1
|
Hajirahimkhan A, Brown KA, Clare SE, Khan SA. SREBP1-Dependent Metabolism as a Potential Target for Breast Cancer Risk Reduction. Cancers (Basel) 2025; 17:1664. [PMID: 40427160 PMCID: PMC12110029 DOI: 10.3390/cancers17101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
There are an estimated 10 million U [...].
Collapse
Affiliation(s)
- Atieh Hajirahimkhan
- Division of Breast Surgery, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E Superior, 4-220, Chicago, IL 60611, USA; (S.E.C.); (S.A.K.)
| | - Kristy A. Brown
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Cancer Prevention and Control Program, University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Susan E. Clare
- Division of Breast Surgery, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E Superior, 4-220, Chicago, IL 60611, USA; (S.E.C.); (S.A.K.)
| | - Seema Ahsan Khan
- Division of Breast Surgery, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E Superior, 4-220, Chicago, IL 60611, USA; (S.E.C.); (S.A.K.)
| |
Collapse
|
2
|
Liu C, Zhang J, Ye Z, Luo J, Peng B, Wang Z. Research on the role and mechanism of the PI3K/Akt/mTOR signalling pathway in osteoporosis. Front Endocrinol (Lausanne) 2025; 16:1541714. [PMID: 40421249 PMCID: PMC12104071 DOI: 10.3389/fendo.2025.1541714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/17/2025] [Indexed: 05/28/2025] Open
Abstract
Osteoporosis is a systemic metabolic bone disease characterised mainly by reduced bone mass, bone microstructure degradation, and loss of bone mechanical properties. As the world population ages, more than 200 million people worldwide suffer from the pain caused by osteoporosis every year, which severely affects their quality of life. Moreover, the prevalence of osteoporosis continues to increase. The pathogenesis of osteoporosis is highly complex and is closely related to apoptosis, autophagy, oxidative stress, the inflammatory response, and ferroptosis. The PI3K/Akt/mTOR signalling pathway is one of the most crucial intracellular signal transduction pathways. This pathway is not only involved in bone metabolism and bone remodelling but also closely related to the proliferation and differentiation of osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells. Abnormal activation or inhibition of the PI3K/Akt/mTOR signalling pathway can disrupt the balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, ultimately leading to the development of osteoporosis. This review summarises the molecular mechanisms by which the PI3K/Akt/mTOR signalling pathway mediates five pathological mechanisms, namely, apoptosis, autophagy, oxidative stress, the inflammatory response, and ferroptosis, in the regulation of osteoporosis, aiming to provide a theoretical basis for the development of novel and effective therapeutic drugs and intervention measures for osteoporosis prevention and treatment.
Collapse
Affiliation(s)
- Chuanlong Liu
- Hunan Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianqiang Zhang
- Liuyang Traditional Chinese Medicine Hospital, Liuyang, Hunan, China
| | - Ziyu Ye
- Hunan Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ji Luo
- Hunan Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| | - Bing Peng
- Hunan Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| | - Zhexiang Wang
- Hunan Hospital of Integrated Traditional Chinese and Western Medicine, Changsha, Hunan, China
| |
Collapse
|
3
|
Wasserman S, Muron S, Lee H, Routh M, Hepperla A, Scoville D, Huber A, Umana J, Pereira N, Foley C, James L, Hathaway N. Dynamic activation of rAAV transgene expression by a small molecule that recruits endogenous transcriptional machinery. Nucleic Acids Res 2025; 53:gkaf345. [PMID: 40298110 PMCID: PMC12038400 DOI: 10.1093/nar/gkaf345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/21/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
Adeno-associated virus (AAV) gene therapies typically use constitutive transgene expression vectors that cannot be altered after vector administration. Here, we describe a bioorthogonal platform for tuning AAV expression which enables the controlled activation of viral transgenes after transduction. This platform uses a small, synthetic DNA-binding protein embedded in the AAV genome coupled with a heterobifunctional small molecule that recruits endogenous transcriptional machinery to chemically induce transgene expression in a dose-dependent and reversible manner. In human cells, this strategy successfully activates AAV expression across different viral serotypes, cassette configurations, and transgene payloads. Epigenomic analysis reveals that this technology facilitates direct and specific recruitment of the transcriptional regulator BRD4 to AAV genomes. Our results demonstrate that the expression of native AAV genomes can be tuned through chemically induced proximity, opening the possibility of a new class of AAV vectors that can be dynamically potentiated.
Collapse
Affiliation(s)
- Sara R Wasserman
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Savannah Muron
- Department of Genetics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Hae Rim Lee
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States and North Carolina State University, Raleigh, NC, 27606, United States
| | - Madison L Routh
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Austin J Hepperla
- Department of Genetics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
- Neuroscience Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Deena M Scoville
- Department of Genetics, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Avery Huber
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Jessica D Umana
- Structural Genomics Core, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Nicole E Pereira
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Caroline A Foley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Nathaniel A Hathaway
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| |
Collapse
|
4
|
Minowa-Nozawa A, Nozawa T, Murase K, Nakagawa I. RabGAP1L modulates Rab7A and Rab10 to orchestrate cell-autonomous immunity. Cell Rep 2025; 44:115599. [PMID: 40244851 DOI: 10.1016/j.celrep.2025.115599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025] Open
Abstract
Cell-autonomous immunity protects cells by utilizing membrane trafficking to detect and counteract diverse microbial pathogens, including selective autophagy and extracellular expulsion. However, the mechanisms underlying the mutual regulation among these systems has remained unknown. Here, we demonstrate that Rab GTPase-activating protein 1-like (RabGAP1L) modulates cell-autonomous immune responses via inactivation of two distinct Rab GTPases during group A Streptococcus (GAS) infection. Confocal microscopy analyses revealed that Rab7A positively regulates selective autophagy induction against GAS by facilitating endolysosomal trafficking and that Rab7A and Rab10 negatively regulate GAS expulsion from infected cells by inhibiting Rab11A-positive recycling endosome formation. RabGAP1L suppressed these pathways via inactivation of Rab7A and Rab10. By contrast, ATG7 and ATG5 knockout, resulting in autophagy deficiency, increased RabGAP1L-dependent bacterial expulsion from infected cells via the endocytic recycling pathway. Our findings suggest a regulatory mechanism of cell-autonomous immunity mediated by RabGAP1L, which contributes to the efficient elimination of intracellular pathogens.
Collapse
Affiliation(s)
- Atsuko Minowa-Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kazunori Murase
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
5
|
Yang N, Li M, Yang H, Li J, Dang T, Li G, Zhao Z. Transcriptional profiles analysis of effects of Toxoplasma gondii rhoptry protein 16 on THP-1 macrophages. Front Cell Infect Microbiol 2025; 14:1436712. [PMID: 39935538 PMCID: PMC11810957 DOI: 10.3389/fcimb.2024.1436712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction Toxoplasma gondii, an intracellular parasitic protozoan, is globally recognized for its ability to cause parasitic diseases and has developed diverse strategies to evade immune-mediated elimination. The protein ROP16 of T.gondii plays a crucial role in this evasion process by specifically targeting macrophages and mononuclear phagocytes in vivo. However, the precise mechanisms underlying the involvement of type II ROP16 proteins in infection, inflammation, and other processes remain unknown. Methods To investigate the mechanism of action of gonococcal ROP16 proteins in human macrophages, we constructed a lentivirus overexpressing ROP16 and established stably transfected cell lines. We then analyzed the gene transcriptional profiles of ROP16 II in THP-1 macrophages using transcriptome sequencing. Interaction networks were constructed by screening differentially expressed genes and performing gene function enrichment analysis. Results As a result, five differentially expressed genes were identified: AAMDC, GPR158, RAD9A, STOML1, and STRA13. Immuno-featured differential analysis showed that type 17 T helper cells were more strongly correlated with GPR158 and STRA13, while CD8 T-cell was most strongly correlated with STOML1. Discussion Therefore, we conclude that the ROP16 protein plays a pivotal role in THP-1 macrophage infection and these five differentially expressed genes may serve as promising molecular targets for the prevention or control of toxoplasmosis. These findings have significant implications for the diagnosis and treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Ningai Yang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Diagnosis and Treatment Engineering Technology Research Center of Nervous System Diseases of Ningxia, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Clinical Pathogenic Microorganisms, Yinchuan, Ningxia, China
| | - Mingyang Li
- Department of Cardiology, Cardiovascular and Cerebrovascular Disease Hospital, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hong Yang
- Ningxia Hui Autonomous Region Hospital of Traditional Chinese Medicine and Research Institute of Traditional Chinese Medicine, Yinchuan, Ningxia, China
| | - Jiaming Li
- Medical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Tiantian Dang
- Medical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Guangqi Li
- Medical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhijun Zhao
- Ningxia Key Laboratory of Clinical Pathogenic Microorganisms, Yinchuan, Ningxia, China
- Medical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Medical Laboratory Clinical Research Centre, Yinchuan, Ningxia, China
| |
Collapse
|
6
|
Tamura R, Chen J, De Jaeger M, Morris JF, Scott DA, Vangheluwe P, Looger LL. Genetically encoded fluorescent sensors for visualizing polyamine levels, uptake, and distribution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609037. [PMID: 39229183 PMCID: PMC11370472 DOI: 10.1101/2024.08.21.609037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Polyamines are abundant and physiologically essential biomolecules that play a role in numerous processes, but are disrupted in diseases such as cancer, and cardiovascular and neurological disorders. Despite their importance, measuring free polyamine concentrations and monitoring their metabolism and uptake in cells in real-time remains impossible due to the lack of appropriate biosensors. Here we engineered, characterized, and validated the first genetically encoded biosensors for polyamines, named iPASnFRs. We demonstrate the utility of iPASnFR for detecting polyamine import into mammalian cells, to the cytoplasm, mitochondria, and the nucleus. We demonstrate that these sensors are useful to probe the activity of polyamine transporters and to uncover biochemical pathways underlying the distribution of polyamines amongst organelles. The sensors powered a high-throughput small molecule compound library screen, revealing multiple compounds in different chemical classes that strongly modulate cellular polyamine levels. These sensors will be powerful tools to investigate the complex interplay between polyamine uptake and metabolic pathways, address open questions about their role in health and disease, and enable screening for therapeutic polyamine modulators.
Collapse
|
7
|
Sha R, Guo R, Duan H, Peng Q, Yuan N, Wang Z, Li Z, Xie Z, You X, Feng Y. SRSF2 is a key player in orchestrating the directional migration and differentiation of MyoD progenitors during skeletal muscle development. eLife 2024; 13:RP98175. [PMID: 39248331 PMCID: PMC11383525 DOI: 10.7554/elife.98175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
SRSF2 plays a dual role, functioning both as a transcriptional regulator and a key player in alternative splicing. The absence of Srsf2 in MyoD + progenitors resulted in perinatal mortality in mice, accompanied by severe skeletal muscle defects. SRSF2 deficiency disrupts the directional migration of MyoD progenitors, causing them to disperse into both muscle and non-muscle regions. Single-cell RNA-sequencing analysis revealed significant alterations in Srsf2-deficient myoblasts, including a reduction in extracellular matrix components, diminished expression of genes involved in ameboid-type cell migration and cytoskeleton organization, mitosis irregularities, and premature differentiation. Notably, one of the targets regulated by Srsf2 is the serine/threonine kinase Aurka. Knockdown of Aurka led to reduced cell proliferation, disrupted cytoskeleton, and impaired differentiation, reflecting the effects seen with Srsf2 knockdown. Crucially, the introduction of exogenous Aurka in Srsf2-knockdown cells markedly alleviated the differentiation defects caused by Srsf2 knockdown. Furthermore, our research unveiled the role of Srsf2 in controlling alternative splicing within genes associated with human skeletal muscle diseases, such as BIN1, DMPK, FHL1, and LDB3. Specifically, the precise knockdown of the Bin1 exon17-containing variant, which is excluded following Srsf2 depletion, profoundly disrupted C2C12 cell differentiation. In summary, our study offers valuable insights into the role of SRSF2 in governing MyoD progenitors to specific muscle regions, thereby controlling their differentiation through the regulation of targeted genes and alternative splicing during skeletal muscle development.
Collapse
Affiliation(s)
- Rula Sha
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruochen Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huimin Duan
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, China
| | - Qian Peng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ningyang Yuan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenzhen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhigang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiqin Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xue You
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, China
| | - Ying Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical University, Jining, China
| |
Collapse
|
8
|
Fang Y, Kang Z, Zhang W, Xiang Y, Cheng X, Gui M, Fang D. Core biomarkers analysis benefit for diagnosis on human intrahepatic cholestasis of pregnancy. BMC Pregnancy Childbirth 2024; 24:525. [PMID: 39127651 DOI: 10.1186/s12884-024-06730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The pregnant women with intrahepatic cholestasis were at high risk of fetal distress, preterm birth and unexpected stillbirth. Intrahepatic cholestasis of pregnancy (ICP) was mainly caused by disorder of bile acid metabolism, whereas the specific mechanism was obscure. METHODS We performed proteomics analysis of 10 ICP specimens and 10 placenta specimens from patients without ICP through data-independent acquisition (DIA) technique to disclose differentially expressed proteins. We executed metabolomic analysis of 30 ICP specimens and 30 placenta specimens from patients without ICP through UPLC-MS/MS to identify differentially expressed metabolites. Enrichment and correlation analysis was used to obtain the direct molecular insights of ICP development. The ICP rat models were constructed to validate pathological features. RESULTS The heatmap of proteomics analysis showed the top 30 up-regulated and 30 down-regulated proteins. The metabolomic analysis revealed 20 richer and 4 less abundant metabolites in ICP samples compared with placenta specimens from patients without ICP, and enrichment pathways by these metabolites included primary bile acid biosynthesis, cholesterol metabolism, bile secretion, nicotinate and nicotinamide metabolism, purine metabolism and metabolic pathways. Combined analysis of multiple omics results demonstrated that bile acids such as Glycohyocholic acid, Glycine deoxycholic acid, beta-Muricholic acid, Noncholic acid, cholic acid, Gamma-Mercholic Acid, alpha-Muricholic acid and Glycochenodeoxycholic Aicd were significantly associated with the expression of GLRX3, MYL1, MYH7, PGGT1B, ACTG1, SP3, LACTB2, C2CD5, APBB2, IPO9, MYH2, PPP3CC, PIN1, BLOC1S1, DNAJC7, RASAL2 and ATCN3 etc. The core protein ACAT2 was involved in lipid metabolic process and animal model showed that ACAT2 was up-regulated in placenta and liver of pregnant rats and fetal rats. The neonates had low birth weight and Safranin O-Fast green FCF staining of animal models showed that poor osteogenic and chondrogenic differentiation of fetal rats. CONCLUSION Multiple metabolites-alpha-Muricholic acid, beta-Muricholic acid, Glycine deoxycholic acid and Glycochenodeoxycholic Acid etc. were perfect biomarkers to predict occurrence of ICP. Bile acids were significantly associated with varieties of protein expression and these proteins were differentially expressed in ICP samples. Our study provided several biomarkers for ICP detection and potential therapeutic targets for ICP development.
Collapse
Affiliation(s)
- Yan Fang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China
| | - Zhe Kang
- Department of Pediatric Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Weiqiang Zhang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China
| | - Yun Xiang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China
| | - Xi Cheng
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China
| | - Mian Gui
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China
| | - Dajun Fang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No 9 Jinsui Road, Tianhe District, Guangzhou, Guangdong Province, 510623, China.
| |
Collapse
|
9
|
Mamun TI, Bourhia M, Neoaj T, Akash S, Azad MAK, Hossain MS, Rahman MM, Bin Jardan YA, Ibenmoussa S, Sitotaw B. Structure based functional identification of an uncharacterized protein from Coxiella burnetii involved in adipogenesis. Sci Rep 2024; 14:16789. [PMID: 39039093 PMCID: PMC11263603 DOI: 10.1038/s41598-024-66072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Coxiella burnetii, the causative agent of Q fever, is an intracellular pathogen posing a significant global public health threat. There is a pressing need for dependable and effective treatments, alongside an urgency for further research into the molecular characterization of its genome. Within the genomic landscape of Coxiella burnetii, numerous hypothetical proteins remain unidentified, underscoring the necessity for in-depth study. In this study, we conducted comprehensive in silico analyses to identify and prioritize potential hypothetical protein of Coxiella burnetii, aiming to elucidate the structure and function of uncharacterized protein. Furthermore, we delved into the physicochemical properties, localization, and molecular dynamics and simulations, and assessed the primary, secondary, and tertiary structures employing a variety of bioinformatics tools. The in-silico analysis revealed that the uncharacterized protein contains a conserved Mth938-like domain, suggesting a role in preadipocyte differentiation and adipogenesis. Subcellular localization predictions indicated its presence in the cytoplasm, implicating a significant role in cellular processes. Virtual screening identified ligands with high binding affinities, suggesting the protein's potential as a drug target against Q fever. Molecular dynamics simulations confirmed the stability of these complexes, indicating their therapeutic relevance. The findings provide a structural and functional overview of an uncharacterized protein from C. burnetii, implicating it in adipogenesis. This study underscores the power of in-silico approaches in uncovering the biological roles of uncharacterized proteins and facilitating the discovery of new therapeutic strategies. The findings provide valuable preliminary data for further investigation into the protein's role in adipogenesis.
Collapse
Affiliation(s)
- Tajul Islam Mamun
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco.
| | - Taufiq Neoaj
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, 1216, Bangladesh
| | - Md A K Azad
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, 1216, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, 1216, Bangladesh
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Md Masudur Rahman
- Department of Pathology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, 34000, Montpellier, France
| | - Baye Sitotaw
- Department of Biology, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia.
| |
Collapse
|
10
|
Bin P, Wang C, Zhang H, Yan Y, Ren W. Targeting methionine metabolism in cancer: opportunities and challenges. Trends Pharmacol Sci 2024; 45:395-405. [PMID: 38580603 DOI: 10.1016/j.tips.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
Reprogramming of methionine metabolism is a conserved hallmark of tumorigenesis. Recent studies have revealed mechanisms regulating methionine metabolism within the tumor microenvironment (TME) that drive both cancer development and antitumor immunity evasion. In this review article we summarize advancements in our understanding of tumor regulation of methionine metabolism and therapies in development that target tumor methionine metabolism. We also delineate the challenges of methionine blockade therapies in cancer and discuss emerging strategies to address them.
Collapse
Affiliation(s)
- Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Chuanlong Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hangchao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuqi Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenkai Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Ouyang D, Huang C, Liu H, Xie W, Chen C, Su B, Guo L. Comprehensive analysis of genetic associations and single-cell expression profiles reveals potential links between migraine and multiple diseases: a phenome-wide association study. Front Neurol 2024; 15:1301208. [PMID: 38385040 PMCID: PMC10879407 DOI: 10.3389/fneur.2024.1301208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Migraine is a common neurological disorder that affects more than one billion people worldwide. Recent genome-wide association studies have identified 123 genetic loci associated with migraine risk. However, the biological mechanisms underlying migraine and its relationships with other complex diseases remain unclear. We performed a phenome-wide association study (PheWAS) using UK Biobank data to investigate associations between migraine and 416 phenotypes. Mendelian randomization was employed using the IVW method. For loci associated with multiple diseases, pleiotropy was tested using MR-Egger. Single-cell RNA sequencing data was analyzed to profile the expression of 73 migraine susceptibility genes across brain cell types. qPCR was used to validate the expression of selected genes in microglia. PheWAS identified 15 disorders significantly associated with migraine, with one association detecting potential pleiotropy. Single-cell analysis revealed elevated expression of seven susceptibility genes (including ZEB2, RUNX1, SLC24A3, ANKDD1B, etc.) in brain glial cells. And qPCR confirmed the upregulation of these genes in LPS-treated microglia. This multimodal analysis provides novel insights into the link between migraine and other diseases. The single-cell profiling suggests the involvement of specific brain cells and molecular pathways. Validation of gene expression in microglia supports their potential role in migraine pathology. Overall, this study uncovers pleiotropic relationships and the biological underpinnings of migraine susceptibility.
Collapse
Affiliation(s)
- Di Ouyang
- Nanjing University of Chinese Medicine, Nanjing, China
- Traditional Chinese Medicine Hospital of Yulin, Yulin, China
| | - Chunying Huang
- Traditional Chinese Medicine Hospital of Yulin, Yulin, China
| | - Huihua Liu
- Traditional Chinese Medicine Hospital of Yulin, Yulin, China
| | | | | | - Ben Su
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lizhong Guo
- Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Qiao K, Liang Z, Wang A, Wu Q, Yang S, Ma Y, Li S, Schiwy S, Jiang J, Zhou S, Ye Q, Hollert H, Gui W. Waterborne Tebuconazole Exposure Induces Male-Biased Sex Differentiation in Zebrafish ( Danio rerio) Larvae via Aromatase Inhibition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16764-16778. [PMID: 37890152 DOI: 10.1021/acs.est.3c03181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Tebuconazole is a widely used fungicide for various crops that targets sterol 14-α-demethylase (CYP51) in fungi. However, attention has shifted to aromatase (CYP19) due to limited research indicating its reproductive impact on aquatic organisms. Herein, zebrafish were exposed to 0.5 mg/L tebuconazole at different developmental stages. The proportion of males increased significantly after long-term exposure during the sex differentiation phase (0-60, 5-60, and 19-60 days postfertilization (dpf)). Testosterone levels increased and 17β-estradiol and cyp19a1a expression levels decreased during the 5-60 dpf exposure, while the sex ratio was equally distributed on coexposure with 50 ng/L 17β-estradiol. Chemically activated luciferase gene expression bioassays determined that the male-biased sex differentiation was not caused by tebuconazole directly binding to sex hormone receptors. Protein expression and phosphorylation levels were specifically altered in the vascular endothelial growth factor signaling pathway despite excluding the possibility of tebuconazole directly interacting with kinases. Aromatase was selected for potential target analysis. Molecular docking and aromatase activity assays demonstrated the interactions between tebuconazole and aromatase, highlighting that tebuconazole poses a threat to fish populations by inducing a gender imbalance.
Collapse
Affiliation(s)
- Kun Qiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Zhuoying Liang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Aoxue Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qiong Wu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
- Patent Examination Cooperation (Henan) Center of the Patent Office, CNIPA, Zhengzhou 450046, P. R. China
| | - Siyu Yang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yongfang Ma
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, P. R. China
| | - Sabrina Schiwy
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Jinhua Jiang
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Shengli Zhou
- Zhejiang Province Environmental Monitoring Center, Hangzhou 310012, P. R. China
| | - Qingfu Ye
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 57392 Schmallenberg, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt am Main, Germany
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
13
|
Jin X, Zhou YF, Ma D, Zhao S, Lin CJ, Xiao Y, Fu T, Liu CL, Chen YY, Xiao WX, Liu YQ, Chen QW, Yu Y, Shi LM, Shi JX, Huang W, Robertson JFR, Jiang YZ, Shao ZM. Molecular classification of hormone receptor-positive HER2-negative breast cancer. Nat Genet 2023; 55:1696-1708. [PMID: 37770634 DOI: 10.1038/s41588-023-01507-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/21/2023] [Indexed: 09/30/2023]
Abstract
Hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) breast cancer is the most prevalent type of breast cancer, in which endocrine therapy resistance and distant relapse remain unmet challenges. Accurate molecular classification is urgently required for guiding precision treatment. We established a large-scale multi-omics cohort of 579 patients with HR+/HER2- breast cancer and identified the following four molecular subtypes: canonical luminal, immunogenic, proliferative and receptor tyrosine kinase (RTK)-driven. Tumors of these four subtypes showed distinct biological and clinical features, suggesting subtype-specific therapeutic strategies. The RTK-driven subtype was characterized by the activation of the RTK pathways and associated with poor outcomes. The immunogenic subtype had enriched immune cells and could benefit from immune checkpoint therapy. In addition, we developed convolutional neural network models to discriminate these subtypes based on digital pathology for potential clinical translation. The molecular classification provides insights into molecular heterogeneity and highlights the potential for precision treatment of HR+/HER2- breast cancer.
Collapse
Affiliation(s)
- Xi Jin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi-Fan Zhou
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ding Ma
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shen Zhao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cai-Jin Lin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Tong Fu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Cheng-Lin Liu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yi-Yu Chen
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wen-Xuan Xiao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ya-Qing Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qing-Wang Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Le-Ming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
- International Human Phenome Institutes (Shanghai), Shanghai, China
| | - Jin-Xiu Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Wei Huang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | | | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
14
|
Liu L, Zhu L, Cheng Z, Sun Y, Zhou Y, Cao J. Aberrant expression of AKR1B1 indicates poor prognosis and promotes gastric cancer progression by regulating the AKT-mTOR pathway. Aging (Albany NY) 2023; 15:9661-9675. [PMID: 37751590 PMCID: PMC10564407 DOI: 10.18632/aging.205041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023]
Abstract
Gastric cancer (GC) is a common malignant tumor in the digestive tract and a major cause of global cancer death. Due to the limited access to early screening, many patients are diagnosed with advanced GC. Therefore, postoperative radiotherapy and chemotherapy possess limited efficacy in treating GC. AKR1B1 has been associated with tumorigenesis and metastasis across various tumors, becoming a potential therapeutic target for GC. However, its role and mechanism in GC remain unclear. In this study, AKR1B1 was elevated in GC tissue, depicting a poor prognosis. AKR1B1 is closely related to age, vascular and neural invasion, lymph node metastasis, and the TNM stage of GC. The developed survival prediction model suggested that AKR1B1 expression level is crucial in the prognosis of GC patients. Moreover, the expression level of AKR1B1 in GC tissues is closely associated with the AKT-mTOR pathway. In vitro and in vivo assays functional assays helped determine the oncogenic role of AKR1B1. Additionally, the knockdown of AKR1B1 expression level in GC cell lines could effectively suppress the AKT-mTOR pathway and inhibit the proliferation and migration of tumor cells. In conclusion, this study provides a theoretical basis to establish the potential association and regulatory mechanism of AKR1B1 while offering a new strategy for GC-targeted therapy.
Collapse
Affiliation(s)
- Luojie Liu
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Suzhou 215501, China
| | - Lihua Zhu
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Suzhou 215501, China
| | - Zhengwu Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Yibin Sun
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215005, China
| | - Yuqing Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215005, China
| | - Jiwei Cao
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215005, China
| |
Collapse
|
15
|
Wang J, Cheng Z, Dai D, Li H, Shao X, Xu M. Overexpression of TYRO3 indicates poor prognosis and induces gastric cancer progression via AKT-mTOR pathway. Mol Carcinog 2023; 62:1325-1337. [PMID: 37212497 DOI: 10.1002/mc.23566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/23/2023]
Abstract
Gastric cancer (GC) is among of the leading causes of cancer mortality worldwide. This is because many patients are diagnosed with advanced GC and postoperative radiotherapy and chemotherapy have also exhibited limited effects on GC. TYRO3 has been considered carcinogenic and a potential therapeutic target for GC. However, TYRO3 function and mechanism in GC remains elusive. The study results indicated that TYRO3 was aberrantly elevated in GC tissues and predicted poor prognosis. TYRO3 is closely associated with clinicopathological indicators in GC tissues such as lymph node metastasis, venous invasion, neural invasion, and the tumor-node-metastasis stage. In addition, TYRO3 expression levels are closely related to the AKT-mTOR pathway in GC tissues. Moreover, the oncogenic role of TYRO3 was determined through in vitro and in vivo functional assays, and knockdown of the TYRO3 expression level in GC cell lines can effectively suppress the AKT-mTOR pathway and inhibit tumor cell proliferation and migration. In conclusion, this study provides a theoretical basis for establishing the potential association and regulatory mechanism between TYRO3 and AKT-mTOR and offers a new strategy for GC-targeted therapy.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Zhengwu Cheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Dafei Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Hao Li
- Department of Gastrointestinal Surgery, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xinyu Shao
- Department of Gastroenterology, Suzhou Municipal Hospital, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Menglin Xu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
16
|
Martino F, Lupi M, Giraudo E, Lanzetti L. Breast cancers as ecosystems: a metabolic perspective. Cell Mol Life Sci 2023; 80:244. [PMID: 37561190 PMCID: PMC10415483 DOI: 10.1007/s00018-023-04902-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of cancer death. Despite enormous progress in its management, both from the therapeutic and early diagnosis viewpoints, still around 700,000 patients succumb to the disease each year, worldwide. Late recurrency is the major problem in BC, with many patients developing distant metastases several years after the successful eradication of the primary tumor. This is linked to the phenomenon of metastatic dormancy, a still mysterious trait of the natural history of BC, and of several other types of cancer, by which metastatic cells remain dormant for long periods of time before becoming reactivated to initiate the clinical metastatic disease. In recent years, it has become clear that cancers are best understood if studied as ecosystems in which the impact of non-cancer-cell-autonomous events-dependent on complex interaction between the cancer and its environment, both local and systemic-plays a paramount role, probably as significant as the cell-autonomous alterations occurring in the cancer cell. In adopting this perspective, a metabolic vision of the cancer ecosystem is bound to improve our understanding of the natural history of cancer, across space and time. In BC, many metabolic pathways are coopted into the cancer ecosystem, to serve the anabolic and energy demands of the cancer. Their study is shedding new light on the most critical aspect of BC management, of metastatic dissemination, and that of the related phenomenon of dormancy and fostering the application of the knowledge to the development of metabolic therapies.
Collapse
Affiliation(s)
- Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Science and Drug Technology, University of Torino, Turin, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
17
|
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) drives chronic kidney disease progression in male mice. Nat Commun 2023; 14:1334. [PMID: 36906617 PMCID: PMC10008567 DOI: 10.1038/s41467-023-37043-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
Kidney injury initiates epithelial dedifferentiation and myofibroblast activation during the progression of chronic kidney disease. Herein, we find that the expression of DNA-PKcs is significantly increased in the kidney tissues of both chronic kidney disease patients and male mice induced by unilateral ureteral obstruction and unilateral ischemia-reperfusion injury. In vivo, knockout of DNA-PKcs or treatment with its specific inhibitor NU7441 hampers the development of chronic kidney disease in male mice. In vitro, DNA-PKcs deficiency preserves epithelial cell phenotype and inhibits fibroblast activation induced by transforming growth factor-beta 1. Additionally, our results show that TAF7, as a possible substrate of DNA-PKcs, enhances mTORC1 activation by upregulating RAPTOR expression, which subsequently promotes metabolic reprogramming in injured epithelial cells and myofibroblasts. Taken together, DNA-PKcs can be inhibited to correct metabolic reprogramming via the TAF7/mTORC1 signaling in chronic kidney disease, and serve as a potential target for treating chronic kidney disease.
Collapse
|
18
|
Triphenylphosphonium conjugated gold nanotriangles impact Pi3K/AKT pathway in breast cancer cells: a photodynamic therapy approach. Sci Rep 2023; 13:2230. [PMID: 36754981 PMCID: PMC9908940 DOI: 10.1038/s41598-023-28678-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Although gold nanoparticles based photodynamic therapy (PDT) were reported to improve efficacy and specificity, the impact of surface charge in targeting cancer is still a challenge. Herein, we report gold nanotriangles (AuNTs) tuned with anionic and cationic surface charge conjugating triphenylphosphonium (TPP) targeting breast cancer cells with 5-aminoleuvinic acid (5-ALA) based PDT, in vitro. Optimized surface charge of AuNTs with and without TPP kill breast cancer cells. By combining, 5-ALA and PDT, the surface charge augmented AuNTs deliver improved cellular toxicity as revealed by MTT, fluorescent probes and flow cytometry. Further, the 5-ALA and PDT treatment in the presence of AuNTs impairs cell survival Pi3K/AKT signaling pathway causing mitochondrial dependent apoptosis. The cumulative findings demonstrate that, cationic AuNTs with TPP excel selective targeting of breast cancer cells in the presence of 5-ALA and PDT.
Collapse
|
19
|
Tang X, Guo Y, Zhang S, Wang X, Teng Y, Jin Q, Jin Q, Shen W, Wang R. Solanine Represses Gastric Cancer Growth by Mediating Autophagy Through AAMDC/MYC/ATF4/Sesn2 Signaling Pathway. Drug Des Devel Ther 2023; 17:389-402. [PMID: 36789094 PMCID: PMC9922515 DOI: 10.2147/dddt.s389764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Purpose Solanine is the main component of the plant Solanum, which has been shown to provide growth-limiting activities in a variety of human cancers. However, little is known about its function in gastric cancer (GC). Methods We investigated the effect of solanine on GC in vivo and in vitro. The inhibition rate of solanine on the tumor was observed by constructing a subcutaneous tumor in nude mice. Morphological changes were analyzed with H&E staining. The expression of ATF4 was detected by IF analysis. MTT assays, EdU staining, and colony formation assays were used to detect the inhibition rate of solanine on GC cells. Matrigel transwells were used to detect the invasion of GC cells. Cell migration was measured using the wound healing assay. The flow cytometric analysis was used to monitor changes in the cell cycle and cell apoptosis. Western blotting was used to detect major proteins in cells and tumors. Results Solanine suppressed gastric tumorigenesis. Solanine also inhibited the proliferation, invasion and mitigation of GC cells, and induced cell cycle arrest and apoptosis in vitro. Moreover, the growth-limiting activities of solanine in gastric cancer were related to the suppression of the AAMDC/MYC/ATF4/Sesn2 pathway-mediated autophagy. Overexpression of AAMDC reversed the inhibitory effect of solanine on autophagy and gastric cancer. Conclusion In summary, our findings indicate that solanine confers growth-limiting activities by deactivating the AAMDC-regulated autophagy in gastric cancer.
Collapse
Affiliation(s)
- Xiaolong Tang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China,Department of Oncology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, People’s Republic of China
| | - YingYing Guo
- Department of Oncology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, People’s Republic of China
| | - Sijia Zhang
- Department of Oncology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, People’s Republic of China
| | - Xin Wang
- Department of Oncology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, People’s Republic of China
| | - Yuhao Teng
- Department of Oncology, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Qingjiang Jin
- Department of Oncology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, People’s Republic of China
| | - Qinglei Jin
- Department of Oncology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, People’s Republic of China
| | - Wei Shen
- Department of Oncology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, Jiangsu, People’s Republic of China,Correspondence: Wei Shen, Department of Oncology, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, 39 Xiashatang Road, Wuzhong District, Suzhou, Jiangsu, People’s Republic of China, Email
| | - Ruiping Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China,Department of Oncology, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China,Ruiping Wang, Department of Oncology, the Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Qinhuai District, Nanjing, Jiangsu, People’s Republic of China, Tel +13815883181, Email
| |
Collapse
|
20
|
Hu C, Dai Y, Zhou H, Zhang J, Xie D, Xu R, Yang M, Zhang R. Identification of GINS1 as a therapeutic target in the cancer patients infected with COVID-19: a bioinformatics and system biology approach. Hereditas 2022; 159:45. [PMID: 36451247 PMCID: PMC9713126 DOI: 10.1186/s41065-022-00258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) caused a series of biological changes in cancer patients which have rendered the original treatment ineffective and increased the difficulty of clinical treatment. However, the clinical treatment for cancer patients infected with COVID-19 is currently unavailable. Since bioinformatics is an effective method to understand undiscovered biological functions, pharmacological targets, and therapeutic mechanisms. The aim of this study was to investigate the influence of COVID-19 infection in cancer patients and to search the potential treatments. METHODS Firstly, we obtained the COVID-19-associated genes from seven databases and analyzed the cancer pathogenic genes from Gene Expression Omnibus (GEO) databases, respectively. The Cancer/COVID-19-associated genes were shown by Venn analyses. Moreover, we demonstrated the signaling pathways and biological functions of pathogenic genes in Cancer/COVID-19. RESULTS We identified that Go-Ichi-Ni-San complex subunit 1 (GINS1) is the potential therapeutic target in Cancer/COVID-19 by GEPIA. The high expression of GINS1 was not only promoting the development of cancers but also affecting their prognosis. Furthermore, eight potential compounds of Cancer/COVID-19 were identified from CMap and molecular docking analysis. CONCLUSION We revealed the GINS1 is a potential therapeutic target in cancer patients infected with COVID-19 for the first time, as COVID-19 will be a severe and prolonged pandemic. However, the findings have not been verified actually cancer patients infected with COVID-19, and further studies are needed to demonstrate the functions of GINS1 and the clinical treatment of the compounds.
Collapse
Affiliation(s)
- Changpeng Hu
- grid.410570.70000 0004 1760 6682Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, 400037 Chongqing, China
| | - Yue Dai
- grid.410570.70000 0004 1760 6682Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, 400037 Chongqing, China
| | - Huyue Zhou
- grid.410570.70000 0004 1760 6682Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, 400037 Chongqing, China
| | - Jing Zhang
- grid.410570.70000 0004 1760 6682Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, 400037 Chongqing, China
| | - Dandan Xie
- grid.410570.70000 0004 1760 6682Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, 400037 Chongqing, China
| | - Rufu Xu
- grid.410570.70000 0004 1760 6682Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, 400037 Chongqing, China
| | - Mengmeng Yang
- grid.410570.70000 0004 1760 6682Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, 400037 Chongqing, China
| | - Rong Zhang
- grid.410570.70000 0004 1760 6682Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, 400037 Chongqing, China
| |
Collapse
|
21
|
Hiragi S, Matsui T, Sakamaki Y, Fukuda M. TBC1D18 is a Rab5-GAP that coordinates endosome maturation together with Mon1. J Cell Biol 2022; 221:213520. [PMID: 36197338 PMCID: PMC9539456 DOI: 10.1083/jcb.202201114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022] Open
Abstract
Rab5 and Rab7 are known to regulate endosome maturation, and a Rab5-to-Rab7 conversion mediated by a Rab7 activator, Mon1-Ccz1, is essential for progression of the maturation process. However, the importance and mechanism of Rab5 inactivation during endosome maturation are poorly understood. Here, we report a novel Rab5-GAP, TBC1D18, which is associated with Mon1 and mediates endosome maturation. We found that increased active Rab5 (Rab5 hyperactivation) in addition to reduced active Rab7 (Rab7 inactivation) occurs in the absence of Mon1. We present evidence showing that the severe defects in endosome maturation in Mon1-KO cells are attributable to Rab5 hyperactivation rather than to Rab7 inactivation. We then identified TBC1D18 as a Rab5-GAP by comprehensive screening of TBC-domain-containing Rab-GAPs. Expression of TBC1D18 in Mon1-KO cells rescued the defects in endosome maturation, whereas its depletion attenuated endosome formation and degradation of endocytosed cargos. Moreover, TBC1D18 was found to be associated with Mon1, and it localized in close proximity to lysosomes in a Mon1-dependent manner.
Collapse
Affiliation(s)
- Shu Hiragi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Takahide Matsui
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan,Correspondence to Takahide Matsui:
| | - Yuriko Sakamaki
- Microscopy Research Support Unit Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan,Mitsunori Fukuda:
| |
Collapse
|
22
|
Jacobs AT, Martinez Castaneda-Cruz D, Rose MM, Connelly L. Targeted therapy for breast cancer: An overview of drug classes and outcomes. Biochem Pharmacol 2022; 204:115209. [PMID: 35973582 DOI: 10.1016/j.bcp.2022.115209] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022]
Abstract
The last 25 years have seen significant growth in new therapeutic options for breast cancer, termed targeted therapies based on their ability to block specific pathways known to drive breast tumor growth and survival. Introduction of these drugs has been made possible through advances in the understanding of breast cancer biology. While the promise of targeted therapy for breast cancer has been clear for some time, the experience of the clinical use of multiple drugs and drug classes allows us to now present a summary and perspective as to the success and impact of this endeavor. Here we will review breast cancer targeted therapeutics in clinical use. We will provide the rationale for their indications and summarize clinical data in patients with different breast cancer subtypes, their impact on breast cancer progression and survival and their major adverse effects. The focus of this review will be on the development that has occurred within classes of targeted therapies and subsequent impact on breast cancer patient outcomes. We will conclude with a perspective on the role of targeted therapy in breast cancer treatment and highlight future areas of development.
Collapse
Affiliation(s)
- Aaron T Jacobs
- California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, United States
| | | | - Mark M Rose
- California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, United States
| | - Linda Connelly
- California University of Science and Medicine, 1501 Violet Street, Colton, CA 92324, United States.
| |
Collapse
|
23
|
Fernbach S, Spieler EE, Busnadiego I, Karakus U, Lkharrazi A, Stertz S, Hale BG. Restriction factor screening identifies RABGAP1L-mediated disruption of endocytosis as a host antiviral defense. Cell Rep 2022; 38:110549. [PMID: 35320721 PMCID: PMC8939003 DOI: 10.1016/j.celrep.2022.110549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/31/2022] [Accepted: 03/01/2022] [Indexed: 11/26/2022] Open
Abstract
Host interferons (IFNs) powerfully restrict viruses through the action of several hundred IFN-stimulated gene (ISG) products, many of which remain uncharacterized. Here, using RNAi screening, we identify several ISG restriction factors with previously undescribed contributions to IFN-mediated defense. Notably, RABGAP1L, a Tre2/Bub2/Cdc16 (TBC)-domain-containing protein involved in regulation of small membrane-bound GTPases, robustly potentiates IFN action against influenza A viruses (IAVs). Functional studies reveal that the catalytically active TBC domain of RABGAP1L promotes antiviral activity, and the RABGAP1L proximal interactome uncovered its association with proteins involved in endosomal sorting, maturation, and trafficking. In this regard, RABGAP1L overexpression is sufficient to disrupt endosomal function during IAV infection and restricts an early post-attachment, but pre-fusion, stage of IAV cell entry. Other RNA viruses that enter cells primarily via endocytosis are also impaired by RABGAP1L, while entry promiscuous SARS-CoV-2 is resistant. Our data highlight virus endocytosis as a key target for host defenses.
Collapse
Affiliation(s)
- Sonja Fernbach
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Life Science Zurich Graduate School, ETH and University of Zurich, 8057 Zurich, Switzerland
| | - Eva E Spieler
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland; Life Science Zurich Graduate School, ETH and University of Zurich, 8057 Zurich, Switzerland
| | - Idoia Busnadiego
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Umut Karakus
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Anouk Lkharrazi
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Benjamin G Hale
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
24
|
Wang X, Xiong M, Pan B, Cho WCS, Zhou J, Wang S, He B. Association Between SNPs in the One-Carbon Metabolism Pathway and the Risk of Female Breast Cancer in a Chinese Population. Pharmgenomics Pers Med 2022; 15:9-16. [PMID: 35046699 PMCID: PMC8761026 DOI: 10.2147/pgpm.s328612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The aim of this study is to assess the relationship between the single-nucleotide polymorphism (SNP) in the one-carbon metabolism pathway (MTR rs1805087; MTHFR rs1801133; ALDH1L1 rs2002287, rs2276731; DNMT1 rs16999593, rs2228611; DNMT3B rs2424908) and the risk of female breast cancer (BC) in a Chinese population. METHODS A population-based case-control study was conducted, involving a total of 439 BC patients and 439 age-matched healthy controls. We adopted Sequence MASSarray to identify genotyping, and used immunohistochemistry (IHC) to test the expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER-2) in tumor tissue. RESULTS We found that rs16999593 (TC/CC vs TT: adjusted OR=1.38, 95% CI: 1.03-1.84, p=0.030) was associated with an increased risk of BC, while rs2228611 was related to a decreased BC risk (GA/AA vs GG: adjusted OR=0.74, 95% CI: 0.56-0.97, p=0.030). In addition, stratified analysis revealed that DNMT1 rs16999593, rs2228611 and ALDH1L1 rs2002287 contributed to the risk of BC, with associations with ER, PR and HER-2 expression. CONCLUSION In summary, this study revealed that DNMT1 rs16999593 and rs2228611 were associated with BC risk.
Collapse
Affiliation(s)
- Xuhong Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210096, People’s Republic of China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, People’s Republic of China
| | - Mengqiu Xiong
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, People’s Republic of China
| | - Bei Pan
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210096, People’s Republic of China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, People’s Republic of China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, People’s Republic of China
| | - Jin Zhou
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210096, People’s Republic of China
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, People’s Republic of China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210006, People’s Republic of China
- Jiangsu Collaborative Innovation Center on Cancer Personalized Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
25
|
Hu S, Chen Y, Zhao S, Sun K, Luo L, Zeng L. Ripened Pu-Erh Tea Improved the Enterohepatic Circulation in a Circadian Rhythm Disorder Mice Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13533-13545. [PMID: 34726418 DOI: 10.1021/acs.jafc.1c05338] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glucolipid metabolism, nitrogen metabolism, and inflammation are closely related to circadian rhythm disorder (CRD). Ripened Pu-erh tea (RPT) shows significant antidyslipidemic, antihyperurecemic, and anti-inflammatory effects. However, it is unclear whether healthy population are affected by CRD and whether long-term consumption of RPT can alleviate it. To investigate this problem, healthy mice were pretreated with RPT (0.25%, w/v) for 60 days and then subjected to CRD for 40 days. Our results indicated that healthy mice showed obesity, and the intestinal and liver inflammation increased after CRD, which were associated with the development of a metabolic disorder syndrome. RPT effectively reversed this trend by increasing the production and excretion rates of bile acid. RPT reshaped the disorder of gut microbiota caused by CRD and promoted the change of archaeal intestinal types from Firmicutes-dominant type to Bacteroidota-dominant type. In addition, by repairing the intestinal barrier function, RPT inhibited the infiltration of harmful microorganisms or metabolites through enterohepatic circulation, thus reducing the risk of chronic liver inflammation. In conclusion, RPT may reduce the risk of CRD-induced obesity in mice by increasing bile acid metabolism. The change of bile acid pool contributes to the reshaping of gut microflora, thus reducing intestinal inflammation and oxidative stress induced by CRD. Therefore, we speculated that the weakening of CRD damage caused by RPT is due to the improvement of bile acid-mediated enterohepatic circulation. It was found that 0.25% RPT (a human equivalent dose of 7 g/60 kg/day) has potential for regulating CRD.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Yu Chen
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Sibo Zhao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Kang Sun
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| |
Collapse
|
26
|
Network Pharmacology-Based Analysis of the Effects of Corydalis decumbens (Thunb.) Pers. in Non-Small Cell Lung Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4341517. [PMID: 34497656 PMCID: PMC8421182 DOI: 10.1155/2021/4341517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the most malignant tumors worldwide. The main treatment for NSCLC is based on Western medicine; however, the overall effect is unsatisfactory. This study aimed to investigate the potential therapeutic targets and pharmacological mechanisms of action of the traditional Chinese medicine Corydalis decumbens (Thunb.) Pers. in NSCLC based on network pharmacology and bioinformatics. The overlapping genes between Corydalis decumbens (Thunb.) Pers. and NSCLCs were screened using Venn analysis. Cytoscape 3.7.1 software was used to analyze the overlapping target protein-protein interaction (PPI) network. Gene ontology and pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomics database were performed to exploring biological functions of the overlapping genes. The gene expression profiling interactive analysis dataset was used to analyze the correlation between hub gene expression and disease. This study revealed 38 nodes with 191 edges, which may be therapeutic targets for NSCLC. PPI network analysis showed that the most likely association was between the genes AR and NCOA2, NCOA2, and RXRA and ESR1 and NCOA2. These overlapping genes were mainly enriched in the estrogen signaling pathway, calcium signaling pathway, cholinergic synapse, and PI3K-Akt signaling pathway. ESR2 mRNA levels were significantly downregulated in patients with lung adenocarcinoma (LUAD) getting worse, and KDR levels were lower in lung squamous cell carcinoma (LUSC) than those in normal tissue. PTGS2 expression was correlated with the median survival time of LUAD, and ESR1 expression was correlated with the median survival time of LUSC. The application of network pharmacology revealed the potential mechanism underlying the effects of Corydalis decumbens (Thunb.) Pers. in NSCLC treatment and provided a theoretical basis for further in-depth research in this field.
Collapse
|