1
|
Pasca L, Politano D, Morelli F, Garau J, Signorini S, Valente EM, Borgatti R, Romaniello R. Biological pathways leading to septo-optic dysplasia: a review. Orphanet J Rare Dis 2025; 20:157. [PMID: 40181463 PMCID: PMC11969957 DOI: 10.1186/s13023-025-03541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/02/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND The precise etiology of septo-optic dysplasia (SOD) remains elusive, to date a complex interaction between genetic predisposition and prenatal exposure to environmental factors is believed to come into play. Being SOD such a heterogeneous condition, disruption of many developmental steps in the early forebrain development might occur. The knowledge of genes possibly determining SOD phenotype should be improved, therefore in this review the authors attempt to highlight the genetic pathways and genes related to this clinical condition. MAIN BODY Literature search was conducted and updated in November 2023, using PubMed and Google Scholar to identify primary research articles or case reports with available full text using the following search string "case reports," "humans," "septo-optic dysplasia," "optic nerve hypoplasia," with a recognized genetic diagnosis. Moreover, a review of genetic pathways with an involvement in SOD etiology was conducted. This review thus represents the authors' perspective based on selected literature. The several pathways presented might be already associated to other disease phenotypes and interplay with genes and pathways known to have a role in SOD determination. Those pathways may converge and thus, the implicated genes may function as cascading regulators at multiple levels. CONCLUSION The present data suggest that genes other than HESX1, SOX2, SOX3, and OTX2 might be investigated in candidate individuals with a clinical diagnosis of SOD corresponding to the presence of at least two diagnostic criteria, particularly in the presence of additional syndromic anomalies.
Collapse
Affiliation(s)
- Ludovica Pasca
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Davide Politano
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Federica Morelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy
- Service des Troubles du Spectre de l'Autisme et apparentés, Département de psychiatrie, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Jessica Garau
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sabrina Signorini
- Developmental Neuro-Ophthalmology Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Romina Romaniello
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy.
| |
Collapse
|
2
|
Prieto R, Juratli TA, Bander ED, Santagata S, Barrios L, Brastianos PK, Schwartz TH, Pascual JM. Papillary Craniopharyngioma: An Integrative and Comprehensive Review. Endocr Rev 2025; 46:151-213. [PMID: 39353067 DOI: 10.1210/endrev/bnae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/03/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Papillary craniopharyngioma (PCP) is a rare type of tumor, comprising ∼20% of all craniopharyngioma (CP) cases. It is now recognized as a separate pathological entity from the adamantinomatous type. PCPs are benign tumors, classified as World Health Organization grade 1, characterized by nonkeratinizing squamous epithelium. They typically grow as solid and round papillomatous masses or as unilocular cysts with a cauliflower-like excrescence. PCPs primarily occur in adults (95%), with increased frequency in males (60%), and predominantly affect the hypothalamus. Over 80% of these tumors are located in the third ventricle, expanding either above an anatomically intact infundibulum (strictly third ventricle tumors) or within the infundibulo-tuberal region of the third ventricle floor. Clinical manifestations commonly include visual deficits and a wide range of psychiatric disturbances (45% of patients), such as memory deficits and odd behavior. Magnetic resonance imaging can identify up to 50% of PCPs by the presence of a basal duct-like recess. Surgical management is challenging, requiring complex approaches to the third ventricle and posing significant risk of hypothalamic injury. The endoscopic endonasal approach allows radical tumor resection and yields more favorable patient outcomes. Of intriguing pathogenesis, over 90% of PCPs harbor the somatic BRAFV600E mutation, which activates the mitogen-activated protein kinase signaling pathway. A phase 2 clinical trial has demonstrated that PCPs respond well to proto-oncogene B-Raf/MAPK/ERK kinase inhibitors. This comprehensive review synthesizes information from a cohort of 560 well-described PCPs and 99 large CP series including PCP cases published from 1856 to 2023 and represents the most extensive collection of knowledge on PCPs to date.
Collapse
Affiliation(s)
- Ruth Prieto
- Department of Neurosurgery, Puerta de Hierro University Hospital, 28222 Madrid, Spain
| | - Tareq A Juratli
- Department of Neurosurgery, Laboratory of Translational Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
- Department of Neurosurgery, Division of Neuro-Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, 01307 Dresden, Germany
| | - Evan D Bander
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Laura Barrios
- Department of Applied Statistics, SGAI-CSIC, Spanish National Research Council, 28002 Madrid, Spain
| | - Priscilla K Brastianos
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Theodore H Schwartz
- Department of Neurosurgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065, USA
- Department of Otolaryngology, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065, USA
- Department of Neuroscience, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065, USA
| | - José M Pascual
- Department of Neurosurgery, La Princesa University Hospital, 28006 Madrid, Spain
| |
Collapse
|
3
|
Moriya A, Inoue SI, Saitow F, Keitoku M, Suzuki N, Oike E, Urano E, Matsumoto E, Suzuki H, Aoki Y, Ohnishi H. Q241R mutation of Braf causes neurological abnormalities in a mouse model of cardio-facio-cutaneous syndrome, independent of developmental malformations. Hum Mol Genet 2025; 34:418-434. [PMID: 39774818 DOI: 10.1093/hmg/ddae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Constitutively active mutants of BRAF cause cardio-facio-cutaneous (CFC) syndrome, characterized by growth and developmental defects, cardiac malformations, facial features, cutaneous manifestations, and mental retardation. An animal model of human CFC syndrome, the systemic BrafQ241R/+ mutant mouse, has been reported to exhibit multiple CFC syndrome-like phenotypes. In this study, we analyzed the effects of Braf mutations on neural function, separately from their effects on developmental processes. To this end, we generated Braf mutant mice expressing BRAFQ241R specifically in mature excitatory neurons (n-BrafQ241R/+). We found no growth retardation or cardiac malformations in n-BrafQ241R/+ mice, indicating normal development. Behavioral analysis revealed that n-BrafQ241R/+ mice exhibited reduced home cage activity and learning disability, which were similar to those of systemic BrafQ241R/+ mice. The active form of ERK was increased in the hippocampus of n-BrafQ241R/+ mice, whereas basal synaptic transmission and synaptic plasticity in hippocampal Schaffer collateral-CA1 synapses seems to be normal. Transcriptome analysis of the hippocampal tissue revealed significant changes in the expression of genes involved in regulation of the RAS/mitogen-activated protein kinase (MAPK) signaling pathway, synaptic function and memory formation. These data suggest that the neuronal dysfunction observed in the systemic CFC mouse model is due to the disruption of homeostasis of the RAS/MAPK signaling pathway by the activated Braf mutant after maturation, rather than abnormal development of the brain. A similar mechanism may be possible in human CFC syndrome.
Collapse
Affiliation(s)
- Akira Moriya
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Shin-Ichi Inoue
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Fumihito Saitow
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Moe Keitoku
- School of Science and Technology, Gunma University, 1-5-1 Tenjin-chou, Kiryu, Gunma 376-8515, Japan
| | - Noato Suzuki
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Etsumi Oike
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Eriko Urano
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Eiko Matsumoto
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hiroshi Ohnishi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
- Gunma University Center for Food Science and Wellness, 4-2 Aramaki-machi, Maebashi, Gunma 371-8510, Japan
| |
Collapse
|
4
|
Pérez Millán MI, Cheung LYM, Mercogliano F, Camilletti MA, Chirino Felker GT, Moro LN, Miriuka S, Brinkmeier ML, Camper SA. Pituitary stem cells: past, present and future perspectives. Nat Rev Endocrinol 2024; 20:77-92. [PMID: 38102391 PMCID: PMC10964491 DOI: 10.1038/s41574-023-00922-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 12/17/2023]
Abstract
Pituitary cells that express the transcription factor SOX2 are stem cells because they can self-renew and differentiate into multiple pituitary hormone-producing cell types as organoids. Wounding and physiological challenges can activate pituitary stem cells, but cell numbers are not fully restored, and the ability to mobilize stem cells decreases with increasing age. The basis of these limitations is still unknown. The regulation of stem cell quiescence and activation involves many different signalling pathways, including those mediated by WNT, Hippo and several cytokines; more research is needed to understand the interactions between these pathways. Pituitary organoids can be formed from human or mouse embryonic stem cells, or from human induced pluripotent stem cells. Human pituitary organoid transplantation is sufficient to induce corticosterone release in hypophysectomized mice, raising the possibility of therapeutic applications. Today, pituitary organoids have the potential to assess the role of individual genes and genetic variants on hormone production ex vivo, providing an important tool for the advancement of exciting frontiers in pituitary stem cell biology and pituitary organogenesis. In this article, we provide an overview of notable discoveries in pituitary stem cell function and highlight important areas for future research.
Collapse
Affiliation(s)
- María Inés Pérez Millán
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Leonard Y M Cheung
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Florencia Mercogliano
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Maria Andrea Camilletti
- Institute of Bioscience, Biotechnology and Translational Biology (IB3-UBA), University of Buenos Aires, Buenos Aires, Argentina
| | - Gonzalo T Chirino Felker
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Lucia N Moro
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Santiago Miriuka
- Laboratory of Applied Research of Neurosciences (LIAN-CONICET), FLENI Sede Escobar, Buenos Aires, Argentina
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Torres-Morán M, Franco-Álvarez AL, Rebollar-Vega RG, Hernández-Ramírez LC. Hotspots of Somatic Genetic Variation in Pituitary Neuroendocrine Tumors. Cancers (Basel) 2023; 15:5685. [PMID: 38067388 PMCID: PMC10705109 DOI: 10.3390/cancers15235685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 02/13/2025] Open
Abstract
The most common genetic drivers of pituitary neuroendocrine tumors (PitNETs) lie within mutational hotspots, which are genomic regions where variants tend to cluster. Some of these hotspot defects are unique to PitNETs, while others are associated with additional neoplasms. Hotspot variants in GNAS and USP8 are the most common genetic causes of acromegaly and Cushing's disease, respectively. Although it has been proposed that these genetic defects could define specific clinical phenotypes, results are highly variable among studies. In contrast, DICER1 hotspot variants are associated with a familial syndrome of cancer predisposition, and only exceptionally occur as somatic changes. A small number of non-USP8-driven corticotropinomas are due to somatic hotspot variants in USP48 or BRAF; the latter is a well-known mutational hotspot in cancer. Finally, somatic variants affecting a hotspot in SF3B1 have been associated with multiple cancers and, more recently, with prolactinomas. Since the associations of BRAF, USP48, and SF3B1 hotspot variants with PitNETs are very recent, their effects on clinical phenotypes are still unknown. Further research is required to fully define the role of these genetic defects as disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | | | | | - Laura C. Hernández-Ramírez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| |
Collapse
|
6
|
Apps JR, Muller HL, Hankinson TC, Yock TI, Martinez-Barbera JP. Contemporary Biological Insights and Clinical Management of Craniopharyngioma. Endocr Rev 2023; 44:518-538. [PMID: 36574377 DOI: 10.1210/endrev/bnac035] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Craniopharyngiomas (CPs) are clinically aggressive tumors because of their invasive behavior and recalcitrant tendency to recur after therapy. There are 2 types based on their distinct histology and molecular features: the papillary craniopharyngioma (PCP), which is associated with BRAF-V600E mutations and the adamantinomatous craniopharyngioma (ACP), characterized by mutations in CTNNB1 (encoding β-catenin). Patients with craniopharyngioma show symptoms linked to the location of the tumor close to the optic pathways, hypothalamus, and pituitary gland, such as increased intracranial pressure, endocrine deficiencies, and visual defects. Treatment is not specific and mostly noncurative, and frequently includes surgery, which may achieve gross total or partial resection, followed by radiotherapy. In cystic tumors, frequent drainage is often required and intracystic instillation of drugs has been used to help manage cyst refilling. More recently targeted therapies have been used, particularly in PCP, but also now in ACP and clinical trials are underway or in development. Although patient survival is high, the consequences of the tumor and its treatment can lead to severe comorbidities resulting in poor quality of life, in particular for those patients who bear tumors with hypothalamic involvement. Accordingly, in these patients at risk for the development of a hypothalamic syndrome, hypothalamus-sparing treatment strategies such as limited resection followed by irradiation are recommended. In this review, we provide an update on various aspects of CP, with emphasis on recent advances in the understanding of tumor pathogenesis, clinical consequences, management, and therapies.
Collapse
Affiliation(s)
- John Richard Apps
- Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Developmental Biology and Cancer, Birth Defects Research Centre, GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
- Oncology Department, Birmingham Women's and Children's NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Hermann Lothar Muller
- Department of Pediatrics and Pediatric Hematology/Oncology, University Children's Hospital, Carl von Ossietzky University, Klinikum Oldenburg AöR, 26133 Oldenburg, Germany
| | - Todd Cameron Hankinson
- Department of Neurosurgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Pediatric Neurosurgery, Children's Hospital Colorado, University of Colorado, Aurora, Colorado 80045, USA
- Morgan Adams Foundation Pediatric Brain Tumor Program, Aurora, Colorado, USA
| | - Torunn Ingrid Yock
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer, Birth Defects Research Centre, GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
7
|
Bando H, Brinkmeier ML, Castinetti F, Fang Q, Lee MS, Saveanu A, Albarel F, Dupuis C, Brue T, Camper SA. Heterozygous variants in SIX3 and POU1F1 cause pituitary hormone deficiency in mouse and man. Hum Mol Genet 2023; 32:367-385. [PMID: 35951005 PMCID: PMC9851746 DOI: 10.1093/hmg/ddac192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023] Open
Abstract
Congenital hypopituitarism is a genetically heterogeneous condition that is part of a spectrum disorder that can include holoprosencephaly. Heterozygous mutations in SIX3 cause variable holoprosencephaly in humans and mice. We identified two children with neonatal hypopituitarism and thin pituitary stalk who were doubly heterozygous for rare, likely deleterious variants in the transcription factors SIX3 and POU1F1. We used genetically engineered mice to understand the disease pathophysiology. Pou1f1 loss-of-function heterozygotes are unaffected; Six3 heterozygotes have pituitary gland dysmorphology and incompletely ossified palate; and the Six3+/-; Pou1f1+/dw double heterozygote mice have a pronounced phenotype, including pituitary growth through the palate. The interaction of Pou1f1 and Six3 in mice supports the possibility of digenic pituitary disease in children. Disruption of Six3 expression in the oral ectoderm completely ablated anterior pituitary development, and deletion of Six3 in the neural ectoderm blocked the development of the pituitary stalk and both anterior and posterior pituitary lobes. Six3 is required in both oral and neural ectodermal tissues for the activation of signaling pathways and transcription factors necessary for pituitary cell fate. These studies clarify the mechanism of SIX3 action in pituitary development and provide support for a digenic basis for hypopituitarism.
Collapse
Affiliation(s)
- Hironori Bando
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Frederic Castinetti
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Qing Fang
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Mi-Sun Lee
- Michigan Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Alexandru Saveanu
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Frédérique Albarel
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Clémentine Dupuis
- Department of Pediatrics, Centre Hospitalier Universitaire de Grenoble-Alpes, site Nord, Hôpital Couple Enfants, Grenoble, France
| | - Thierry Brue
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l’hypophyse HYPO, Marseille, France
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale (INSERM), U1251, Marseille Medical Genetics (MMG), Institut Marseille, Maladies Rares (MarMaRa), Marseille, France
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Weaver KN, Gripp KW. Central nervous system involvement in individuals with RASopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:494-500. [PMID: 36454176 DOI: 10.1002/ajmg.c.32023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
Central nervous system (CNS) anomalies are common in individuals with RASopathies. While certain findings, including relative or absolute macrocephaly, are typical for most RASopathies, other findings are more common in certain conditions, with rare low-grade gliomas in Noonan syndrome (NS); Chiari 1 malformation and tethered cord in Costello syndrome (CS); and variable structural anomalies including heterotopia and hydrocephalus in cardio-facio-cutaneous syndrome (CFC). We performed a literature review and present aggregate data on the common and uncommon CNS manifestations in individuals with RASopathies. A gene-based approach to defining risk for specific abnormalities may be considered. However, limited information on the CNS findings of rare RASopathies, such as autosomal recessive LZTR1-related NS or PPP1CB-related NS with loose anagen hair (NSLH), is currently available. Thus, consideration of the RASopathies as a group of distinct syndromic conditions with shared underlying causes and overlapping clinical presentations remains relevant, and individuals with a RASopathy are at risk for many findings seen in these conditions.
Collapse
Affiliation(s)
- K Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Karen W Gripp
- Division of Medical Genetics, Nemours Children's Hospital, Wilmington, Delaware, USA.,S. Kimmel Medical College, T. Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Rai A, Yelamanchi SD, Radotra BD, Gupta SK, Mukherjee KK, Tripathi M, Chhabra R, Ahuja CK, Kumar N, Pandey A, Korbonits M, Dutta P, Gaston-Massuet C. Phosphorylation of β-catenin at Serine552 correlates with invasion and recurrence of non-functioning pituitary neuroendocrine tumours. Acta Neuropathol Commun 2022; 10:138. [PMID: 36114575 PMCID: PMC9482208 DOI: 10.1186/s40478-022-01441-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Non-functioning pituitary tumours (NF-PitNETs) are common intracranial benign neoplasms that can exhibit aggressive behaviour by invading neighbouring structures and, in some cases, have multiple recurrences. Despite resulting in severe co-morbidities, no predictive biomarkers of recurrence have been identified for NF-PitNETs. In this study we have used high-throughput mass spectrometry-based analysis to examine the phosphorylation pattern of different subsets of NF-PitNETs. Based on histopathological, radiological, surgical and clinical features, we have grouped NF-PitNETs into non-invasive, invasive, and recurrent disease groups. Tumour recurrence was determined based on regular clinical and radiological data of patients for a mean follow-up of 10 years (SD ± 5.4 years). Phosphoproteomic analyses identified a unique phosphopeptide enrichment pattern which correlates with disease recurrence. Candidate phosphorylated proteins were validated in a large cohort of NF-PitNET patients by western blot and immunohistochemistry. We identified a cluster of 22 phosphopeptides upregulated in recurrent NF-PitNETs compared to non-invasive and invasive subgroups. We reveal significant phosphorylation of the β-catenin at Ser552 in recurrent and invasive NF-PitNETs, compared to non-invasive/non-recurrent NF-PitNET subgroup. Moreover, β-catenin pSer552 correlates with the recurrence free survival among 200 patients with NF-PitNET. Together, our results suggest that the phosphorylation status of β-catenin at Ser552 could act as potential biomarker of tumour recurrence in NF-PitNETs.
Collapse
|
10
|
Stagi S, Ferrari V, Ferrari M, Priolo M, Tartaglia M. Inside the Noonan "universe": Literature review on growth, GH/IGF axis and rhGH treatment: Facts and concerns. Front Endocrinol (Lausanne) 2022; 13:951331. [PMID: 36060964 PMCID: PMC9434367 DOI: 10.3389/fendo.2022.951331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/18/2022] [Indexed: 12/21/2022] Open
Abstract
Noonan syndrome (NS) is a disorder characterized by a typical facial gestalt, congenital heart defects, variable cognitive deficits, skeletal defects, and short stature. NS is caused by germline pathogenic variants in genes coding proteins with a role in the RAS/mitogen-activated protein kinase signaling pathway, and it is typically associated with substantial genetic and clinical complexity and variability. Short stature is a cardinal feature in NS, with evidence indicating that growth hormone (GH) deficiency, partial GH insensitivity, and altered response to insulin-like growth factor I (IGF-1) are contributing events for growth failure in these patients. Decreased IGF-I, together with low/normal responses to GH pharmacological provocation tests, indicating a variable presence of GH deficiency/resistance, in particular in subjects with pathogenic PTPN11 variants, are frequently reported. Nonetheless, short- and long-term studies have demonstrated a consistent and significant increase in height velocity (HV) in NS children and adolescents treated with recombinant human GH (rhGH). While the overall experience with rhGH treatment in NS patients with short stature is reassuring, it is difficult to systematically compare published data due to heterogeneous protocols, potential enrolment bias, the small size of cohorts in many studies, different cohort selection criteria and varying durations of therapy. Furthermore, in most studies, the genetic information is lacking. NS is associated with a higher risk of benign and malignant proliferative disorders and hypertrophic cardiomyopathy, and rhGH treatment may further increase risk in these patients, especially as dosages vary widely. Herein we provide an updated review of aspects related to growth, altered function of the GH/IGF axis and cell response to GH/IGF stimulation, rhGH treatment and its possible adverse events. Given the clinical variability and genetic heterogeneity of NS, treatment with rhGH should be personalized and a conservative approach with judicious surveillance is recommended. Depending on the genotype, an individualized follow-up and close monitoring during rhGH treatments, also focusing on screening for neoplasms, should be considered.
Collapse
Affiliation(s)
- Stefano Stagi
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Vittorio Ferrari
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Marta Ferrari
- Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Manuela Priolo
- Medical Genetics Unit, Grande Ospedale Metropolitano “Bianchi-Melacrino-Morelli”, Reggio Calabria, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| |
Collapse
|
11
|
Dahlgren J, Noordam C. Growth, Endocrine Features, and Growth Hormone Treatment in Noonan Syndrome. J Clin Med 2022; 11:jcm11072034. [PMID: 35407641 PMCID: PMC8999676 DOI: 10.3390/jcm11072034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
Noonan syndrome is a heterogeneous congenital disorder. The main features are typical facial features, short stature and cardiac defects. The diagnosis is clinical: in 80% of patients with Noonan syndrome a genetic defect can be shown. Inheritance is predominantly autosomal dominant and seldom autosomal recessive. In 2001, PTPN11 was the first gene connected to Noonan syndrome, and until now, at least 20 other genes have been discovered. All genes code for proteins involved in the RAS-MAP-kinase pathway, and therefore, Noonan syndrome is one of the known RASopathies. Other RASopathies include neurofibromatosis and CFC syndrome. Short stature is one of the defining features of Noonan syndrome. The cause is not fully understood but is multifactorial. Other endocrinological features are confined to delayed puberty and hypogonadism in boys and males. To increase adult height, children with Noonan syndrome have been treated with human growth hormone since the 1990s. This seems to be beneficial in most of the children treated. In this narrative review, we describe the current knowledge on growth, endocrinological features and growth hormone treatment in patients with Noonan syndrome.
Collapse
Affiliation(s)
- Jovanna Dahlgren
- Department of Pediatrics, University of Gothenburg, 41685 Gothenburg, Sweden;
| | - Cees Noordam
- Centre for Paediatric Endocrinology Zurich (PEZZ), 8006 Zurich, Switzerland
- Department of Pediatrics, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
- Correspondence: ; Tel.: +41-4-4364-3700
| |
Collapse
|
12
|
Nussinov R, Tsai CJ, Jang H. How can same-gene mutations promote both cancer and developmental disorders? SCIENCE ADVANCES 2022; 8:eabm2059. [PMID: 35030014 PMCID: PMC8759737 DOI: 10.1126/sciadv.abm2059] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/22/2021] [Indexed: 05/05/2023]
Abstract
The question of how same-gene mutations can drive both cancer and neurodevelopmental disorders has been puzzling. It has also been puzzling why those with neurodevelopmental disorders have a high risk of cancer. Ras, MEK, PI3K, PTEN, and SHP2 are among the oncogenic proteins that can harbor mutations that encode diseases other than cancer. Understanding why some of their mutations can promote cancer, whereas others promote neurodevelopmental diseases, and why even the same mutations may promote both phenotypes, has important clinical ramifications. Here, we review the literature and address these tantalizing questions. We propose that cell type–specific expression of the mutant protein, and of other proteins in the respective pathway, timing of activation (during embryonic development or sporadic emergence), and the absolute number of molecules that the mutations activate, alone or in combination, are pivotal in determining the pathological phenotypes—cancer and (or) developmental disorders.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
13
|
Bando H, Urai S, Kanie K, Sasaki Y, Yamamoto M, Fukuoka H, Iguchi G, Camper SA. Novel genes and variants associated with congenital pituitary hormone deficiency in the era of next-generation sequencing. Front Endocrinol (Lausanne) 2022; 13:1008306. [PMID: 36237189 PMCID: PMC9551393 DOI: 10.3389/fendo.2022.1008306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023] Open
Abstract
Combined pituitary hormone deficiency (CPHD) is not a rare disorder, with a frequency of approximately 1 case per 4,000 live births. However, in most cases, a genetic diagnosis is not available. Furthermore, the diagnosis is challenging because no clear correlation exists between the pituitary hormones affected and the gene(s) responsible for the disorder. Next-generation sequencing (NGS) has recently been widely used to identify novel genes that cause (or putatively cause) CPHD. This review outlines causative genes for CPHD that have been newly reported in recent years. Moreover, novel variants of known CPHD-related genes (POU1F1 and GH1 genes) that contribute to CPHD through unique mechanisms are also discussed in this review. From a clinical perspective, variants in some of the recently identified causative genes result in extra-pituitary phenotypes. Clinical research on the related symptoms and basic research on pituitary formation may help in inferring the causative gene(s) of CPHD. Future NGS analysis of a large number of CPHD cases may reveal new genes related to pituitary development. Clarifying the causative genes of CPHD may help to understand the process of pituitary development. We hope that future innovations will lead to the identification of genes responsible for CPHD and pituitary development.
Collapse
Affiliation(s)
- Hironori Bando
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
- *Correspondence: Hironori Bando,
| | - Shin Urai
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University School of Medicine, Kobe, Japan
| | - Keitaro Kanie
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Yuriko Sasaki
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University School of Medicine, Kobe, Japan
| | - Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Genzo Iguchi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
- Division of Biosignal Pathophysiology, Kobe University Graduate School of Medicine, Kobe, Japan
- Medical Center for Student Health, Kobe University, Kobe, Japan
| | - Sally A. Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|