1
|
Lenders M, Menke ER, Brand E. Progress and Challenges in the Treatment of Fabry Disease. BioDrugs 2025:10.1007/s40259-025-00723-3. [PMID: 40310476 DOI: 10.1007/s40259-025-00723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 05/02/2025]
Abstract
Fabry disease is a rare but life-threatening, X-linked, inherited lysosomal storage disorder in which globotriaosylceramide is insufficiently metabolized because of reduced α-galactosidase A activity. Cellular globotriaosylceramide accumulation causes a multisystemic disease, which, if left untreated, reduces life expectancy in female and male individuals by around 10 and 20 years, respectively, leading to progressive renal failure, hypertrophic cardiomyopathy, cardiac arrhythmia, and premature cerebral infarction. The method of choice for confirming the diagnosis is the determination of reduced α-galactosidase A activity in leukocytes in male individuals and the molecular genetic detection of a disease-causing mutation in female individuals. Current approved treatment includes enzyme replacement therapy (agalsidase alfa [0.2 mg/kg body weight], agalsidase beta or pegunigalsidase alfa [both 1.0 mg/kg body weight]) every other week intravenously or, if a responding ('amenable') α-galactosidase A mutation is present, oral pharmacological chaperone therapy (migalastat 123 mg, every other day). Future therapeutic options may include substrate reduction therapy, gene therapy, messenger RNA therapy, and/or vesicle-packaged enzyme replacement therapy. This review presents current and future treatment options with advantages and disadvantages of the different treatment options.
Collapse
Affiliation(s)
- Malte Lenders
- Internal Medicine D (Nephrology, Hypertension and Rheumatology), and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Elise Raphaela Menke
- Internal Medicine D (Nephrology, Hypertension and Rheumatology), and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany
| | - Eva Brand
- Internal Medicine D (Nephrology, Hypertension and Rheumatology), and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149, Muenster, Germany.
| |
Collapse
|
2
|
Hergenrother S, Husein M, Thompson C, Kalina E, Raina R. Updated Gene Therapy for Renal Inborn Errors of Metabolism. Genes (Basel) 2025; 16:516. [PMID: 40428338 PMCID: PMC12111683 DOI: 10.3390/genes16050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Inborn errors of metabolism (IEMs) are a group of disorders resulting from defects in enzymes in metabolic pathways. These disorders impact the processing of metabolites, leading to a wide array of effects on each organ system. Advances in genetic screening have allowed for the early identification and intervention of IEMs, traditionally in the form of enzyme replacement or vitamin supplementation. However, many IEMs disrupt essential metabolic pathways where simple supplementation proves ineffective, resulting in substantial disease burden. In the case of renal IEMs, metabolic pathway disruption leads to the onset of chronic kidney disease (CKD). For these diseases, genetic therapy provides hope. Over the past few decades, the technology for genetic therapy has emerged as a promising solution to these disorders. These therapies aim to correct the source of the defect in the genetic code so that patients may live full, unencumbered lives. In this review, we searched a large database to identify IEMs that affect the kidney and investigated the current landscape and progression of gene therapy technology. Multiple promising genetic therapies were identified for IEMs affecting the kidney, including primary hyperoxaluria, argininemia, glycogen storage diseases Ia and Ib, and Fabry disease. Emerging gene therapy approaches using adeno-associated virus (AAV) vectors, lentiviral vectors, and CRISPR/Cas9 techniques hold promising potential to provide curative treatments for additional single-mutation disorders.
Collapse
Affiliation(s)
- Sean Hergenrother
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.H.); (M.H.); (C.T.); (E.K.)
| | - Mustafa Husein
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.H.); (M.H.); (C.T.); (E.K.)
| | - Cole Thompson
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.H.); (M.H.); (C.T.); (E.K.)
| | - Ethan Kalina
- Department of Medicine, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (S.H.); (M.H.); (C.T.); (E.K.)
| | - Rupesh Raina
- Akron Nephrology Associates, Cleveland Clinic Akron General Medical Center, Akron, OH 44307, USA
- Department of Nephrology, Akron Children’s Hospital, Akron, OH 44308, USA
| |
Collapse
|
3
|
Ramaswami U, West ML, Tylee K, Castillon G, Braun A, Ren M, Doobaree IU, Howitt H, Nowak A. The use and performance of lyso-Gb3 for the diagnosis and monitoring of Fabry disease: A systematic literature review. Mol Genet Metab 2025; 145:109110. [PMID: 40328031 DOI: 10.1016/j.ymgme.2025.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Fabry disease (FD) is a rare, X-linked lysosomal storage disorder in which a lack of alpha-galactosidase (α-Gal A) enzyme activity leads to intracellular accumulation of deacylated globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3), and their analogs. Lyso-Gb3, present in the blood and urine of affected patients, has been extensively investigated as a biomarker for FD. This systematic literature review (SLR) aimed to comprehensively assess the use of lyso-Gb3 as a biomarker for screening, monitoring, and diagnosis of FD in both real-world and clinical trial settings. METHODS An SLR was performed to identify the following outcomes in adult and pediatric patients with FD: lyso-Gb3 testing patterns, lyso-Gb3 levels in subpopulations, performance and accuracy of lyso-Gb3 testing for diagnosis, and lyso-Gb3 testing for monitoring of disease progression or treatment efficacy/effectiveness. Interventional and non-interventional studies published between 1 January 2017 and 3 November 2022 were included. Searches were primarily conducted in MEDLINE and Embase; pragmatic or hand searches were also performed. The methodological quality of included full-text studies was assessed using validated appraisal tools. Extracted data were synthesized qualitatively. RESULTS The SLR included 83 eligible publications, comprising 71 observational studies and 12 clinical trials. Differences in lyso-Gb3 levels were identified across subpopulations, with several studies reporting higher levels in males versus females. Lyso-Gb3 demonstrated good diagnostic performance in newborns and high-risk patients when used in combination with other markers (α-Gal A activity or GLA variants) but failed to diagnose females with late-onset FD. Reliability and stability across different methods used to measure lyso-Gb3 was high, with a coefficient of variation <10 % for inter- and intra-assay measurements. Several studies identified moderate to strong correlation between plasma lyso-Gb3 levels and cardiac measures, but association with renal measures needs further investigation. CONCLUSIONS Lyso-Gb3 testing demonstrated accuracy in screening, diagnosis, and monitoring of FD in certain subpopulations, particularly males, but considering its lower sensitivity in late-onset female patients, it should be used in conjunction with other tools. Given the reliability of the test, it can be considered a feasible method for monitoring disease progression in FD in individual patients. Several gaps in the literature were identified, warranting further investigation. REGISTRATION PROSPERO (CRD42022375141).
Collapse
Affiliation(s)
- Uma Ramaswami
- Lysosomal Storage Disorders Unit, Royal Free Hospital NHS Foundation Trust, London, UK; University College London, London, UK.
| | - Michael L West
- Division of Nephrology, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Karen Tylee
- Willink Biochemical Genetics Unit, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Andreas Braun
- Takeda Pharmaceuticals International AG, Zurich, Switzerland
| | | | | | | | - Albina Nowak
- Department of Endocrinology and Clinical Nutrition, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Division of Internal Medicine, Psychiatric University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Li J, Xu W, Luo S, Zhang H, Qiu X, Zhang H, Liu Z, Pang Q. Improving the production of BaEV lentivirus by comprehensive optimization. J Virol Methods 2025; 333:115106. [PMID: 39736416 DOI: 10.1016/j.jviromet.2024.115106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
With the rapid development of the cell and gene therapy industry, there is an increasing demand for lentiviral vectors that can efficiently infect cells of different purposes. BaEV lentiviruses have been shown to efficiently infect hematopoietic stem cells, primary B cells, and NK cells, which traditional VSV-G lentiviruses cannot infect. However, there is a problem of low virus yield in the production of BaEV lentivirus. The formation of syncytium and apoptosis occur after plasmid transfection, and resulting in a reduction in virus production. In this study, the issue of low production of BaEV lentivirus was comprehensively improved. By increasing the cell density of inoculation, reducing the amount of BaEV plasmid, and adjusting the harvest time, the maximum titer of BaEV lentivirus reached 4.43E+ 06 IU/ml, representing an increase of 369 times compared to the unoptimized condition. Further, the purification method of lentivirus solution was optimized, and the infection titer of lentivirus reached 1.00E+ 08 IU/ml, which is 10300 times higher than pre-optimization levels.
Collapse
Affiliation(s)
- Jinxue Li
- Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, PR China.
| | - Wenqiang Xu
- Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, PR China.
| | - Shengtao Luo
- Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, PR China.
| | - Hairong Zhang
- Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, PR China.
| | - Xueliang Qiu
- Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, PR China.
| | - Hao Zhang
- Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, PR China.
| | - Zhichao Liu
- Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, PR China.
| | - Qingxiao Pang
- Shandong Lishan Biotechnology Co., Ltd, Jinan 250013, PR China.
| |
Collapse
|
5
|
Thomas H, Carlisle RC. Progress in Gene Therapy for Hereditary Tyrosinemia Type 1. Pharmaceutics 2025; 17:387. [PMID: 40143050 PMCID: PMC11945121 DOI: 10.3390/pharmaceutics17030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Hereditary Tyrosinemia Type-1 (HT1), an inherited error of metabolism caused by a mutation in the fumarylacetoacetate hydrolase gene, is associated with liver disease, severe morbidity, and early mortality. The use of NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione) has almost eradicated the acute HT1 symptoms and childhood mortality. However, patient outcomes remain unsatisfactory due to the neurocognitive effects of NTBC and the requirement for a strict low-protein diet. Gene therapy (GT) offers a potential single-dose cure for HT1, and there is now abundant preclinical data showing how a range of vector-nucleotide payload combinations could be used with curative intent, rather than continued reliance on amelioration. Unfortunately, there have been no HT1-directed clinical trials reported, and so it is unclear which promising pre-clinical approach has the greatest chance of successful translation. Here, to fill this knowledge gap, available HT1 preclinical data and available clinical trial data pertaining to liver-directed GT for other diseases are reviewed. The aim is to establish which vector-payload combination has the most potential as a one-dose HT1 cure. Analysis provides a strong case for progressing lentiviral-based approaches into clinical trials. However, other vector-payload combinations may be more scientifically and commercially viable, but these options require additional investigation.
Collapse
Affiliation(s)
- Helen Thomas
- Department for Continuing Education, University of Oxford, Headington, Oxford OX1 3PJ, UK;
| | - Robert C. Carlisle
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Headington, Oxford OX3 7DL, UK
| |
Collapse
|
6
|
Chu W, Chen M, Lv X, Lu S, Wang C, Yin L, Qian L, Shi J. Status and frontiers of Fabre disease. Orphanet J Rare Dis 2025; 20:123. [PMID: 40075521 PMCID: PMC11905648 DOI: 10.1186/s13023-025-03646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
Fabry disease is characterized by an X sex chromosome gene mutation caused by α-galactosidase A deficiency, resulting in the accumulation of globotriaosylceramide and globotriaosylsphingosine in various organs, which induces end-organ lesions. In Fabry disease, enzymes with lost or decreased activity in the body are replaced by exogenous supplementation of normal-function α-galactosidase A. Currently, agalsidase α and agalsidase β are widely used for ERT therapy. However, this therapy has limitations such as high cost, short half-life, and production of neutralizing drug antibodies. The use of Migalastat as chaperone therapy has been approved in many countries, and it plays a therapeutic role by enhancing enzyme activity. However, companion therapy drugs are only suitable for patients with decreased enzyme activity, so the scope of their application is limited. In addition, there are several therapeutic drugs in development, including a new generation of ERT therapies, drugs resistant to neutralizing anti-drug antibody drugs, and substrate reduction therapy drugs. Due to the limitations of existing therapeutic drugs, researchers have begun to explore new therapeutic drugs for Fabry disease, so new pathogenic mechanisms and adjuvant therapeutic drugs have been continuously discovered, and the development of related drugs will contribute to disease control and treatment. This article summarizes the existing and potential drugs for treating Fabry disease to facilitate the selection of suitable and effective drugs for treatment.
Collapse
Affiliation(s)
- Wei Chu
- Department of Pharmacy, The First People's Hospital of Huzhou, The Directly Affiliated Hospital of Huzhou Teachers College, Huzhou, China
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Min Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Pharmacy, The First People's Hospital of Aksu District, Aksu, China
| | - Xiaoqin Lv
- Department of Drug Monitoring and Evaluation, Zhejiang Center for Drug and Cosmetic Evaluation, Hangzhou, China
| | - Sheng Lu
- Department of Pharmacy, The First People's Hospital of Huzhou, The Directly Affiliated Hospital of Huzhou Teachers College, Huzhou, China
| | - Changyan Wang
- Department of Clinical Laboratory, Huzhou Aishan Hospital of Integrated Chinese and Western Medicine, Huzhou, China
| | - Limin Yin
- Department of Pharmacy, First People's Hospital of Wenling, Wenling, China
| | - Linyan Qian
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
- Heart Center, Department of Cardiovascular Medicine, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China.
| | - Jiana Shi
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
| |
Collapse
|
7
|
Thompson SE, Roy A, Geberhiwot T, Gehmlich K, Steeds RP. Fabry Disease: Insights into Pathophysiology and Novel Therapeutic Strategies. Biomedicines 2025; 13:624. [PMID: 40149601 PMCID: PMC11940501 DOI: 10.3390/biomedicines13030624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/23/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Fabry disease (FD) is an X-linked lysosomal storage disorder characterized by deficiency of α-galactosidase A (α-GalA), leading to the accumulation of glycosphingolipids and multi-organ dysfunction, particularly affecting the cardiovascular and renal systems. Disease-modifying treatments such as enzyme replacement therapy (ERT) and oral chaperone therapy (OCT) have limited efficacy, particularly in advanced disease, prompting a need for innovative therapeutic approaches targeting underlying molecular mechanisms beyond glycosphingolipid storage alone. Recent insights into the pathophysiology of FD highlights chronic inflammation and mitochondrial, lysosomal, and endothelial dysfunction as key mediators of disease progression. Adjunctive therapies such as sodium-glucose cotransporter-2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) agonists, and mineralocorticoid receptor antagonists (MRAs) demonstrate significant cardiovascular and renal benefits in conditions including heart failure and chronic kidney disease. These drugs also modulate pathways involved in the pathophysiology of FD, such as autophagy, oxidative stress, and pro-inflammatory cytokine signaling. While theoretical foundations support their utility, dedicated trials are necessary to confirm efficacy in the FD-specific population. This narrative review highlights the importance of expanding therapeutic strategies in FD, advocating for a multi-faceted approach involving evidence-based adjunctive treatments to improve outcomes. Tailored research focusing on diverse FD phenotypes, including females and non-classical variants of disease, will be critical to advancing care and improving outcomes in this complex disorder.
Collapse
Affiliation(s)
- Sophie Elizabeth Thompson
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Department of Cardiology, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Ashwin Roy
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Department of Cardiology, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Tarekegn Geberhiwot
- Department of Diabetes, Endocrinology and Metabolism, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
- Institute of Metabolism and System Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Katja Gehmlich
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX1 2JD, UK
| | - Richard Paul Steeds
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- Department of Cardiology, Queen Elizabeth Hospital, University Hospital Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| |
Collapse
|
8
|
Elçin-Guinot S, Lagies S, Avi-Guy Y, Neugebauer D, Huber TB, Schell C, Kammerer B, Römer W. Lectin-Based Substrate Detection in Fabry Disease Using the Gb3-Binding Lectins StxB and LecA. Int J Mol Sci 2025; 26:2272. [PMID: 40076891 PMCID: PMC11900420 DOI: 10.3390/ijms26052272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Fabry disease, the second most common lysosomal storage disorder, is caused by a deficiency of α-galactosidase A (α-Gal A), which leads to an accumulation of glycosphingolipids (GSL), mainly globotriaosylceramide (also known as Gb3). This aberrant GSL metabolism subsequently causes cellular dysfunction; however, the underlying cellular and molecular mechanisms are still unknown. There is growing evidence that damage to organelles, including lysosomes, mitochondria, and plasma membranes, is associated with substrate accumulation. Current methods for the detection of Gb3 are based on anti-Gb3 antibodies, the specificity and sensitivity of which are problematic for glycan detection. This study presents a robust method using lectins, specifically the B-subunit of Shiga toxin (StxB) from Shigella dysenteriae and LecA from Pseudomonas aeruginosa, as alternatives for Gb3 detection in Fabry fibroblasts by flow cytometry and confocal microscopy. StxB and LecA showed superior sensitivity, specificity, and consistency in different cell types compared to all anti-Gb3 antibodies used in this study. In addition, sphingolipid metabolism was analyzed in primary Fabry fibroblasts and α-Gal A knockout podocytes using targeted tandem liquid chromatography-mass spectrometry. Our findings establish lectins as a robust tool for improved diagnostics and research of Fabry disease and provide evidence of SL changes in cultured human cells, filling a knowledge gap.
Collapse
Affiliation(s)
- Serap Elçin-Guinot
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; (S.E.-G.); (Y.A.-G.); (D.N.)
- BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany;
- CIBSS, Centre for Integrative Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Simon Lagies
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, Habsburgerstraße 19, 79104 Freiburg, Germany;
- Institute of Organic Chemistry, University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany
| | - Yoav Avi-Guy
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; (S.E.-G.); (Y.A.-G.); (D.N.)
- BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany;
- CIBSS, Centre for Integrative Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Daniela Neugebauer
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; (S.E.-G.); (Y.A.-G.); (D.N.)
- BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany;
- CIBSS, Centre for Integrative Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany;
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany
| | - Christoph Schell
- Faculty of Medicine, Institute for Surgical Pathology Medical Center, University of Freiburg, Breisacher Str. 115A, 70106 Freiburg, Germany;
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79106 Freiburg, Germany
| | - Bernd Kammerer
- BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany;
- Core Competence Metabolomics, Hilde-Mangold-Haus, University of Freiburg, Habsburgerstraße 19, 79104 Freiburg, Germany;
- Institute of Organic Chemistry, University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; (S.E.-G.); (Y.A.-G.); (D.N.)
- BIOSS, Centre for Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany;
- CIBSS, Centre for Integrative Biological Signaling Studies, University of Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79106 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Wooden B, Beenken A, Martinelli E, Saida K, Knob AL, Ke J, Pisani I, Jin G, Lane B, Mitrotti A, Colby E, Lim TY, Guglielmi F, Osborne AJ, Ahram DF, Wang C, Armand F, Zanoni F, Bomback AS, Delsante M, Appel GB, Ferrari MR, Martino J, Sahdeo S, Breckenridge D, Petrovski S, Paul DS, Hall G, Magistroni R, Murtas C, Feriozzi S, Rampino T, Esposito P, Helmuth ME, Sampson MG, Kretzler M, Kiryluk K, Shril S, Gesualdo L, Maggiore U, Fiaccadori E, Gbadegesin R, Santoriello D, D'Agati VD, Saleem MA, Gharavi AG, Hildebrandt F, Pollak MR, Goldstein DB, Sanna-Cherchi S. Natural History and Clinicopathological Associations of TRPC6-Associated Podocytopathy. J Am Soc Nephrol 2025; 36:274-289. [PMID: 39352759 PMCID: PMC11801752 DOI: 10.1681/asn.0000000501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
KEY POINTS We conducted a clinical, genetic, and pathological analysis on 64 cases from 39 families with TRPC6-associated podocytopathy (TRPC6-AP). Analysis of 37,542 individuals excluded a major contribution of loss-of-function variants to TRPC6-AP, legitimating current drug discovery approaches. This study identifies key features of disease that can help intervention studies design and suggests similarities between TRPC6-AP and primary FSGS. BACKGROUND Understanding the genetic basis of human diseases has become integral to drug development and precision medicine. Recent advancements have enabled the identification of molecular pathways driving diseases, leading to targeted treatment strategies. The increasing investment in rare diseases by the biotech industry underscores the importance of genetic evidence in drug discovery and approval processes. Here we studied a monogenic Mendelian kidney disease, TRPC6-associated podocytopathy (TRPC6-AP), to present its natural history, genetic spectrum, and clinicopathological associations in a large cohort of patients with causal variants in TRPC6 to help define the specific features of disease and further facilitate drug development and clinical trials design. METHODS The study involved 64 individuals from 39 families with TRPC6 causal missense variants. Clinical data, including age of onset, laboratory results, response to treatment, kidney biopsy findings, and genetic information, were collected from multiple centers nationally and internationally. Exome or targeted sequencing was performed, and variant classification was based on strict criteria. Structural and functional analyses of TRPC6 variants were conducted to understand their effect on protein function. In-depth reanalysis of light and electron microscopy specimens for nine available kidney biopsies was conducted to identify pathological features and correlates of TRPC6-AP. RESULTS Large-scale sequencing data did not support causality for TRPC6 protein-truncating variants. We identified 21 unique TRPC6 missense variants, clustering in three distinct regions of the protein, and with different effects on TRPC6 3D protein structure. Kidney biopsy analysis revealed FSGS patterns of injury in most cases, along with distinctive podocyte features including diffuse foot process effacement and swollen cell bodies. Most patients presented in adolescence or early adulthood but with ample variation (average 22, SD ±14 years), with frequent progression to kidney failure but with variability in time between presentation and kidney failure. CONCLUSIONS This study provides insights into the genetic spectrum, clinicopathological associations, and natural history of TRPC6-AP. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: A Study to Test BI 764198 in People With a Type of Kidney Disease Called Focal Segmental Glomerulosclerosis, NCT05213624.
Collapse
Affiliation(s)
- Benjamin Wooden
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Andrew Beenken
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Elena Martinelli
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Ken Saida
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts
| | - Andrea L. Knob
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Juntao Ke
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Isabella Pisani
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gina Jin
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Brandon Lane
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Adele Mitrotti
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Elizabeth Colby
- Department of Pediatric Nephrology, Bristol Renal and Royal Bristol Children Hospital, University of Bristol, Bristol, United Kingdom
| | - Tze Y. Lim
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Francesca Guglielmi
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amy J. Osborne
- Department of Pediatric Nephrology, Bristol Renal and Royal Bristol Children Hospital, University of Bristol, Bristol, United Kingdom
| | - Dina F. Ahram
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Chen Wang
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Farid Armand
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Francesca Zanoni
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
- Divisione di Nefrologia, Dialisi e Trapianti di Rene, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Andrew S. Bomback
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Marco Delsante
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gerald B. Appel
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Massimo R.A. Ferrari
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Jeremiah Martino
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | | | | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R D, AstraZeneca, Cambridge, United Kingdom
| | - Dirk S. Paul
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R D, AstraZeneca, Cambridge, United Kingdom
| | - Gentzon Hall
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Riccardo Magistroni
- Section of Nephrology, Surgical, Medical and Dental Department of Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Nephrology, Dialysis and Transplant Unit, University Hospital of Modena, Modena, Italy
| | - Corrado Murtas
- Division of Nephrology and Dialysis, Belcolle Hospital, Viterbo, Italy
| | - Sandro Feriozzi
- Division of Nephrology and Dialysis, Belcolle Hospital, Viterbo, Italy
| | - Teresa Rampino
- Unit of Nephrology, Department of Internal Medicine, Pavia University, Dialysis and Transplantation Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Pasquale Esposito
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
- Nephrology, Dialysis and Transplantation Clinics, IRCCS Policlinico San Martino, Genova, Italy
| | - Margaret E. Helmuth
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Matthew G. Sampson
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Shirlee Shril
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts
| | - Loreto Gesualdo
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Umberto Maggiore
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Enrico Fiaccadori
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Dominick Santoriello
- The Renal Pathology Laboratory of the Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Vivette D. D'Agati
- The Renal Pathology Laboratory of the Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Moin A. Saleem
- Department of Pediatric Nephrology, Bristol Renal and Royal Bristol Children Hospital, University of Bristol, Bristol, United Kingdom
| | - Ali G. Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | - Friedhelm Hildebrandt
- Dipartimento di Medicina e Chirurgia, Università di Parma, Unità Operativa Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Martin R. Pollak
- Nephrology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
10
|
Abelleyra Lastoria DA, Keynes S, Hughes D. Current and Emerging Therapies for Lysosomal Storage Disorders. Drugs 2025; 85:171-192. [PMID: 39826077 DOI: 10.1007/s40265-025-02145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Lysosomal storage disorders (LSDs) are rare inherited metabolic disorders characterized by defects in the function of specific enzymes responsible for breaking down substrates within cellular organelles (lysosomes) essential for the processing of macromolecules. Undigested substrate accumulates within lysosomes, leading to cellular dysfunction, tissue damage, and clinical manifestations. Clinical features vary depending on the degree and type of enzyme deficiency, the type and extent of substrate accumulated, and the tissues affected. The heterogeneous nature of LSDs results in a variety of treatment approaches, which must be tailored to patient presentation and characteristics. The treatment landscape for LSDs is rapidly evolving. An up-to-date discussion of current evidence is required to provide clinicians with an appropriate overview of treatment options. Therefore, we aimed to review current and ongoing trials pertaining to the treatment of common LSDs.
Collapse
Affiliation(s)
| | - Sophie Keynes
- Institute for Medical and Biomedical Education, St George's, University of London, London, SW17 0RE, UK
| | - Derralynn Hughes
- Lysosomal Storage Disorders Unit, Royal Free London NHS Foundation Trust, University College London, London, NW3 2QG, UK.
| |
Collapse
|
11
|
Luís MA, Goes MAD, Santos FM, Mesquita J, Tavares-Ratado P, Tomaz CT. Plasmid Gene Therapy for Monogenic Disorders: Challenges and Perspectives. Pharmaceutics 2025; 17:104. [PMID: 39861752 PMCID: PMC11768343 DOI: 10.3390/pharmaceutics17010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Monogenic disorders are a group of human diseases caused by mutations in single genes. While some disease-altering treatments offer relief and slow the progression of certain conditions, the majority of monogenic disorders still lack effective therapies. In recent years, gene therapy has appeared as a promising approach for addressing genetic disorders. However, despite advancements in gene manipulation tools and delivery systems, several challenges remain unresolved, including inefficient delivery, lack of sustained expression, immunogenicity, toxicity, capacity limitations, genomic integration risks, and limited tissue specificity. This review provides an overview of the plasmid-based gene therapy techniques and delivery methods currently employed for monogenic diseases, highlighting the challenges they face and exploring potential strategies to overcome these barriers.
Collapse
Affiliation(s)
- Marco A. Luís
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Departament of Chemistry, Faculty of Sciences, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Marcelo A. D. Goes
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Departament of Chemistry, Faculty of Sciences, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Fátima Milhano Santos
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Fundación Jiménez Díaz University Hospital Health Research Institute (IIS-FJD), Av. Reyes Católicos, 28040 Madrid, Spain
| | - Joana Mesquita
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Paulo Tavares-Ratado
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Laboratory of Clinical Pathology, Sousa Martins Hospital, Unidade Local de Saúde (ULS) da Guarda, Av. Rainha D. Amélia, 6300-749 Guarda, Portugal
| | - Cândida Teixeira Tomaz
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (M.A.L.); (M.A.D.G.); (F.M.S.); (J.M.); (P.T.-R.)
- RISE-Health, Faculty of Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
- Departament of Chemistry, Faculty of Sciences, University of Beira Interior, Rua Marquês de Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
12
|
Khan A, Barber DL, McKillop WM, Rupar CA, Auray‐Blais C, Fraser G, Fowler DH, Berger A, Foley R, Keating A, West ML, Medin JA. Lentivirus-mediated gene therapy for Fabry disease: 5-year End-of-Study results from the Canadian FACTs trial. Clin Transl Med 2025; 15:e70073. [PMID: 39794302 PMCID: PMC11726700 DOI: 10.1002/ctm2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Fabry disease is an X-linked lysosomal storage disorder due to a deficiency of α-galactosidase A (α-gal A) activity. Our goal was to correct the enzyme deficiency in Fabry patients by transferring the cDNA for α-gal A into their CD34+ hematopoietic stem/progenitor cells (HSPCs). Overexpression of α-gal A leads to secretion of the hydrolase; which can be taken up and used by uncorrected bystander cells. Gene-augmented HSPCs can circulate and thus provide sustained systemic correction. Interim results from this 'first-in-the-world' Canadian FACTs (Fabry Disease Clinical Research and Therapeutics) trial were published in 2021. Herein we report 5-year 'End-of-Study' results. METHODS Five males with classical Fabry disease were treated. Their HSPCs were mobilized, enriched, and transduced with a recombinant lentivirus engineering expression of α-gal A. Autologous transduced cells were infused after conditioning with a nonmyeloablative, reduced dose, melphalan regimen. Safety monitoring was performed. α-Gal A activity was measured in plasma and peripheral blood (PB) leucocytes. Globotriaosylceramide (Gb3) and lyso-Gb3 levels in urine and plasma were assessed by mass spectrometry. qPCR assays measured vector copy number in PB leucocytes. Antibody titers were measured by ELISA. Body weight, blood pressure, urinary protein levels, eGFR, troponin levels, and LVMI were tracked. RESULTS Four out of 5 patients went home the same day as their infusions; one was kept overnight for observation. Circulating α-gal A activity was observed at Day 6-8 in each patient following infusion and has remained durable for 5+ years. LV marking of peripheral blood cells has remained durable and polyclonal. All 5 patients were eligible to come off biweekly enzyme therapy; 3 patients did so. Plasma lyso-Gb3 was significantly lower in 4 of 5 patients. There was no sustained elevation of anti-α-gal A antibodies. Patient weight was stable in 4 of the 5 patients. All blood pressures were in the normal range. Kidney symptoms were stabilized in all patients. CONCLUSIONS This treatment was well tolerated as only two SAEs occurred (during the treatment phase) and only two AEs were reported since 2021. We demonstrate that this therapeutic approach has merit, is durable, and should be explored in a larger clinical trial. HIGHLIGHTS This was the first gene therapy clinical trial to be completed for Fabry disease. There were no adverse events of any grade attributable to the cellular gene therapy intervention or host conditioning throughout the follow-up interval of 5 years. After reduced-intensity melphalan treatment, all patients engrafted their autologous modified α-gal A expressing cells. All patients synthesized and secreted α-gal A throughout the course of the study. Expression of α-gal A resulted in a decrease in plasma lyso-Gb3 in four of five patients and stabilization of kidney symptoms in all patients.
Collapse
Affiliation(s)
- Aneal Khan
- M.A.G.I.C. (Metabolics and Genetics in Canada) ClinicCalgaryAlbertaCanada
| | - Dwayne L. Barber
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
| | | | - C. Anthony Rupar
- Department of Pathology and Laboratory MedicineWestern UniversityLondonOntarioCanada
| | - Christiane Auray‐Blais
- Department of Pediatrics, Division of Medical GeneticsCIUSS de l'Estrie‐CHUS Hospital FleurimontUniversity de SherbrookeSherbrookeQuebecCanada
| | - Graeme Fraser
- Department of OncologyMcMaster University and Juravinski Hospital and Cancer CentreHamiltonOntarioCanada
| | | | - Alexandra Berger
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
| | - Ronan Foley
- Department of Pathology and Molecular MedicineMcMaster University and Juravinski Hospital and Cancer CentreHamiltonOntarioCanada
| | - Armand Keating
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
| | - Michael L. West
- Division of Nephrology, Department of MedicineDalhousie UniversityHalifaxNova ScotiaCanada
| | - Jeffrey A. Medin
- Department of PediatricsMedical College of WisconsinMilwaukeeWisconsinUSA
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsinUSA
| |
Collapse
|
13
|
Martineau T, Maranda B, Auray-Blais C. UPLC-MS/MS High-Risk Screening for Sphingolipidoses Using Dried Urine Spots. Biomolecules 2024; 14:1612. [PMID: 39766319 PMCID: PMC11727146 DOI: 10.3390/biom14121612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Early detection of sphingolipidoses is crucial to prevent irreversible complications and improve patient outcomes. The use of urine samples dried on filter paper (DUS) is a non-invasive strategy that simplifies the collection, storage, and shipping of samples compared to using liquid urine specimens. OBJECTIVES (1) Develop and validate a multiplex ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methodology using DUS to quantify twenty-one lysosphingolipids normalized to creatinine for eight different sphingolipidoses. (2) Establish normal reference values to evaluate the clinical utility of the methodology. METHODS Samples were eluted from a 5 cm filter paper disk (~1 mL of urine) and extracted on Oasis MCX solid-phase extraction cartridges prior to injection in the UPLC-MS/MS system. RESULTS Urinary lysosphingolipids were stable on DUS at -80 °C and -30 °C for 117 days, at 21.5 °C and 4 °C for at least 26 days, and at 35 °C for 3 days. Globotriaosylsphingosine, glucosylsphingosine, and their analogs were elevated in patients with Fabry disease and Gaucher disease, respectively, compared to controls (p-value < 0.0001). The analysis of related analog profiles suggests a better overall reliability in detecting patients early, especially for Fabry patients. CONCLUSIONS This approach is feasible and might be useful for the early detection, monitoring, and follow-up of patients with sphingolipidoses.
Collapse
Affiliation(s)
| | | | - Christiane Auray-Blais
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche-CHUS, 3001, 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada; (T.M.); (B.M.)
| |
Collapse
|
14
|
Lenders M, Brand E. [What is confirmed in the treatment of Fabry's disease?]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2024; 65:1188-1198. [PMID: 39105759 DOI: 10.1007/s00108-024-01741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/07/2024]
Abstract
Fabry's disease is a rare X chromosome-linked inherited lysosomal storage disease characterized by insufficient metabolism of the substrate globotriaosylceramide (Gb3) due to reduced alpha-galactosidase A (AGAL) activity. Lysosomal Gb3 accumulation causes a multisystemic disease which, if untreated, reduces the life expectancy in females and males by around 10 and 20 years, respectively, due to progressive renal dysfunction, hypertrophic cardiomyopathy, cardiac arrhythmia and early occurrence of cerebral infarction. The diagnosis is confirmed by determining the reduced AGAL activity in leukocytes in males and molecular genetic detection of a -mutation causing the disease in females. The treatment comprises enzyme replacement therapy (ERT), agalsidase alfa, 0.2 mg/kg body weight (BW), agalsidase beta 1.0 mg/kg BW or pegunigalsidase alfa 1.0 mg/kg BW every 2 weeks i.v. or oral chaperone therapy (one capsule of migalastat 123 mg every other day) in the presence of amenable mutations. This article summarizes the data on the treatment of Fabry's disease and on complications in practice. The current guideline recommendations are addressed and new study results that could expand the therapeutic repertoire in the future are discussed.
Collapse
Affiliation(s)
- Malte Lenders
- Allgemeine Innere Medizin D sowie Nieren- und Hochdruckkrankheiten und Rheumatologie, Interdisziplinäres Fabry Zentrum (IFAZ), Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Deutschland
| | - Eva Brand
- Allgemeine Innere Medizin D sowie Nieren- und Hochdruckkrankheiten und Rheumatologie, Interdisziplinäres Fabry Zentrum (IFAZ), Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Deutschland.
| |
Collapse
|
15
|
Khare V, Cherqui S. Targeted gene therapy for rare genetic kidney diseases. Kidney Int 2024; 106:1051-1061. [PMID: 39222842 DOI: 10.1016/j.kint.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Chronic kidney disease is one of the leading causes of mortality worldwide because of kidney failure and the associated challenges of its treatment including dialysis and kidney transplantation. About one-third of chronic kidney disease cases are linked to inherited monogenic factors, making them suitable for potential gene therapy interventions. However, the intricate anatomical structure of the kidney poses a challenge, limiting the effectiveness of targeted gene delivery to the renal system. In this review, we explore the progress made in the field of targeted gene therapy approaches and their implications for rare genetic kidney disorders, examining preclinical studies and prospects for clinical application. In vivo gene therapy is most commonly used for kidney-targeted gene delivery and involves administering viral and nonviral vectors through various routes such as systemic, renal vein, and renal arterial injections. Small nucleic acids have also been used in preclinical and clinical studies for treating certain kidney disorders. Unexpectedly, hematopoietic stem and progenitor cells have been used as an ex vivo gene therapy vehicle for kidney gene delivery, highlighting their ability to differentiate into macrophages within the kidney, forming tunneling nanotubes that can deliver genetic material and organelles to adjacent kidney cells, even across the basement membrane to target the proximal tubular cells. As gene therapy technologies continue to advance and our understanding of kidney biology deepens, there is hope for patients with genetic kidney disorders to eventually avoid kidney transplantation.
Collapse
Affiliation(s)
- Veenita Khare
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA
| | - Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
16
|
Yang Z, Li H, Luo M, Yi H, Han X, Liu E, Yao S, Hu Z. Identification of c.146G > A mutation in a Fabry patient and its correction by customized Cas9 base editors in vitro. Int J Biol Macromol 2024; 282:136922. [PMID: 39490876 DOI: 10.1016/j.ijbiomac.2024.136922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by mutations in the GLA gene, leading to reduced α-galactosidase (α-Gal A) activity. Current treatments, like enzyme replacement, have limitations affecting efficacy and patient outcomes. CRISPR/Cas9 genome editing tools may offer the potential to develop therapeutic strategy via correcting GLA mutations. In this study, we diagnosed a female FD patient with a missense mutation in exon 1 of the GLA gene (c.146G > A, p.R49H). Bioinformatic predictions and biochemical analyses in GLA-knockout cells revealed that this mutation significantly reduced α-Gal A stability and activity, confirming its pathogenicity. To correct this, we used adenine base editing. The mutation, along with a nearby bystander A, was efficiently edited by the traditional N-terminal adenine base editor. To avoid unwanted bystander editing, we developed a series of domain-inlaid base editors with the aim of narrowing editing window. The most effective variant, with deaminase inserted between the 947th and 948th residues of the RUVC3 domain, was further optimized by modifying linker rigidity. These adjustments shifted the editing window, eliminating bystander editing. Our findings clarify the pathogenic nature of a novel GLA mutation and demonstrate the potential of a customized base editor for therapeutic application in FD.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hao Li
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mei Luo
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu 610041, Sichuan, China
| | - Haonan Yi
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu 610041, Sichuan, China
| | - Xinyu Han
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu 610041, Sichuan, China
| | - Enze Liu
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu 610041, Sichuan, China
| | - Shaohua Yao
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan university, Chengdu 610041, Sichuan, China.
| | - Zhangxue Hu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
17
|
Carella MC, Forleo C, Caretto P, Naccarati ML, Dentamaro I, Dicorato MM, Basile P, Carulli E, Latorre MD, Baggiano A, Pontone G, Ciccone MM, Guaricci AI. Overcoming Resistance in Anderson-Fabry Disease: Current Therapeutic Challenges and Future Perspectives. J Clin Med 2024; 13:7195. [PMID: 39685654 PMCID: PMC11641994 DOI: 10.3390/jcm13237195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Anderson-Fabry disease (AFD) remains a therapeutic challenge despite advances in early diagnosis and the availability of enzyme replacement therapies (ERTs). While early initiation of therapy can mitigate disease progression, resistance mechanisms-such as the development of anti-drug antibodies-limit the efficacy of current treatments, particularly in patients with severe genetic variants. Chaperone therapy provides a targeted option for a subset of patients, yet significant gaps remain in treating those with complete enzyme deficiency. This perspective article explores the existing therapeutic landscape and reflects on emerging treatments, such as mRNA and gene therapies, which hold promise for overcoming the resistance mechanisms. By addressing the limitations of current pharmacological options and considering future innovations, this article aims to outline the path forward for more effective and personalized treatment strategies in Anderson-Fabry disease.
Collapse
Affiliation(s)
- Maria Cristina Carella
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.C.C.); (C.F.); (P.C.); (M.L.N.); (I.D.); (M.M.D.); (P.B.); (M.D.L.); (M.M.C.)
| | - Cinzia Forleo
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.C.C.); (C.F.); (P.C.); (M.L.N.); (I.D.); (M.M.D.); (P.B.); (M.D.L.); (M.M.C.)
| | - Pierpaolo Caretto
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.C.C.); (C.F.); (P.C.); (M.L.N.); (I.D.); (M.M.D.); (P.B.); (M.D.L.); (M.M.C.)
| | - Maria Ludovica Naccarati
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.C.C.); (C.F.); (P.C.); (M.L.N.); (I.D.); (M.M.D.); (P.B.); (M.D.L.); (M.M.C.)
| | - Ilaria Dentamaro
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.C.C.); (C.F.); (P.C.); (M.L.N.); (I.D.); (M.M.D.); (P.B.); (M.D.L.); (M.M.C.)
| | - Marco Maria Dicorato
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.C.C.); (C.F.); (P.C.); (M.L.N.); (I.D.); (M.M.D.); (P.B.); (M.D.L.); (M.M.C.)
| | - Paolo Basile
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.C.C.); (C.F.); (P.C.); (M.L.N.); (I.D.); (M.M.D.); (P.B.); (M.D.L.); (M.M.C.)
| | - Eugenio Carulli
- Department of Emergency and Acceptance, Division of Cardiology, Azienda Sanitaria locale Matera, 75100 Matera, Italy;
| | - Michele Davide Latorre
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.C.C.); (C.F.); (P.C.); (M.L.N.); (I.D.); (M.M.D.); (P.B.); (M.D.L.); (M.M.C.)
| | - Andrea Baggiano
- Department of Perioperative Cardiology and Cardiovascular Imaging, IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy; (A.B.); (G.P.)
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy; (A.B.); (G.P.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Marco Matteo Ciccone
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.C.C.); (C.F.); (P.C.); (M.L.N.); (I.D.); (M.M.D.); (P.B.); (M.D.L.); (M.M.C.)
| | - Andrea Igoren Guaricci
- Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, Polyclinic University Hospital, 70124 Bari, Italy; (M.C.C.); (C.F.); (P.C.); (M.L.N.); (I.D.); (M.M.D.); (P.B.); (M.D.L.); (M.M.C.)
| |
Collapse
|
18
|
Yuan F, Lerman LO. Targeted therapeutic strategies for the kidney. Expert Opin Ther Targets 2024; 28:979-989. [PMID: 39491501 PMCID: PMC11617265 DOI: 10.1080/14728222.2024.2421756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Kidney diseases impose a significant burden with high incidence and mortality rates. Current treatment options for kidney diseases are limited, necessitating urgent development of novel and effective therapeutic strategies to delay or reverse disease progression. Targeted therapies for the kidney hold promise in significantly enhancing treatment outcomes, offering hope to patients afflicted with renal disorders. AREAS COVERED This review summarized advances in kidney-targeted therapies including genes, peptides and proteins, cell-based, nanoparticles, and localized delivery routes. We also explored the potential clinical applications, prospects, and challenges of targeted therapies for renal disorders. EXPERT OPINION Advances in targeted therapies for renal conditions have enhanced therapeutic outcomes. Clinical application of kidney-targeted therapies is currently limited by renal structure and the scarcity of robust biomarkers. Bridging the gap from basic and pre-clinical research targeting the kidney to achieving clinical translation remains a formidable challenge.
Collapse
Affiliation(s)
- Fei Yuan
- Division of Nephrology and Hypertension, Mayo Clinic; Rochester, MN, USA
- Department of Urology, National Children’s Medical Center, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic; Rochester, MN, USA
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
19
|
Celik B, Rintz E, Sansanwal N, Khan S, Bigger B, Tomatsu S. Lentiviral Vector-Mediated Ex Vivo Hematopoietic Stem Cell Gene Therapy for Mucopolysaccharidosis IVA Murine Model. Hum Gene Ther 2024; 35:917-937. [PMID: 39446675 DOI: 10.1089/hum.2024.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disease caused by a mutation in the N-acetylgalactosamine-6-sulfate-sulfatase (GALNS) gene resulting in progressive systemic skeletal dysplasia. There is currently no effective treatment available for this skeletal condition. Thus, the development of a new therapy stands as an unmet challenge in reversing or alleviating the progression of the disease. Our research, which could be a game-changer, hypothesizes that ex vivo lentiviral (LV) gene therapy (GT) could produce the supraphysiological level of active GALNS enzyme by hematopoietic stem cells (HSCs) transduced with LVs carrying the native GALNS gene under two different promoters (CBh and COL2A1), impacting bone and cartilage abnormalities in MPS IVA. We conditioned newborn knock-out (Galns-/-) MPS IVA mice with busulfan and intravenously transplanted LV-modified HSCs isolated from the bone marrow of Galns-/- donor mice. Transplanted mice were autopsied at 16 weeks, and tissues were collected to assess the therapeutic efficacy of modified HSCs in MPS IVA mice. Although HSC-LV-CBh-hGALNS provided a higher GALNS enzyme activity in plasma, HSC-LV-COL2A1-hGALNS stably corrected heart and bone abnormalities better under a low level of GALNS enzyme. Our findings suggest that ex vivo LV-GT may potentially treat MPS IVA.
Collapse
Affiliation(s)
- Betul Celik
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Skeletal Dysplasia Research Lab, Nemours Children's Health, Wilmington, Delaware, USA
| | - Estera Rintz
- Skeletal Dysplasia Research Lab, Nemours Children's Health, Wilmington, Delaware, USA
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Nidhi Sansanwal
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Skeletal Dysplasia Research Lab, Nemours Children's Health, Wilmington, Delaware, USA
| | - Shaukat Khan
- Skeletal Dysplasia Research Lab, Nemours Children's Health, Wilmington, Delaware, USA
| | - Brian Bigger
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Shunji Tomatsu
- Skeletal Dysplasia Research Lab, Nemours Children's Health, Wilmington, Delaware, USA
| |
Collapse
|
20
|
Borisch C, Thum T, Bär C, Hoepfner J. Human in vitro models for Fabry disease: new paths for unravelling disease mechanisms and therapies. J Transl Med 2024; 22:965. [PMID: 39449071 PMCID: PMC11515389 DOI: 10.1186/s12967-024-05756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Fabry disease is a multi-organ disease, caused by mutations in the GLA gene and leading to a progressive accumulation of glycosphingolipids due to enzymatic absence or malfunction of the encoded alpha-galactosidase A. Since pathomechanisms are not yet fully understood and available treatments are not efficient for all mutation types and tissues, further research is highly needed. This research involves many different model types, with significant effort towards the establishment of an in vivo model. However, these models did not replicate the variety of symptoms observed in patients. As an alternative strategy, patient-derived somatic cells as well as patient-independent cell lines were used to model specific aspects of the disease in vitro. Fabry disease patients present different phenotypes according to the mutation and the level of residual enzyme activity, pointing to the necessity of personalized disease modeling. With the advent of induced pluripotent stem cells, the derivation of a multitude of disease-affected cell types became possible, even in a patient-specific and mutation-specific manner. Only recently, three-dimensional Fabry disease models were established that even more closely resemble the native tissue of investigated organs and will bring research closer to the in vivo situation. This review provides an overview of human in vitro models and their achievements in unravelling the Fabry disease pathomechanism as well as in elucidating current and future treatment strategies.
Collapse
Affiliation(s)
- Carla Borisch
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Jeannine Hoepfner
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
21
|
Corazolla EM, Eskes ECB, Veldwijk J, Brands MMMG, Dekker H, van de Mheen E, Langeveld M, Hollak CEM, Sjouke B. Different diseases, different needs: Patient preferences for gene therapy in lysosomal storage disorders, a probabilistic threshold technique survey. Orphanet J Rare Dis 2024; 19:367. [PMID: 39363355 PMCID: PMC11451020 DOI: 10.1186/s13023-024-03371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Gene therapy is currently in development for several monogenetic diseases including lysosomal storage disorders. Limited evidence is available on patient preferences for gene therapy in this population. In this study, we compare gene therapy-related risk tolerance between people affected by three lysosomal storage diseases currently faced with different therapeutic options and prognoses. METHODS A survey including the probabilistic threshold technique was developed in which respondents were asked to choose between gene therapy and the current standard of care. The attributes included to establish participants' risk tolerance were previously identified in focus groups of affected people or their representatives, namely: risk of mild side effects, severe side effects, the need for additional medication, and the likelihood of long-term effectiveness. The survey was distributed among people receiving outpatient care for type 1 Gaucher disease (good prognosis with current treatment options), Fabry disease (varying prognosis with current treatment options, XY-genotype on average more severely affected than XX), and parents representing people with severe forms of mucopolysaccharidosis type III A/B (poor prognosis, no disease-specific therapy available). RESULTS A total of 85 surveys were completed (15 Gaucher disease respondents, 62 Fabry disease respondents (17 self-identifying male), eight parents of ten people with mucopolysaccharidosis type III). Disease groups with higher disease severity trended towards higher risk tolerance: Gaucher disease respondents were most cautious and predominantly preferred the current standard of care as opposed to MPS III representatives who were more risk tolerant. Respondents with Fabry disease were most heterogeneous in their risk tolerance, with male participants being more risk tolerant than female participants. Long-term effectiveness was the attribute in which respondents tolerated the least risk. CONCLUSIONS People affected by a lysosomal storage disease associated with a poorer prognosis and less effective current treatment options trended towards more risk tolerance when choosing between gene therapy and the current standard of care. This study shows the importance of involvement of patient preferences before and during the development process of new treatment modalities such as gene therapy for rare diseases, to ensure that innovative therapies align with the wishes and needs of people affected by these diseases.
Collapse
Affiliation(s)
- Eleonore M Corazolla
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Eline C B Eskes
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jorien Veldwijk
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Erasmus Choice Modelling Centre, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Marion M M G Brands
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Pediatrics, Division of Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Hanka Dekker
- The Dutch Patient Association for Inherited Metabolic Diseases (VKS), Zwolle, The Netherlands
| | - Erica van de Mheen
- Fabry Support and Information Group the Netherlands (FSIGN), Drachten, The Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Carla E M Hollak
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Barbara Sjouke
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands.
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
22
|
Rossi A, Malvagia S, la Marca G, Parenti G, Brunetti-Pierri N. Biomarkers for gene therapy clinical trials of lysosomal storage disorders. Mol Ther 2024; 32:2930-2938. [PMID: 38850023 PMCID: PMC11403227 DOI: 10.1016/j.ymthe.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/29/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Lysosomal storage disorders (LSDs) are multisystemic progressive disorders caused by defects in proteins involved in lysosomal function. Different gene therapy strategies are under clinical investigation in several LSDs to overcome the limitations of available treatments. However, LSDs are slowly progressive diseases that require long-term studies to establish the efficacy of experimental treatments. Biomarkers can be reliable substitutes for clinical responses and improve the efficiency of clinical trials, especially when long-term disease interventions are evaluated. In this review, we summarize both available and future biomarkers for LSDs and discuss their strengths and weaknesses.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Translational Medicine, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Sabrina Malvagia
- Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Giancarlo la Marca
- Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's Hospital IRCCS, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giancarlo Parenti
- Department of Translational Medicine, Section of Pediatrics, University of Naples Federico II, Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; School of Advanced Studies, Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Section of Pediatrics, University of Naples Federico II, Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; School of Advanced Studies, Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
23
|
Yuan Y, Zhao Y, Li F, Ling C, Wu Y, Ma W, Wang Z, Yuan Y, Hao H, Zhang W. Inflammatory cytokine expression in Fabry disease: impact of disease phenotype and alterations under enzyme replacement therapy. Front Immunol 2024; 15:1367252. [PMID: 39234251 PMCID: PMC11371600 DOI: 10.3389/fimmu.2024.1367252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Objectives The aim of this study is to explore the expression of inflammatory cytokines (ICs) in Fabry disease (FD), the correlation between ICs and FD phenotypes, and the impact of enzyme replacement therapy (ERT) on IC expression. Methods We recruited 67 FD patients and 44 healthy controls (HCs) and detected concentrations of the following ICs: interferon-γ, interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12P70, IL-17A, IL-17F, IL-22, tumor necrosis factor (TNF)-α, and TNF-β. We also analyzed the impact of ERT on IC expression in FD patients and the relationship between IC expression and sex, genotype, phenotype, disease burden, and biomarkers. Results Most ICs were significantly higher in FD patients than in HCs. A number of ICs were positively correlated with clinical aspects, including disease burden (Mainz Severity Score Index [MSSI]) and cardiac and renal markers. IL-8 was higher in the high MSSI (P-adj=0.026*) than in the low MSSI. Conclusions ICs were upregulated in FD patients, indicating the role of the innate immune process in FD etiology. ERT ameliorated FD-related inflammatory activation, at least to some extent. IC expression was positively correlated with disease burden and clinical markers in FD. Our findings indicated that the inflammatory pathway may be a promising therapeutic target for FD.
Collapse
Affiliation(s)
- Yujing Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yawen Zhao
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Fan Li
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Chen Ling
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yuan Wu
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Wei Ma
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Diseases, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Diseases, Beijing, China
| | - Hongjun Hao
- Department of Neurology, Peking University First Hospital, Beijing, China
- Department of Neuroimmunity, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Neurovascular Diseases, Beijing, China
| |
Collapse
|
24
|
Ogata J, Shimada Y, Ohashi T, Kobayashi H. Usefulness of antibody-drug conjugate as preconditioning for hematopoietic stem cell-targeted gene therapy in wild-type and Fabry disease mouse models. Mol Genet Metab 2024; 142:108494. [PMID: 38820907 DOI: 10.1016/j.ymgme.2024.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Fabry disease (FD) is characterized by deficient activity of α-galactosidase A (GLA). Consequently, globotriaosylceramide (Gb3) accumulates in various organs, causing cardiac, renal, and cerebrovascular damage. Gene therapies for FD have been investigated in humans. Strong conditioning is required for hematopoietic stem cell-targeted gene therapy (HSC-GT). However, strong conditioning leads to various side effects and should be avoided. In this study, we tested antibody-based conditioning for HSC-GT in wild-type and FD model mice. METHODS After preconditioning with an antibody-drug conjugate, HSC-GT using a lentiviral vector was performed in wild-type and Fabry model mice. In the wild-type experiment, the EGFP gene was introduced into HSCs and transplanted into preconditioned mice, and donor chimerism and EGFP expression were analyzed. In the FD mouse model, the GLA gene was introduced into HSCs and transplanted into preconditioned Fabry mice. GLA activity and Gb3 accumulation in the organs were analyzed. RESULTS In the wild-type mouse experiment, when anti-CD45 antibody-drug conjugate was used, the percentage of donor cells at 6 months was 64.5%, and 69.6% of engrafted donor peripheral blood expressed EGFP. When anti-CD117 antibody-drug conjugate and ATG were used, the percentage of donor cells at 6 months was 80.7%, and 73.4% of engrafted donor peripheral blood expressed EGFP. Although large variations in GLA activity among mice were observed in the FD mouse experiment for both preconditioning regimens, Gb3 was significantly reduced in many organs. CONCLUSIONS Antibody-based preconditioning may be an alternative preconditioning strategy for HSC-GT for treating FD.
Collapse
Affiliation(s)
- Jin Ogata
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Japan; Department of Pediatrics, The Jikei University School of Medicine, Japan
| | - Yohta Shimada
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Japan; Department of Pediatrics, The Jikei University School of Medicine, Japan.
| | - Hiroshi Kobayashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Japan; Department of Pediatrics, The Jikei University School of Medicine, Japan
| |
Collapse
|
25
|
Kurdi H, Lavalle L, Moon JCC, Hughes D. Inflammation in Fabry disease: stages, molecular pathways, and therapeutic implications. Front Cardiovasc Med 2024; 11:1420067. [PMID: 38932991 PMCID: PMC11199868 DOI: 10.3389/fcvm.2024.1420067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Fabry disease, a multisystem X-linked disorder caused by mutations in the alpha-galactosidase gene. This leads to the accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (Lyso-Gb3), culminating in various clinical signs and symptoms that significantly impact quality of life. Although treatments such as enzyme replacement, oral chaperone, and emerging therapies like gene therapy exist; delayed diagnosis often curtails their effectiveness. Our review highlights the importance of delineating the stages of inflammation in Fabry disease to enhance the timing and efficacy of diagnosis and interventions, particularly before the progression to fibrosis, where treatment options are less effective. Inflammation is emerging as an important aspect of the pathogenesis of Fabry disease. This is thought to be predominantly mediated by the innate immune response, with growing evidence pointing towards the potential involvement of adaptive immune mechanisms that remain poorly understood. Highlighted by the fact that Fabry disease shares immune profiles with systemic autoinflammatory diseases, blurring the distinctions between these disorders and highlighting the need for a nuanced understanding of immune dynamics. This insight is crucial for developing targeted therapies and improving the administration of current treatments like enzyme replacement. Moreover, our review discusses the complex interplay between these inflammatory processes and current treatments, such as the challenges posed by anti-drug antibodies. These antibodies can attenuate the effectiveness of therapies, necessitating more refined approaches to mitigate their impact. By advancing our understanding of the molecular changes, inflammatory mediators and causative factors that drive inflammation in Fabry disease, we aim to clarify their role in the disease's progression. This improved understanding will help us see how these processes fit into the current landscape of Fabry disease. Additionally, it will guide the development of more effective diagnostic and therapeutic approaches, ultimately improving patient care.
Collapse
Affiliation(s)
- Hibba Kurdi
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Cardiovascular Imaging Department, Barts Heart Centre, London, United Kingdom
| | - Lucia Lavalle
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Lysosomal Storage Disorders Unit, The Royal Free Hospital, London, United Kingdom
| | - James C. C. Moon
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Cardiovascular Imaging Department, Barts Heart Centre, London, United Kingdom
| | - Derralynn Hughes
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Lysosomal Storage Disorders Unit, The Royal Free Hospital, London, United Kingdom
| |
Collapse
|
26
|
Budzynska K, Siemionow M, Stawarz K, Chambily L, Siemionow K. Chimeric Cell Therapies as a Novel Approach for Duchenne Muscular Dystrophy (DMD) and Muscle Regeneration. Biomolecules 2024; 14:575. [PMID: 38785982 PMCID: PMC11117592 DOI: 10.3390/biom14050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Chimerism-based strategies represent a pioneering concept which has led to groundbreaking advancements in regenerative medicine and transplantation. This new approach offers therapeutic potential for the treatment of various diseases, including inherited disorders. The ongoing studies on chimeric cells prompted the development of Dystrophin-Expressing Chimeric (DEC) cells which were introduced as a potential therapy for Duchenne Muscular Dystrophy (DMD). DMD is a genetic condition that leads to premature death in adolescent boys and remains incurable with current methods. DEC therapy, created via the fusion of human myoblasts derived from normal and DMD-affected donors, has proven to be safe and efficacious when tested in experimental models of DMD after systemic-intraosseous administration. These studies confirmed increased dystrophin expression, which correlated with functional and morphological improvements in DMD-affected muscles, including cardiac, respiratory, and skeletal muscles. Furthermore, the application of DEC therapy in a clinical study confirmed its long-term safety and efficacy in DMD patients. This review summarizes the development of chimeric cell technology tested in preclinical models and clinical studies, highlighting the potential of DEC therapy in muscle regeneration and repair, and introduces chimeric cell-based therapies as a promising, novel approach for muscle regeneration and the treatment of DMD and other neuromuscular disorders.
Collapse
Affiliation(s)
- Katarzyna Budzynska
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
- Chair and Department of Traumatology, Orthopaedics, and Surgery of the Hand, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Katarzyna Stawarz
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Lucile Chambily
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Krzysztof Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| |
Collapse
|
27
|
Yu B, Atta MG, Brennan DC, Kant S. Outcomes and management of kidney transplant recipients with Fabry disease: a review. J Nephrol 2024; 37:561-571. [PMID: 38227277 DOI: 10.1007/s40620-023-01853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
Fabry disease is an X-linked inheritable lysosomal storage disease caused by various mutations of the galactosidase α gene resulting in α-galactosidase deficiency. Chronic kidney disease (CKD) is one of the most significant consequences of Fabry disease, with risk of end-stage kidney disease (ESKD) in this population. Like for other patients with ESKD, kidney transplant is the optimal treatment for Fabry disease patients with ESKD. However, enzyme replacement therapy and newer Fabry disease treatments remain important to mitigate other end organ damage such as cardiomyopathy post transplantation. This review is a primer on Fabry disease, which examines the outcomes of disease in the context of kidney transplant prior to, and during, the enzyme replacement treatment era, medical treatment of kidney transplant recipients with Fabry disease, and progress in screening studies.
Collapse
Affiliation(s)
- Bo Yu
- Department of Medicine, University of Maryland Medical Center, Midtown Campus, Baltimore, MD, USA
| | - Mohamed G Atta
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel C Brennan
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Comprehensive Transplant Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sam Kant
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Comprehensive Transplant Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Yan KK, Condori J, Ma Z, Metais JY, Ju B, Ding L, Dhungana Y, Palmer LE, Langfitt DM, Ferrara F, Throm R, Shi H, Risch I, Bhatara S, Shaner B, Lockey TD, Talleur AC, Easton J, Meagher MM, Puck JM, Cowan MJ, Zhou S, Mamcarz E, Gottschalk S, Yu J. Integrome signatures of lentiviral gene therapy for SCID-X1 patients. SCIENCE ADVANCES 2023; 9:eadg9959. [PMID: 37801507 PMCID: PMC10558130 DOI: 10.1126/sciadv.adg9959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Lentiviral vector (LV)-based gene therapy holds promise for a broad range of diseases. Analyzing more than 280,000 vector integration sites (VISs) in 273 samples from 10 patients with X-linked severe combined immunodeficiency (SCID-X1), we discovered shared LV integrome signatures in 9 of 10 patients in relation to the genomics, epigenomics, and 3D structure of the human genome. VISs were enriched in the nuclear subcompartment A1 and integrated into super-enhancers close to nuclear pore complexes. These signatures were validated in T cells transduced with an LV encoding a CD19-specific chimeric antigen receptor. Intriguingly, the one patient whose VISs deviated from the identified integrome signatures had a distinct clinical course. Comparison of LV and gamma retrovirus integromes regarding their 3D genome signatures identified differences that might explain the lower risk of insertional mutagenesis in LV-based gene therapy. Our findings suggest that LV integrome signatures, shaped by common features such as genome organization, may affect the efficacy of LV-based cellular therapies.
Collapse
Affiliation(s)
- Koon-Kiu Yan
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jose Condori
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Zhijun Ma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jean-Yves Metais
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Bensheng Ju
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Liang Ding
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yogesh Dhungana
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Lance E. Palmer
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Deanna M. Langfitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Francesca Ferrara
- Vector Development and Production Core, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Robert Throm
- Vector Development and Production Core, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Isabel Risch
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sheetal Bhatara
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Bridget Shaner
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Timothy D. Lockey
- Department of Therapeutics Production and Quality, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Aimee C. Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Michael M. Meagher
- Department of Therapeutics Production and Quality, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jennifer M. Puck
- Department of Pediatrics, Division of Pediatric Allergy, Immunology and Bone Marrow Transplantation, University of California San Francisco Benioff Children’s Hospital, San Francisco, CA 94158, USA
| | - Morton J. Cowan
- Department of Pediatrics, Division of Pediatric Allergy, Immunology and Bone Marrow Transplantation, University of California San Francisco Benioff Children’s Hospital, San Francisco, CA 94158, USA
| | - Sheng Zhou
- Experimental Cellular Therapeutics Laboratory, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ewelina Mamcarz
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
29
|
Tucci F, Consiglieri G, Cossutta M, Bernardo ME. Current and Future Perspective in Hematopoietic Stem Progenitor Cell-gene Therapy for Inborn Errors of Metabolism. Hemasphere 2023; 7:e953. [PMID: 37711990 PMCID: PMC10499111 DOI: 10.1097/hs9.0000000000000953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Affiliation(s)
- Francesca Tucci
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
| | - Giulia Consiglieri
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Matilde Cossutta
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- University of Rome Tor Vergata, Italy
| | - Maria Ester Bernardo
- Pediatric Immunohematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Milan, Italy
- “Vita-Salute” San Raffaele University, Milan, Italy
| |
Collapse
|
30
|
Ter Huurne M, Parker BL, Liu NQ, Qian EL, Vivien C, Karavendzas K, Mills RJ, Saville JT, Abu-Bonsrah D, Wise AF, Hudson JE, Talbot AS, Finn PF, Martini PGV, Fuller M, Ricardo SD, Watt KI, Nicholls KM, Porrello ER, Elliott DA. GLA-modified RNA treatment lowers GB3 levels in iPSC-derived cardiomyocytes from Fabry-affected individuals. Am J Hum Genet 2023; 110:1600-1605. [PMID: 37607539 PMCID: PMC10502840 DOI: 10.1016/j.ajhg.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Recent studies in non-human model systems have shown therapeutic potential of nucleoside-modified messenger RNA (modRNA) treatments for lysosomal storage diseases. Here, we assessed the efficacy of a modRNA treatment to restore the expression of the galactosidase alpha (GLA), which codes for α-Galactosidase A (α-GAL) enzyme, in a human cardiac model generated from induced pluripotent stem cells (iPSCs) derived from two individuals with Fabry disease. Consistent with the clinical phenotype, cardiomyocytes from iPSCs derived from Fabry-affected individuals showed accumulation of the glycosphingolipid Globotriaosylceramide (GB3), which is an α-galactosidase substrate. Furthermore, the Fabry cardiomyocytes displayed significant upregulation of lysosomal-associated proteins. Upon GLA modRNA treatment, a subset of lysosomal proteins were partially restored to wild-type levels, implying the rescue of the molecular phenotype associated with the Fabry genotype. Importantly, a significant reduction of GB3 levels was observed in GLA modRNA-treated cardiomyocytes, demonstrating that α-GAL enzymatic activity was restored. Together, our results validate the utility of iPSC-derived cardiomyocytes from affected individuals as a model to study disease processes in Fabry disease and the therapeutic potential of GLA modRNA treatment to reduce GB3 accumulation in the heart.
Collapse
Affiliation(s)
- Menno Ter Huurne
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia; The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia; Centre for Muscle Research, University of Melbourne, Melbourne, VIC, Australia
| | - Ning Qing Liu
- Department of Hematology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, the Netherlands
| | - Elizabeth Ling Qian
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Celine Vivien
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Kathy Karavendzas
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Richard J Mills
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia; The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia; QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jennifer T Saville
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Dad Abu-Bonsrah
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Andrea F Wise
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Andrew S Talbot
- Department of Nephrology, The Royal Melbourne Hospital and Department of Medicine (RMH), University of Melbourne, Parkville, VIC, Australia
| | - Patrick F Finn
- Rare Diseases Research, Moderna Inc., 200 Technology Sq., Cambridge, MA, USA
| | - Paolo G V Martini
- Rare Diseases Research, Moderna Inc., 200 Technology Sq., Cambridge, MA, USA
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women's and Children's Hospital and Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Kevin I Watt
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia; The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Kathy M Nicholls
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia; The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
| | - David A Elliott
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia; The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, The Royal Children's Hospital, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC, Australia.
| |
Collapse
|
31
|
Elsaid HOA, Rivedal M, Skandalou E, Svarstad E, Tøndel C, Birkeland E, Eikrem Ø, Babickova J, Marti HP, Furriol J. Proteomic analysis unveils Gb3-independent alterations and mitochondrial dysfunction in a gla -/- zebrafish model of Fabry disease. J Transl Med 2023; 21:591. [PMID: 37670295 PMCID: PMC10478213 DOI: 10.1186/s12967-023-04475-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Fabry disease (FD) is a rare lysosomal storage disorder caused by mutations in the GLA gene, resulting in reduced or lack of α-galactosidase A activity. This results in the accumulation of globotriaosylceramide (Gb3) and other glycosphingolipids in lysosomes causing cellular impairment and organ failures. While current therapies focus on reversing Gb3 accumulation, they do not address the altered cellular signaling in FD. Therefore, this study aims to explore Gb3-independent mechanisms of kidney damage in Fabry disease and identify potential biomarkers. METHODS To investigate these mechanisms, we utilized a zebrafish (ZF) gla-/- mutant (MU) model. ZF naturally lack A4GALT gene and, therefore, cannot synthesize Gb3. We obtained kidney samples from both wild-type (WT) (n = 8) and MU (n = 8) ZF and conducted proteome profiling using untargeted mass spectrometry. Additionally, we examined mitochondria morphology and cristae morphology using electron microscopy. To assess oxidative stress, we measured total antioxidant activity. Finally, immunohistochemistry was conducted on kidney samples to validate specific proteins. RESULTS Our proteomics analysis of renal tissues from zebrafish revealed downregulation of lysosome and mitochondrial-related proteins in gla-/- MU renal tissues, while energy-related pathways including carbon, glycolysis, and galactose metabolisms were disturbed. Moreover, we observed abnormal mitochondrial shape, disrupted cristae morphology, altered mitochondrial volume and lower antioxidant activity in gla-/- MU ZF. CONCLUSIONS These results suggest that the alterations observed at the proteome and mitochondrial level closely resemble well-known GLA mutation-related alterations in humans. Importantly, they also unveil novel Gb3-independent pathogenic mechanisms in Fabry disease. Understanding these mechanisms could potentially lead to the development of innovative drug screening approaches. Furthermore, the findings pave the way for identifying new clinical targets, offering new avenues for therapeutic interventions in Fabry disease. The zebrafish gla-/- mutant model proves valuable in elucidating these mechanisms and may contribute significantly to advancing our knowledge of this disorder.
Collapse
Affiliation(s)
- Hassan Osman Alhassan Elsaid
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Mariell Rivedal
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Eleni Skandalou
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Einar Svarstad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Camilla Tøndel
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Even Birkeland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Øystein Eikrem
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Janka Babickova
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jessica Furriol
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
32
|
Burban A, Pucyło S, Sikora A, Opolski G, Grabowski M, Kołodzińska A. Hypertrophic Cardiomyopathy versus Storage Diseases with Myocardial Involvement. Int J Mol Sci 2023; 24:13239. [PMID: 37686045 PMCID: PMC10488064 DOI: 10.3390/ijms241713239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
One of the main causes of heart failure is cardiomyopathies. Among them, the most common is hypertrophic cardiomyopathy (HCM), characterized by thickening of the left ventricular muscle. This article focuses on HCM and other cardiomyopathies with myocardial hypertrophy, including Fabry disease, Pompe disease, and Danon disease. The genetics and pathogenesis of these diseases are described, as well as current and experimental treatment options, such as pharmacological intervention and the potential of gene therapies. Although genetic approaches are promising and have the potential to become the best treatments for these diseases, further research is needed to evaluate their efficacy and safety. This article describes current knowledge and advances in the treatment of the aforementioned cardiomyopathies.
Collapse
Affiliation(s)
- Anna Burban
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
- Doctoral School, Medical University of Warsaw, 81 Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Szymon Pucyło
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
| | - Aleksandra Sikora
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
| | - Grzegorz Opolski
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
| | - Marcin Grabowski
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
| | - Agnieszka Kołodzińska
- First Department of Cardiology, Medical University of Warsaw, ul. Banacha 1A, 02-097 Warszawa, Poland; (A.B.); (S.P.); (A.S.); (G.O.); (M.G.)
| |
Collapse
|
33
|
Monda E, Falco L, Palmiero G, Rubino M, Perna A, Diana G, Verrillo F, Dongiglio F, Cirillo A, Fusco A, Caiazza M, Limongelli G. Cardiovascular Involvement in Fabry's Disease: New Advances in Diagnostic Strategies, Outcome Prediction and Management. Card Fail Rev 2023; 9:e12. [PMID: 37602190 PMCID: PMC10433112 DOI: 10.15420/cfr.2023.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 08/22/2023] Open
Abstract
Cardiovascular involvement is common in Fabry's disease and is the leading cause of morbidity and mortality. The research is focused on identifying diagnostic clues suggestive of cardiovascular involvement in the preclinical stage of the disease through clinical and imaging markers. Different pathophysiologically driven therapies are currently or will soon be available for the treatment of Fabry's disease, with the most significant benefit observed in the early stages of the disease. Thus, early diagnosis and risk stratification for adverse outcomes are crucial to determine when to start an aetiological treatment. This review describes the cardiovascular involvement in Fabry's disease, focusing on the advances in diagnostic strategies, outcome prediction and disease management.
Collapse
Affiliation(s)
- Emanuele Monda
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi HospitalNaples, Italy
- Institute of Cardiovascular Science, University College LondonLondon, UK
| | - Luigi Falco
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi HospitalNaples, Italy
| | - Giuseppe Palmiero
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi HospitalNaples, Italy
| | - Marta Rubino
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi HospitalNaples, Italy
| | - Alessia Perna
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi HospitalNaples, Italy
| | - Gaetano Diana
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi HospitalNaples, Italy
| | - Federica Verrillo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi HospitalNaples, Italy
| | - Francesca Dongiglio
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi HospitalNaples, Italy
| | - Annapaola Cirillo
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi HospitalNaples, Italy
| | - Adelaide Fusco
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi HospitalNaples, Italy
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi HospitalNaples, Italy
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi HospitalNaples, Italy
- Institute of Cardiovascular Science, University College LondonLondon, UK
| |
Collapse
|
34
|
Nose Y, Fujii H, Goto S, Kono K, Okamoto H, Watanabe K, Nishi S. Investigation of bone mineral density and the changes by enzyme replacement therapy in patients with Fabry disease. Mol Genet Metab 2023; 139:107634. [PMID: 37406430 DOI: 10.1016/j.ymgme.2023.107634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/24/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Fabry disease (FD) is an inherited disorder that causes organ dysfunction. However, only a few studies have reported on bone mineral density (BMD) in FD patients, and the relationship between BMD and clinical factors such as globotriaosylsphingosine (lyso-Gb3) remains unclear. Therefore, the current study sought to investigate BMD in FD patients, the relationship between BMD and lyso-Gb3, and the effects of enzyme replacement therapy (ERT) on changes in BMD and lyso-Gb3. METHODS This single-center, observational study included 15 patients who visited our facility for FD between January 2008 and June 2021. We assessed BMD and clinical characteristics in study patients, including plasma lyso-Gb3 levels, and examined the relationship between BMD and plasma lyso-Gb3 levels, and changes in BMD after starting ERT. RESULTS Male patients' BMD had reduced, whereas female patients' BMD was preserved. Male patients had significantly higher plasma lyso-Gb3 levels than female patients. Moreover, plasma lyso-Gb3 levels were found to be significantly related to the lumbar spine and femoral BMD. These were strongly linked with plasma lyso-Gb3 levels in male patients, whereas no strong link was observed in female patients. Furthermore, BMD significantly increased only in male patients although plasma lyso-Gb3 levels significantly decreased by ERT in all patients. CONCLUSION BMD decreased possibly due to Gb3 accumulation, and ERT could increase BMD in male FD patients.
Collapse
Affiliation(s)
- Yuma Nose
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideki Fujii
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Shunsuke Goto
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keiji Kono
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hayaki Okamoto
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kentaro Watanabe
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinichi Nishi
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
35
|
Averbuch T, White JA, Fine NM. Anderson-Fabry disease cardiomyopathy: an update on epidemiology, diagnostic approach, management and monitoring strategies. Front Cardiovasc Med 2023; 10:1152568. [PMID: 37332587 PMCID: PMC10272370 DOI: 10.3389/fcvm.2023.1152568] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Anderson-Fabry disease (AFD) is an X-linked lysosomal storage disorder caused by deficient activity of the enzyme alpha-galactosidase. While AFD is recognized as a progressive multi-system disorder, infiltrative cardiomyopathy causing a number of cardiovascular manifestations is recognized as an important complication of this disease. AFD affects both men and women, although the clinical presentation typically varies by sex, with men presenting at a younger age with more neurologic and renal phenotype and women developing a later onset variant with more cardiovascular manifestations. AFD is an important cause of increased myocardial wall thickness, and advances in imaging, in particular cardiac magnetic resonance imaging and T1 mapping techniques, have improved the ability to identify this disease non-invasively. Diagnosis is confirmed by the presence of low alpha-galactosidase activity and identification of a mutation in the GLA gene. Enzyme replacement therapy remains the mainstay of disease modifying therapy, with two formulations currently approved. In addition, newer treatments such as oral chaperone therapy are now available for select patients, with a number of other investigational therapies in development. The availability of these therapies has significantly improved outcomes for AFD patients. Improved survival and the availability of multiple agents has presented new clinical dilemmas regarding disease monitoring and surveillance using clinical, imaging and laboratory biomarkers, in addition to improved approaches to managing cardiovascular risk factors and AFD complications. This review will provide an update on clinical recognition and diagnostic approaches including differentiation from other causes of increased ventricular wall thickness, in addition to modern strategies for management and follow-up.
Collapse
Affiliation(s)
- Tauben Averbuch
- Division of Cardiology, Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
| | - James A. White
- Division of Cardiology, Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
- Stephenson Cardiac Imaging Center, Alberta Health Services, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Nowell M. Fine
- Division of Cardiology, Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
36
|
Singh J, Goodman-Vincent E, Santosh P. Evidence Synthesis of Gene Therapy and Gene Editing from Different Disorders-Implications for Individuals with Rett Syndrome: A Systematic Review. Int J Mol Sci 2023; 24:ijms24109023. [PMID: 37240368 DOI: 10.3390/ijms24109023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
This systematic review and thematic analysis critically evaluated gene therapy trials in amyotrophic lateral sclerosis, haemoglobinopathies, immunodeficiencies, leukodystrophies, lysosomal storage disorders and retinal dystrophies and extrapolated the key clinical findings to individuals with Rett syndrome (RTT). The PRISMA guidelines were used to search six databases during the last decade, followed by a thematic analysis to identify the emerging themes. Thematic analysis across the different disorders revealed four themes: (I) Therapeutic time window of gene therapy; (II) Administration and dosing strategies for gene therapy; (III) Methods of gene therapeutics and (IV) Future areas of clinical interest. Our synthesis of information has further enriched the current clinical evidence base and can assist in optimising gene therapy and gene editing studies in individuals with RTT, but it would also benefit when applied to other disorders. The findings suggest that gene therapies have better outcomes when the brain is not the primary target. Across different disorders, early intervention appears to be more critical, and targeting the pre-symptomatic stage might prevent symptom pathology. Intervention at later stages of disease progression may benefit by helping to clinically stabilise patients and preventing disease-related symptoms from worsening. If gene therapy or editing has the desired outcome, older patients would need concerted rehabilitation efforts to reverse their impairments. The timing of intervention and the administration route would be critical parameters for successful outcomes of gene therapy/editing trials in individuals with RTT. Current approaches also need to overcome the challenges of MeCP2 dosing, genotoxicity, transduction efficiencies and biodistribution.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| | - Ella Goodman-Vincent
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| |
Collapse
|
37
|
Peek JL, Wilson MH. Cell and gene therapy for kidney disease. Nat Rev Nephrol 2023:10.1038/s41581-023-00702-3. [PMID: 36973494 DOI: 10.1038/s41581-023-00702-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Kidney disease is a leading cause of morbidity and mortality across the globe. Current interventions for kidney disease include dialysis and renal transplantation, which have limited efficacy or availability and are often associated with complications such as cardiovascular disease and immunosuppression. There is therefore a pressing need for novel therapies for kidney disease. Notably, as many as 30% of kidney disease cases are caused by monogenic disease and are thus potentially amenable to genetic medicine, such as cell and gene therapy. Systemic disease that affects the kidney, such as diabetes and hypertension, might also be targetable by cell and gene therapy. However, although there are now several approved gene and cell therapies for inherited diseases that affect other organs, none targets the kidney. Promising recent advances in cell and gene therapy have been made, including in the kidney research field, suggesting that this form of therapy might represent a potential solution for kidney disease in the future. In this Review, we describe the potential for cell and gene therapy in treating kidney disease, focusing on recent genetic studies, key advances and emerging technologies, and we describe several crucial considerations for renal genetic and cell therapies.
Collapse
Affiliation(s)
- Jennifer L Peek
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Matthew H Wilson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Health Services, Nashville, TN, USA.
| |
Collapse
|
38
|
Hallows WC, Skvorak K, Agard N, Kruse N, Zhang X, Zhu Y, Botham RC, Chng C, Shukla C, Lao J, Miller M, Sero A, Viduya J, Ismaili MHA, McCluskie K, Schiffmann R, Silverman AP, Shen JS, Huisman GW. Optimizing human α-galactosidase for treatment of Fabry disease. Sci Rep 2023; 13:4748. [PMID: 36959353 PMCID: PMC10036536 DOI: 10.1038/s41598-023-31777-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/17/2023] [Indexed: 03/25/2023] Open
Abstract
Fabry disease is caused by a deficiency of α-galactosidase A (GLA) leading to the lysosomal accumulation of globotriaosylceramide (Gb3) and other glycosphingolipids. Fabry patients experience significant damage to the heart, kidney, and blood vessels that can be fatal. Here we apply directed evolution to generate more stable GLA variants as potential next generation treatments for Fabry disease. GLAv05 and GLAv09 were identified after screening more than 12,000 GLA variants through 8 rounds of directed evolution. Both GLAv05 and GLAv09 exhibit increased stability at both lysosomal and blood pH, stability to serum, and elevated enzyme activity in treated Fabry fibroblasts (19-fold) and GLA-/- podocytes (10-fold). GLAv05 and GLAv09 show improved pharmacokinetics in mouse and non-human primates. In a Fabry mouse model, the optimized variants showed prolonged half-lives in serum and relevant tissues, and a decrease of accumulated Gb3 in heart and kidney. To explore the possibility of diminishing the immunogenic potential of rhGLA, amino acid residues in sequences predicted to bind MHC II were targeted in late rounds of GLAv09 directed evolution. An MHC II-associated peptide proteomics assay confirmed a reduction in displayed peptides for GLAv09. Collectively, our findings highlight the promise of using directed evolution to generate enzyme variants for more effective treatment of lysosomal storage diseases.
Collapse
Affiliation(s)
| | - Kristen Skvorak
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Nick Agard
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
- Genentech, South San Francisco, CA, 94080, USA
| | - Nikki Kruse
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Xiyun Zhang
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
- Fornia BioSolutions Inc US, Hayward, CA, 94545, USA
| | - Yu Zhu
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Rachel C Botham
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Chinping Chng
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Charu Shukla
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Jessica Lao
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
- Octant, Emeryville, CA, 94608, USA
| | - Mathew Miller
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Antoinette Sero
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Judy Viduya
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Moulay Hicham Alaoui Ismaili
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
- Glycomine, San Mateo, CA, 94070, USA
| | - Kerryn McCluskie
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
- Glycomine, San Mateo, CA, 94070, USA
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX, 75246, USA
- 4D Molecular Therapeutics, Emeryville, CA, 94608, USA
| | - Adam P Silverman
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Jin-Song Shen
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX, 75246, USA
- 4D Molecular Therapeutics, Emeryville, CA, 94608, USA
| | - Gjalt W Huisman
- Codexis Inc.,, 200 Penobscot Drive, Redwood City, CA, 94063, USA
| |
Collapse
|
39
|
Poletto E, Silva AO, Weinlich R, Martin PKM, Torres DC, Giugliani R, Baldo G. Ex vivo gene therapy for lysosomal storage disorders: future perspectives. Expert Opin Biol Ther 2023; 23:353-364. [PMID: 36920351 DOI: 10.1080/14712598.2023.2192348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Lysosomal storage disorders (LSD) are a group of monogenic rare diseases caused by pathogenic variants in genes that encode proteins related to lysosomal function. These disorders are good candidates for gene therapy for different reasons: they are monogenic, most of lysosomal proteins are enzymes that can be secreted and cross-correct neighboring cells, and small quantities of these proteins are able to produce clinical benefits in many cases. Ex vivo gene therapy allows for autologous transplant of modified cells from different sources, including stem cells and hematopoietic precursors. AREAS COVERED Here, we summarize the main gene therapy and genome editing strategies that are currently being used as ex vivo gene therapy approaches for lysosomal disorders, highlighting important characteristics, such as vectors used, strategies, types of cells that are modified and main results in different disorders. EXPERT OPINION Clinical trials are already ongoing, and soon approved therapies for LSD based on ex vivo gene therapy approaches should reach the market.
Collapse
Affiliation(s)
- Edina Poletto
- Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto alegre, Brazil
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Andrew Oliveira Silva
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Ricardo Weinlich
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
- Centro de Ensino e Pesquisa/Pesquisa Experimental, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Davi Coe Torres
- Centro de Ensino e Pesquisa/Pesquisa Experimental, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Roberto Giugliani
- Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto alegre, Brazil
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Guilherme Baldo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto alegre, Brazil
- Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
40
|
Umer M, Kalra DK. Treatment of Fabry Disease: Established and Emerging Therapies. Pharmaceuticals (Basel) 2023; 16:320. [PMID: 37259462 PMCID: PMC9967779 DOI: 10.3390/ph16020320] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 01/14/2024] Open
Abstract
Fabry disease (FD) is a rare, X-linked inherited disorder of glycosphingolipid metabolism. It leads to the progressive accumulation of globotriaosylceramide within lysosomes due to a deficiency of α-galactosidase A enzyme. It involves multiple organs, predominantly the renal, cardiac, and cerebrovascular systems. Early diagnosis and treatment are critical to prevent progression to irreversible tissue damage and organ failure, and to halt life-threatening complications that can significantly reduce life expectancy. This review will focus on the established and emerging treatment options for FD.
Collapse
Affiliation(s)
| | - Dinesh K. Kalra
- Division of Cardiology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
41
|
Shaimardanova AA, Solovyeva VV, Issa SS, Rizvanov AA. Gene Therapy of Sphingolipid Metabolic Disorders. Int J Mol Sci 2023; 24:3627. [PMID: 36835039 PMCID: PMC9964151 DOI: 10.3390/ijms24043627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Sphingolipidoses are defined as a group of rare hereditary diseases resulting from mutations in the genes encoding lysosomal enzymes. This group of lysosomal storage diseases includes more than 10 genetic disorders, including GM1-gangliosidosis, Tay-Sachs disease, Sandhoff disease, the AB variant of GM2-gangliosidosis, Fabry disease, Gaucher disease, metachromatic leukodystrophy, Krabbe disease, Niemann-Pick disease, Farber disease, etc. Enzyme deficiency results in accumulation of sphingolipids in various cell types, and the nervous system is also usually affected. There are currently no known effective methods for the treatment of sphingolipidoses; however, gene therapy seems to be a promising therapeutic variant for this group of diseases. In this review, we discuss gene therapy approaches for sphingolipidoses that are currently being investigated in clinical trials, among which adeno-associated viral vector-based approaches and transplantation of hematopoietic stem cells genetically modified with lentiviral vectors seem to be the most effective.
Collapse
Affiliation(s)
- Alisa A. Shaimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Shaza S. Issa
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
42
|
Umer M, Kalra DK. Cardiac MRI in Fabry disease. Front Cardiovasc Med 2023; 9:1075639. [PMID: 36818911 PMCID: PMC9931723 DOI: 10.3389/fcvm.2022.1075639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/30/2022] [Indexed: 02/05/2023] Open
Abstract
Fabry disease is a rare, progressive X-linked inherited disorder of glycosphingolipid metabolism due to a deficiency of α-galactosidase A enzyme. It leads to the accumulation of globotriaosylceramide within lysosomes of multiple organs, predominantly the vascular, renal, cardiac, and nervous systems. Fabry cardiomyopathy is characterized by increased left ventricular wall thickness/mass, functional abnormalities, valvular heart disease, arrhythmias, and heart failure. Early diagnosis and treatment are critical to avoid cardiac or renal complications that can significantly reduce life expectancy in untreated FD. This review will focus on the role of cardiovascular magnetic resonance imaging in the diagnosis, clinical decision-making, and monitoring of treatment efficacy.
Collapse
|
43
|
Kleynerman A, Rybova J, Faber ML, McKillop WM, Levade T, Medin JA. Acid Ceramidase Deficiency: Bridging Gaps between Clinical Presentation, Mouse Models, and Future Therapeutic Interventions. Biomolecules 2023; 13:biom13020274. [PMID: 36830643 PMCID: PMC9953133 DOI: 10.3390/biom13020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) are ultra-rare, autosomal-recessive, acid ceramidase (ACDase) deficiency disorders caused by ASAH1 gene mutations. Currently, 73 different mutations in the ASAH1 gene have been described in humans. These mutations lead to reduced ACDase activity and ceramide (Cer) accumulation in many tissues. Presenting as divergent clinical phenotypes, the symptoms of FD vary depending on central nervous system (CNS) involvement and severity. Classic signs of FD include, but are not limited to, a hoarse voice, distended joints, and lipogranulomas found subcutaneously and in other tissues. Patients with SMA-PME lack the most prominent clinical signs seen in FD. Instead, they demonstrate muscle weakness, tremors, and myoclonic epilepsy. Several ACDase-deficient mouse models have been developed to help elucidate the complex consequences of Cer accumulation. In this review, we compare clinical reports on FD patients and experimental descriptions of ACDase-deficient mouse models. We also discuss clinical presentations, potential therapeutic strategies, and future directions for the study of FD and SMA-PME.
Collapse
Affiliation(s)
- Annie Kleynerman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jitka Rybova
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mary L. Faber
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - William M. McKillop
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Thierry Levade
- Laboratoire de Biochimie Métabolique, CHU Toulouse, and INSERM U1037, Centre de Recherches en Cancérologie de Toulouse, Université Paul Sabatier, 31062 Toulouse, France
| | - Jeffrey A. Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence: ; Tel.: +1-414-955-4118
| |
Collapse
|
44
|
Melluso A, Secondulfo F, Capolongo G, Capasso G, Zacchia M. Bardet-Biedl Syndrome: Current Perspectives and Clinical Outlook. Ther Clin Risk Manag 2023; 19:115-132. [PMID: 36741589 PMCID: PMC9896974 DOI: 10.2147/tcrm.s338653] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
The Bardet Biedl syndrome (BBS) is a rare inherited disorder considered a model of non-motile ciliopathy. It is in fact caused by mutations of genes encoding for proteins mainly localized to the base of the cilium. Clinical features of BBS patients are widely shared with patients suffering from other ciliopathies, especially autosomal recessive syndromic disorders; moreover, mutations in cilia-related genes can cause different clinical ciliopathy entities. Besides the best-known clinical features, as retinal degeneration, learning disabilities, polydactyly, obesity and renal defects, several additional clinical signs have been reported in BBS, expanding our understanding of the complexity of its clinical spectrum. The present review aims to describe the current knowledge of BBS i) pathophysiology, ii) clinical manifestations, highlighting both the most common and the less described features, iii) current and future perspective for treatment.
Collapse
Affiliation(s)
- Andrea Melluso
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Floriana Secondulfo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy,Biogem Scarl, Ariano Irpino, AV, 83031, Italy
| | - Miriam Zacchia
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy,Correspondence: Miriam Zacchia, Via Pansini 5, Naples, 80131, Italy, Tel +39 081 566 6650, Fax +39 081 566 6671, Email
| |
Collapse
|
45
|
Abstract
Hundreds of different genetic causes of chronic kidney disease are now recognized, and while individually rare, taken together they are significant contributors to both adult and pediatric diseases. Traditional genetics approaches relied heavily on the identification of large families with multiple affected members and have been fundamental to the identification of genetic kidney diseases. With the increased utilization of massively parallel sequencing and improvements to genotype imputation, we can analyze rare variants in large cohorts of unrelated individuals, leading to personalized care for patients and significant research advancements. This review evaluates the contribution of rare disorders to patient care and the study of genetic kidney diseases and highlights key advancements that utilize new techniques to improve our ability to identify new gene-disease associations.
Collapse
Affiliation(s)
- Mark D Elliott
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA;
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Hila Milo Rasouly
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA;
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA;
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
46
|
Saleh AH, Rothe M, Barber DL, McKillop WM, Fraser G, Morel CF, Schambach A, Auray-Blais C, West ML, Khan A, Fowler DH, Rupar CA, Foley R, Medin JA, Keating A. Persistent hematopoietic polyclonality after lentivirus-mediated gene therapy for Fabry disease. Mol Ther Methods Clin Dev 2023; 28:262-271. [PMID: 36816757 PMCID: PMC9932294 DOI: 10.1016/j.omtm.2023.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The safety and efficacy of lentivirus-mediated gene therapy was recently demonstrated in five male patients with Fabry disease-a rare X-linked lysosomal storage disorder caused by GLA gene mutations that result in multiple end-organ complications. To evaluate the risks of clonal dominance and leukemogenesis, which have been reported in multiple gene therapy trials, we conducted a comprehensive DNA insertion site analysis of peripheral blood samples from the five patients in our gene therapy trial. We found that patients had a polyclonal integration site spectrum and did not find evidence of a dominant clone in any patient. Although we identified vector integrations near proto-oncogenes, these had low percentages of contributions to the overall pool of integrations and did not persist over time. Overall, we show that our trial of lentivirus-mediated gene therapy for Fabry disease did not lead to hematopoietic clonal dominance and likely did not elevate the risk of leukemogenic transformation.
Collapse
Affiliation(s)
- Amr H. Saleh
- University Health Network, Toronto, ON, Canada,Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Dwayne L. Barber
- University Health Network, Toronto, ON, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - Graeme Fraser
- Department of Oncology, McMaster University and Juravinski Hospital and Cancer Centre, Hamilton, ON, Canada
| | - Chantal F. Morel
- Fred A. Litwin Family Centre in Genetic Medicine, Department of Medicine, University, Health Network, Toronto, ON, Canada
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany,Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Christiane Auray-Blais
- Division of Medical Genetics, Department of Pediatrics, CIUSSS de l’Estrie-CHUS, Hospital Fleurimont, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michael L. West
- Division of Nephrology, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Aneal Khan
- Department of Medical Genetics, Metabolics and Pediatrics, Alberta Children’s Hospital, Cumming School of Medicine, Research Institute, University of Calgary, Calgary, AB, Canada
| | | | - C. Anthony Rupar
- Departments of Pathology and Laboratory Medicine and Pediatrics, Western University, London, ON, Canada,Children’s Health Research Institute, London, ON, Canada
| | - Ronan Foley
- Department of Pathology and Molecular Medicine, McMaster University and Juravinski, Hospital and Cancer Centre, Hamilton, ON, Canada
| | - Jeffrey A. Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Armand Keating
- University Health Network, Toronto, ON, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,Princess Margaret Cancer Centre, 610 University Avenue, 700U 6-325 Toronto, ON M5G 2M9, Canada,Corresponding author Armand Keating, MD, Princess Margaret Cancer Centre, 610 University Avenue, 700U 6-325 Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
47
|
Kido J, Sugawara K, Nakamura K. Gene therapy for lysosomal storage diseases: Current clinical trial prospects. Front Genet 2023; 14:1064924. [PMID: 36713078 PMCID: PMC9880060 DOI: 10.3389/fgene.2023.1064924] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of metabolic inborn errors caused by defective enzymes in the lysosome, resulting in the accumulation of undegraded substrates. LSDs are progressive diseases that exhibit variable rates of progression depending on the disease and the patient. The availability of effective treatment options, including substrate reduction therapy, pharmacological chaperone therapy, enzyme replacement therapy, and bone marrow transplantation, has increased survival time and improved the quality of life in many patients with LSDs. However, these therapies are not sufficiently effective, especially against central nerve system abnormalities and corresponding neurological and psychiatric symptoms because of the blood-brain barrier that prevents the entry of drugs into the brain or limiting features of specific treatments. Gene therapy is a promising tool for the treatment of neurological pathologies associated with LSDs. Here, we review the current state of gene therapy for several LSDs for which clinical trials have been conducted or are planned. Several clinical trials using gene therapy for LSDs are underway as phase 1/2 studies; no adverse events have not been reported in most of these studies. The administration of viral vectors has achieved good therapeutic outcomes in animal models of LSDs, and subsequent human clinical trials are expected to promote the practical application of gene therapy for LSDs.
Collapse
Affiliation(s)
- Jun Kido
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan,Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan,*Correspondence: Jun Kido,
| | - Keishin Sugawara
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan,Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| |
Collapse
|
48
|
Palaiodimou L, Kokotis P, Zompola C, Papagiannopoulou G, Bakola E, Papadopoulou M, Zouvelou V, Petras D, Vlachopoulos C, Tsivgoulis G. Fabry Disease: Current and Novel Therapeutic Strategies. A Narrative Review. Curr Neuropharmacol 2023; 21:440-456. [PMID: 35652398 PMCID: PMC10207921 DOI: 10.2174/1570159x20666220601124117] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Fabry disease (FD) is an inherited lysosomal storage disorder, leading to multisystemic manifestations and causing significant morbidity and mortality. OBJECTIVE The aim of this narrative review is to present the current and novel therapeutic strategies in FD, including symptomatic and specific treatment options. METHODS A systematic literature search was conducted to identify relevant studies, including completed and ongoing randomized-controlled clinical trials (RCTs), prospective or retrospective cohort studies, case series and case reports that provided clinical data regarding FD treatment. RESULTS A multidisciplinary symptomatic treatment is recommended for FD patients, personalized according to disease manifestations and their severity. During the last two decades, FD-specific treatments, including two enzyme-replacement-therapies (agalsidase alfa and agalsidase beta) and chaperone treatment with migalastat have been approved for use and allowed for symptoms' stabilization or even disease burden reduction. More therapeutic agents are currently under investigation. Substrate reduction therapies, including lucerastat and venglustat, have shown promising results in RCTs and may be used either as monotherapy or as complementary therapy to established enzymereplacement- therapies. More stable enzyme-replacement-therapy molecules that are associated with less adverse events and lower likelihood of neutralizing antibodies formation have also been developed. Ex-vivo and in-vivo gene therapy is being tested in animal models and pilot human clinical trials, with preliminary results showing a favorable safety and efficacy profile. CONCLUSION The therapeutic landscape in FD appears to be actively expanding with more treatment options expected to become available in the near future, allowing for a more personalized approach in FD patients.
Collapse
Affiliation(s)
- Lina Palaiodimou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Kokotis
- First Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Athens, Greece
| | - Christina Zompola
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Papagiannopoulou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Bakola
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Papadopoulou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, Athens, Greece
| | - Dimitrios Petras
- Nephrology Department, Hippokration General Hospital, Athens, Greece
| | | | - Georgios Tsivgoulis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
49
|
Dogan Y, Barese CN, Schindler JW, Yoon JK, Unnisa Z, Guda S, Jacobs ME, Oborski C, Maiwald T, Clarke DL, Schambach A, Pfeifer R, Harper C, Mason C, van Til NP. Screening chimeric GAA variants in preclinical study results in hematopoietic stem cell gene therapy candidate vectors for Pompe disease. Mol Ther Methods Clin Dev 2022; 27:464-487. [PMID: 36419467 PMCID: PMC9676529 DOI: 10.1016/j.omtm.2022.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
Pompe disease is a rare genetic neuromuscular disorder caused by acid α-glucosidase (GAA) deficiency resulting in lysosomal glycogen accumulation and progressive myopathy. Enzyme replacement therapy, the current standard of care, penetrates poorly into the skeletal muscles and the peripheral and central nervous system (CNS), risks recombinant enzyme immunogenicity, and requires high doses and frequent infusions. Lentiviral vector-mediated hematopoietic stem and progenitor cell (HSPC) gene therapy was investigated in a Pompe mouse model using a clinically relevant promoter driving nine engineered GAA coding sequences incorporating distinct peptide tags and codon optimizations. Vectors solely including glycosylation-independent lysosomal targeting tags enhanced secretion and improved reduction of glycogen, myofiber, and CNS vacuolation in key tissues, although GAA enzyme activity and protein was consistently lower compared with native GAA. Genetically modified microglial cells in brains were detected at low levels but provided robust phenotypic correction. Furthermore, an amino acid substitution introduced in the tag reduced insulin receptor-mediated signaling with no evidence of an effect on blood glucose levels in Pompe mice. This study demonstrated the therapeutic potential of lentiviral HSPC gene therapy exploiting optimized GAA tagged coding sequences to reverse Pompe disease pathology in a preclinical mouse model, providing promising vector candidates for further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Chris Mason
- AVROBIO, Inc., Cambridge, MA 02139, USA
- Advanced Centre for Biochemical Engineering, University College London, London WC1E 6AE, UK
- Corresponding author: Chris Mason, Advanced Centre for Biochemical Engineering, University College London, London WC1E 6AE, UK
| | - Niek P. van Til
- AVROBIO, Inc., Cambridge, MA 02139, USA
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, VU University, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1081 HV Amsterdam, the Netherlands
- Corresponding author: Niek P. van Til, Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Centers, VU University, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
50
|
Li X, Ren X, Zhang Y, Ding L, Huo M, Li Q. Fabry disease: Mechanism and therapeutics strategies. Front Pharmacol 2022; 13:1025740. [PMID: 36386210 PMCID: PMC9643830 DOI: 10.3389/fphar.2022.1025740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Fabry disease is a monogenic disease characterized by a deficiency or loss of the α-galactosidase A (GLA). The resulting impairment in lysosomal GLA enzymatic activity leads to the pathogenic accumulation of enzymatic substrate and, consequently, the progressive appearance of clinical symptoms in target organs, including the heart, kidney, and brain. However, the mechanisms involved in Fabry disease-mediated organ damage are largely ambiguous and poorly understood, which hinders the development of therapeutic strategies for the treatment of this disorder. Although currently available clinical approaches have shown some efficiency in the treatment of Fabry disease, they all exhibit limitations that need to be overcome. In this review, we first introduce current mechanistic knowledge of Fabry disease and discuss potential therapeutic strategies for its treatment. We then systemically summarize and discuss advances in research on therapeutic approaches, including enzyme replacement therapy (ERT), gene therapy, and chaperone therapy, as well as strategies targeting subcellular compartments, such as lysosomes, the endoplasmic reticulum, and the nucleus. Finally, the future development of potential therapeutic strategies is discussed based on the results of mechanistic studies and the limitations associated with these therapeutic approaches.
Collapse
Affiliation(s)
- Xi Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiangyi Ren
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Yabing Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lin Ding
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Minfeng Huo
- Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Qian Li, ; Minfeng Huo,
| | - Qian Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Qian Li, ; Minfeng Huo,
| |
Collapse
|