1
|
Nickchi P, Vadadokhau U, Mirzaie M, Baumann M, Saei AA, Jafari M. Monitoring Functional Posttranslational Modifications Using a Data-Driven Proteome Informatic Pipeline. Proteomics 2025; 25:e202400238. [PMID: 40100226 PMCID: PMC12019915 DOI: 10.1002/pmic.202400238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/20/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
Posttranslational modifications (PTMs) are of significant interest in molecular biomedicine due to their crucial role in signal transduction across various cellular and organismal processes. Characterizing PTMs, distinguishing between functional and inert modifications, quantifying their occupancies, and understanding PTM crosstalk are challenging tasks in any biosystem. Studying each PTM often requires a specific, labor-intensive experimental design. Here, we present a PTM-centric proteome informatic pipeline for predicting relevant PTMs in mass spectrometry-based proteomics data without prior information. Once predicted, these in silico identified PTMs can be incorporated into a refined database search and compared to measured data. As a practical application, we demonstrate how this pipeline can be used to study glycoproteomics in oral squamous cell carcinoma based on the proteome profile of primary tumors. Subsequently, we experimentally identified cellular proteins that are differentially expressed in cells treated with multikinase inhibitors dasatinib and staurosporine using mass spectrometry-based proteomics. Computational enrichment analysis was then employed to determine the potential PTMs of differentially expressed proteins induced by both drugs. Finally, we conducted an additional round of database search with the predicted PTMs. Our pipeline successfully analyzed the enriched PTMs, and detected proteins not identified in the initial search. Our findings support the effectiveness of PTM-centric searching of MS data in proteomics based on computational enrichment analysis, and we propose integrating this approach into future proteomics search engines.
Collapse
Affiliation(s)
- Payman Nickchi
- Department of StatisticsUniversity of British ColumbiaVancouver, Biritish ColumbiaCanada
| | - Uladzislau Vadadokhau
- MedicumDepartment of Biochemistry and Developmental BiologyMeilahti Clinical Proteomics Core FacilityUniversity of HelsinkiHelsinkiFinland
| | - Mehdi Mirzaie
- Department of PharmacologyFaculty of Medicine & Helsinki Institute of Life ScienceUniversity of HelsinkiHelsinkiFinland
| | - Marc Baumann
- MedicumDepartment of Biochemistry and Developmental BiologyMeilahti Clinical Proteomics Core FacilityUniversity of HelsinkiHelsinkiFinland
| | - Amir A. Saei
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Mohieddin Jafari
- MedicumDepartment of Biochemistry and Developmental BiologyMeilahti Clinical Proteomics Core FacilityUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
2
|
Park SK, Cho JS, Yun DY, Lee G, Lim JH, Choi JH, Park KJ. Investigating potential freshness indicators for packaged oysters through multivariate statistical analysis. Food Sci Biotechnol 2025; 34:815-827. [PMID: 39958182 PMCID: PMC11822166 DOI: 10.1007/s10068-024-01693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 02/18/2025] Open
Abstract
Pacific oysters (Crassostrea gigas) are globally renowned shellfish. In South Korea, oysters are commonly packaged with filling water in polyethylene bags. Previous studies have proposed various freshness and quality parameters for oysters, including pH, volatile basic nitrogen content, glycogen content, and viable cell count. We aimed to identify the objective indicators of oyster freshness during storage and distribution using metabolomic analysis and multivariate statistical techniques. Packaged oyster samples were analyzed for metabolites using gas chromatography-mass-spectrometry during 9-days storage at 5 °C or 15 °C. Additionally, the pH, turbidity, and soluble protein content of the filling water were measured. Multivariate statistical analyses, including principal component analysis, partial least squares discriminant analysis, and orthogonal projections to latent structure-discriminant analysis revealed statistically significant results, demonstrating metabolite clustering based on storage duration. In conclusion, this study introduced crucial freshness indicators for stored or distributed oysters by utilizing metabolomic analysis and multivariate statistical techniques. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01693-y.
Collapse
Affiliation(s)
- Seul-Ki Park
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Jeong-Seok Cho
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju, 55365 Republic of Korea
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Dae-Yong Yun
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Gyuseok Lee
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Jeong-Ho Lim
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju, 55365 Republic of Korea
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Jeong Hee Choi
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju, 55365 Republic of Korea
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Kee-Jai Park
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju, 55365 Republic of Korea
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| |
Collapse
|
3
|
Meng Z, Saei AA, Lyu H, Gaetani M, Zubarev RA. One-Pot Time-Induced Proteome Integral Solubility Alteration Assay for Automated and Sensitive Drug-Target Identification. Anal Chem 2024; 96:18917-18921. [PMID: 39567183 PMCID: PMC11618734 DOI: 10.1021/acs.analchem.4c05127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
The proteome integral solubility alteration (PISA) assay is widely used for identifying drug targets, but it is labor-intensive and time-consuming and requires a substantial amount of biological sample. Aiming at enabling automation and greatly reducing the sample amount, we developed one-pot time-induced (OPTI)-PISA. Here, we demonstrate OPTI-PISA performance on identifying targets of multiple drugs in cell lysate and scaling down the sample amount to sub-microgram levels, making the PISA method suitable for NanoProteomics. OPTI-PISA can be implemented using only the standard equipment of a proteomics lab.
Collapse
Affiliation(s)
- Zhaowei Meng
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
- Chemical
Proteomics Unit, Science for Life Laboratory
(SciLifeLab), 17165 Stockholm, Sweden
- Chemical
Proteomics, Swedish National Infrastructure
for Biological Mass Spectrometry (BioMS), 17177 Stockholm, Sweden
| | - Amir Ata Saei
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Hezheng Lyu
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
- Biomotif
AB, 18212 Danderyd, Sweden
| | - Massimiliano Gaetani
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
- Chemical
Proteomics Unit, Science for Life Laboratory
(SciLifeLab), 17165 Stockholm, Sweden
- Chemical
Proteomics, Swedish National Infrastructure
for Biological Mass Spectrometry (BioMS), 17177 Stockholm, Sweden
| | - Roman A. Zubarev
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
- Chemical
Proteomics Unit, Science for Life Laboratory
(SciLifeLab), 17165 Stockholm, Sweden
- Chemical
Proteomics, Swedish National Infrastructure
for Biological Mass Spectrometry (BioMS), 17177 Stockholm, Sweden
- Department
of Pharmaceutical and Toxicological Chemistry, Medical Institute, Peoples’ Friendship University of Russia named
after Patrice Lumumba (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russian Federation
| |
Collapse
|
4
|
Saei AA, Lundin A, Lyu H, Gharibi H, Luo H, Teppo J, Zhang X, Gaetani M, Végvári Á, Holmdahl R, Gygi SP, Zubarev RA. Multifaceted Proteome Analysis at Solubility, Redox, and Expression Dimensions for Target Identification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401502. [PMID: 39120068 PMCID: PMC11481203 DOI: 10.1002/advs.202401502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Multifaceted interrogation of the proteome deepens the system-wide understanding of biological systems; however, mapping the redox changes in the proteome has so far been significantly more challenging than expression and solubility/stability analyses. Here, the first high-throughput redox proteomics approach integrated with expression analysis (REX) is devised and combined with the Proteome Integral Solubility Alteration (PISA) assay. The whole PISA-REX experiment with up to four biological replicates can be multiplexed into a single tandem mass tag TMTpro set. For benchmarking this compact tool, HCT116 cells treated with auranofin are analyzed, showing great improvement compared with previous studies. PISA-REX is then applied to study proteome remodeling upon stimulation of human monocytes by interferon α (IFN-α). Applying this tool to study the proteome changes in plasmacytoid dendritic cells (pDCs) isolated from wild-type versus Ncf1-mutant mice treated with interferon α, shows that NCF1 deficiency enhances the STAT1 pathway and modulates the expression, solubility, and redox state of interferon-induced proteins. Providing comprehensive multifaceted information on the proteome, the compact PISA-REX has the potential to become an industry standard in proteomics and to open new windows into the biology of health and disease.
Collapse
Affiliation(s)
- Amir A. Saei
- Department of Cell BiologyHarvard Medical SchoolBostonMA02115USA
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- BiozentrumUniversity of BaselBasel4056Switzerland
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholm17165Sweden
| | - Albin Lundin
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Hezheng Lyu
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Hassan Gharibi
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Huqiao Luo
- Division of Immunology, Medical Inflammation Research Group, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSE‐17 177Sweden
| | - Jaakko Teppo
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- Drug Research Program, Faculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Xuepei Zhang
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Massimiliano Gaetani
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- SciLifeLabStockholmSE‐17 177Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
| | - Rikard Holmdahl
- Division of Immunology, Medical Inflammation Research Group, Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSE‐17 177Sweden
| | - Steven P. Gygi
- Department of Cell BiologyHarvard Medical SchoolBostonMA02115USA
| | - Roman A. Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and BiophysicsKarolinska InstitutetStockholmSE‐17 177Sweden
- SciLifeLabStockholmSE‐17 177Sweden
| |
Collapse
|
5
|
Seidel S, Winkler KF, Kurreck A, Cruz-Bournazou MN, Paulick K, Groß S, Neubauer P. Thermal segment microwell plate control for automated liquid handling setups. LAB ON A CHIP 2024; 24:2224-2236. [PMID: 38456212 DOI: 10.1039/d3lc00714f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Automated high-throughput liquid handling operations in biolabs necessitate miniaturised and automatised equipment for effective space utilisation and system integration. This paper presents a thermal segment microwell plate control unit designed for enhanced microwell-based experimentation in liquid handling setups. The development of this device stems from the need to move towards geometry standardization and system integration of automated lab equipment. It incorporates features based on Smart Sensor and Sensor 4.0 concepts. An enzymatic activity assay is implemented with the developed device on a liquid handling station, allowing fast characterisation via a high-throughput approach. The device outperforms other comparable devices in certain metrics based on automated liquid handling requirements and addresses the needs of future biolabs in automation, especially in high-throughput screening.
Collapse
Affiliation(s)
- Simon Seidel
- Chair of Bioprocess Engineering, Department of Biotechnology, Faculty III, Technische Universität Berlin, Berlin, Germany.
| | - Katja F Winkler
- Chair of Bioprocess Engineering, Department of Biotechnology, Faculty III, Technische Universität Berlin, Berlin, Germany.
| | - Anke Kurreck
- Chair of Bioprocess Engineering, Department of Biotechnology, Faculty III, Technische Universität Berlin, Berlin, Germany.
- BioNukleo GmbH, Berlin, Germany
| | - Mariano Nicolas Cruz-Bournazou
- Chair of Bioprocess Engineering, Department of Biotechnology, Faculty III, Technische Universität Berlin, Berlin, Germany.
| | | | | | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Faculty III, Technische Universität Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Zhang H, Ye YH, Wang Y, Liu JZ, Jiao QC. A Bibliometric Analysis: Current Perspectives and Potential Trends of Enzyme Thermostability from 1991-2022. Appl Biochem Biotechnol 2024; 196:1211-1240. [PMID: 37382790 DOI: 10.1007/s12010-023-04615-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Thermostability is considered a crucial parameter to evaluate the viability of enzymes in industrial applications. Over the past 31 years, many studies have been reported on the thermostability of enzymes. However, there is no systematic bibliometric analysis of publications on the thermostability of enzymes. In this study, 16,035 publications related to the thermostability of enzymes were searched and collected, showing an increasing annual trend. China contributed the most publications, while the United States had the highest citation count. International Journal of Biological Macromolecules is the most productive journal in the research field. Moreover, Chinese acad sci and Khosro Khajeh are the most active institutions and prolific authors in the field, respectively. Analysis of references with the strongest citation bursts and keyword co-occurrences, magnetic nanoparticles, metal-organic frameworks, molecular dynamics, and rational design are current hot spots and significant future research directions. This study is the first comprehensive bibliometric analysis summarizing trends and developments in enzyme thermostability research. Our findings could provide scholars with an understanding of the fundamental knowledge framework of the field and identify recent potential hotspots and research trends that could facilitate the discovery of collaboration opportunities.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yun-Hui Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jun-Zhong Liu
- Nanjing Institute for Comprehensive Utilization of Wild Plants, CHINA CO-OP, Nanjing, 211111, China.
| | - Qing-Cai Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Zhang X, Meng Z, Beusch CM, Gharibi H, Cheng Q, Lyu H, Di Stefano L, Wang J, Saei AA, Végvári Á, Gaetani M, Zubarev RA. Ultralight Ultrafast Enzymes. Angew Chem Int Ed Engl 2024; 63:e202316488. [PMID: 38009610 DOI: 10.1002/anie.202316488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Inorganic materials depleted of heavy stable isotopes are known to deviate strongly in some physicochemical properties from their isotopically natural counterparts. Here we explored for the first time the effect of simultaneous depletion of the heavy carbon, hydrogen, oxygen and nitrogen isotopes on the bacterium E. coli and the enzymes expressed in it. Bacteria showed faster growth, with most proteins exhibiting higher thermal stability, while for recombinant enzymes expressed in depleted media, faster kinetics was discovered. At room temperature, luciferase, thioredoxin and dihydrofolate reductase and Pfu DNA polymerase showed up to a 250 % increase in activity compared to the native counterparts, with an additional ∼50 % increase at 10 °C. Diminished conformational and vibrational entropy is hypothesized to be the cause of the accelerated kinetics. Ultralight enzymes may find an application where extreme reaction rates are required.
Collapse
Affiliation(s)
- Xuepei Zhang
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Zhaowei Meng
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Christian M Beusch
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Hassan Gharibi
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Hezheng Lyu
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Luciano Di Stefano
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
- European Research Institute for the Biology of Aging, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Jijing Wang
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Amir A Saei
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Massimiliano Gaetani
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
- Chemical Proteomics Core Facility, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
- Chemical Proteomics, Science for Life Laboratory (SciLifeLab), 17177, Stockholm, Sweden
| | - Roman A Zubarev
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
- >Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, 119146, Moscow, Russia
- The National Medical Research Center for Endocrinology, Moskva, 115478 Moscow, Russia
| |
Collapse
|
8
|
Saei AA, Gharibi H, Lyu H, Nilsson B, Jafari M, Von Holst H, Zubarev RA. Massive Solubility Changes in Neuronal Proteins upon Simulated Traumatic Brain Injury Reveal the Role of Shockwaves in Irreversible Damage. Molecules 2023; 28:6768. [PMID: 37836614 PMCID: PMC10574794 DOI: 10.3390/molecules28196768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
We investigated the immediate molecular consequences of traumatic brain injuries (TBIs) using a novel proteomics approach. We simulated TBIs using an innovative laboratory apparatus that employed a 5.1 kg dummy head that held neuronal cells and generated a ≤4000 g-force acceleration upon impact. A Proteome Integral Solubility Alteration (PISA) assay was then employed to monitor protein solubility changes in a system-wide manner. Dynamic impacts led to both a reduction in neuron viability and massive solubility changes in the proteome. The affected proteins mapped not only to the expected pathways, such as those of cell adhesion, collagen, and laminin structures, as well as the response to stress, but also to other dense protein networks, such as immune response, complement, and coagulation cascades. The cellular effects were found to be mainly due to the shockwave rather than the g-force acceleration. Soft materials could reduce the impact's severity only until they were fully compressed. This study shows a way of developing a proteome-based meter for measuring irreversible shockwave-induced cell damage and provides a resource for identifying protein biomarkers of TBIs and potential drug targets for the development of products aimed at primary prevention and intervention.
Collapse
Affiliation(s)
- Amir Ata Saei
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden; (A.A.S.); (H.G.); (H.L.); (B.N.); (M.J.)
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden; (A.A.S.); (H.G.); (H.L.); (B.N.); (M.J.)
| | - Hezheng Lyu
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden; (A.A.S.); (H.G.); (H.L.); (B.N.); (M.J.)
| | - Brady Nilsson
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden; (A.A.S.); (H.G.); (H.L.); (B.N.); (M.J.)
| | - Maryam Jafari
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden; (A.A.S.); (H.G.); (H.L.); (B.N.); (M.J.)
| | - Hans Von Holst
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden; (A.A.S.); (H.G.); (H.L.); (B.N.); (M.J.)
- Division of Clinical Neuroscience, Section of Neurosurgery, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Roman A. Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65 Stockholm, Sweden; (A.A.S.); (H.G.); (H.L.); (B.N.); (M.J.)
- Department of Pharmacological & Technological Chemistry, Sechenov First Moscow State Medical University, 119146 Moscow, Russia
- The National Medical Research Center for Endocrinology, 115478 Moscow, Russia
| |
Collapse
|
9
|
Zhang X, Ruan C, Wang Y, Wang K, Liu X, Lyu J, Ye M. Integrated Protein Solubility Shift Assays for Comprehensive Drug Target Identification on a Proteome-Wide Scale. Anal Chem 2023; 95:13779-13787. [PMID: 37676971 DOI: 10.1021/acs.analchem.3c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Target proteins are often stabilized after binding with a ligand and thereby typically become more resistant to denaturation. Based on this phenomenon, several methods without the need to covalently modify the ligand have been developed to identify target proteins for a specific ligand. These methods usually employ complicated workflows with high cost and limited throughput. Here, we develop an iso-pH shift assay (ipHSA) method, a proteome-wide target identification method that detects ligand-induced protein solubility shifts by precipitating proteins with a single concentration of acidic agent followed by protein quantification via data-independent acquisition (DIA). Using a pan-kinase inhibitor, staurosporine, we demonstrated that ipHSA increased throughput compared to the previously developed pH-dependent protein precipitation (pHDPP) method. ipHSA was found to have high complementarity in staurosporine target identification compared with the improved isothermal shift assay (iTSA) and isosolvent shift assay (iSSA) using DIA instead of tandem mass tags (TMTs) for quantification. To further improve target identification sensitivity, we developed an integrated protein solubility shift assay (IPSSA) by pooling the supernatants yielded from ipHSA, iTSA, and iSSA methods. IPSSA exhibited increased sensitivity in screening staurosporine targets by 38, 29, and 38% compared to individual methods. Increasing the number of replicate experiments further enhanced the sensitivity of target identification. Meanwhile, IPSSA also improved the throughput and reduced the cost compared with previous methods. As a fast and efficient tool for drug target identification, IPSSA is expected to have broad applications in the study of the mechanism of action.
Collapse
Affiliation(s)
- Xiaolei Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chengfei Ruan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Keyun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawen Lyu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Kang J, Seshadri M, Cupp-Sutton KA, Wu S. Toward the analysis of functional proteoforms using mass spectrometry-based stability proteomics. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1186623. [PMID: 39072225 PMCID: PMC11281393 DOI: 10.3389/frans.2023.1186623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional proteomics aims to elucidate biological functions, mechanisms, and pathways of proteins and proteoforms at the molecular level to examine complex cellular systems and disease states. A series of stability proteomics methods have been developed to examine protein functionality by measuring the resistance of a protein to chemical or thermal denaturation or proteolysis. These methods can be applied to measure the thermal stability of thousands of proteins in complex biological samples such as cell lysate, intact cells, tissues, and other biological fluids to measure proteome stability. Stability proteomics methods have been popularly applied to observe stability shifts upon ligand binding for drug target identification. More recently, these methods have been applied to characterize the effect of structural changes in proteins such as those caused by post-translational modifications (PTMs) and mutations, which can affect protein structures or interactions and diversify protein functions. Here, we discussed the current application of a suite of stability proteomics methods, including thermal proteome profiling (TPP), stability of proteomics from rates of oxidation (SPROX), and limited proteolysis (LiP) methods, to observe PTM-induced structural changes on protein stability. We also discuss future perspectives highlighting the integration of top-down mass spectrometry and stability proteomics methods to characterize intact proteoform stability and understand the function of variable protein modifications.
Collapse
Affiliation(s)
- Ji Kang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Meena Seshadri
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Kellye A. Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
11
|
Cheff DM, Huang C, Scholzen KC, Gencheva R, Ronzetti MH, Cheng Q, Hall MD, Arnér ESJ. The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1. Redox Biol 2023; 62:102703. [PMID: 37087975 PMCID: PMC10149367 DOI: 10.1016/j.redox.2023.102703] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023] Open
Abstract
Ferroptosis is defined as cell death triggered by iron-dependent lipid peroxidation that is preventable by antioxidant compounds such as ferrostatin-1. Endogenous suppressors of ferroptosis include FSP-1 and the selenoprotein GPX4, the latter of which directly enzymatically reduces lipid hydroperoxides. Small molecules that trigger ferroptosis include RSL3, ML162, and ML210; these compounds are often used in studies of ferroptosis and are generally considered as GPX4 inhibitors. Here, we found that RSL3 and ML162 completely lack capacity of inhibiting the enzymatic activity of recombinant selenoprotein GPX4. Surprisingly, these compounds were instead found to be efficient inhibitors of another selenoprotein, TXNRD1. Other known inhibitors of TXNRD1, including auranofin, TRi-1 and TRi-2, are also efficient inducers of cell death but that cell death could not be suppressed with ferrostatin-1. Our results collectively suggest that prior studies using RSL3 and ML162 may need to be reevaluated in the context of ferroptosis with regards to additional enzyme targets and mechanisms of action that may be involved.
Collapse
Affiliation(s)
- Dorian M Cheff
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden; Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States
| | - Chuying Huang
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Karoline C Scholzen
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Michael H Ronzetti
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Matthew D Hall
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, United States
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden; Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
12
|
Chen Y, Wang Y, Liang X, Zhang Y, Fernie AR. Mass spectrometric exploration of phytohormone profiles and signaling networks. TRENDS IN PLANT SCIENCE 2023; 28:399-414. [PMID: 36585336 DOI: 10.1016/j.tplants.2022.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Phytohormones have crucial roles in plant growth, development, and acclimation to environmental stress; however, measuring phytohormone levels and unraveling their complex signaling networks and interactions remains challenging. Mass spectrometry (MS) has revolutionized the study of complex biological systems, enabling the comprehensive identification and quantification of phytohormones and their related targets. Here, we review recent advances in MS technologies and highlight studies that have used MS to discover and analyze phytohormone-mediated molecular events. In particular, we focus on the application of MS for profiling phytohormones, elucidating phosphorylation signaling, and mapping protein interactions in plants.
Collapse
Affiliation(s)
- Yanmei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 100193, Beijing, China.
| | - Yi Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Resources and Environment, Henan Agricultural University, 450002, Zhengzhou, China
| | - Xinlin Liang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 100193, Beijing, China
| | - Youjun Zhang
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria; Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria; Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
13
|
Dhoonmoon A, Nicolae CM. Mono-ADP-ribosylation by PARP10 and PARP14 in genome stability. NAR Cancer 2023; 5:zcad009. [PMID: 36814782 PMCID: PMC9940457 DOI: 10.1093/narcan/zcad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/09/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
ADP-ribosylation is a post-translational modification involved in a variety of processes including DNA damage repair, transcriptional regulation, and cellular proliferation. Depending on the number of ADP moieties transferred to target proteins, ADP-ribosylation can be classified either as mono-ADP-ribosylation (MARylation) or poly-ADP-ribosylation (PARylation). This post-translational modification is catalyzed by enzymes known as ADP-ribosyltransferases (ARTs), which include the poly (ADP-ribose)-polymerase (PARP) superfamily of proteins. Certain members of the PARP family including PARP1 and PARP2 have been extensively studied and assessed as therapeutic targets. However, the other members of the PARP family of protein are not as well studied but have gained attention in recent years given findings suggesting their roles in an increasing number of cellular processes. Among these other members are PARP10 and PARP14, which have gradually emerged as key players in maintenance of genomic stability and carcinogenesis. PARP10 and PARP14 catalyze the transfer of a single ADP moiety to target proteins. Here, we summarize the current knowledge on MARylation in DNA repair and cancer, focusing on PARP10 and PARP14. We highlight the roles of PARP10 and PARP14 in cancer progression and response to chemotherapeutics and briefly discuss currently known PARP10 and PARP14 inhibitors.
Collapse
Affiliation(s)
- Ashna Dhoonmoon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
14
|
Hu L, Liu S, Yao H, Hu Y, Wang Y, Jiang J, Li X, Fu F, Yin Q, Wang H. Identification of a novel heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) ligand that disrupts HnRNPA2B1/nucleic acid interactions to inhibit the MDMX-p53 axis in gastric cancer. Pharmacol Res 2023; 189:106696. [PMID: 36791898 DOI: 10.1016/j.phrs.2023.106696] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Gastric carcinoma is a highly malignant tumor that still lacks effective molecular targets. Heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) is an essential oncogenic driver overexpressed in various cancers. The potential role of hnRNPA2B1 in oncotherapy has not been revealed because of the absence of active chemical molecules. In this study, we identified the pseudourea derivative XI-011 as a novel hnRNPA2B1 ligand using chemical proteomics. An interaction study indicated that XI-011 could bind the nucleotide-binding domain to disrupt the recruitment of hnRNPA2B1 to the promoter and untranslated region of the murine double minute X (MDMX) gene, thereby inhibiting its transcription. In addition, chemical targeting of hnRNPA2B1 recovered inactivated p53 and enhanced the therapeutic efficacy of apatinib in vivo. This work presented a novel strategy to restore p53 activity for the treatment of gastric cancers via chemically targeting hnRNPA2B1.
Collapse
Affiliation(s)
- Lei Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Shuqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongying Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yuemiao Hu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Yingjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jingpeng Jiang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaopeng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qikun Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
15
|
Chen W, Ji G, Wu R, Fang C, Lu H. Mass spectrometry-based candidate substrate and site identification of PTM enzymes. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
16
|
Abstract
Significance: Thioredoxin (Trx) is a powerful antioxidant that reduces protein disulfides to maintain redox stability in cells and is involved in regulating multiple redox-dependent signaling pathways. Recent Advance: The current accumulation of findings suggests that Trx participates in signaling pathways that interact with various proteins to manipulate their dynamic regulation of structure and function. These network pathways are critical for cancer pathogenesis and therapy. Promising clinical advances have been presented by most anticancer agents targeting such signaling pathways. Critical Issues: We herein link the signaling pathways regulated by the Trx system to potential cancer therapeutic opportunities, focusing on the coordination and strengths of the Trx signaling pathways in apoptosis, ferroptosis, immunomodulation, and drug resistance. We also provide a mechanistic network for the exploitation of therapeutic small molecules targeting the Trx signaling pathways. Future Directions: As research data accumulate, future complex networks of Trx-related signaling pathways will gain in detail. In-depth exploration and establishment of these signaling pathways, including Trx upstream and downstream regulatory proteins, will be critical to advancing novel cancer therapeutics. Antioxid. Redox Signal. 38, 403-424.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | | | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
17
|
Wang G, Li Y, Wang T, Wang J, Yao J, Yan G, Zhang Y, Lu H. Multi-comparative Thermal Proteome Profiling Uncovers New O-GlcNAc Proteins in a System-wide Method. Anal Chem 2023; 95:881-888. [PMID: 36580660 DOI: 10.1021/acs.analchem.2c03371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Among diverse protein post-translational modifications, O-GlcNAcylation, a simple but essential monosaccharide modification, plays crucial roles in cellular processes and is closely related to various diseases. Despite its ubiquity in cells, properties of low stoichiometry and reversibility are hard nuts to crack in system-wide research of O-GlcNAc. Herein, we developed a novel method employing multi-comparative thermal proteome profiling for O-GlcNAc transferase (OGT) substrate discovery. Melting curves of proteins under different treatments were profiled and compared with high reproducibility and consistency. Consequently, proteins with significantly shifted stabilities caused by OGT and uridine-5'-diphosphate N-acetylglucosamine were screened out from which new O-GlcNAcylated proteins were uncovered.
Collapse
Affiliation(s)
- Guoli Wang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200030, China
| | - Yang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200030, China
| | - Ting Wang
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200082, China
| | - Jun Wang
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200082, China
| | - Jun Yao
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200030, China
| | - Guoquan Yan
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200030, China
| | - Ying Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200030, China.,Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200082, China
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200030, China.,Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200082, China
| |
Collapse
|
18
|
Ashkarran AA, Gharibi H, Zeki DA, Radu I, Khalighinejad F, Keyhanian K, Abrahamsson CK, Ionete C, Saei AA, Mahmoudi M. Multi-omics analysis of magnetically levitated plasma biomolecules. Biosens Bioelectron 2023; 220:114862. [PMID: 36403493 PMCID: PMC9750732 DOI: 10.1016/j.bios.2022.114862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
We recently discovered that superparamagnetic iron oxide nanoparticles (SPIONs) can levitate plasma biomolecules in the magnetic levitation (MagLev) system and cause formation of ellipsoidal biomolecular bands. To better understand the composition of the levitated biomolecules in various bands, we comprehensively characterized them by multi-omics analyses. To probe whether the biomolecular composition of the levitated ellipsoidal bands correlates with the health of plasma donors, we used plasma from individuals who had various types of multiple sclerosis (MS), as a model disease with significant clinical importance. Our findings reveal that, while the composition of proteins does not show much variability, there are significant differences in the lipidome and metabolome profiles of each magnetically levitated ellipsoidal band. By comparing the lipidome and metabolome compositions of various plasma samples, we found that the levitated biomolecular ellipsoidal bands do contain information on the health status of the plasma donors. More specifically, we demonstrate that there are particular lipids and metabolites in various layers of each specific plasma pattern that significantly contribute to the discrimination of different MS subtypes, i.e., relapsing-remitting MS (RRMS), secondary-progressive MS (SPMS), and primary-progressive MS (PPMS). These findings will pave the way for utilization of MagLev of biomolecules in biomarker discovery for identification of diseases and discrimination of their subtypes.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA
| | - Hassan Gharibi
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177, Stockholm, Sweden
| | - Dalia Abou Zeki
- Department of Neurology, University of Massachusetts, Worcester, MA, USA
| | - Irina Radu
- Department of Neurology, University of Massachusetts, Worcester, MA, USA
| | | | - Kiandokht Keyhanian
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Carolina Ionete
- Department of Neurology, University of Massachusetts, Worcester, MA, USA.
| | - Amir Ata Saei
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177, Stockholm, Sweden.
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
19
|
Le Sueur C, Hammarén HM, Sridharan S, Savitski MM. Thermal proteome profiling: Insights into protein modifications, associations, and functions. Curr Opin Chem Biol 2022; 71:102225. [PMID: 36368297 DOI: 10.1016/j.cbpa.2022.102225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022]
Abstract
Tracking proteins' biophysical characteristics on a proteome-wide scale can provide valuable information on their functions and interactions. Thermal proteome profiling (TPP) is a multiplexed quantitative proteomics approach that measures changes in protein thermal stability-a key biophysical property-across different cellular states. Developed in 2014, as a target-deconvolution assay for drugs and other small molecules, TPP has since evolved to a system-level biochemical omics technique providing insights into context-dependent changes in protein states. In this review, we summarise key advances in the experimental and data analysis pipeline that have aided this transformation and discuss the recent developments and applications of TPP.
Collapse
Affiliation(s)
- Cecile Le Sueur
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany; Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Henrik M Hammarén
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Sindhuja Sridharan
- Barts Brain Tumour Center, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Mikhail M Savitski
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany.
| |
Collapse
|
20
|
Gharibi H, Chernobrovkin AL, Saei AA, Zhang X, Gaetani M, Makarov AA, Zubarev RA. Proteomics-Compatible Fourier Transform Isotopic Ratio Mass Spectrometry of Polypeptides. Anal Chem 2022; 94:15048-15056. [PMID: 36251694 PMCID: PMC9631351 DOI: 10.1021/acs.analchem.2c03119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022]
Abstract
Measuring the relative abundances of heavy stable isotopes of the elements C, H, N, and O in proteins is of interest in environmental science, archeology, zoology, medicine, and other fields. The isotopic abundance measurements of the fine structure of immonium ions with ultrahigh resolution mass spectrometry obtained in gas-phase fragmentation of polypeptides have previously uncovered anomalous deuterium enrichment in (hydroxy)proline of bone collagen in marine mammals. Here, we provide a detailed description and validation of this approach and demonstrate per mil-range precision of isotopic ratio measurements in aliphatic residues from proteins and cell lysates. The analysis consists of proteomics-type experiment demanding sub-microgram amounts of a protein sample and providing concomitantly protein sequence data allowing one to verify sample purity and establish its identity. A novel software tool protein amino acid-resolved isotopic ratio mass spectrometry (PAIR-MS) is presented for extracting isotopic ratio data from the raw data files acquired on an Orbitrap mass spectrometer.
Collapse
Affiliation(s)
- Hassan Gharibi
- Division
of Physiological Chemistry I, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm171 77, Sweden
| | | | - Amir Ata Saei
- Division
of Physiological Chemistry I, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm171 77, Sweden
- Department
of Cell Biology, Harvard Medical School, Boston, Massachusetts02115, United States
| | - Xuepei Zhang
- Division
of Physiological Chemistry I, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm171 77, Sweden
- Chemical
Proteomics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm171 77, Sweden
- Unit
of Chemical Proteomics, Science for Life
Laboratory (SciLifeLab), Stockholm171 77, Sweden
| | - Massimiliano Gaetani
- Division
of Physiological Chemistry I, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm171 77, Sweden
- Chemical
Proteomics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm171 77, Sweden
- Unit
of Chemical Proteomics, Science for Life
Laboratory (SciLifeLab), Stockholm171 77, Sweden
| | | | - Roman A. Zubarev
- Division
of Physiological Chemistry I, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm171 77, Sweden
- Department
of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow119146, Russia
- The
National Medical Research Center for Endocrinology, 115478Moscow, Russia
| |
Collapse
|
21
|
Marín-Rubio JL, Peltier-Heap RE, Dueñas ME, Heunis T, Dannoura A, Inns J, Scott J, Simpson AJ, Blair HJ, Heidenreich O, Allan JM, Watt JE, Martin MP, Saxty B, Trost M. A Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Assay Identifies Nilotinib as an Inhibitor of Inflammation in Acute Myeloid Leukemia. J Med Chem 2022; 65:12014-12030. [PMID: 36094045 PMCID: PMC9511480 DOI: 10.1021/acs.jmedchem.2c00671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Inflammatory responses are important in cancer, particularly
in the context of monocyte-rich aggressive myeloid neoplasm. We developed
a label-free cellular phenotypic drug discovery assay to identify
anti-inflammatory drugs in human monocytes derived from acute myeloid
leukemia (AML), by tracking several features ionizing from only 2500
cells using matrix-assisted laser desorption/ionization-time of flight
(MALDI-TOF) mass spectrometry. A proof-of-concept screen showed that
the BCR-ABL inhibitor nilotinib, but not the structurally similar
imatinib, blocks inflammatory responses. In order to identify the
cellular (off-)targets of nilotinib, we performed thermal proteome
profiling (TPP). Unlike imatinib, nilotinib and other later-generation
BCR-ABL inhibitors bind to p38α and inhibit the p38α-MK2/3
signaling axis, which suppressed pro-inflammatory cytokine expression,
cell adhesion, and innate immunity markers in activated monocytes
derived from AML. Thus, our study provides a tool for the discovery
of new anti-inflammatory drugs, which could contribute to the treatment
of inflammation in myeloid neoplasms and other diseases.
Collapse
Affiliation(s)
- José Luis Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Rachel E Peltier-Heap
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Maria Emilia Dueñas
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Tiaan Heunis
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Abeer Dannoura
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Joseph Inns
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Jonathan Scott
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Helen J Blair
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - James M Allan
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Jessica E Watt
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Mathew P Martin
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Barbara Saxty
- LifeArc, SBC Open Innovation Campus, Stevenage SG1 2FX, UK
| | - Matthias Trost
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| |
Collapse
|
22
|
The PH Domain and C-Terminal polyD Motif of Phafin2 Exhibit a Unique Concurrence in Animals. MEMBRANES 2022; 12:membranes12070696. [PMID: 35877899 PMCID: PMC9324892 DOI: 10.3390/membranes12070696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023]
Abstract
Phafin2, a member of the Phafin family of proteins, contributes to a plethora of cellular activities including autophagy, endosomal cargo transportation, and macropinocytosis. The PH and FYVE domains of Phafin2 play key roles in membrane binding, whereas the C-terminal poly aspartic acid (polyD) motif specifically autoinhibits the PH domain binding to the membrane phosphatidylinositol 3-phosphate (PtdIns3P). Since the Phafin2 FYVE domain also binds PtdIns3P, the role of the polyD motif remains unclear. In this study, bioinformatics tools and resources were employed to determine the concurrence of the PH-FYVE module with the polyD motif among Phafin2 and PH-, FYVE-, or polyD-containing proteins from bacteria to humans. FYVE was found to be an ancient domain of Phafin2 and is related to proteins that are present in both prokaryotes and eukaryotes. Interestingly, the polyD motif only evolved in Phafin2 and PH- or both PH-FYVE-containing proteins in animals. PolyD motifs are absent in PH domain-free FYVE-containing proteins, which usually display cellular trafficking or autophagic functions. Moreover, the prediction of the Phafin2-interacting network indicates that Phafin2 primarily cross-talks with proteins involved in autophagy, protein trafficking, and neuronal function. Taken together, the concurrence of the polyD motif with the PH domain may be associated with complex cellular functions that evolved specifically in animals.
Collapse
|
23
|
Beusch CM, Sabatier P, Zubarev RA. Ion-Based Proteome-Integrated Solubility Alteration Assays for Systemwide Profiling of Protein-Molecule Interactions. Anal Chem 2022; 94:7066-7074. [PMID: 35506705 PMCID: PMC9118197 DOI: 10.1021/acs.analchem.2c00391] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Unbiased drug target
engagement deconvolution and mechanism of
action elucidation are major challenges in drug development. Modification-free
target engagement methods, such as thermal proteome profiling, have
gained increasing popularity in the last several years. However, these
methods have limitations, and, in any case, new orthogonal approaches
are needed. Here, we present a novel isothermal method for comprehensive
characterization of protein solubility alterations using the effect
on protein solubility of cations and anions in the Hofmeister series.
We combine the ion-based protein precipitation approach with Proteome-Integrated
Solubility Alteration (PISA) analysis and use this I-PISA assay to
delineate the targets of several anticancer drugs both in cell lysates
and intact cells. Finally, we demonstrate that I-PISA can detect solubility
changes in minute amounts of sample, opening chemical proteomics applications
to small and rare biological material.
Collapse
Affiliation(s)
- Christian M Beusch
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| | - Pierre Sabatier
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| | - Roman A Zubarev
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden.,Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow 119146, Russia.,The National Medical Research Centre for Endocrinology, Moscow 115478, Russia
| |
Collapse
|
24
|
King DT, Serrano-Negrón JE, Zhu Y, Moore CL, Shoulders MD, Foster LJ, Vocadlo DJ. Thermal Proteome Profiling Reveals the O-GlcNAc-Dependent Meltome. J Am Chem Soc 2022; 144:3833-3842. [PMID: 35230102 PMCID: PMC8969899 DOI: 10.1021/jacs.1c10621] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Posttranslational modifications alter the biophysical properties of proteins and thereby influence cellular physiology. One emerging manner by which such modifications regulate protein functions is through their ability to perturb protein stability. Despite the increasing interest in this phenomenon, there are few methods that enable global interrogation of the biophysical effects of posttranslational modifications on the proteome. Here, we describe an unbiased proteome-wide approach to explore the influence of protein modifications on the thermodynamic stability of thousands of proteins in parallel. We apply this profiling strategy to study the effects of O-linked N-acetylglucosamine (O-GlcNAc), an abundant modification found on hundreds of proteins in mammals that has been shown in select cases to stabilize proteins. Using this thermal proteomic profiling strategy, we identify a set of 72 proteins displaying O-GlcNAc-dependent thermostability and validate this approach using orthogonal methods targeting specific proteins. These collective observations reveal that the majority of proteins influenced by O-GlcNAc are, surprisingly, destabilized by O-GlcNAc and cluster into distinct macromolecular complexes. These results establish O-GlcNAc as a bidirectional regulator of protein stability and provide a blueprint for exploring the impact of any protein modification on the meltome of, in principle, any organism.
Collapse
Affiliation(s)
- Dustin T King
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jesús E Serrano-Negrón
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Yanping Zhu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Christopher L Moore
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - David J Vocadlo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
25
|
Ji H, Lu X, Zheng Z, Sun S, Tan CSH. ProSAP: a GUI software tool for statistical analysis and assessment of thermal stability data. Brief Bioinform 2022; 23:6542221. [PMID: 35246677 DOI: 10.1093/bib/bbac057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
The Cellular Thermal Shift Assay (CETSA) plays an important role in drug-target identification, and statistical analysis is a crucial step significantly affecting conclusion. We put forward ProSAP (Protein Stability Analysis Pod), an open-source, cross-platform and user-friendly software tool, which provides multiple methods for thermal proteome profiling (TPP) analysis, nonparametric analysis (NPA), proteome integral solubility alteration and isothermal shift assay (iTSA). For testing the performance of ProSAP, we processed several datasets and compare the performance of different algorithms. Overall, TPP analysis is more accurate with fewer false positive targets, but NPA methods are flexible and free from parameters. For iTSA, edgeR and DESeq2 identify more true targets than t-test and Limma, but when it comes to ranking, the four methods show not much difference. ProSAP software is available at https://github.com/hcji/ProSAP and https://zenodo.org/record/5763315.
Collapse
Affiliation(s)
- Hongchao Ji
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhenxiang Zheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Sun
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chris Soon Heng Tan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
26
|
Galera-Prat A, Alaviuhkola J, Alanen HI, Lehtiö L. Protein engineering approach to enhance activity assays of mono-ADP-ribosyltransferases through proximity. Protein Eng Des Sel 2022; 35:gzac006. [PMID: 36130221 PMCID: PMC9574550 DOI: 10.1093/protein/gzac006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/19/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Human mono-ADP-ribosylating PARP enzymes have been linked to several clinically relevant processes and many of these PARPs have been suggested as potential drug targets. Despite recent advances in the field, efforts to discover inhibitors have been hindered by the lack of tools to rapidly screen for high potency compounds and profile them against the different enzymes. We engineered mono-ART catalytic fragments to be incorporated into a cellulosome-based octavalent scaffold. Compared to the free enzymes, the scaffold-based system results in an improved activity for the tested PARPs due to improved solubility, stability and the proximity of the catalytic domains, altogether boosting their activity beyond 10-fold in the case of PARP12. This allows us to measure their activity using a homogeneous NAD+ conversion assay, facilitating its automation to lower the assay volume and costs. The approach will enable the discovery of more potent compounds due to increased assay sensitivity.
Collapse
Affiliation(s)
- Albert Galera-Prat
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, Aapistie 7B, 90220 Oulu, University of Oulu, Finland
| | - Juho Alaviuhkola
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, Aapistie 7B, 90220 Oulu, University of Oulu, Finland
| | - Heli I Alanen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, Aapistie 7B, 90220 Oulu, University of Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, Aapistie 7B, 90220 Oulu, University of Oulu, Finland
| |
Collapse
|
27
|
Van Vranken JG, Li J, Mitchell DC, Navarrete-Perea J, Gygi SP. Assessing target engagement using proteome-wide solvent shift assays. eLife 2021; 10:e70784. [PMID: 34878405 PMCID: PMC8654358 DOI: 10.7554/elife.70784] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Recent advances in mass spectrometry (MS) have enabled quantitative proteomics to become a powerful tool in the field of drug discovery, especially when applied toward proteome-wide target engagement studies. Similar to temperature gradients, increasing concentrations of organic solvents stimulate unfolding and precipitation of the cellular proteome. This property can be influenced by physical association with ligands and other molecules, making individual proteins more or less susceptible to solvent-induced denaturation. Herein, we report the development of proteome-wide solvent shift assays by combining the principles of solvent-induced precipitation (Zhang et al., 2020) with modern quantitative proteomics. Using this approach, we developed solvent proteome profiling (SPP), which is capable of establishing target engagement through analysis of SPP denaturation curves. We readily identified the specific targets of compounds with known mechanisms of action. As a further efficiency boost, we applied the concept of area under the curve analysis to develop solvent proteome integral solubility alteration (solvent-PISA) and demonstrate that this approach can serve as a reliable surrogate for SPP. We propose that by combining SPP with alternative methods, like thermal proteome profiling, it will be possible to increase the absolute number of high-quality melting curves that are attainable by either approach individually, thereby increasing the fraction of the proteome that can be screened for evidence of ligand binding.
Collapse
Affiliation(s)
| | - Jiaming Li
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | - Dylan C Mitchell
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
28
|
Sabatier P, Beusch CM, Saei AA, Aoun M, Moruzzi N, Coelho A, Leijten N, Nordenskjöld M, Micke P, Maltseva D, Tonevitsky AG, Millischer V, Carlos Villaescusa J, Kadekar S, Gaetani M, Altynbekova K, Kel A, Berggren PO, Simonson O, Grinnemo KH, Holmdahl R, Rodin S, Zubarev RA. An integrative proteomics method identifies a regulator of translation during stem cell maintenance and differentiation. Nat Commun 2021; 12:6558. [PMID: 34772928 PMCID: PMC8590018 DOI: 10.1038/s41467-021-26879-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
Detailed characterization of cell type transitions is essential for cell biology in general and particularly for the development of stem cell-based therapies in regenerative medicine. To systematically study such transitions, we introduce a method that simultaneously measures protein expression and thermal stability changes in cells and provide the web-based visualization tool ProteoTracker. We apply our method to study differences between human pluripotent stem cells and several cell types including their parental cell line and differentiated progeny. We detect alterations of protein properties in numerous cellular pathways and components including ribosome biogenesis and demonstrate that modulation of ribosome maturation through SBDS protein can be helpful for manipulating cell stemness in vitro. Using our integrative proteomics approach and the web-based tool, we uncover a molecular basis for the uncoupling of robust transcription from parsimonious translation in stem cells and propose a method for maintaining pluripotency in vitro.
Collapse
Affiliation(s)
- Pierre Sabatier
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Christian M Beusch
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Amir A Saei
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Mike Aoun
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Noah Moruzzi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, 17176, Sweden
| | - Ana Coelho
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Niels Leijten
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Magnus Nordenskjöld
- Center for Molecular Medicine, Karolinska University Hospital, Stockholm, 171 76, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, 17177, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, 171 76, Sweden
| | - Patrick Micke
- Immunology, Genetics and Pathology, Rudbecklaboratoriet, Uppsala University, Uppsala, 751 85, Sweden
| | - Diana Maltseva
- Faculty of biology and biotechnology, National Research University Higher School of Economics, Myasnitskaya Street, 13/4, Moscow, 117997, Russia
| | - Alexander G Tonevitsky
- Faculty of biology and biotechnology, National Research University Higher School of Economics, Myasnitskaya Street, 13/4, Moscow, 117997, Russia
- Scientific Research Center Bioclinicum, Ugreshskaya str. 2/85, Moscow, 115088, Russia
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, 17177, Sweden
- Translational Psychiatry, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, 171 76, Sweden
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, 1090, Austria
| | - J Carlos Villaescusa
- Neurogenetic Unit, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, 171 76, Sweden
- Stem Cell R&D-TRU, Novo Nordisk A/S, Måløv, Denmark
| | - Sandeep Kadekar
- Department of Surgical Sciences, Uppsala University, Uppsala, 752 37, Sweden
| | - Massimiliano Gaetani
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
- Chemical Proteomics Core Facility, Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 171 77, Sweden
- Chemical Proteomics, Science for Life Laboratory (SciLifeLab), Stockholm, 17 177, Sweden
| | | | - Alexander Kel
- geneXplain GmbH, Am Exer 19B, 38302, Wolfenbuettel, Germany
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, 17176, Sweden
| | - Oscar Simonson
- Department of Surgical Sciences, Uppsala University, Uppsala, 752 37, Sweden
- Department of Cardio-thoracic Surgery and Anesthesiology, Uppsala University Hospital, Uppsala, 751 85, Sweden
| | - Karl-Henrik Grinnemo
- Department of Surgical Sciences, Uppsala University, Uppsala, 752 37, Sweden
- Department of Cardio-thoracic Surgery and Anesthesiology, Uppsala University Hospital, Uppsala, 751 85, Sweden
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden
| | - Sergey Rodin
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden.
- Department of Surgical Sciences, Uppsala University, Uppsala, 752 37, Sweden.
- Department of Cardio-thoracic Surgery and Anesthesiology, Uppsala University Hospital, Uppsala, 751 85, Sweden.
| | - Roman A Zubarev
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, 17177, Sweden.
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia.
- The National Medical Research Center for Endocrinology, Moscow, 115478, Russia.
| |
Collapse
|
29
|
Li Z, Li S, Luo M, Jhong JH, Li W, Yao L, Pang Y, Wang Z, Wang R, Ma R, Yu J, Huang Y, Zhu X, Cheng Q, Feng H, Zhang J, Wang C, Hsu JBK, Chang WC, Wei FX, Huang HD, Lee TY. dbPTM in 2022: an updated database for exploring regulatory networks and functional associations of protein post-translational modifications. Nucleic Acids Res 2021; 50:D471-D479. [PMID: 34788852 PMCID: PMC8728263 DOI: 10.1093/nar/gkab1017] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
Protein post-translational modifications (PTMs) play an important role in different cellular processes. In view of the importance of PTMs in cellular functions and the massive data accumulated by the rapid development of mass spectrometry (MS)-based proteomics, this paper presents an update of dbPTM with over 2 777 000 PTM substrate sites obtained from existing databases and manual curation of literature, of which more than 2 235 000 entries are experimentally verified. This update has manually curated over 42 new modification types that were not included in the previous version. Due to the increasing number of studies on the mechanism of PTMs in the past few years, a great deal of upstream regulatory proteins of PTM substrate sites have been revealed. The updated dbPTM thus collates regulatory information from databases and literature, and merges them into a protein-protein interaction network. To enhance the understanding of the association between PTMs and molecular functions/cellular processes, the functional annotations of PTMs are curated and integrated into the database. In addition, the existing PTM-related resources, including annotation databases and prediction tools are also renewed. Overall, in this update, we would like to provide users with the most abundant data and comprehensive annotations on PTMs of proteins. The updated dbPTM is now freely accessible at https://awi.cuhk.edu.cn/dbPTM/.
Collapse
Affiliation(s)
- Zhongyan Li
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen 518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Shangfu Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Mengqi Luo
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jhih-Hua Jhong
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Wenshuo Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Lantian Yao
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuxuan Pang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Zhuo Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Rulan Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China.,School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Renfei Ma
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jinhan Yu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuqi Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xiaoning Zhu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Qifan Cheng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Hexiang Feng
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiahong Zhang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chunxuan Wang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Justin Bo-Kai Hsu
- Department of Medical Research, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Wen-Chi Chang
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan 701, Taiwan
| | - Feng-Xiang Wei
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen 518172, China.,Department of Cell Biology, Jiamusi University, Jiamusi 154007, China.,Shenzhen Children's Hospital of China Medical University, Shenzhen 518172, China
| | - Hsien-Da Huang
- The Genetics Laboratory, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen 518172, China.,School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tzong-Yi Lee
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China.,Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
30
|
Sabatier P, Beusch CM, Gencheva R, Cheng Q, Zubarev R, Arnér ESJ. Comprehensive chemical proteomics analyses reveal that the new TRi-1 and TRi-2 compounds are more specific thioredoxin reductase 1 inhibitors than auranofin. Redox Biol 2021; 48:102184. [PMID: 34788728 PMCID: PMC8591550 DOI: 10.1016/j.redox.2021.102184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
Anticancer drugs that target cellular antioxidant systems have recently attracted much attention. Auranofin (AF) is currently evaluated in several clinical trials as an anticancer agent that targets the cytosolic and mitochondrial forms of the selenoprotein thioredoxin reductase, TXNRD1 and TXNRD2. Recently, two novel TXNRD1 inhibitors (TRi-1 and TRi-2) have been developed that showed anticancer efficacy comparable to AF, but with lower mitochondrial toxicity. However, the cellular action mechanisms of these drugs have not yet been thoroughly studied. Here we used several proteomics approaches to determine the effects of AF, TRi-1 and TRi-2 when used at IC50 concentrations with the mouse B16 melanoma and LLC lung adenocarcinoma cells, as these are often used for preclinical mouse models in evaluation of anticancer drugs. The results demonstrate that TRi-1 and TRi-2 are more specific TXNRD1 inhibitors than AF and reveal additional AF-specific effects on the cellular proteome. Interestingly, AF triggered stronger Nrf2-driven antioxidant responses than the other two compounds. Furthermore, AF affected several additional proteins, including GSK3A, GSK3B, MCMBP and EEFSEC, implicating additional effects on glycogen metabolism, cellular differentiation, inflammatory pathways, DNA replication and selenoprotein synthesis processes. Our proteomics data provide a resource for researchers interested in the multidimensional analysis of proteome changes associated with oxidative stress in general, and the effects of TXNRD1 inhibitors and AF protein targets in particular.
Collapse
Affiliation(s)
- Pierre Sabatier
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Christian M Beusch
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Roman Zubarev
- Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia; The National Medical Research Center for Endocrinology, 115478, Moscow, Russia.
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Selenoprotein Research, National Institute of Oncology, 1122, Budapest, Hungary.
| |
Collapse
|
31
|
Lizano-Fallas V, Carrasco Del Amor A, Cristobal S. Systematic analysis of chemical-protein interactions from zebrafish embryo by proteome-wide thermal shift assay, bridging the gap between molecular interactions and toxicity pathways. J Proteomics 2021; 249:104382. [PMID: 34555547 DOI: 10.1016/j.jprot.2021.104382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
The molecular interaction between chemicals and proteins often promotes alteration of cellular function. One of the challenges of the toxicology is to predict the impact of exposure to chemicals. Assessing the impact of exposure implies to understand their mechanism of actions starting from identification of specific protein targets of the interaction. Current methods can mainly predict effects of characterized chemicals with knowledge of its targets, and mechanism of actions. Here, we show that proteome-wide thermal shift methods can identify chemical-protein interactions and the protein targets from bioactive chemicals. We analyzed the identified targets from a soluble proteome extracted from zebrafish embryo, that is a model system for toxicology. To evaluate the utility to predict mechanism of actions, we discussed the applicability in four cases: single chemicals, chemical mixtures, novel chemicals, and novel drugs. Our results showed that this methodology could identify the protein targets, discriminate between protein increasing and decreasing in solubility, and offering additional data to complement the map of intertwined mechanism of actions. We anticipate that the proteome integral solubility alteration (PISA) assay, as it is defined here for the unbiased identification of protein targets of chemicals could bridge the gap between molecular interactions and toxicity pathways. SIGNIFICANCE: One of the challenges of the environmental toxicology is to predict the impact of exposure to chemicals on environment and human health. Our phenotype should be explained by our genotype and the environmental exposure. Genomic methodologies can offer a deep analysis of human genome that alone cannot explain our risks of disease. We are starting to understand the key role of exposure to chemicals on our health and risks of disease. Here, we present a proteomic-based method for the identification of soluble proteins interacting with chemicals in zebrafish embryo and discuss the opportunities to complement the map of toxicity pathway perturbations. We anticipate that this PISA assay could bridge the gap between molecular interactions and toxicity pathways.
Collapse
Affiliation(s)
- Veronica Lizano-Fallas
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden
| | - Ana Carrasco Del Amor
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Medical Faculty, Linköping University, Linköping 581 85, Sweden.; Ikerbasque, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain..
| |
Collapse
|
32
|
Burton NR, Kim P, Backus KM. Photoaffinity labelling strategies for mapping the small molecule-protein interactome. Org Biomol Chem 2021; 19:7792-7809. [PMID: 34549230 PMCID: PMC8489259 DOI: 10.1039/d1ob01353j] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nearly all FDA approved drugs and bioactive small molecules exert their effects by binding to and modulating proteins. Consequently, understanding how small molecules interact with proteins at an molecular level is a central challenge of modern chemical biology and drug development. Complementary to structure-guided approaches, chemoproteomics has emerged as a method capable of high-throughput identification of proteins covalently bound by small molecules. To profile noncovalent interactions, established chemoproteomic workflows typically incorporate photoreactive moieties into small molecule probes, which enable trapping of small molecule-protein interactions (SMPIs). This strategy, termed photoaffinity labelling (PAL), has been utilized to profile an array of small molecule interactions, including for drugs, lipids, metabolites, and cofactors. Herein we describe the discovery of photocrosslinking chemistries, including a comparison of the strengths and limitations of implementation of each chemotype in chemoproteomic workflows. In addition, we highlight key examples where photoaffinity labelling has enabled target deconvolution and interaction site mapping.
Collapse
Affiliation(s)
- Nikolas R Burton
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA.
| | - Phillip Kim
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Keriann M Backus
- Department of Chemistry and Biochemistry, College of Arts and Sciences, UCLA, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
33
|
Mateus A, Kurzawa N, Perrin J, Bergamini G, Savitski MM. Drug Target Identification in Tissues by Thermal Proteome Profiling. Annu Rev Pharmacol Toxicol 2021; 62:465-482. [PMID: 34499524 DOI: 10.1146/annurev-pharmtox-052120-013205] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug target deconvolution can accelerate the drug discovery process by identifying a drug's targets (facilitating medicinal chemistry efforts) and off-targets (anticipating toxicity effects or adverse drug reactions). Multiple mass spectrometry-based approaches have been developed for this purpose, but thermal proteome profiling (TPP) remains to date the only one that does not require compound modification and can be used to identify intracellular targets in living cells. TPP is based on the principle that the thermal stability of a protein can be affected by its interactions. Recent developments of this approach have expanded its applications beyond drugs and cell cultures to studying protein-drug interactions and biological phenomena in tissues. These developments open up the possibility of studying drug treatment or mechanisms of disease in a holistic fashion, which can result in the design of better drugs and lead to a better understanding of fundamental biology. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Nils Kurzawa
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; .,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Jessica Perrin
- Cellzome GmbH, GlaxoSmithKline, 69117 Heidelberg, Germany
| | | | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| |
Collapse
|
34
|
Chemical genetic methodologies for identifying protein substrates of PARPs. Trends Biochem Sci 2021; 47:390-402. [PMID: 34366182 DOI: 10.1016/j.tibs.2021.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/30/2021] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Poly-ADP-ribose-polymerases (PARPs) are a family of 17 enzymes that regulate a diverse range of cellular processes in mammalian cells. PARPs catalyze the transfer of ADP-ribose from NAD+ to target molecules, most prominently amino acids on protein substrates, in a process known as ADP-ribosylation. Identifying the direct protein substrates of individual PARP family members is an essential first step for elucidating the mechanism by which PARPs regulate a particular pathway in cells. Two distinct chemical genetic (CG) strategies have been developed for identifying the direct protein substrates of individual PARP family members. In this review, we discuss the design principles behind these two strategies and how target identification has provided novel insight into the cellular function of individual PARPs and PARP-mediated ADP-ribosylation.
Collapse
|
35
|
Fossati A, Richards AL, Chen KH, Jaganath D, Cattamanchi A, Ernst JD, Swaney DL. Toward Comprehensive Plasma Proteomics by Orthogonal Protease Digestion. J Proteome Res 2021; 20:4031-4040. [PMID: 34319755 DOI: 10.1021/acs.jproteome.1c00357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rapid and consistent protein identification across large clinical cohorts is an important goal for clinical proteomics. With the development of data-independent technologies (DIA/SWATH-MS), it is now possible to analyze hundreds of samples with great reproducibility and quantitative accuracy. However, this technology benefits from empirically derived spectral libraries that define the detectable set of peptides and proteins. Here, we apply a simple and accessible tip-based workflow for the generation of spectral libraries to provide a comprehensive overview on the plasma proteome in individuals with and without active tuberculosis (TB). To boost protein coverage, we utilized nonconventional proteases such as GluC and AspN together with the gold standard trypsin, identifying more than 30,000 peptides mapping to 3309 proteins. Application of this library to quantify plasma proteome differences in TB infection recovered more than 400 proteins in 50 min of MS acquisition, including diagnostic Mycobacterium tuberculosis (Mtb) proteins that have previously been detectable primarily by antibody-based assays and intracellular proteins not previously described to be in plasma.
Collapse
Affiliation(s)
- Andrea Fossati
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California 94158, United States.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States.,J. David Gladstone Institutes, San Francisco, California 94158, United States
| | - Alicia L Richards
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California 94158, United States.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States.,J. David Gladstone Institutes, San Francisco, California 94158, United States
| | - Kuei-Ho Chen
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California 94158, United States.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States.,J. David Gladstone Institutes, San Francisco, California 94158, United States
| | - Devan Jaganath
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California 94158, United States.,Center for Tuberculosis, University of California San Francisco, San Francisco, California 94158, United States.,Department of Pediatrics, Division of Pediatric Infectious Diseases, University of California San Francisco, San Francisco, California 94158, United States
| | - Adithya Cattamanchi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California 94158, United States.,Center for Tuberculosis, University of California San Francisco, San Francisco, California 94158, United States.,Department of Pediatrics, Division of Pediatric Infectious Diseases, University of California San Francisco, San Francisco, California 94158, United States
| | - Joel D Ernst
- Department of Medicine, Division of Experimental Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California 94158, United States.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States.,J. David Gladstone Institutes, San Francisco, California 94158, United States
| |
Collapse
|
36
|
Fang S, Kirk PDW, Bantscheff M, Lilley KS, Crook OM. A Bayesian semi-parametric model for thermal proteome profiling. Commun Biol 2021; 4:810. [PMID: 34188175 PMCID: PMC8241860 DOI: 10.1038/s42003-021-02306-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
The thermal stability of proteins can be altered when they interact with small molecules, other biomolecules or are subject to post-translation modifications. Thus monitoring the thermal stability of proteins under various cellular perturbations can provide insights into protein function, as well as potentially determine drug targets and off-targets. Thermal proteome profiling is a highly multiplexed mass-spectrommetry method for monitoring the melting behaviour of thousands of proteins in a single experiment. In essence, thermal proteome profiling assumes that proteins denature upon heating and hence become insoluble. Thus, by tracking the relative solubility of proteins at sequentially increasing temperatures, one can report on the thermal stability of a protein. Standard thermodynamics predicts a sigmoidal relationship between temperature and relative solubility and this is the basis of current robust statistical procedures. However, current methods do not model deviations from this behaviour and they do not quantify uncertainty in the melting profiles. To overcome these challenges, we propose the application of Bayesian functional data analysis tools which allow complex temperature-solubility behaviours. Our methods have improved sensitivity over the state-of-the art, identify new drug-protein associations and have less restrictive assumptions than current approaches. Our methods allows for comprehensive analysis of proteins that deviate from the predicted sigmoid behaviour and we uncover potentially biphasic phenomena with a series of published datasets.
Collapse
Affiliation(s)
- Siqi Fang
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Paul D W Kirk
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | | | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| | - Oliver M Crook
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, UK.
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
37
|
PARP10 Multi-Site Auto- and Histone MARylation Visualized by Acid-Urea Gel Electrophoresis. Cells 2021; 10:cells10030654. [PMID: 33804157 PMCID: PMC7998796 DOI: 10.3390/cells10030654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/20/2022] Open
Abstract
Poly-ADP-ribose polymerase (PARP)-family ADP-ribosyltransferases function in various signaling pathways, predominantly in the nucleus and cytosol. Although PARP inhibitors are in clinical practice for cancer therapy, the enzymatic activities of individual PARP family members are yet insufficiently understood. We studied PARP10, a mono-ADP-ribosyltransferase and potential drug target. Using acid-urea gel electrophoresis, we found that the isolated catalytic domain of PARP10 auto-ADP-ribosylates (MARylates) at eight or more acceptor residues. We isolated individual species with either singular or several modifications and then analyzed them by mass spectrometry. The results confirmed multi-site MARylation in a random order and identified four acceptor residues. The mutagenesis of singular acceptor residues had a minor impact on the overall auto-MARylation level and no effect on the MARylation of histone H3.1. Together, our results suggest that PARP10 automodification may have functions in the regulation of intramolecular or partner binding events, rather than of its enzymatic catalysis. This contributes to a better understanding of PARP10 functions, and, in the long run, to gauging the consequences of PARP inhibitor actions.
Collapse
|