1
|
Joshi A, Chen S, Rahman FM, Nair S, Cheng X, Govindarajan R. Bile acids inhibit equilibrative adenosine transport to alter adenosine receptor signaling in cholestasis. J Biol Chem 2025; 301:108563. [PMID: 40316019 DOI: 10.1016/j.jbc.2025.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 04/16/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025] Open
Abstract
High plasma bile acid (BA) levels in individuals with cholestasis affect adenosine (Ado) receptor (AdoR) signaling, but the underlying mechanisms are unclear. Here, we investigated BA interference with cellular Ado transport as a putative mechanism for altering extracellular Ado availability for AdoR signaling. Computational modeling and experimental studies revealed that equilibrative nucleoside transporter 2 (ENT2), but not ENT1, is capable of translocating BAs across the mammalian plasma membrane. ENT2-mediated BA transport has low affinity, is pH independent, and is partially sensitive to inhibition by nitrobenzylthioinosine (NBMPR). At cholestatic plasma concentrations of BAs, however, BAs interfere with Na+-independent, NBMPR-sensitive, ENTs without affecting Na+-driven, NBMPR-insensitive, concentrative nucleoside transporters. Interestingly, this BA interference with ENT transport was largely selective for Ado, with minimal to no impact on the transport of other purine or pyrimidine nucleosides. Xenopus oocyte-based studies demonstrated that BA inhibition of Ado transport is in the order ENT3≥ENT2>ENT1, which also corresponds to the intrinsic ability of individual ENTs to transport BAs. In silico analysis revealed that Ado and BA tend to occupy similar spaces within the ENT translocation pores and that the polar and hydrophilic pore-lining residues determine the interaction of ENTs with BAs. Furthermore, in vivo studies indicated that the accumulation of extraneously administered Ado decreases in the livers of cholestatic mice and that interference with Ado transport alters AdoR signaling. Together, these findings reveal novel ENT-dependent BA‒Ado interactions that may have implications for BA dysregulation of AdoR signaling in cholestatic liver diseases.
Collapse
Affiliation(s)
- Arnav Joshi
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Sijie Chen
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Fazlur Md Rahman
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Sreenath Nair
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA; Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA; Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
2
|
Basson C, Serem JC, Bipath P, Hlophe YN. In vitro effects of l-kynurenine and quinolinic acid on adhesion, migration and apoptosis in B16 F10 melanoma cells. Biochem Biophys Res Commun 2024; 736:150851. [PMID: 39454303 DOI: 10.1016/j.bbrc.2024.150851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
INTRODUCTION The inhibition of melanoma adhesion through adhesion molecules, such as integrins and E-cadherin, may represent a promising strategy for managing melanoma metastasis. Compounds, namely l-kynurenine (L-kyn) and quinolinic acid (Quin), previously displayed anti-cancer effects at half-maximal inhibitory concentration (IC50) against B16 F10 melanoma cells in vitro. However, the role of these compounds in B16 F10 melanoma cell adhesion, migration and apoptosis remain unknown. METHODS Post-exposure to the compounds, flow cytometry was used to analyse the expression of very late antigen-5 (VLA-5), E-cadherin and cleaved caspase-3 in B16 F10 melanoma and RAW 264.7 murine macrophage cells. An adhesion assay was used to quantify the adhesion of both cell lines to vitronectin. A scratch migration assay was used to measure the possible inhibition of cell migration in B16 F10 cells in response to L-kyn and Quin. RESULTS In both B16 F10 and RAW 264.7 cells, neither L-kyn nor Quin induced significant effects on VLA-5 expression or cell adhesion to vitronectin. In B16 F10 cells, both L-kyn and Quin elevated E-cadherin expression and displayed a trend of suppressed migration. However, only L-kyn elevated E-cadherin in RAW 264.7 cells. L-kyn induced apoptosis by elevating cleaved caspase-3 expression in both cell lines. CONCLUSION L-kyn and Quin demonstrated promising antimetastatic effects in their ability to elevate E-cadherin expression and induce apoptosis in B16 F10 melanoma cells. However, these effects did not occur in response to vitronectin or VLA-5 integrin alterations. Furthermore, it cannot be excluded that L-kyn also induced apoptosis in RAW 264.7 cells. As such, these effects should be confirmed in additional control cell lines and substantiated with in vivo models.
Collapse
Affiliation(s)
- Charlise Basson
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - June Cheptoo Serem
- Department of Anatomy, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Priyesh Bipath
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Yvette Nkondo Hlophe
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
3
|
Schlenker C, Richard K, Skobelkina S, Mathena RP, Perkins DJ. ER-transiting bacterial toxins amplify STING innate immune responses and elicit ER stress. Infect Immun 2024; 92:e0030024. [PMID: 39057915 PMCID: PMC11321001 DOI: 10.1128/iai.00300-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The cGAS/STING sensor system drives innate immune responses to intracellular microbial double-stranded DNA (dsDNA) and bacterial cyclic nucleotide second messengers (e.g., c-di-AMP). STING-dependent cell-intrinsic responses can increase resistance to microbial infection and speed pathogen clearance. Correspondingly, STING activation and signaling are known to be targeted for suppression by effectors from several bacterial pathogens. Whether STING responses are also positively regulated through sensing of specific bacterial effectors is less clear. We find that STING activation through dsDNA, by its canonical ligand 2'-3' cGAMP, or the small molecule DMXAA is potentiated following intracellular delivery of the AB5 toxin family member pertussis toxin from Bordetella pertussis or the B subunit of cholera toxin from Vibrio cholerae. Entry of pertussis toxin or cholera toxin B into mouse macrophages triggers markers of endoplasmic reticulum (ER) stress and enhances ligand-dependent STING responses at the level of STING receptor activation in a manner that is independent of toxin enzymatic activity. Our results provide an example in which STING responses integrate information about the presence of relevant ER-transiting bacterial toxins into the innate inflammatory response and may help to explain the in vivo adjuvant effects of catalytically inactive toxins.
Collapse
Affiliation(s)
- Catherine Schlenker
- Program in Oncology University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, Maryland, USA
| | - Katharina Richard
- Department of Microbiology and Immunology, School of Medicine, Baltimore, Maryland, USA
| | - Sofia Skobelkina
- Program in Oncology University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, Maryland, USA
| | - R. Paige Mathena
- Department of Microbiology and Immunology, School of Medicine, Baltimore, Maryland, USA
| | - Darren J. Perkins
- Program in Oncology University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Ma H, Qu J, Liao Y, Liu L, Yan M, Wei Y, Xu W, Luo J, Dai Y, Pang Z, Qu Q. Equilibrative nucleotide transporter ENT3 (SLC29A3): A unique transporter for inherited disorders and cancers. Exp Cell Res 2024; 434:113892. [PMID: 38104646 DOI: 10.1016/j.yexcr.2023.113892] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
As a crucial gene associated with diseases, the SLC29A3 gene encodes the equilibrative nucleoside transporter 3 (ENT3). ENT3 plays an essential regulatory role in transporting intracellular hydrophilic nucleosides, nucleotides, hydrophilic anticancer and antiviral nucleoside drugs, energy metabolism, subcellular localization, protein stability, and signal transduction. The mutation and inactivation of SLC29A3 are intimately linked to the occurrence, development, and prognosis of various human tumors. Moreover, many hereditary human diseases, such as H syndrome, pigmentary hypertrichosis and non-autoimmune insulin-dependent diabetes mellitus (PHID) syndrome, Faisalabad histiocytosis (FHC), are related to SLC29A3 mutations. This review explores the mechanisms of SLC29A3 mutations and expression alterations in inherited disorders and cancers. Additionally, we compile studies on the inhibition of ENT3, which may serve as an effective strategy to potentiate the anticancer activity of chemotherapy. Thus, the synopsis of genetics, permeant function and drug therapy of ENT3 provides a new theoretical and empirical foundation for the diagnosis, prognosis of evaluation and treatment of various related diseases.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China
| | - Yongkang Liao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yiwen Wei
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yuxin Dai
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, People's Republic of China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China; Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, People's Republic of China.
| |
Collapse
|
5
|
Shiloh R, Lubin R, David O, Geron I, Okon E, Hazan I, Zaliova M, Amarilyo G, Birger Y, Borovitz Y, Brik D, Broides A, Cohen-Kedar S, Harel L, Kristal E, Kozlova D, Ling G, Shapira Rootman M, Shefer Averbuch N, Spielman S, Trka J, Izraeli S, Yona S, Elitzur S. Loss of function of ENT3 drives histiocytosis and inflammation through TLR-MAPK signaling. Blood 2023; 142:1740-1751. [PMID: 37738562 DOI: 10.1182/blood.2023020714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
Histiocytoses are inflammatory myeloid neoplasms often driven by somatic activating mutations in mitogen-activated protein kinase (MAPK) cascade genes. H syndrome is an inflammatory genetic disorder caused by germ line loss-of-function mutations in SLC29A3, encoding the lysosomal equilibrative nucleoside transporter 3 (ENT3). Patients with H syndrome are predisposed to develop histiocytosis, yet the mechanism is unclear. Here, through phenotypic, molecular, and functional analysis of primary cells from a cohort of patients with H syndrome, we reveal the molecular pathway leading to histiocytosis and inflammation in this genetic disorder. We show that loss of function of ENT3 activates nucleoside-sensing toll-like receptors (TLR) and downstream MAPK signaling, inducing cytokine secretion and inflammation. Importantly, MEK inhibitor therapy led to resolution of histiocytosis and inflammation in a patient with H syndrome. These results demonstrate a yet-unrecognized link between a defect in a lysosomal transporter and pathological activation of MAPK signaling, establishing a novel pathway leading to histiocytosis and inflammation.
Collapse
Affiliation(s)
- Ruth Shiloh
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Ruth Lubin
- The Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| | - Odeya David
- Pediatric Endocrinology Unit, Soroka University Medical Center, Beer Sheva, Israel
- Pediatric Ambulatory Center, Soroka University Medical Center, Beer Sheva, Israel
- Joyce and Irving Goldman Medical School, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ifat Geron
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Elimelech Okon
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Idit Hazan
- The Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| | - Marketa Zaliova
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine of Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Gil Amarilyo
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Rheumatology Unit, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Yehudit Birger
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Yael Borovitz
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Nephrology, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Dafna Brik
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Arnon Broides
- Pediatric Ambulatory Center, Soroka University Medical Center, Beer Sheva, Israel
- Joyce and Irving Goldman Medical School, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- Pediatric Immunology Clinic, Soroka University Medical Center, Beer Sheva, Israel
| | - Sarit Cohen-Kedar
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
- Division of Gastroenterology, Rabin Medical Center, Petach Tikva, Israel
| | - Liora Harel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Rheumatology Unit, Schneider Children's Medical Center, Petach Tikva, Israel
| | - Eyal Kristal
- Pediatric Ambulatory Center, Soroka University Medical Center, Beer Sheva, Israel
- Joyce and Irving Goldman Medical School, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- Pediatric Immunology Clinic, Soroka University Medical Center, Beer Sheva, Israel
| | - Daria Kozlova
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Rabin Medical Center, Beilinson Campus, Petach Tikva, Israel
| | - Galina Ling
- Pediatric Ambulatory Center, Soroka University Medical Center, Beer Sheva, Israel
- Joyce and Irving Goldman Medical School, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Noa Shefer Averbuch
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Genetics Clinic, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- The Jesse and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Shiri Spielman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pediatrics A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Jan Trka
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine of Charles University Prague and University Hospital Motol, Prague, Czech Republic
| | - Shai Izraeli
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
- Felsenstein Medical Research Center, Faculty of Medicine, Tel Aviv University, Petach Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Beckman Research Institute, City of Hope, Duarte, CA
| | - Simon Yona
- The Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| | - Sarah Elitzur
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children's Medical Center, Petach Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Jackson KG, Way GW, Zeng J, Lipp MK, Zhou H. The Dynamic Role of Endoplasmic Reticulum Stress in Chronic Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1389-1399. [PMID: 37028592 PMCID: PMC10548273 DOI: 10.1016/j.ajpath.2023.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
Chronic liver disease (CLD) is a major worldwide public health threat, with an estimated prevalence of 1.5 billion individuals with CLD in 2020. Chronic activation of endoplasmic reticulum (ER) stress-related pathways is recognized as substantially contributing to the pathologic progression of CLD. The ER is an intracellular organelle that folds proteins into their correct three-dimensional shapes. ER-associated enzymes and chaperone proteins highly regulate this process. Perturbations in protein folding lead to misfolded or unfolded protein accumulation in the ER lumen, resulting in ER stress and concomitant activation of the unfolded protein response (UPR). The adaptive UPR is a set of signal transduction pathways evolved in mammalian cells that attempts to reestablish ER protein homeostasis by reducing protein load and increasing ER-associated degradation. However, maladaptive UPR responses in CLD occur due to prolonged UPR activation, leading to concomitant inflammation and cell death. This review assesses the current understanding of the cellular and molecular mechanisms that regulate ER stress and the UPR in the progression of various liver diseases and the potential pharmacologic and biological interventions that target the UPR.
Collapse
Affiliation(s)
- Kaitlyn G Jackson
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Grayson W Way
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Jing Zeng
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Marissa K Lipp
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia; Central Virginia Veterans Healthcare System, Richmond, Virginia.
| |
Collapse
|
7
|
Giacomini KM, Yee SW, Koleske ML, Zou L, Matsson P, Chen EC, Kroetz DL, Miller MA, Gozalpour E, Chu X. New and Emerging Research on Solute Carrier and ATP Binding Cassette Transporters in Drug Discovery and Development: Outlook From the International Transporter Consortium. Clin Pharmacol Ther 2022; 112:540-561. [PMID: 35488474 PMCID: PMC9398938 DOI: 10.1002/cpt.2627] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
Abstract
Enabled by a plethora of new technologies, research in membrane transporters has exploded in the past decade. The goal of this state-of-the-art article is to describe recent advances in research on membrane transporters that are particularly relevant to drug discovery and development. This review covers advances in basic, translational, and clinical research that has led to an increased understanding of membrane transporters at all levels. At the basic level, we describe the available crystal structures of membrane transporters in both the solute carrier (SLC) and ATP binding cassette superfamilies, which has been enabled by the development of cryogenic electron microscopy methods. Next, we describe new research on lysosomal and mitochondrial transporters as well as recently deorphaned transporters in the SLC superfamily. The translational section includes a summary of proteomic research, which has led to a quantitative understanding of transporter levels in various cell types and tissues and new methods to modulate transporter function, such as allosteric modulators and targeted protein degraders of transporters. The section ends with a review of the effect of the gut microbiome on modulation of transporter function followed by a presentation of 3D cell cultures, which may enable in vivo predictions of transporter function. In the clinical section, we describe new genomic and pharmacogenomic research, highlighting important polymorphisms in transporters that are clinically relevant to many drugs. Finally, we describe new clinical tools, which are becoming increasingly available to enable precision medicine, with the application of tissue-derived small extracellular vesicles and real-world biomarkers.
Collapse
Affiliation(s)
- Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Sook W. Yee
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Megan L. Koleske
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ling Zou
- Pharmacokinetics and Drug MetabolismAmgen Inc.South San FranciscoCaliforniaUSA
| | - Pär Matsson
- Department of PharmacologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Eugene C. Chen
- Department of Drug Metabolism and PharmacokineticsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Miles A. Miller
- Center for Systems BiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Elnaz Gozalpour
- Drug Safety and MetabolismIMED Biotech UnitSafety and ADME Translational Sciences DepartmentAstraZeneca R&DCambridgeUK
| | - Xiaoyan Chu
- Department of ADME and Discovery ToxicologyMerck & Co. IncKenilworthNew JerseyUSA
| |
Collapse
|
8
|
Pastor-Anglada M, Mata-Ventosa A, Pérez-Torras S. Inborn Errors of Nucleoside Transporter (NT)-Encoding Genes ( SLC28 and SLC29). Int J Mol Sci 2022; 23:8770. [PMID: 35955904 PMCID: PMC9369021 DOI: 10.3390/ijms23158770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
The proper regulation of nucleotide pools is essential for all types of cellular functions and depends on de novo nucleotide biosynthesis, salvage, and degradation pathways. Despite the apparent essentiality of these processes, a significant number of rare diseases associated with mutations in genes encoding various enzymes of these pathways have been already identified, and others are likely yet to come. However, knowledge on genetic alterations impacting on nucleoside and nucleobase transporters is still limited. At this moment three gene-encoding nucleoside and nucleobase transporter proteins have been reported to be mutated in humans, SLC29A1, SLC29A3, and SLC28A1, impacting on the expression and function of ENT1, ENT3, and CNT1, respectively. ENT1 alterations determine Augustine-null blood type and cause ectopic calcification during aging. ENT3 deficiency translates into various clinical manifestations and syndromes, altogether listed in the OMIM catalog as histiocytosis-lymphoadenopathy plus syndrome (OMIM#602782). CNT1 deficiency causes uridine-cytidineuria (URCTU) (OMIM#618477), a unique type of pyrimidineuria with an as yet not well-known clinical impact. Increasing knowledge on the physiological, molecular and structural features of these transporter proteins is helping us to better understand the biological basis behind the biochemical and clinical manifestations caused by these deficiencies. Moreover, they also support the view that some metabolic compensation might occur in these disturbances, because they do not seem to significantly impact nucleotide homeostasis, but rather other biological events associated with particular subtypes of transporter proteins.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Aida Mata-Ventosa
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sandra Pérez-Torras
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Ali SS, Raj R, Kaur T, Weadick B, Nayak D, No M, Protos J, Odom H, Desai K, Persaud AK, Wang J, Govindarajan R. Solute Carrier Nucleoside Transporters in Hematopoiesis and Hematological Drug Toxicities: A Perspective. Cancers (Basel) 2022; 14:cancers14133113. [PMID: 35804885 PMCID: PMC9264962 DOI: 10.3390/cancers14133113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Anticancer nucleoside analogs are promising treatments that often result in damaging toxicities and therefore ineffective treatment. Mechanisms of this are not well-researched, but cellular nucleoside transport research in mice might provide additional insight given transport’s role in mammalian hematopoiesis. Cellular nucleoside transport is a notable component of mammalian hematopoiesis due to how mutations within it relate to hematological abnormities. This review encompasses nucleoside transporters, focusing on their inherent properties, hematopoietic role, and their interplay in nucleoside drug treatment side effects. We then propose potential mechanisms to explain nucleoside transport involvement in blood disorders. Finally, we point out and advocate for future research areas that would improve therapeutic outcomes for patients taking nucleoside analog therapies. Abstract Anticancer nucleoside analogs produce adverse, and at times, dose-limiting hematological toxicities that can compromise treatment efficacy, yet the mechanisms of such toxicities are poorly understood. Recently, cellular nucleoside transport has been implicated in normal blood cell formation with studies from nucleoside transporter-deficient mice providing additional insights into the regulation of mammalian hematopoiesis. Furthermore, several idiopathic human genetic disorders have revealed nucleoside transport as an important component of mammalian hematopoiesis because mutations in individual nucleoside transporter genes are linked to various hematological abnormalities, including anemia. Here, we review recent developments in nucleoside transporters, including their transport characteristics, their role in the regulation of hematopoiesis, and their potential involvement in the occurrence of adverse hematological side effects due to nucleoside drug treatment. Furthermore, we discuss the putative mechanisms by which aberrant nucleoside transport may contribute to hematological abnormalities and identify the knowledge gaps where future research may positively impact treatment outcomes for patients undergoing various nucleoside analog therapies.
Collapse
Affiliation(s)
- Syed Saqib Ali
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Ruchika Raj
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Tejinder Kaur
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Brenna Weadick
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Debasis Nayak
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Minnsung No
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Jane Protos
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Hannah Odom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Kajal Desai
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Avinash K. Persaud
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
| | - Joanne Wang
- Department of Pharmaceutics, College of Pharmacy, University of Washington, Seattle, WA 98195, USA;
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA; (S.S.A.); (R.R.); (T.K.); (B.W.); (D.N.); (M.N.); (J.P.); (H.O.); (K.D.); (A.K.P.)
- Translational Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +1-614-247-8269; Fax: +1-614-292-2588
| |
Collapse
|
10
|
Tadokoro Y, Hirao A. The Role of Nutrients in Maintaining Hematopoietic Stem Cells and Healthy Hematopoiesis for Life. Int J Mol Sci 2022; 23:1574. [PMID: 35163498 PMCID: PMC8836201 DOI: 10.3390/ijms23031574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Nutrients are converted by the body to smaller molecules, which are utilized for both anabolic and catabolic metabolic reactions. Cooperative regulation of these processes is critical for life-sustaining activities. In this review, we focus on how the regulation of nutrient-driven metabolism maintains healthy hematopoietic stem cells (HSCs). For this purpose, we have examined the metabolic regulation of HSCs from two perspectives: (1) the control of intracellular metabolism by the balance of anabolic and catabolic reactions; and (2) the control of organismal metabolic status and hematopoiesis by dietary intake of nutrients. Critical roles of catabolic regulators in stem cell homeostasis are conserved in several types of tissues, including hematopoiesis. These catabolic signals are also major regulators of organismal lifespan in multiple species. In parallel, changes to nutrients via alterations to dietary intake affect not only an organism's metabolic state but also the behavior of its stem cells. While the molecular mechanisms involved in these two aspects of nutrient function may not necessarily overlap, a deeper understanding of these phenomena will point to new avenues of medical research and may furnish new agents for improving human health care.
Collapse
Affiliation(s)
- Yuko Tadokoro
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan;
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) possess the ability to regenerate over a lifetime in the face of extreme cellular proliferation and environmental stress. Yet, mechanisms that control the regenerative properties of HSCs remain elusive. ER stress has emerged as an important signaling event that supports HSC self-renewal and multipotency. The purpose of this review is to summarize the pathways implicating ER stress as cytoprotective in HSCs. RECENT FINDINGS Recent studies have shown multiple signaling cascades of the unfolded protein response (UPR) are persistently activated in healthy HSCs, suggesting that low-dose ER stress is a feature HSCs. Stress adaptation is a feature ascribed to cytoprotection and longevity of cells as well as organisms, in what is known as hormesis. However, assembling this information into useful knowledge to improve the therapeutic application of HSCs remains challenging and the upstream activators and downstream transcriptional programs induced by ER stress that are required in HSCs remain to be discovered. SUMMARY The maintenance of HSCs requires a dose-dependent simulation of ER stress responses that involves persistent, low-dose UPR. Unraveling the complexity of this signaling node may elucidate mechanisms related to regeneration of HSCs that can be harnessed to expand HSCs for cellular therapeutics ex vivo and transplantation in vivo.
Collapse
Affiliation(s)
- Larry L Luchsinger
- Lindsley F. Kimball Research Institute, New York Blood Center, New York City, New York, USA
| |
Collapse
|