Bag 0027, Gaborone P.O. Box 100, Botswana;
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, 119 Dandero, Donnamgu Cheonan, Cheonan-si 31116, Republic of Korea;
| | - Yunzeng Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China;
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.-Y.L.); (S.L.); (K.J.O.)
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Li C, Liu K, Gu C, Li M, Zhou P, Chen L, Sun S, Li X, Wang L, Ni W, Li M, Hu S. Gastrointestinal jumbo phages possess independent synthesis and utilization systems of NAD . MICROBIOME 2024; 12:268. [PMID: 39707494 DOI: 10.1186/s40168-024-01984-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Jumbo phages, phages with genomes > 200 kbp, contain some unique genes for successful reproduction in their bacterial hosts. Due to complex and massive genomes analogous to those of small-celled bacteria, how jumbo phages complete their life cycle remains largely undefined. RESULTS In this study, we assembled 668 high-quality jumbo phage genomes from over 15 terabytes (TB) of intestinal metagenomic data from 955 samples of 5 animal species (cow, sheep, pig, horse, and deer). Within them, we obtained a complete genome of 716 kbp in length, which is the largest phage genome so far reported in the gut environments. Interestingly, 174 out of the 668 jumbo phages were found to encode all genes required for the synthesis of NAD+ by the salvage pathway or Preiss-Handler pathway, referred to as NAD-jumbo phage. Besides synthesis genes of NAD+, these NAD-jumbo phages also encode at least 15 types of NAD+-consuming enzyme genes involved in DNA replication, DNA repair, and counterdefense, suggesting that these phages not only have the capacity to synthesize NAD+ but also redirect NAD+ metabolism towards phage propagation need in hosts. Phylogenetic analysis and environmental survey indicated NAD-jumbo phages are widely present in the Earth's ecosystems, including the human gut, lakes, salt ponds, mine tailings, and seawater. CONCLUSION In summary, this study expands our understanding of the diversity and survival strategies of phages, and an in-depth study of the NAD-jumbo phages is crucial for understanding their role in ecological regulation. Video Abstract.
Collapse
Affiliation(s)
- Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, 832003, China
| | - Kaiping Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Chengxiang Gu
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Guangdong Higher Education Institutes, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study Shenzhen University, Shenzhen, China
| | - Ming Li
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, 832003, China
| | - Linxing Chen
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Shize Sun
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Limin Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang, 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Meng Li
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Guangdong Higher Education Institutes, Shenzhen University, Shenzhen, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study Shenzhen University, Shenzhen, China.
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832003, China.
| |
Collapse
|
12
|
Han Y, He J, Li M, Peng Y, Jiang H, Zhao J, Li Y, Deng F. Unlocking the Potential of Metagenomics with the PacBio High-Fidelity Sequencing Technology. Microorganisms 2024; 12:2482. [PMID: 39770685 PMCID: PMC11728442 DOI: 10.3390/microorganisms12122482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
Traditional methods for studying microbial communities have been limited due to difficulties in culturing and sequencing all microbial species. Recent advances in third-generation sequencing technologies, particularly PacBio's high-fidelity (HiFi) sequencing, have significantly advanced metagenomics by providing accurate long-read sequences. This review explores the role of HiFi sequencing in overcoming the limitations of previous sequencing methods, including high error rates and fragmented assemblies. We discuss the benefits and applications of HiFi sequencing across various environments, such as the human gut and soil, which provides broader context for further exploration. Key studies are discussed to highlight HiFi sequencing's ability to recover complete and coherent microbial genomes from complex microbiomes, showcasing its superior accuracy and continuity compared to other sequencing technologies. Additionally, we explore the potential applications of HiFi sequencing in quantitative microbial analysis, as well as the detection of single nucleotide variations (SNVs) and structural variations (SVs). PacBio HiFi sequencing is establishing a new benchmark in metagenomics, with the potential to significantly enhance our understanding of microbial ecology and drive forward advancements in both environmental and clinical applications.
Collapse
Affiliation(s)
- Yanhua Han
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.H.); (J.H.); (M.L.); (H.J.); (Y.L.)
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jinling He
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.H.); (J.H.); (M.L.); (H.J.); (Y.L.)
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Minghui Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.H.); (J.H.); (M.L.); (H.J.); (Y.L.)
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yunjuan Peng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.P.); (J.Z.)
| | - Hui Jiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.H.); (J.H.); (M.L.); (H.J.); (Y.L.)
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jiangchao Zhao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.P.); (J.Z.)
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.H.); (J.H.); (M.L.); (H.J.); (Y.L.)
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Feilong Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.H.); (J.H.); (M.L.); (H.J.); (Y.L.)
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
13
|
Li J, Huang F, Zhou Y, Huang T, Tong X, Zhang M, Chen J, Zhang Z, Du H, Liu Z, Zhou M, Xiahou Y, Ai H, Chen C, Huang L. Comprehensive lung microbial gene and genome catalogs assist the mechanism survey of Mesomycoplasma hyopneumoniae strains causing pig lung lesions. IMETA 2024; 3:e258. [PMID: 39742304 PMCID: PMC11683470 DOI: 10.1002/imt2.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
Understanding the community structure of the lower respiratory tract microbiome is crucial for elucidating its roles in respiratory tract diseases. However, there are few studies about this topic due to the difficulty in obtaining microbial samples from both healthy and disease individuals. Here, using 744 high-depth metagenomic sequencing data of lower respiratory tract microbial samples from 675 well-phenotyped pigs, we constructed a lung microbial gene catalog containing the largest scale of 10,031,593 nonredundant genes to date, 44.8% of which are novel. We obtained 356 metagenome-assembled genomes (MAGs) which were further clustered into 256 species-level genome bins with 41.8% being first reported in the current databases. Based on these data sets and through integrated analysis of the isolation of the related bacterial strains, in vitro infection, and RNA sequencing, we identified and confirmed that Mesomycoplasma hyopneumoniae (M. hyopneumoniae) MAG_47 and its adhesion-related virulence factors (VFs) were associated with lung lesions in pigs. Differential expression levels of adhesion- and immunomodulation-related VFs likely determined the heterogenicity of adhesion and pathogenicity among M. hyopneumoniae strains. M. hyopneumoniae adhesion activated several pathways, including nuclear factor kappa-light-chain-enhancer of activated B, mitogen-activated protein kinase, cell apoptosis, T helper 1 and T helper 2 cell differentiation, tumor necrosis factor signaling, interleukin-6/janus kinase 2/signal transducer and activator of transcription signaling, and response to reactive oxygen species, leading to cilium loss, epithelial cell‒cell barrier disruption, and lung tissue lesions. Finally, we observed the similar phylogenetic compositions of the lung microbiome between humans with Mycoplasma pneumoniae and pigs infected with M. hyopneumoniae. The results provided important insights into pig lower respiratory tract microbiome and its relationship with lung health.
Collapse
Affiliation(s)
- Jingquan Li
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Fei Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Yunyan Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Tao Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Xinkai Tong
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Mingpeng Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Jiaqi Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Zhou Zhang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Huipeng Du
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Zifeng Liu
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Meng Zhou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Yiwen Xiahou
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Huashui Ai
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Congying Chen
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| | - Lusheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm InnovationJiangxi Agricultural UniversityNanchangChina
| |
Collapse
|
14
|
Moeller AH, Dillard BA, Goldman SL, Real MVF, Sprockett DD. Removal of sequencing adapter contamination improves microbial genome databases. BMC Genomics 2024; 25:1033. [PMID: 39497067 PMCID: PMC11536531 DOI: 10.1186/s12864-024-10956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
Advances in assembling microbial genomes have led to growth of reference genome databases, which have been transformative for applied and basic microbiome research. Here we show that published microbial genome databases from humans, mice, cows, pigs, fish, honeybees, and marine environments contain significant sequencing-adapter contamination that systematically reduces assembly accuracy and contiguousness. By removing the adapter-contaminated ends of contiguous sequences and reassembling MGnify reference genomes, we improve the quality of assemblies in these databases.
Collapse
Affiliation(s)
- Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08540, USA.
| | - Brian A Dillard
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Samantha L Goldman
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Madalena V F Real
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Daniel D Sprockett
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
15
|
Clavell-Sansalvador A, Río-López R, González-Rodríguez O, García-Gil LJ, Xifró X, Zigovski G, Ochoteco-Asensio J, Ballester M, Dalmau A, Ramayo-Caldas Y. Effect of Group Mixing and Available Space on Performance, Feeding Behavior, and Fecal Microbiota Composition during the Growth Period of Pigs. Animals (Basel) 2024; 14:2704. [PMID: 39335293 PMCID: PMC11428945 DOI: 10.3390/ani14182704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Stress significantly affects the health, welfare, and productivity of farm animals. We performed a longitudinal study to evaluate stress's effects on pig performance, feeding behavior, and fecal microbiota composition. This study involved 64 Duroc pigs during the fattening period, divided into two experimental groups: a stress group (n = 32) and a control group (n = 32). Stressed groups had less space and were mixed twice during the experiment. We monitored body weight, feed efficiency, feeding behavior, and fecal microbiota composition. Compared to the control group, the stressed pigs exhibited reduced body weight, feed efficiency, fewer feeder visits, and longer meal durations. In the fecal microbiota, resilience was observed, with greater differences between groups when sampling was closer to the stressful stimulus. Stressed pigs showed an increase in opportunistic bacteria, such as Streptococcus, Treponema and members of the Erysipelotrichaceae family, while control pigs had more butyrate- and propionate-producing genera like Anaerobutyricum, Coprococcus and HUN007. Our findings confirm that prolonged stress negatively impacts porcine welfare, behavior, and performance, and alters their gut microbiota. Specific microorganisms identified could serve as non-invasive biomarkers for stress, potentially informing both animal welfare and similar gut-brain axis mechanisms relevant to human research.
Collapse
Affiliation(s)
- Adrià Clavell-Sansalvador
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain; (O.G.-R.); (M.B.)
- Animal Welfare Subprogram, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Girona, Spain; (R.R.-L.); (J.O.-A.); (A.D.)
| | - Raquel Río-López
- Animal Welfare Subprogram, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Girona, Spain; (R.R.-L.); (J.O.-A.); (A.D.)
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain; (O.G.-R.); (M.B.)
| | - L. Jesús García-Gil
- Digestive Diseases and Microbiota Group, Biomedical Research Institute of Girona (IDIBGI), 17190 Girona, Girona, Spain;
- New Therapeutic Targets Lab Research Group, Medical Sciences Departament, Faculty of Medicine, Universitat de Girona, 17071 Girona, Girona, Spain;
| | - Xavier Xifró
- New Therapeutic Targets Lab Research Group, Medical Sciences Departament, Faculty of Medicine, Universitat de Girona, 17071 Girona, Girona, Spain;
| | - Gustavo Zigovski
- School of Medicine and Life Sciences, Graduate Program in Animal Science, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Paraná, Brazil;
| | - Juan Ochoteco-Asensio
- Animal Welfare Subprogram, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Girona, Spain; (R.R.-L.); (J.O.-A.); (A.D.)
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain; (O.G.-R.); (M.B.)
| | - Antoni Dalmau
- Animal Welfare Subprogram, Institute of Agrifood Research and Technology (IRTA), 17121 Monells, Girona, Spain; (R.R.-L.); (J.O.-A.); (A.D.)
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain; (O.G.-R.); (M.B.)
| |
Collapse
|
16
|
Lindner BG, Choudhury RA, Pinamang P, Bingham L, D'Amico I, Hatt JK, Konstantinidis KT, Graham KE. Advancing Source Tracking: Systematic Review and Source-Specific Genome Database Curation of Fecally Shed Prokaryotes. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:931-939. [PMID: 39280079 PMCID: PMC11391576 DOI: 10.1021/acs.estlett.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024]
Abstract
Advancements within fecal source tracking (FST) studies are complicated by a lack of knowledge regarding the genetic content and distribution of fecally shed microbial populations. To address this gap, we performed a systematic literature review and curated a large collection of genomes (n = 26,018) representing fecally shed prokaryotic species across broad and narrow source categories commonly implicated in FST studies of recreational waters (i.e., cats, dogs, cows, seagulls, chickens, pigs, birds, ruminants, human feces, and wastewater). We find that across these sources the total number of prokaryotic genomes recovered from materials meeting our initial inclusion criteria varied substantially across fecal sources: from none in seagulls to 9,085 in pigs. We examined genome sequences recovered from these metagenomic and isolation-based studies extensively via comparative genomic approaches to characterize trends across source categories and produce a finalized genome database for each source category which is available online (n = 12,730). On average, 81% of the genomes representing species-level populations occur only within a single source. Using fecal slurries to test the performance of each source database, we report read capture rates that vary with fecal source alpha diversity and database size. We expect this resource to be useful to FST-related objectives, One Health research, and sanitation efforts globally.
Collapse
Affiliation(s)
- Blake G Lindner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Rakin A Choudhury
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Princess Pinamang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lilia Bingham
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Isabelle D'Amico
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Janet K Hatt
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Katherine E Graham
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
17
|
Lu X, Gong G, Zhang Q, Yang S, Wu H, Zhao M, Wang X, Shen Q, Ji L, Liu Y, Wang Y, Liu J, Suolang S, Ma X, Shan T, Zhang W. Metagenomic analysis reveals high diversity of gut viromes in yaks (Bos grunniens) from the Qinghai-Tibet Plateau. Commun Biol 2024; 7:1097. [PMID: 39242698 PMCID: PMC11379701 DOI: 10.1038/s42003-024-06798-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
The Qinghai-Tibet Plateau (QTP), renowned for its exceptional biological diversity, is home to numerous endemic species. However, research on the virology of vulnerable vertebrates like yaks remains limited. In this study, our objective was to use metagenomics to provide a comprehensive understanding of the diversity and evolution of the gut virome in yak populations across different regions of the QTP. Our findings revealed a remarkably diverse array of viruses in the gut of yaks, including those associated with vertebrates and bacteriophages. Notably, some vertebrate-associated viruses, such as astrovirus and picornavirus, showed significant sequence identity across diverse yak populations. Additionally, we observed differences in the functional profiles of genes carried by the yak gut virome across different regions. Moreover, the virus-bacterium symbiotic network that we discovered holds potential significance in maintaining the health of yaks. Overall, this research expands our understanding of the viral communities in the gut of yaks and highlights the importance of further investigating the interactions between viruses and their hosts. These data will be beneficial for revealing the crucial role that viruses play in the yak gut ecology in future studies.
Collapse
Affiliation(s)
- Xiang Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ga Gong
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China
| | - Qing Zhang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haisheng Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Min Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuwei Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yongshun Wang
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Jia Liu
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China
| | - Sizhu Suolang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, China.
| | - Xiao Ma
- Qinghai Institute of Endemic Disease Prevention and Control, Xining, China.
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
18
|
Yuan B, Fu Q, Wang XY, Zhang XH, Liu YL, Hou R, Zhang MY. Effects of Social Group Housing on the Behavioral and Physiological Responses of Captive Sub-Adult Giant Pandas. Animals (Basel) 2024; 14:2545. [PMID: 39272330 PMCID: PMC11394306 DOI: 10.3390/ani14172545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Wild giant pandas are inherently solitary creatures, however, the ex-situ conservation efforts significantly alter the living circumstances of their captive counterparts. Following the breeding period, giant pandas in captivity may be maintained in social groups. Currently, there is a lack of research on the effects of group housing on the physiology, behavior, and gut microbiota of captive giant pandas. This study divided six captive giant pandas into two groups following the breeding period. By comparing the behavior, physiology, and microorganisms of the two groups, we aim to investigate the behavioral responses and physiological adaptation mechanisms exhibited by captive giant pandas in a "group living" state. Our findings indicate that sub-adult giant pandas housed in group settings exhibit a significantly longer duration of playing behavior (including interactive and non-interactive play) compared to their counterparts housed separately (p < 0.001) while also demonstrating a significantly lower duration of stereotyped behavior than their separately housed counterparts. Additionally, an analysis of urine cortisol and heart rate variability between the two groups revealed no significant differences. Simultaneously, the group housing strategy markedly elevated the β diversity of gut microbiota in sub-adult giant pandas. In conclusion, the group-rearing model during the sub-adult stage has been shown to significantly alter the behavioral patterns of captive giant pandas. In conclusion, within the present captive setting, the group-rearing approach during the sub-adult stage proved to be less distressing for adult captive giant pandas.
Collapse
Affiliation(s)
- Bo Yuan
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Qin Fu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Xue-Ying Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Xiao-Hui Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Yu-Liang Liu
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| | - Ming-Yue Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu 610081, China
- Sichuan Academy of Giant Panda, Chengdu 610081, China
| |
Collapse
|
19
|
Sardar P, Almeida A, Pedicord VA. Integrating functional metagenomics to decipher microbiome-immune interactions. Immunol Cell Biol 2024; 102:680-691. [PMID: 38952337 DOI: 10.1111/imcb.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Microbial metabolites can be viewed as the cytokines of the microbiome, transmitting information about the microbial and metabolic environment of the gut to orchestrate and modulate local and systemic immune responses. Still, many immunology studies focus solely on the taxonomy and community structure of the gut microbiota rather than its functions. Early sequencing-based microbiota profiling approaches relied on PCR amplification of small regions of bacterial and fungal genomes to facilitate identification of the microbes present. However, recent microbiome analysis methods, particularly shotgun metagenomic sequencing, now enable culture-independent profiling of microbiome functions and metabolites in addition to taxonomic characterization. In this review, we showcase recent advances in functional metagenomics methods and applications and discuss the current limitations and potential avenues for future development. Importantly, we highlight a few examples of key areas of opportunity in immunology research where integrating functional metagenomic analyses of the microbiome can substantially enhance a mechanistic understanding of microbiome-immune interactions and their contributions to health and disease states.
Collapse
Affiliation(s)
- Puspendu Sardar
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Alexandre Almeida
- Department of Veterinary Medicine, University of Cambridge School of Biological Sciences, Cambridge, UK
| | - Virginia A Pedicord
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
20
|
Wu H, Mu C, Li X, Fan W, Shen L, Zhu W. Breed-Driven Microbiome Heterogeneity Regulates Intestinal Stem Cell Proliferation via Lactobacillus-Lactate-GPR81 Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400058. [PMID: 38937989 PMCID: PMC11434115 DOI: 10.1002/advs.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/20/2024] [Indexed: 06/29/2024]
Abstract
Genetically lean and obese individuals have distinct intestinal microbiota and function. However, the underlying mechanisms of the microbiome heterogeneity and its regulation on epithelial function such as intestinal stem cell (ISC) fate remain unclear. Employing pigs of genetically distinct breeds (obese Meishan and lean Yorkshire), this study reveals transcriptome-wide variations in microbial ecology of the jejunum, characterized by enrichment of active Lactobacillus species, notably the predominant Lactobacillus amylovorus (L. amylovorus), and lactate metabolism network in obese breeds. The L. amylovorus-dominant heterogeneity is paralleled with epithelial functionality difference as reflected by highly expressed GPR81, more proliferative ISCs and activated Wnt/β-catenin signaling. Experiments using in-house developed porcine jejunal organoids prove that live L. amylovorus and its metabolite lactate promote intestinal organoid growth. Mechanistically, L. amylovorus and lactate activate Wnt/β-catenin signaling in a GPR81-dependent manner to promote ISC-mediated epithelial proliferation. However, heat-killed L. amylovorus fail to cause these changes. These findings uncover a previously underrepresented role of L. amylovorus in regulating jejunal stem cells via Lactobacillus-lactate-GPR81 axis, a key mechanism bridging breed-driven intestinal microbiome heterogeneity with ISC fate. Thus, results from this study provide new insights into the role of gut microbiome and stem cell interactions in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Haiqin Wu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunlong Mu
- Food Informatics, AgResearch, Te Ohu Rangahau Kai, Palmerston North, 4474, New Zealand
| | - Xuan Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenlu Fan
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Le Shen
- Department of Surgery, The University of Chicago, Maryland Ave, 60637, USA
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
21
|
Luo Y, Zhang C, Liao H, Luo Y, Huang X, Wang Z, Xiaole X. Integrative metagenomics, volatilomics and chemometrics for deciphering the microbial structure and core metabolic network during Chinese rice wine (Huangjiu) fermentation in different regions. Food Microbiol 2024; 122:104569. [PMID: 38839228 DOI: 10.1016/j.fm.2024.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Huangjiu is a spontaneously fermented alcoholic beverage, that undergoes intricate microbial compositional changes. This study aimed to unravel the flavor and quality formation mechanisms based on the microbial metabolism of Huangjiu. Here, metagenome techniques, chemometrics analysis, and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) metabolomics combined with microbial metabolic network were employed to investigate the distinctions and relationship between the microbial profiles and the quality characteristics, flavor metabolites, functional metabolic patterns of Huangjiu across three regions. Significant variations (P < 0.05) were observed in metabolic rate of physicochemical parameters and biogenic amine concentration among three regions. 8 aroma compounds (phenethyl acetate, phenylethyl alcohol, isobutyl alcohol, ethyl octanoate, ethyl acetate, ethyl hexanoate, isoamyl alcohol, and diethyl succinate) out of 448 volatile compounds were identified as the regional chemical markers. 25 dominant microbial genera were observed through metagenomic analysis, and 13 species were confirmed as microbial markers in three regions. A metabolic network analysis revealed that Saccharomycetales (Saccharomyces), Lactobacillales (Lactobacillus, Weissella, and Leuconostoc), and Eurotiales (Aspergillus) were the predominant populations responsible for substrate, flavor (mainly esters and phenylethyl alcohol) metabolism, Lactobacillales and Enterobacterales were closely linked with biogenic amine. These findings provide scientific evidence for regional microbial contributions to geographical characteristics of Huangjiu, and perspectives for optimizing microbial function to promote Huangjiu quality.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, PR China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Chenhao Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Hui Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yunchuan Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Xinlei Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| | - Xia Xiaole
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300000, PR China.
| |
Collapse
|
22
|
Chang Y, Zhang Z, Cai J, Wang C, Liu D, Liu Z, Xu C. Coevolution of specific gut microbiota of Min pig with host cold adaptation through enhanced vitamin B1 synthesis. Front Microbiol 2024; 15:1448090. [PMID: 39282562 PMCID: PMC11401075 DOI: 10.3389/fmicb.2024.1448090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/30/2024] [Indexed: 09/19/2024] Open
Abstract
Min pigs exhibit remarkable cold tolerance, where vitamin B1 synthesis by gut microbiota is crucial for the host's energy metabolism. However, the role of this synthesis in cold adaptation of Min pigs are not yet fully understood. This study utilized 16S rRNA amplicon and metagenomic sequencing to examine seasonal variations in the gut microbiota of Min pigs. Results indicated a significant rise in microbial diversity in winter, with the Bacteroidetes group being the most notably increased. The vitamin B1 biosynthetic pathway was significantly enriched during winter, with six significantly upregulated genes (ThiC, ThiD, ThiE, ThiG, ThiH, and ThiL) showing strong evidence of purifying selection. Among the six vitamin B1 synthesis genes significantly upregulated during winter, the increase was mainly due to a marked elevation in several sequences from specific microbial species. Binding energy analysis revealed that, except for ThiL, the average substrate binding energy of the top 10 sequences with the largest seasonal differences was significantly lower than those of the 10 sequences with the smallest differences. Furthermore, most of these sequences were uniquely prevalent in Min pigs and were not found in the homologous sequences of Duroc pigs. Bacteroidetes and Bacteroidales were identified as the primary contributors to these gene sequences. This research provides valuable insights for developing innovative cold-resistant feed and probiotics.
Collapse
Affiliation(s)
- Yang Chang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Ziwen Zhang
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- College of Life Science, Northeast Agricultural University, Harbin, China
| | | | | | - Di Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Chunzhu Xu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin, China
- College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
23
|
Mi J, Jing X, Ma C, Yang Y, Li Y, Zhang Y, Long R, Zheng H. Massive expansion of the pig gut virome based on global metagenomic mining. NPJ Biofilms Microbiomes 2024; 10:76. [PMID: 39209853 PMCID: PMC11362615 DOI: 10.1038/s41522-024-00554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
The pig gut virome plays a vital role in the gut microbial ecosystem of pigs. However, a comprehensive understanding of their diversity and a reference database for the virome are currently lacking. To address this gap, we established a Pig Virome Database (PVD) that comprised of 5,566,804 viral contig sequences from 4650 publicly available gut metagenomic samples using a pipeline designated "metav". By clustering sequences, we identified 48,299 viral operational taxonomic units (vOTUs) genomes of at least medium quality, of which 92.83% of which were not found in existing major databases. The majority of vOTUs were identified as Caudoviricetes (72.21%). The PVD database contained a total of 2,362,631 protein-coding genes across the above medium-quality vOTUs genomes that can be used to explore the functional potential of the pig gut virome. These findings highlight the extensive diversity of viruses in the pig gut and provide a pivotal reference dataset for forthcoming research concerning the pig gut virome.
Collapse
Affiliation(s)
- Jiandui Mi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, China.
| | - Xiaoping Jing
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, China
| | | | - Yiwen Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yong Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yu Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ruijun Long
- State Key Laboratory of Grassland and Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, China.
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
24
|
Ma L, Lyu W, Zeng T, Wang W, Chen Q, Zhao J, Zhang G, Lu L, Yang H, Xiao Y. Duck gut metagenome reveals the microbiome signatures linked to intestinal regional, temporal development, and rearing condition. IMETA 2024; 3:e198. [PMID: 39135685 PMCID: PMC11316934 DOI: 10.1002/imt2.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 08/15/2024]
Abstract
The duck gastrointestinal tract (GIT) harbors an abundance of microorganisms that play an important role in duck health and production. Here, we constructed the first relatively comprehensive duck gut microbial gene catalog (24 million genes) and 4437 metagenome-assembled genomes using 375 GIT metagenomic samples from four different duck breeds across five intestinal segments under two distinct rearing conditions. We further characterized the intestinal region-specific microbial taxonomy and their assigned functions, as well as the temporal development and maturation of the duck gut microbiome. Our metagenomic analysis revealed the similarity within the microbiota of the foregut and hindgut compartments, but distinctive taxonomic and functional differences between distinct intestinal segments. In addition, we found a significant shift in the microbiota composition of newly hatched ducks (3 days), followed by increased diversity and enhanced stability across growth stages (14, 42, and 70 days), indicating that the intestinal microbiota develops into a relatively mature and stable community as the host duck matures. Comparing the impact of different rearing conditions (with and without water) on duck cecal microbiota communities and functions, we found that the bacterial capacity for lipopolysaccharide biosynthesis was significantly increased in ducks that had free access to water, leading to the accumulation of pathogenic bacteria and antibiotic-resistance genes. Taken together, our findings expand the understanding of the microbiome signatures linked to intestinal regional, temporal development, and rearing conditions in ducks, which highlight the significant impact of microbiota on poultry health and production.
Collapse
Affiliation(s)
- Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary MedicineZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jiangchao Zhao
- Department of Animal Science, Division of AgricultureUniversity of ArkansasFayettevilleArkansasUSA
| | - Guolong Zhang
- Department of Animal and Food SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary MedicineZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
25
|
Jalal RS, Sonbol HS. Resistome Signature and Antibiotic Resistance Mechanisms in Rhizospheric Soil Bacteriomes of Mecca Region, Saudi Arabia: Insights into Impact on Human Health. Life (Basel) 2024; 14:928. [PMID: 39202671 PMCID: PMC11355665 DOI: 10.3390/life14080928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
The objective of this investigation is to ascertain the distinctive profile of the rhizospheric soil resistome within the Mecca region, while also evaluating the potential risks associated with the horizontal transfer of resistome determinants to the open environment and human clinical isolates. We have made metagenomic whole-genome shotgun sequencing for rhizospheric microbiomes of two endemic plants, namely Moringa oleifera and Abutilon fruticosum. The rhizospheric resistomes of the two plants and the abundance of antibiotic resistance genes (ARGs) were identified by cross-referencing encoded proteins with the comprehensive antibiotic resistance database (CARD). The identified ARGs were then analyzed for their antimicrobial resistance (AMR) mechanisms. Predominantly within this soil are the two bacterial species Pseudomonas aeruginosa and Mycobacterium tuberculosis. These opportunistic human pathogens are implicated in respiratory infections and are correlated with heightened mortality rates. The most prevalent array of ARGs existing in this soil comprises mexA, mexC, mexE, and cpxR, associated with mechanisms of antibiotic active efflux, along with ACC(2), ACC(3), AAC(6), and APH(6), in addition to arr1, arr3, arr4, iri, rphA, and rphB, implicated in antibiotic inactivation. Furthermore, vanS, vanR, and vanJ are identified for antibiotic target alteration, while rpoB2 and RbpA are noted for antibiotic target replacement and protection, respectively. These mechanisms confer resistance against a diverse spectrum of drug classes encompassing fluoroquinolones, aminoglycosides, glycopeptides, and rifampicins. This study underscores the potential hazards posed to human health by the presence of these pathogenic bacteria within the rhizospheric soil of the Mecca region, particularly in scenarios where novel ARGs prevalent in human populations are harbored and subsequently transmitted through the food chain to human clinical isolates. Consequently, stringent adherence to good agricultural and food transportation practices is imperative, particularly with regard to edible plant parts and those utilized in folkloric medicine.
Collapse
Affiliation(s)
- Rewaa S. Jalal
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia;
| | - Hana S. Sonbol
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
26
|
Larzul C, Estellé J, Borey M, Blanc F, Lemonnier G, Billon Y, Thiam MG, Quinquis B, Galleron N, Jardet D, Lecardonnel J, Plaza Oñate F, Rogel-Gaillard C. Driving gut microbiota enterotypes through host genetics. MICROBIOME 2024; 12:116. [PMID: 38943206 PMCID: PMC11214205 DOI: 10.1186/s40168-024-01827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/01/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Population stratification based on interindividual variability in gut microbiota composition has revealed the existence of several ecotypes named enterotypes in humans and various animal species. Enterotypes are often associated with environmental factors including diet, but knowledge of the role of host genetics remains scarce. Moreover, enterotypes harbor functionalities likely associated with varying abilities and susceptibilities of their host. Previously, we showed that under controlled conditions, 60-day-old pig populations consistently split into two enterotypes with either Prevotella and Mitsuokella (PM enterotype) or Ruminococcus and Treponema (RT enterotype) as keystone taxa. Here, our aim was to rely on pig as a model to study the influence of host genetics to assemble enterotypes, and to provide clues on enterotype functional differences and their links with growth traits. RESULTS We established two pig lines contrasted for abundances of the genera pairs specifying each enterotype at 60 days of age and assessed them for fecal microbiota composition and growth throughout three consecutive generations. Response to selection across three generations revealed, per line, an increase in the prevalence of the selected enterotype and in the average relative abundances of directly and indirectly selected bacterial genera. The PM enterotype was found less diverse than the RT enterotype but more efficient for piglet growth during the post-weaning period. Shotgun metagenomics revealed differentially abundant bacterial species between the two enterotypes. By using the KEGG Orthology database, we show that functions related to starch degradation and polysaccharide metabolism are enriched in the PM enterotype, whereas functions related to general nucleoside transport and peptide/nickel transport are enriched in the RT enterotype. Our results also suggest that the PM and RT enterotypes might differ in the metabolism of valine, leucin, and isoleucine, favoring their biosynthesis and degradation, respectively. CONCLUSION We experimentally demonstrated that enterotypes are functional ecosystems that can be selected as a whole by exerting pressure on the host genetics. We also highlight that holobionts should be considered as units of selection in breeding programs. These results pave the way for a holistic use of host genetics, microbiota diversity, and enterotype functionalities to understand holobiont shaping and adaptation. Video Abstract.
Collapse
Grants
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- ANR-11-DPBS-0001 Agence Nationale de la Recherche
- ANR-11-DPBS-0001 Agence Nationale de la Recherche
- ANR-11-DPBS-0001 Agence Nationale de la Recherche
- ANR-11-DPBS-0001 Agence Nationale de la Recherche
Collapse
Affiliation(s)
- Catherine Larzul
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, 31326, France.
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France.
| | - Marion Borey
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | - Fany Blanc
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | - Gaëtan Lemonnier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | | | | | - Benoît Quinquis
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, 78350, France
| | | | - Deborah Jardet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | - Jérôme Lecardonnel
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | | | | |
Collapse
|
27
|
Zhang K, He C, Wang L, Suo L, Guo M, Guo J, Zhang T, Xu Y, Lei Y, Liu G, Qian Q, Mao Y, Kalds P, Wu Y, Cuoji A, Yang Y, Brugger D, Gan S, Wang M, Wang X, Zhao F, Chen Y. Compendium of 5810 genomes of sheep and goat gut microbiomes provides new insights into the glycan and mucin utilization. MICROBIOME 2024; 12:104. [PMID: 38845047 PMCID: PMC11155115 DOI: 10.1186/s40168-024-01806-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/03/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Ruminant gut microbiota are critical in ecological adaptation, evolution, and nutrition utilization because it regulates energy metabolism, promotes nutrient absorption, and improves immune function. To study the functional roles of key gut microbiota in sheep and goats, it is essential to construct reference microbial gene catalogs and high-quality microbial genomes database. RESULTS A total of 320 fecal samples were collected from 21 different sheep and goat breeds, originating from 32 distinct farms. Metagenomic deep sequencing and binning assembly were utilized to construct a comprehensive microbial genome information database for the gut microbiota. We successfully generated the largest reference gene catalogs for gut microbiota in sheep and goats, containing over 162 million and 82 million nonredundant predicted genes, respectively, with 49 million shared nonredundant predicted genes and 1138 shared species. We found that the rearing environment has a greater impact on microbial composition and function than the host's species effect. Through subsequent assembly, we obtained 5810 medium- and high-quality metagenome-assembled genomes (MAGs), out of which 2661 were yet unidentified species. Among these MAGs, we identified 91 bacterial taxa that specifically colonize the sheep gut, which encode polysaccharide utilization loci for glycan and mucin degradation. CONCLUSIONS By shedding light on the co-symbiotic microbial communities in the gut of small ruminants, our study significantly enhances the understanding of their nutrient degradation and disease susceptibility. Our findings emphasize the vast potential of untapped resources in functional bacterial species within ruminants, further expanding our knowledge of how the ruminant gut microbiota recognizes and processes glycan and mucins. Video Abstract.
Collapse
Affiliation(s)
- Ke Zhang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chong He
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Lei Wang
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Qinghai Academy of Animal and Veterinary Medicine, Qinghai University, Xining, 810016, China
| | - Langda Suo
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850009, China
| | - Mengmeng Guo
- College of Animal Engineering, Yangling Vocational and Technical College, Yangling, 712100, China
| | - Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611100, China
| | - Ting Zhang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yangbin Xu
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yu Lei
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gongwei Liu
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Quan Qian
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yunrui Mao
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Peter Kalds
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yujiang Wu
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850009, China
| | - Awang Cuoji
- Institute of Animal Sciences, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009, China
- Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, 850009, China
| | - Yuxin Yang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Daniel Brugger
- Institute of Animal Nutrition and Dietetics, Vetsuisse-Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Shangquan Gan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Meili Wang
- College of Information Engineering, Northwest A&F University, Yangling, 712100, China
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, China.
- School of Future Technology On Bio-Breeding, Northwest A&F University, Yangling, 712100, China.
| | - Fangqing Zhao
- Computational Genomics Lab, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 102206, China.
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio-Breeding, Ministry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, China.
- School of Future Technology On Bio-Breeding, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
28
|
Chen Q, Lyu W, Pan C, Ma L, Sun Y, Yang H, Wang W, Xiao Y. Tracking investigation of archaeal composition and methanogenesis function from parental to offspring pigs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172078. [PMID: 38582109 DOI: 10.1016/j.scitotenv.2024.172078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Archaea play a crucial role in microbial systems, including driving biochemical reactions and affecting host health by producing methane through hydrogen. The study of swine gut archaea has a positive significance in reducing methane emissions and improving feed utilization efficiency. However, the development and functional changes of archaea in the pig intestines have been overlooked for a long time. In this study, 54 fecal samples were collected from 36 parental pigs (18 boars and 18 pregnant/lactating sows), and 108 fecal samples from 18 offspring pigs during lactation, nursery, growing, and finishing stages were tracked and collected for metagenomic sequencing. We obtained 14 archaeal non-redundant metagenome-assembled genomes (MAGs). These archaea were classified as Methanobacteriota and Thermoplasmatota at the phylum level, and Methanobrevibacter, Methanosphaera, MX-02, and UBA71 at the genus level, involving hydrogenotrophic, methylotrophic, and acetoclastic pathways. The hydrogenotrophic pathway dominated the methanogenesis function, and the vast majority of archaea participated in it. Dietary changes profoundly affected the archaeal composition and methanogenesis function in pigs. The abundance of hydrogen-producing bacteria in parental pigs fed high-fiber diets was higher than that in offspring pigs fed low-fiber diets. The methanogenesis function was positively correlated with fiber decomposition functions and negatively correlated with the starch decomposition function. Increased abundance of sulfate reductase and fumarate reductase, as well as decreased acetate/propionate ratio, indicated that the upregulation of alternative hydrogen uptake pathways competing with methanogens may be the reason for the reduced methanogenesis function. These findings contribute to providing information and direction in the pig industry for the development of strategies to reduce methane emissions, improve feed efficiency, and maintain intestinal health.
Collapse
Affiliation(s)
- Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chenglin Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
29
|
Lu C, Zhang Y, Qin Y, Zhou J, Wang Y, Su X, Han J. Tuna Dark Muscle Feeding Improved the Meat Quality of Holland Mini-Piglets and Modulated the Gut Microbiota. Foods 2024; 13:1577. [PMID: 38790877 PMCID: PMC11121099 DOI: 10.3390/foods13101577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Pork is one of the most widely produced and consumed meats in the world, and it is also an important source of animal protein. The continuous rise in feed prices has forced the pig industry to consider adding cost-effective alternative feed to pig diets. In this study, we aimed to explore the beneficial effects of tuna dark muscle as a nutritional supplement on the growth performance, serum lipids and antioxidant levels of Holland mini-piglets, as well as on the odor and volatile substances of pork and the gut microbiota. Two-month-old male mini-piglets (n = 24) were fed a control diet or supplemented with either 2% (LD) or 4% (HD) tuna dark muscle for 8 weeks. The use of tuna dark muscle at low and high dosages significantly increased the average daily weight gain, but it showed no significant effect on organ indices or blood lipids. In addition, dark muscle treatment significantly increased the antioxidant capacity, characterized by increased SOD and GSH-Px activities, and it decreased the content of MDA in serum. Moreover, tuna dark muscle feeding shifted the odor of rib muscle and tendon meat away from that of the control group, while similar odor patterns were observed in the longissimus dorsi muscle. Among these volatile substances, hexanal, nonanal, and heptanal increased in response to dietary tuna dark muscle and were regarded as indispensable contributors to the feeding. Furthermore, dietary tuna dark muscle modulated the gut microbiota of the piglets, increasing the abundance of beneficial bacteria such as butyric acid-producing bacteria, and reduced the abundance of harmful bacteria. The feeding strategy reported in this study not only reduces the production costs of pork but also utilizes tuna processing by-products in an environmentally friendly way.
Collapse
Affiliation(s)
- Chenyang Lu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou 310018, China
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo 315832, China
| | - Yuanming Zhang
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo 315832, China
| | - Yang Qin
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo 315832, China
| | - Jun Zhou
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo 315832, China
| | - Yanbo Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Road, Hangzhou 310018, China
| | - Xiurong Su
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo 315832, China
| | - Jiaojiao Han
- School of Marine Science, Ningbo University, 169 Qixing South Road, Ningbo 315832, China
| |
Collapse
|
30
|
Wen M, Chen S, Zhang Y, Liu Y, Tang C, Zhang J, Sun J, Li X, Ding Y, Lu L, Long K, Nie Y, Li X, Li M, Ge L, Ma J. Diversity and host interaction of the gut microbiota in specific pathogen-free pigs. Front Microbiol 2024; 15:1402807. [PMID: 38800748 PMCID: PMC11122924 DOI: 10.3389/fmicb.2024.1402807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Pigs are widely used as animal models in various studies related to humans. The interaction between the gut microbiota and the host has significant effects on the host's health and disease status. However, although there have been many studies investigating the pig gut microbiota, the findings have been inconsistent due to variations in rearing conditions. Interactions between the gut microbiota and host have not been fully explored in pigs. Specific pathogen-free (SPF) pigs are ideal non-primate large animals to study the interactions between the gut microbiota and the host. In this study, we performed high-throughput sequencing analysis of the gut microbiota and the gut tissue transcriptome of six SPF pigs to provide a systematic understanding of the composition, function, and spatial distribution of gut microbiota in SPF pigs. We identified significant differences in microbial diversity and functionality among different gastrointestinal tract sites. Metagenomics data analysis revealed significant differences in alpha diversity and beta diversity of microbiota in different gastrointestinal sites of SPF pigs. Additionally, transcriptomic data indicated significant differences in gene expression as well as KEGG and GO functional enrichment between the small intestine and large intestine. Furthermore, by combining microbial metagenomics and host transcriptomics analyses, specific correlations were found between gut microbiota and host genes. These included a negative correlation between the TCN1 gene and Prevotella dentalis, possibly related to bacterial metabolic pathways involving vitamin B12, and a positive correlation between the BDH1 gene and Roseburia hominis, possibly because both are involved in fatty acid metabolism. These findings lay the groundwork for further exploration of the co-evolution between the microbiota and the host, specifically in relation to nutrition, metabolism, and immunity. In conclusion, we have elucidated the diversity of the gut microbiota in SPF pigs and conducted a detailed investigation into the interactions between the gut microbiota and host gene expression. These results contribute to our understanding of the intricate dynamics between the gut microbiota and the host, offering important references for advancements in life science research, bioproduct production, and sustainable development in animal husbandry.
Collapse
Affiliation(s)
- Mingxing Wen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shuangshuang Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yali Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chuang Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Sciences, Chongqing Key Laboratory of Pig Sciences, Chongqing, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Sciences, Chongqing Key Laboratory of Pig Sciences, Chongqing, China
| | - Xiaokai Li
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Sciences, Chongqing Key Laboratory of Pig Sciences, Chongqing, China
| | - Yuchun Ding
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Sciences, Chongqing Key Laboratory of Pig Sciences, Chongqing, China
| | - Lu Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, China
| | - Xuewei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Sciences, Chongqing Key Laboratory of Pig Sciences, Chongqing, China
| | - Jideng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
31
|
Cowan DA, Albers SV, Antranikian G, Atomi H, Averhoff B, Basen M, Driessen AJM, Jebbar M, Kelman Z, Kerou M, Littlechild J, Müller V, Schönheit P, Siebers B, Vorgias K. Extremophiles in a changing world. Extremophiles 2024; 28:26. [PMID: 38683238 PMCID: PMC11058618 DOI: 10.1007/s00792-024-01341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Extremophiles and their products have been a major focus of research interest for over 40 years. Through this period, studies of these organisms have contributed hugely to many aspects of the fundamental and applied sciences, and to wider and more philosophical issues such as the origins of life and astrobiology. Our understanding of the cellular adaptations to extreme conditions (such as acid, temperature, pressure and more), of the mechanisms underpinning the stability of macromolecules, and of the subtleties, complexities and limits of fundamental biochemical processes has been informed by research on extremophiles. Extremophiles have also contributed numerous products and processes to the many fields of biotechnology, from diagnostics to bioremediation. Yet, after 40 years of dedicated research, there remains much to be discovered in this field. Fortunately, extremophiles remain an active and vibrant area of research. In the third decade of the twenty-first century, with decreasing global resources and a steadily increasing human population, the world's attention has turned with increasing urgency to issues of sustainability. These global concerns were encapsulated and formalized by the United Nations with the adoption of the 2030 Agenda for Sustainable Development and the presentation of the seventeen Sustainable Development Goals (SDGs) in 2015. In the run-up to 2030, we consider the contributions that extremophiles have made, and will in the future make, to the SDGs.
Collapse
Affiliation(s)
- D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa.
| | - S V Albers
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - G Antranikian
- Institute of Technical Biocatalysis, Hamburg University of Technology, 21073, Hamburg, Germany
| | - H Atomi
- Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - B Averhoff
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - M Basen
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - A J M Driessen
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - M Jebbar
- Univ. Brest, CNRS, Ifremer, Laboratoire de Biologie Et d'Écologie Des Écosystèmes Marins Profonds (BEEP), IUEM, Rue Dumont d'Urville, 29280, Plouzané, France
| | - Z Kelman
- Institute for Bioscience and Biotechnology Research and the National Institute of Standards and Technology, Rockville, MD, USA
| | - M Kerou
- Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - J Littlechild
- Henry Wellcome Building for Biocatalysis, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - V Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt Am Main, Germany
| | - P Schönheit
- Institute of General Microbiology, Christian Albrechts University, Kiel, Germany
| | - B Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Environmental Microbiology and Biotechnology (EMB), Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, 45117, Essen, Germany
| | - K Vorgias
- Biology Department and RI-Bio3, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
32
|
Gao Y, Peng K, Bai D, Bai X, Bi Y, Chen A, Chen B, Chen F, Chen J, Chen L, Chen T, Chen W, Cheng X, Cheng Y, Cui J, Dai J, Dai J, Dai Z, Deng Y, Deng Y, Ding W, Fang Z, Fu W, Gao H, Gu S, Guo X, Guo X, Han D, He L, He Y, Hou H, Jia B, Jia G, Jiao S, Jin W, Ju F, Ju Z, Kong S, Lan C, Li B, Li D, Li D, Li J, Li M, Li Q, Li Q, Li W, Li X, Li X, Li Y, Li Y, Liang Z, Ling N, Liu F, Liu Q, Liu S, Lu H, Lu Q, Luo G, Luo H, Luo Y, Lyu H, Ma C, Ma L, Ma T, Ni J, Pang Z, Qiang X, Qin Y, Qu Q, Ran C, Ren S, Shang H, Song L, Sun L, Sun W, Tang L, Tian J, Wang K, Wang M, Wang M, Wang T, Wang X, Wang Y, Wang Y, Wang Y, Wei H, Wei H, Wei Z, Wen T, Wu J, Wu L, Wu L, Xi J, Xie B, Xu G, Xu J, Xu S, Xue Q, Yan L, et alGao Y, Peng K, Bai D, Bai X, Bi Y, Chen A, Chen B, Chen F, Chen J, Chen L, Chen T, Chen W, Cheng X, Cheng Y, Cui J, Dai J, Dai J, Dai Z, Deng Y, Deng Y, Ding W, Fang Z, Fu W, Gao H, Gu S, Guo X, Guo X, Han D, He L, He Y, Hou H, Jia B, Jia G, Jiao S, Jin W, Ju F, Ju Z, Kong S, Lan C, Li B, Li D, Li D, Li J, Li M, Li Q, Li Q, Li W, Li X, Li X, Li Y, Li Y, Liang Z, Ling N, Liu F, Liu Q, Liu S, Lu H, Lu Q, Luo G, Luo H, Luo Y, Lyu H, Ma C, Ma L, Ma T, Ni J, Pang Z, Qiang X, Qin Y, Qu Q, Ran C, Ren S, Shang H, Song L, Sun L, Sun W, Tang L, Tian J, Wang K, Wang M, Wang M, Wang T, Wang X, Wang Y, Wang Y, Wang Y, Wei H, Wei H, Wei Z, Wen T, Wu J, Wu L, Wu L, Xi J, Xie B, Xu G, Xu J, Xu S, Xue Q, Yan L, Yang H, Yang J, Yang J, Yang R, Yang Y, Yang Y, Yao X, Yao Y, Yousuf S, Yu K, Yuan Z, Yuan Z, Zhang D, Zhang T, Zhang W, Zhang Y, Zhang Z, Zhang Z, Zhang Z, Zhao S, Zhao W, Zheng M, Zheng Z, Zhou X, Zhou Y, Zhou Z, Zhu M, Zhu Y, Chu H, Bai Y, Liu Y. The Microbiome Protocols eBook initiative: Building a bridge to microbiome research. IMETA 2024; 3:e182. [PMID: 38882487 PMCID: PMC11170964 DOI: 10.1002/imt2.182] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 06/18/2024]
Abstract
The Microbiome Protocols eBook (MPB) serves as a crucial bridge, filling gaps in microbiome protocols for both wet experiments and data analysis. The first edition, launched in 2020, featured 152 meticulously curated protocols, garnering widespread acclaim. We now extend a sincere invitation to researchers to participate in the upcoming 2nd version of MPB, contributing their valuable protocols to advance microbiome research.
Collapse
Affiliation(s)
- Yunyun Gao
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Kai Peng
- Jiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Defeng Bai
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | | | - Yujing Bi
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Anqi Chen
- Bio‐Protocol Editorial Office ChinaBio‐Protocol JournalBeijingChina
| | - Baodong Chen
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Feng Chen
- School of StomatologyPeking UniversityBeijingChina
| | - Juan Chen
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical SciencesBeijingChina
| | - Lei Chen
- Department of Vascular Surgery, Fu Xing HospitalCapital Medical UniversityBeijingChina
| | - Tong Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Wei Chen
- Institute of HydroecologyMinistry of Water Resources & Chinese Academy of SciencesWuhanChina
| | - Xu Cheng
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | | | - Jie Cui
- The Institute of Infection and Health ResearchFudan UniversityShanghaiChina
| | - Jingjing Dai
- Department of Medical Laboratorythe Affiliated Huaian No.1 Hospital of Nanjing Medical UniversityHuaianChina
| | - Junbiao Dai
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | | | - Ye Deng
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Yi‐Zhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Wei Ding
- Ocean University of ChinaQingdaoChina
| | - Zhencheng Fang
- Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wei Fu
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | | | - Shaohua Gu
- Center for Quantitative Biology and Peking‐Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Xue Guo
- Research Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijingChina
| | - Xuguang Guo
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and GynecologyThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Dongfei Han
- School of Environmental Science and EngineeringSuzhou University of Science and TechnologySuzhouChina
| | - Lele He
- Hunan UniversityChangshaChina
| | - Yatao He
- School of Medicine, Model Animal Research Center (MARC)Nanjing UniversityNanjingChina
| | - Hui‐Yu Hou
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | | | - Gengjie Jia
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Shuo Jiao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Wei Jin
- Nanjing Agricultural UniversityNanjingChina
| | - Feng Ju
- Westlake UniversityHangzhouChina
| | - Zhicheng Ju
- Department of Ocean ScienceThe Hong Kong University of Science and TechnologyHong KongChina
| | - Siyuan Kong
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Canhui Lan
- School of Life Science and TechnologyWuhan Polytechnic UniversityWuhanChina
- R‐Institute Co. Ltd.BeijingChina
| | - Bing Li
- Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Da Li
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Diyan Li
- Antibiotics Research and Re‐Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of PharmacyChengdu UniversityChengduChina
| | | | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced StudyShenzhen UniversityShenzhenChina
| | - Qi Li
- Institute of Applied EcologyChinese Academy of SciencesShenyangChina
| | - Qiang Li
- School of Food and Biological EngineeringChengdu UniversityChengduChina
| | - Wen‐Jun Li
- School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaofang Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Xuemeng Li
- Guangdong Medical UniversityDongguanChina
| | - Yahui Li
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - You‐Gui Li
- Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Zhibin Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Ning Ling
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, Centre for Grassland Microbiome, College of Pastoral Agricultural Science and TechnologyLanzhou UniversityLanzhouChina
| | - Fufeng Liu
- College of BiotechnologyTianjin University of Science & TechnologyTianjinChina
| | - Qing Liu
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Shuang‐Jiang Liu
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | | | - Qi Lu
- Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Guangwen Luo
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Hao Luo
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yuheng Luo
- Animal Nutrition InstituteSichuan Agricultural UniversityChengduChina
| | | | - Chuang Ma
- Anhui Agricultural UniversityHefeiChina
| | - Liyuan Ma
- China University of GeosciencesWuhanChina
| | - Tengfei Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro‐ecosystems, Centre for Grassland Microbiome, College of Pastoral Agricultural Science and TechnologyLanzhou UniversityLanzhouChina
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Ziqin Pang
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaojing Qiang
- Institute of Grassland ResearchChinese Academy of Agricultural SciencesHohhotChina
| | - Yuan Qin
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Qingyue Qu
- Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Chao Ran
- Feed Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Shuqiang Ren
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Haitao Shang
- Shenzhen Medical Academy of Research and TranslationShenzhenChina
| | | | - Linyang Sun
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Weimin Sun
- Institute of Eco‐Environmental and Soil SciencesGuangdong Academy of SciencesGuangzhouChina
| | - Liping Tang
- Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Jian Tian
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Kai Wang
- School of Marine SciencesNingbo UniversityNingboChina
| | | | - Ming‐Ke Wang
- Naval Medical Center of PLANaval Medical UniversityShanghaiChina
| | - Tao Wang
- Antibiotics Research and Re‐Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of PharmacyChengdu UniversityChengduChina
| | - Xiao‐Yan Wang
- School of Life SciencesTaizhou UniversityTaizhouChina
| | - Yao Wang
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yiwen Wang
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Youshan Wang
- Institute of Plant Nutrition, Resources and EnvironmentBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Hailei Wei
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Hong Wei
- The First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Zhong Wei
- Nanjing Agricultural UniversityNanjingChina
| | - Tao Wen
- Nanjing Agricultural UniversityNanjingChina
| | - Jiqiu Wu
- Department of Genetics, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Linhuan Wu
- Microbial Resource and Big Data Center, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Linkun Wu
- College of JunCao Science and EcologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiao Xi
- College of Natural Resources and EnvironmentNorthwest A&F UniversityYanglingChina
| | - Bo Xie
- School of Life SciencesCentral China Normal UniversityWuhanChina
| | - Guofang Xu
- Department of Civil and Environmental EngineeringNational University of SingaporeSingaporeSingapore
| | - Jun Xu
- Department of Gastroenterology, Clinical Center of Immune‐Mediated Digestive DiseasesPeking University People's HospitalBeijingChina
| | | | - Qing Xue
- Nanjing Agricultural UniversityNanjingChina
| | | | | | - Jun Yang
- Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Junbo Yang
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Ruifu Yang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Yalin Yang
- Feed Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Ying‐Jie Yang
- Tobacco Research InstituteChinese Academy of Agricultural SciencesQingdaoChina
| | - Xiaofang Yao
- Key Laboratory of Agro‐Ecological Processes in Subtropical Region, Institute of Subtropical AgricultureChinese Academy of SciencesChangshaChina
| | - Yanpo Yao
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Salsabeel Yousuf
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Ke Yu
- School of Environment and EnergyPeking University Shenzhen Graduate SchoolShenzhenChina
| | | | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and BreedingChinese Academy of ForestryBeijingChina
| | | | - Tianyuan Zhang
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- Wuhan Benagen Technology Co., Ltd.WuhanChina
| | | | | | | | - Zhen Zhang
- Feed Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Zhi‐Feng Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijingChina
| | - Wei Zhao
- Tianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
| | - Maosheng Zheng
- College of Environmental Science and EngineeringNorth China Electric Power UniversityBeijingChina
| | - Ziqiang Zheng
- College of Life Science and TechnologyWuhan Polytechnic UniversityWuhanChina
| | - Xin Zhou
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | | | - Zhigang Zhou
- Feed Research InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Mo Zhu
- College of Life SciencesHenan Normal UniversityXinxiangChina
| | - Yong‐Guan Zhu
- Institute of Urban Environment Chinese Academy of SciencesXiamenChina
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
| | - Yang Bai
- Peking‐Tsinghua Center for Life Sciences, College of Life SciencesPeking UniversityBeijingChina
| | - Yong‐Xin Liu
- Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
33
|
Wen X, Chen M, Ma B, Xu J, Zhu T, Zou Y, Liao X, Wang Y, Worrich A, Wu Y. Removal of antibiotic resistance genes during swine manure composting is strongly impaired by high levels of doxycycline residues. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:76-85. [PMID: 38290350 DOI: 10.1016/j.wasman.2024.01.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Antibiotic resistance genes (ARGs) are emerging pollutants that enter the farm and surrounding environment via the manure of antibiotic-treated animals. Pretreatment of livestock manure by composting decreases ARGs abundance, but how antibiotic residues affect ARGs removal efficiency remains poorly understood. Here, we explored the fate of the resistome under different doxycycline residue levels during aerobic swine manure composting. Metagenomic sequencing showed that the presence of high levels of doxycycline generally had a higher abundance of tetracycline ARGs, and their dominant host bacteria of Firmicutes, especially Clostridium and Streptococcus, also had limited elimination in composting under high levels of doxycycline stress. Moreover, high levels of doxycycline impaired the removal of the total ARGs number in finished composts, with a removal rate of 51.74 % compared to 63.70 % and 71.52 % for the control and low-level doxycycline manure, respectively. Horizontal gene transfer and strengthened correlations among the bacterial community fostered ARGs preservation at high doxycycline levels during composting. In addition, ARGs carried by both plasmids and chromosomes, such as multidrug ARGs, showed wide host characteristics and rebound during compost maturation. Compared with chromosomes, a greater variety of ARGs on plasmids suggested that the majority of ARGs were characterized by horizontal mobility during composting, and the cross-host characteristics of ARGs during composting deserve further attention. This study provided deep insight into the fate of ARGs under residual antibiotic stress during manure composting and reminded the associated risk for environmental and public health.
Collapse
Affiliation(s)
- Xin Wen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Majian Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baohua Ma
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Jiaojiao Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ting Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongde Zou
- Foshan Customs Comprehensive Technology Center, Foshan 528200, China
| | - Xindi Liao
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China
| | - Anja Worrich
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig 04318, Germany
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong 525000, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
34
|
Asnicar F, Thomas AM, Passerini A, Waldron L, Segata N. Machine learning for microbiologists. Nat Rev Microbiol 2024; 22:191-205. [PMID: 37968359 PMCID: PMC11980903 DOI: 10.1038/s41579-023-00984-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities.
Collapse
Affiliation(s)
- Francesco Asnicar
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Andrew Maltez Thomas
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Andrea Passerini
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
| | - Levi Waldron
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- Department of Epidemiology and Biostatistics, City University of New York, New York, NY, USA.
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
35
|
Wang Y, Qu M, Bi Y, Liu WJ, Ma S, Wan B, Hu Y, Zhu B, Zhang G, Gao GF. The multi-kingdom microbiome catalog of the chicken gastrointestinal tract. BIOSAFETY AND HEALTH 2024; 6:101-115. [PMID: 40078943 PMCID: PMC11894977 DOI: 10.1016/j.bsheal.2024.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2025] Open
Abstract
Chicken is an important food animal worldwide and plays an important role in human life by providing meat and eggs. Despite recent significant advances in gut microbiome studies, a comprehensive study of chicken gut bacterial, archaeal, and viral genomes remains unavailable. In this study, we constructed a chicken multi-kingdom microbiome catalog (CMKMC), including 18,201 bacterial, 225 archaeal, and 33,411 viral genomes, and annotated over 6,076,006 protein-coding genes by integrating 135 chicken gut metagenomes and publicly available metagenome-assembled genomes (MAGs) from ten countries. We found that 812 and 240 MAGs in our dataset were putative novel species and genera, respectively, far beyond what was previously reported. The newly unclassified MAGs were predominant in Phyla Firmicutes_A (n = 263), followed by Firmicutes (n = 126), Bacteroidota (n = 121), and Proteobacteria (n = 87). Most of the classified species-level viral operational taxonomic units belong to Caudovirales. Approximately, 63.24 % of chicken gut viromes are predicted to infect two or more hosts, including complete circular viruses. Moreover, we found that diverse auxiliary metabolic genes and antibiotic resistance genes were carried by viruses. Together, our CMKMC provides the largest integrated MAGs and viral genomes from the chicken gut to date, functional insights into the chicken gastrointestinal tract microbiota, and paves the way for microbial interventions for better chicken health and productivity.
Collapse
Affiliation(s)
- Yanan Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- Longhu Laboratory, Zhengzhou 450046, China
| | - Mengqi Qu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - William J. Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Sufang Ma
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Bo Wan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Longhu Laboratory, Zhengzhou 450046, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Longhu Laboratory, Zhengzhou 450046, China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
36
|
Scicchitano D, Leuzzi D, Babbi G, Palladino G, Turroni S, Laczny CC, Wilmes P, Correa F, Leekitcharoenphon P, Savojardo C, Luise D, Martelli P, Trevisi P, Aarestrup FM, Candela M, Rampelli S. Dispersion of antimicrobial resistant bacteria in pig farms and in the surrounding environment. Anim Microbiome 2024; 6:17. [PMID: 38555432 PMCID: PMC10981832 DOI: 10.1186/s42523-024-00305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Antimicrobial resistance has been identified as a major threat to global health. The pig food chain is considered an important source of antimicrobial resistance genes (ARGs). However, there is still a lack of knowledge on the dispersion of ARGs in pig production system, including the external environment. RESULTS In the present study, we longitudinally followed one swine farm located in Italy from the weaning phase to the slaughterhouse to comprehensively assess the diversity of ARGs, their diffusion, and the bacteria associated with them. We obtained shotgun metagenomic sequences from 294 samples, including pig feces, farm environment, soil around the farm, wastewater, and slaughterhouse environment. We identified a total of 530 species-level genome bins (SGBs), which allowed us to assess the dispersion of microorganisms and their associated ARGs in the farm system. We identified 309 SGBs being shared between the animals gut microbiome, the internal and external farm environments. Specifically, these SGBs were characterized by a diverse and complex resistome, with ARGs active against 18 different classes of antibiotic compounds, well matching antibiotic use in the pig food chain in Europe. CONCLUSIONS Collectively, our results highlight the urgency to implement more effective countermeasures to limit the dispersion of ARGs in the pig food systems and the relevance of metagenomics-based approaches to monitor the spread of ARGs for the safety of the farm working environment and the surrounding ecosystems.
Collapse
Affiliation(s)
- Daniel Scicchitano
- Fano Marine Center, Fano, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Daniela Leuzzi
- Fano Marine Center, Fano, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giulia Babbi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Palladino
- Fano Marine Center, Fano, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Paul Wilmes
- University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Federico Correa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | | - Castrense Savojardo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Pierluigi Martelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | | - Marco Candela
- Fano Marine Center, Fano, Italy.
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Simone Rampelli
- Fano Marine Center, Fano, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
Fan MZ, Kim SW. Modulation of Porcine Gut Microbiota and Microbiome: Hologenomic, Dietary, and Endogenous Factors. Pathogens 2024; 13:225. [PMID: 38535568 PMCID: PMC10974161 DOI: 10.3390/pathogens13030225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 02/11/2025] Open
Abstract
Global pig production contributes to about 35% of the world's meat production and consumption [...].
Collapse
Affiliation(s)
- Ming Z. Fan
- Department of Animal Biosciences, One Health Institute, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sung Woo Kim
- Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA;
| |
Collapse
|
38
|
Abulfaraj AA, Shami AY, Alotaibi NM, Alomran MM, Aloufi AS, Al-Andal A, AlHamdan NR, Alshehrei FM, Sefrji FO, Alsaadi KH, Abuauf HW, Alshareef SA, Jalal RS. Exploration of genes encoding KEGG pathway enzymes in rhizospheric microbiome of the wild plant Abutilon fruticosum. AMB Express 2024; 14:27. [PMID: 38381255 PMCID: PMC10881953 DOI: 10.1186/s13568-024-01678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/28/2024] [Indexed: 02/22/2024] Open
Abstract
The operative mechanisms and advantageous synergies existing between the rhizobiome and the wild plant species Abutilon fruticosum were studied. Within the purview of this scientific study, the reservoir of genes in the rhizobiome, encoding the most highly enriched enzymes, was dominantly constituted by members of phylum Thaumarchaeota within the archaeal kingdom, phylum Proteobacteria within the bacterial kingdom, and the phylum Streptophyta within the eukaryotic kingdom. The ensemble of enzymes encoded through plant exudation exhibited affiliations with 15 crosstalking KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathways. The ultimate goal underlying root exudation, as surmised from the present investigation, was the biosynthesis of saccharides, amino acids, and nucleic acids, which are imperative for the sustenance, propagation, or reproduction of microbial consortia. The symbiotic companionship existing between the wild plant and its associated rhizobiome amplifies the resilience of the microbial community against adverse abiotic stresses, achieved through the orchestration of ABA (abscisic acid) signaling and its cascading downstream effects. Emergent from the process of exudation are pivotal bioactive compounds including ATP, D-ribose, pyruvate, glucose, glutamine, and thiamine diphosphate. In conclusion, we hypothesize that future efforts to enhance the growth and productivity of commercially important crop plants under both favorable and unfavorable environmental conditions may focus on manipulating plant rhizobiomes.
Collapse
Affiliation(s)
- Aala A Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia.
| | - Ashwag Y Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nahaa M Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Maryam M Alomran
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abeer Al-Andal
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Fatimah M Alshehrei
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O. Box 7388, Makkah 21955, Saudi Arabia
| | - Fatmah O Sefrji
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Khloud H Alsaadi
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Haneen W Abuauf
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Sahar A Alshareef
- Department of Biological Science, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia
| | - Rewaa S Jalal
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia.
| |
Collapse
|
39
|
Pan Z, Wang W, Chen J, Chen Z, Avellán-Llaguno RD, Xu W, Duan Y, Liu B, Huang Q. Temporal dynamics of microbial composition and antibiotic resistome in fermentation bed culture pig farms across various ages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168728. [PMID: 37992830 DOI: 10.1016/j.scitotenv.2023.168728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The discharge from pig farms presents significant challenges to the environment and human health, specifically regarding the dissemination of antimicrobial resistance (AMR). Fermentation bed culture has emerged as an increasingly popular and environmentally friendly pig farming model in China, as it minimizes the release of harmful substances into the environment. However, there remains a limited understanding of the occurrence and dynamics of microbiome and antibiotic resistome in fermentation bed culture. Herein, we collected fermentation bed materials (FBM) from four fermentation bed culture pig farms with varying service ages and investigated their bacterial communities, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), metal resistance genes (MRGs) and potential antibiotic-resistant bacterial hosts through metagenomics. Pseudomonadota, Actinomycetota, Bacteroidota and Bacillota were identified as the dominant phyla present in the FBM. In total, we detected 258 unique ARGs in the FBM samples, with 79 core ARGs shared by all FBM samples, accounting for 95 % of the total ARG abundance. Our results revealed significant variations in microbial communities and ARG profiles across varying service ages of FBM. Compared to long-term FBW, short-term FBM exhibited higher numbers and abundances of ARGs, MRGs and MGEs, along with higher levels of potential bacterial pathogens and high-risk ARGs. Further analysis of metagenome-assembled genome (MAG) indicated that the putative hosts of ARGs primarily belonged to Pseudomonadota, Actinomycetota and Bacillota. Alarmingly, among the 80 recovered ARG-carrying MAGs, 23 MAGs encoded multi-resistance, including clinically significant species that require urgent attention. Overall, this study provided valuable insights into the temporal patterns of antibiotic resistome and bacterial communities within FBM, enhancing our understanding of FBM in pig farming. The findings could potentially contribute to the development of effective strategies for evaluating and regulating fermentation bed culture practices in pig farming.
Collapse
Affiliation(s)
- Zhizhen Pan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Weiyi Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Institute of Life Sciences and Green Development, College of Life Sciences, Hebei University, Hebei 071002, China
| | - Jingyu Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zheng Chen
- Institue of Plant Protection, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| | - Ricardo David Avellán-Llaguno
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wenjuan Xu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yifang Duan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bo Liu
- Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| | - Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
40
|
Sun J, Xie F, Wang J, Luo J, Chen T, Jiang Q, Xi Q, Liu GE, Zhang Y. Integrated meta-omics reveals the regulatory landscape involved in lipid metabolism between pig breeds. MICROBIOME 2024; 12:33. [PMID: 38374121 PMCID: PMC10877772 DOI: 10.1186/s40168-023-01743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Domesticated pigs serve as an ideal animal model for biomedical research and also provide the majority of meat for human consumption in China. Porcine intramuscular fat content associates with human health and diseases and is essential in pork quality. The molecular mechanisms controlling lipid metabolism and intramuscular fat accretion across tissues in pigs, and how these changes in response to pig breeds, remain largely unknown. RESULTS We surveyed the tissue-resident cell types of the porcine jejunum, colon, liver, and longissimus dorsi muscle between Lantang and Landrace breeds by single-cell RNA sequencing. Combining lipidomics and metagenomics approaches, we also characterized gene signatures and determined key discriminating markers of lipid digestibility, absorption, conversion, and deposition across tissues in two pig breeds. In Landrace, lean-meat swine mainly exhibited breed-specific advantages in lipid absorption and oxidation for energy supply in small and large intestinal epitheliums, nascent high-density lipoprotein synthesis for reverse cholesterol transport in enterocytes and hepatocytes, bile acid formation, and secretion for fat emulsification in hepatocytes, as well as intestinal-microbiota gene expression involved in lipid accumulation product. In Lantang, obese-meat swine showed a higher synthesis capacity of chylomicrons responsible for high serum triacylglycerol levels in small intestinal epitheliums, the predominant characteristics of lipid absorption in muscle tissue, and greater intramuscular adipcytogenesis potentials from muscular fibro-adipogenic progenitor subpopulation. CONCLUSIONS The findings enhanced our understanding of the cellular biology of lipid metabolism and opened new avenues to improve animal production and human diseases. Video Abstract.
Collapse
Affiliation(s)
- Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - George E Liu
- Animal Genomics and Improvement Laboratory, USDA-ARS, BARC-East, Beltsville, MD, 20705, USA.
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
41
|
Carvalho FV, Landis HE, Getachew B, Silva VDA, Ribeiro PR, Aschner M, Tizabi Y. Iron toxicity, ferroptosis and microbiota in Parkinson's disease: Implications for novel targets. ADVANCES IN NEUROTOXICOLOGY 2024; 11:105-132. [PMID: 38770370 PMCID: PMC11105119 DOI: 10.1016/bs.ant.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disease characterized by loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). Iron (Fe)-dependent programmed cell death known as ferroptosis, plays a crucial role in the etiology and progression of PD. Since SNpc is particularly vulnerable to Fe toxicity, a central role for ferroptosis in the etiology and progression of PD is envisioned. Ferroptosis, characterized by reactive oxygen species (ROS)-dependent accumulation of lipid peroxides, is tightly regulated by a variety of intracellular metabolic processes. Moreover, the recently characterized bi-directional interactions between ferroptosis and the gut microbiota, not only provides another window into the mechanistic underpinnings of PD but could also suggest novel interventions in this devastating disease. Here, following a brief discussion of PD, we focus on how our expanding knowledge of Fe-induced ferroptosis and its interaction with the gut microbiota may contribute to the pathophysiology of PD and how this knowledge may be exploited to provide novel interventions in PD.
Collapse
Affiliation(s)
| | - Harold E. Landis
- Integrative Medicine Fellow, University of Arizona, Tucson, AZ, United States
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | | | - Paulo R. Ribeiro
- Metabolomics Research Group, Institute of Chemistry, Federal University of Bahia, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
42
|
Yang X, Zhou Y, Xia R, Liao J, Liu J, Yu P. Microplastics and chemical leachates from plastic pipes are associated with increased virulence and antimicrobial resistance potential of drinking water microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132900. [PMID: 37935064 DOI: 10.1016/j.jhazmat.2023.132900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/06/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
There is increasing recognition of the potential impacts of microplastics (MPs) on human health. As drinking water is the most direct route of human exposure to MPs, there is an urgent need to elucidate MPs source and fate in drinking water distribution system (DWDS). Here, we showed polypropylene random plastic pipes exposed to different water quality (chlorination and heating) and environmental (freeze-thaw) conditions accelerated MPs generation and chemical leaching. MPs showed various morphology and aggregation states, and chemical leaches exhibited distinct profiles due to different physicochemical treatments. Based on the physiological toxicity of leachates, oxidative stress level was negatively correlated with disinfection by-products in the leachates. Microbial network analysis demonstrated exposure to leachates (under three treatments) undermined microbial community stability and increased the relative abundance and dominance of pathogenic bacteria. Leachate physical and chemical properties (i.e., MPs abundance, hydrodynamic diameter, zeta potential, total organic carbon, dissolved ECs) exerted significant (p < 0.05) effects on the functional genes related to virulence, antibiotic resistance and metabolic pathways. Notably, chlorination significantly increased correlations among pathogenic bacteria, virulence genes, and antibiotic resistance genes. Overall, this study advances the understanding of direct and indirect risks of these MPs released from plastic pipes in the DWDS.
Collapse
Affiliation(s)
- Xinxin Yang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Yisu Zhou
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
| | - Rong Xia
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24060, United States
| | - Jingqing Liu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China.
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
43
|
Ma L, Tao S, Song T, Lyu W, Li Y, Wang W, Shen Q, Ni Y, Zhu J, Zhao J, Yang H, Xiao Y. Clostridium butyricum and carbohydrate active enzymes contribute to the reduced fat deposition in pigs. IMETA 2024; 3:e160. [PMID: 38868506 PMCID: PMC10989082 DOI: 10.1002/imt2.160] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 06/14/2024]
Abstract
Pig gastrointestinal tracts harbor a heterogeneous and dynamic ecosystem populated with trillions of microbes, enhancing the ability of the host to harvest energy from dietary carbohydrates and contributing to host adipogenesis and fatness. However, the microbial community structure and related mechanisms responsible for the differences between the fatty phenotypes and the lean phenotypes of the pigs remained to be comprehensively elucidated. Herein, we first found significant differences in microbial composition and potential functional capacity among different gut locations in Jinhua pigs with distinct fatness phenotypes. Second, we identified that Jinhua pigs with lower fatness exhibited higher levels of short-chain fatty acids in the colon, highlighting their enhanced carbohydrate fermentation capacity. Third, we explored the differences in expressed carbohydrate-active enzyme (CAZyme) in pigs, indicating their involvement in modulating fat storage. Notably, Clostridium butyricum might be a representative bacterial species from Jinhua pigs with lower fatness, and a significantly higher percentage of its genome was dedicated to CAZyme glycoside hydrolase family 13 (GH13). Finally, a subsequent mouse intervention study substantiated the beneficial effects of C. butyricum isolated from experimental pigs, suggesting that it may possess characteristics that promote the utilization of carbohydrates and hinder fat accumulation. Remarkably, when Jinhua pigs were administered C. butyricum, similar alterations in the gut microbiome and host fatness traits were observed, further supporting the potential role of C. butyricum in modulating fatness. Taken together, our findings reveal previously overlooked links between C. butyricum and CAZyme function, providing insight into the basic mechanisms that connect gut microbiome functions to host fatness.
Collapse
Affiliation(s)
- Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Shiyu Tao
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Sciences and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and EngineeringFoshan UniversityFoshanChina
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Qicheng Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yan Ni
- The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouChina
| | - Jiang Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jiangchao Zhao
- Department of Animal Science, Division of AgricultureUniversity of ArkansasFayettevilleArkansasUSA
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
44
|
Deng F, Han Y, Huang Y, Li D, Chai J, Deng L, Wei M, Wu K, Zhao H, Yang G, Zhao J, Li Y, Wang C. A comprehensive analysis of antibiotic resistance genes in the giant panda gut. IMETA 2024; 3:e171. [PMID: 38868505 PMCID: PMC10989137 DOI: 10.1002/imt2.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 06/14/2024]
Abstract
In this study, we have successfully constructed a comprehensive database of metagenome-assembled genomes (MAGs) pertaining to the gut microbiota of the giant panda. Through our analysis, we have identified significant reservoirs of antibiotic resistance genes (ARGs), namely Escherichia coli, Citrobacter portucalensis, and Klebsiella pneumoniae. Furthermore, we have elucidated the primary contributors to ARGs, including Streptococcus alactolyticus and Clostridium SGBP116, in both captive and wild pandas. Additionally, our findings have demonstrated a higher prevalence of ARGs in the metagenome, with notable expression of the RPOB2 gene in S. alactolyticus. Crucially, 1217 ARGs shared homology with human gut ARGs, underscoring the interaction relationship between pandas and human microbiomes. These findings are instrumental in understanding the antibiotic resistance landscape in the giant panda's gut, providing a framework for developing strategies to combat antibiotic resistance and safeguard the health of this endangered species.
Collapse
Affiliation(s)
- Feilong Deng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and EngineeringFoshan UniversityFoshanChina
- Department of Animal Science, College of Life Science and EngineeringFoshan UniversityFoshanChina
| | - Yanhua Han
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and EngineeringFoshan UniversityFoshanChina
- Department of Animal Science, College of Life Science and EngineeringFoshan UniversityFoshanChina
| | - Yushan Huang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and EngineeringFoshan UniversityFoshanChina
- Department of Animal Science, College of Life Science and EngineeringFoshan UniversityFoshanChina
| | - Desheng Li
- National Conservation and Research Centre for Giant Pandas/China Conservation and Research Centre for the Giant PandaChengduChina
| | - Jianmin Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and EngineeringFoshan UniversityFoshanChina
- Department of Animal Science, College of Life Science and EngineeringFoshan UniversityFoshanChina
| | - Linhua Deng
- National Conservation and Research Centre for Giant Pandas/China Conservation and Research Centre for the Giant PandaChengduChina
| | - Ming Wei
- National Conservation and Research Centre for Giant Pandas/China Conservation and Research Centre for the Giant PandaChengduChina
| | - Kai Wu
- National Conservation and Research Centre for Giant Pandas/China Conservation and Research Centre for the Giant PandaChengduChina
| | - HuaBin Zhao
- Department of Ecology, College of Life SciencesWuhan UniversityWuhanChina
| | - Guan Yang
- Department of Infectious Diseases and Public HealthCity University of Hong KongKowloon, Hong Kong, SARChina
| | - Jiangchao Zhao
- Department of Animal Science, Division of AgricultureUniversity of ArkansasFayettevilleArkansasUSA
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and EngineeringFoshan UniversityFoshanChina
- Department of Animal Science, College of Life Science and EngineeringFoshan UniversityFoshanChina
| | - Chengdong Wang
- National Conservation and Research Centre for Giant Pandas/China Conservation and Research Centre for the Giant PandaChengduChina
| |
Collapse
|
45
|
Xie F, Zhao S, Zhan X, Zhou Y, Li Y, Zhu W, Pope PB, Attwood GT, Jin W, Mao S. Unraveling the phylogenomic diversity of Methanomassiliicoccales and implications for mitigating ruminant methane emissions. Genome Biol 2024; 25:32. [PMID: 38263062 PMCID: PMC10804542 DOI: 10.1186/s13059-024-03167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/07/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Methanomassiliicoccales are a recently identified order of methanogens that are diverse across global environments particularly the gastrointestinal tracts of animals; however, their metabolic capacities are defined via a limited number of cultured strains. RESULTS Here, we profile and analyze 243 Methanomassiliicoccales genomes assembled from cultured representatives and uncultured metagenomes recovered from various biomes, including the gastrointestinal tracts of different animal species. Our analyses reveal the presence of numerous undefined genera and genetic variability in metabolic capabilities within Methanomassiliicoccales lineages, which is essential for adaptation to their ecological niches. In particular, gastrointestinal tract Methanomassiliicoccales demonstrate the presence of co-diversified members with their hosts over evolutionary timescales and likely originated in the natural environment. We highlight the presence of diverse clades of vitamin transporter BtuC proteins that distinguish Methanomassiliicoccales from other archaeal orders and likely provide a competitive advantage in efficiently handling B12. Furthermore, genome-centric metatranscriptomic analysis of ruminants with varying methane yields reveal elevated expression of select Methanomassiliicoccales genera in low methane animals and suggest that B12 exchanges could enable them to occupy ecological niches that possibly alter the direction of H2 utilization. CONCLUSIONS We provide a comprehensive and updated account of divergent Methanomassiliicoccales lineages, drawing from numerous uncultured genomes obtained from various habitats. We also highlight their unique metabolic capabilities involving B12, which could serve as promising targets for mitigating ruminant methane emissions by altering H2 flow.
Collapse
Affiliation(s)
- Fei Xie
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shengwei Zhao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoxiu Zhan
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yang Zhou
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yin Li
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Phillip B Pope
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Graeme T Attwood
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Wei Jin
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
46
|
Tong CH, Huo ZP, Diao L, Xiao DY, Zhao RN, Zeng ZL, Xiong WG. Core and variable antimicrobial resistance genes in the gut microbiomes of Chinese and European pigs. Zool Res 2024; 45:189-200. [PMID: 38199973 PMCID: PMC10839664 DOI: 10.24272/j.issn.2095-8137.2023.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/08/2023] [Indexed: 01/12/2024] Open
Abstract
Monitoring the prevalence of antimicrobial resistance genes (ARGs) is vital for addressing the global crisis of antibiotic-resistant bacterial infections. Despite its importance, the characterization of ARGs and microbiome structures, as well as the identification of indicators for routine ARG monitoring in pig farms, are still lacking, particularly concerning variations in antimicrobial exposure in different countries or regions. Here, metagenomics and random forest machine learning were used to elucidate the ARG profiles, microbiome structures, and ARG contamination indicators in pig manure under different antimicrobial pressures between China and Europe. Results showed that Chinese pigs exposed to high-level antimicrobials exhibited higher total and plasmid-mediated ARG abundances compared to those in European pigs ( P<0.05). ANT(6)-Ib, APH(3')-IIIa, and tet(40) were identified as shared core ARGs between the two pig populations. Furthermore, the core ARGs identified in pig populations were correlated with those found in human populations within the same geographical regions. Lactobacillus and Prevotella were identified as the dominant genera in the core microbiomes of Chinese and European pigs, respectively. Forty ARG markers and 43 biomarkers were able to differentiate between the Chinese and European pig manure samples with accuracies of 100% and 98.7%, respectively. Indicators for assessing ARG contamination in Chinese and European pigs also achieved high accuracy ( r=0.72-0.88). Escherichia flexneri in both Chinese and European pig populations carried between 21 and 37 ARGs. The results of this study emphasize the importance of global collaboration in reducing antimicrobial resistance risk and provide validated indicators for evaluating the risk of ARG contamination in pig farms.
Collapse
Affiliation(s)
- Cui-Hong Tong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhi-Peng Huo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lu Diao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Dan-Yu Xiao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ruo-Nan Zhao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhen-Ling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, Guangdong 510642, China. E-mail:
| | - Wen-Guang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, Guangdong 510642, China. E-mail:
| |
Collapse
|
47
|
Wang HT, Gan QY, Li G, Zhu D. Effects of Zinc Thiazole and Oxytetracycline on the Microbial Metabolism, Antibiotic Resistance, and Virulence Factor Genes of Soil, Earthworm Gut, and Phyllosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:160-170. [PMID: 38148496 DOI: 10.1021/acs.est.3c06513] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Pesticides and antibiotics are believed to increase the incidence of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs), constituting a serious threat to global health. However, the impact of this combined pollution on the microbiome and that of the related ARGs and VFGs on soil-plant-animal systems remain unknown. In this study, a 60-day microcosm experiment was conducted to reveal the effects of zinc thiazole (ZT) and oxytetracycline (OTC) on microbial communities, antibiotic resistomes, and virulence factors in soil, earthworm gut, and phyllosphere samples using metagenomics. ZT exposure perturbed microbial communities and nutrient metabolism and increased the abundance of ARGs and VFGs in the gut. Combined exposure changed the profiles of ARGs and VFGs by decreasing microbial diversity in the phyllosphere. Host-tracking analysis identified some genera, such as Citrobacter and Aeromonas, as frequent hosts of ARGs and VFGs in the gut. Notably, some co-occurrence patterns of ARGs and MGEs were observed on the metagenome-assembled contigs. More importantly, ZT markedly increased the abundance of potentially drug-resistant pathogens Acinetobacter soli and Acinetobacter junii in the phyllosphere. Overall, this study expands our current understanding of the spread of ARGs and VFGs in soil-plant-animal systems under pollutant-induced stress and the associated health risks.
Collapse
Affiliation(s)
- Hong-Tao Wang
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China
| | - Qiu-Yu Gan
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
48
|
Jiao J, Wu J, Zhou C, He Z, Tan Z, Wang M. Ecological niches and assembly dynamics of diverse microbial consortia in the gastrointestine of goat kids. THE ISME JOURNAL 2024; 18:wrae002. [PMID: 38365259 PMCID: PMC10872696 DOI: 10.1093/ismejo/wrae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 02/18/2024]
Abstract
Goats are globally invaluable ruminants that balance food security and environmental impacts, and their commensal microbiome residing in the gastrointestinal tract (GIT) is associated with animal health and productivity. However, the reference genomes and functional repertoires of GIT microbes in goat kids have not been fully elucidated. Herein, we performed a comprehensive landscape survey of the GIT microbiome of goat kids using metagenomic sequencing and binning, spanning a dense sampling regime covering three gastrointestinal compartments spatially and five developmental ages temporally. We recovered 1002 high-quality metagenome-assembled genomes (termed the goat kid GIT microbial catalog [GKGMC]), 618 of which were novel. They encode more than 2.3 million nonredundant proteins, and represent a variety of carbohydrate-degrading enzymes and metabolic gene clusters. The GKGMC-enriched microbial taxa, particularly Sodaliphilus, expanded the microbial tree of life in goat kids. Using this GKGMC, we first deciphered the prevalence of fiber-degrading bacteria for carbohydrate decomposition in the rumen and colon, while the ileal microbiota specialized in the uptake and conversion of simple sugars. Moreover, GIT microorganisms were rapidly assembled after birth, and their carbohydrate metabolic adaptation occurred in three phases of progression. Finally, phytobiotics modified the metabolic cascades of the ileal microbiome, underpinned by the enrichment of Sharpea azabuensis and Olsenella spp. implicated in lactate formation and utilization. This GKGMC reference provides novel insights into the early-life microbial developmental dynamics in distinct compartments, and offers expanded resources for GIT microbiota-related research in goat kids.
Collapse
Affiliation(s)
- Jinzhen Jiao
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, P. R. China
| | - Jian Wu
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, P. R. China
| | - Chuanshe Zhou
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhixiong He
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhiliang Tan
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Min Wang
- CAS Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
49
|
Hu J, Chen J, Ma L, Hou Q, Zhang Y, Kong X, Huang X, Tang Z, Wei H, Wang X, Yan X. Characterizing core microbiota and regulatory functions of the pig gut microbiome. THE ISME JOURNAL 2024; 18:wrad037. [PMID: 38366194 PMCID: PMC10873858 DOI: 10.1093/ismejo/wrad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 02/18/2024]
Abstract
Domestic pigs (Sus scrofa) are the leading terrestrial animals used for meat production. The gut microbiota significantly affect host nutrition, metabolism, and immunity. Hence, characterization of the gut microbial structure and function will improve our understanding of gut microbial resources and the mechanisms underlying host-microbe interactions. Here, we investigated the gut microbiomes of seven pig breeds using metagenomics and 16S rRNA gene amplicon sequencing. We established an expanded gut microbial reference catalog comprising 17 020 160 genes and identified 4910 metagenome-assembled genomes. We also analyzed the gut resistome to provide an overview of the profiles of the antimicrobial resistance genes in pigs. By analyzing the relative abundances of microbes, we identified three core-predominant gut microbes (Phascolarctobacterium succinatutens, Prevotella copri, and Oscillibacter valericigenes) in pigs used in this study. Oral administration of the three core-predominant gut microbes significantly increased the organ indexes (including the heart, spleen, and thymus), but decreased the gastrointestinal lengths in germ-free mice. The three core microbes significantly enhanced intestinal epithelial barrier function and altered the intestinal mucosal morphology, as was evident from the increase in crypt depths in the duodenum and ileum. Furthermore, the three core microbes significantly affected several metabolic pathways (such as "steroid hormone biosynthesis," "primary bile acid biosynthesis," "phenylalanine, tyrosine and tryptophan biosynthesis," and "phenylalanine metabolism") in germ-free mice. These findings provide a panoramic view of the pig gut microbiome and insights into the functional contributions of the core-predominant gut microbes to the host.
Collapse
Affiliation(s)
- Jun Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Jianwei Chen
- BGI Research, Qingdao, Shandong 266555, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Libao Ma
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Qiliang Hou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| | - Yong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Zhonglin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Hong Wei
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070, China
- Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070, China
| |
Collapse
|
50
|
Hu R, Li F, Chen Y, Liu C, Li J, Ma Z, Wang Y, Cui C, Luo C, Zhou P, Ni W, Yang QY, Hu S. AnimalMetaOmics: a multi-omics data resources for exploring animal microbial genomes and microbiomes. Nucleic Acids Res 2024; 52:D690-D700. [PMID: 37897361 PMCID: PMC10768125 DOI: 10.1093/nar/gkad931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/19/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
The Animal Meta-omics landscape database (AnimalMetaOmics, https://yanglab.hzau.edu.cn/animalmetaomics#/) is a comprehensive and freely available resource that includes metagenomic, metatranscriptomic, and metaproteomic data from various non-human animal species and provides abundant information on animal microbiomes, including cluster analysis of microbial cognate genes, functional gene annotations, active microbiota composition, gene expression abundance, and microbial protein identification. In this work, 55 898 microbial genomes were annotated from 581 animal species, including 42 924 bacterial genomes, 12 336 virus genomes, 496 archaea genomes and 142 fungi genomes. Moreover, 321 metatranscriptomic datasets were analyzed from 31 animal species and 326 metaproteomic datasets from four animal species, as well as the pan-genomic dynamics and compositional characteristics of 679 bacterial species and 13 archaea species from animal hosts. Researchers can efficiently access and acquire the information of cross-host microbiota through a user-friendly interface, such as species, genomes, activity levels, expressed protein sequences and functions, and pan-genome composition. These valuable resources provide an important reference for better exploring the classification, functional diversity, biological process diversity and functional genes of animal microbiota.
Collapse
Affiliation(s)
- Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Fulin Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yifan Chen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuyang Liu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jiawei Li
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongchen Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yue Wang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Chaowen Cui
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Chengfang Luo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Qing-Yong Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Xinjiang 832003, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|