1
|
Hegde RP, Demitri N, Héroux A, Olivo A, Bais G, Cianci M, Storici P, Dumitrescu DG, Varshney NK, Gopal B, Sarma DD, Vaccari L, Onesti S, Polentarutti M. Macromolecular crystallography at Elettra: current and future perspectives. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:757-765. [PMID: 40138213 PMCID: PMC12067329 DOI: 10.1107/s1600577525001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/05/2025] [Indexed: 03/29/2025]
Abstract
The Elettra synchrotron radiation facility, located in Trieste, Italy, is a third-generation storage ring, operating in top-up mode at both 2.0 and 2.4 GeV. The facility currently hosts one beamline fully dedicated to macromolecular crystallography, XRD2. XRD2 is based on a superconducting wiggler, and it has been open to users since 2018. On-site and remote access for data collection, as well as monitoring tools and automatic data analysis pipelines are available to its users. In addition, since 1994 Elettra has operated a general-purpose diffraction beamline, XRD1, offering the macromolecular community a wide spectrum extending to long wavelengths for phasing and ion identification. Ancillary facilities support the beamlines, providing sample preparation and a high-throughput crystallization platform for the user community. A new CryoEM facility is being established on campus and jointly operated by the Consiglio Nazionale della Ricerche - Istituto Officina dei Materiali (CNR-IOM) and Elettra, providing further opportunities to the Elettra user community. This review outlines the current capabilities and anticipated developments for macromolecular crystallography at Elettra to accompany the upcoming upgrade to Elettra 2.0, featuring a six-bend enhanced achromat lattice. The new source is expected to deliver a high-brilliance beam, enabling the macromolecular crystallography community to better address the emerging and future scientific challenges.
Collapse
Affiliation(s)
- Raghurama P. Hegde
- Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| | - Nicola Demitri
- Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| | - Annie Héroux
- Former Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| | - Alessandro Olivo
- Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| | - Giorgio Bais
- Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche 10, 60131Ancona, Italy
| | - Paola Storici
- Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| | | | - Nishant Kumar Varshney
- IR Technology Services Pvt Ltd, EL-91, TTC Industrial Area, Electronic Zone, Mahape, Navi Mumbai, Maharashtra400710, India
| | - Balasubramanian Gopal
- Molecular Biophysics Unit, Division of Biological Sciences, Indian Institute of Science, Bengaluru560012, India
| | - D. D. Sarma
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru560012, India
| | - Lisa Vaccari
- Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| | - Silvia Onesti
- Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| | - Maurizio Polentarutti
- Elettra – Sincrotrone Trieste SCpASS 14 km 163,5 in AREA Science ParkBasovizza34149TriesteItaly
| |
Collapse
|
2
|
Liu X, Deng C, Deng Y, Luo X, Zhang W. Molecule-rich solutions for achieving novel non-opioid analgesics. Drug Discov Today 2025; 30:104329. [PMID: 40081520 DOI: 10.1016/j.drudis.2025.104329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Despite their efficacy, opioids have long been associated with risks of addiction, tolerance, and dependence, leaving an unmet clinical need for pain treatment. Efforts have been devoted to developing novel classes of pain-relieving medication that outperform current options in terms of pain relief, side-effect profiles, and potential for abuse, but with limited success. Recent advances in the neurobiology of pain have shed light on the potential of targeting non-opioid receptors involved in pain processing. In this review, we identify avenues, ranging from molecular-based approaches to molecule-rich solutions, for effectively identifying non-opioid analgesics free from the side effects associated with opioids.
Collapse
Affiliation(s)
- Xingxing Liu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Chaoyi Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research, Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Deng
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research, Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xudong Luo
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Pharmacy, West China Tianfu Hospital, Sichuan University, Chengdu 610213, China
| | - Wensheng Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research, Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Zhao X, Gao F. Dynamic Mechanism of Norepinephrine Reuptake and Antidepressants Blockade Regulated by Membrane Potential. J Chem Theory Comput 2025; 21:2780-2797. [PMID: 39992630 DOI: 10.1021/acs.jctc.4c01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
During nerve signaling, changes in membrane potential are key to regulating neuronal activity. The norepinephrine transporter (NET) plays a crucial role in the reuptake of norepinephrine (NE), which is essential for maintaining neurotransmitter homeostasis. However, the impact of membrane potential on NET function has long been understudied. Despite the great biological significance of NET, the dynamic molecular mechanisms of NE transport and the blockade effects of antidepressants on this process remain unclear. Here, we reveal the structural, electrostatic, and dynamic characteristics of the NET-NE/antidepressants systems, indicating the dynamic voltage dependence of the NET function. By analyzing the structure and electrostatic properties of the central binding pocket, we find that a hydrophobic network stabilizes the localization of NE, while the dynamic hydrogen bond and salt bridge network plays a crucial role in facilitating the inward transport of NE. Changes in membrane potential significantly affect the reuptake of NE through an electrostatically driven substrate transport pathway, primarily influencing the substrate entrance, the hydrophilic channel leading to the central site, and the exit region. The hyperpolarized state favors NE reuptake, exhibiting a marked preference for inward movement, which aligns with the physiological need for neurons to regulate neurotransmitter concentration in the synaptic cleft via reuptake. Conversely, in the depolarized state, which corresponds to the generation of nerve impulses, NE reuptake may not peak. Furthermore, antidepressants, with their larger molecular size and longer charged amino groups, initially anchor to the essential residue E382 required for NE reuptake. They subsequently occupy the same binding pathway as NE, creating spatial hindrance that effectively blocks NE binding to the central pocket. Additionally, their binding/dissociation behaviors exhibit significant voltage dependence. Under the hyperpolarized state, antidepressants can better block NE entry through more flexible electrostatic and hydrophobic interactions with NET, while the depolarized state raises the binding barrier for antidepressants, facilitating their dissociation. And with this work, a computational strategy for membrane protein-ligand is proposed to emphasize that considering the effects of electric fields in the calculations can reveal more underlying mechanisms and key interactions.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Łapińska N, Szlęk J, Pacławski A, Mendyk A. Machine Learning Tool for New Selective Serotonin and Serotonin-Norepinephrine Reuptake Inhibitors. Molecules 2025; 30:637. [PMID: 39942741 PMCID: PMC11819831 DOI: 10.3390/molecules30030637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Depression, a serious mood disorder, affects about 5% of the population. Currently, there are two groups of antidepressants that are the first-line treatment for depressive disorder: selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors. The aim of the study was to develop Quantitative Structure-Activity Relationship (QSAR) models for serotonin (SERT) and norepinephrine (NET) transporters to predict the affinity and inhibition potential of new molecules. Models were developed using the Automated Machine Learning tool Mljar based on 80% of the dataset according to 10-fold cross-validation and externally validated on the remaining 20% of data. The molecular representation featured two-dimensional Mordred descriptors. For each model, Shapley additive explanations analysis was performed to clarify the influence of the descriptors on the models' predictions. Based on the final QSAR models, the following results were obtained: NET and pIC50 value RMSEtest = 0.678, R2test = 0.640; NET and pKi RMSEtest = 0.590, R2test = 0.709; SERT and pIC50 RMSEtest = 0.645, R2test = 0.678; SERT and pKi value RMSEtest = 0.540, R2test = 0.828. QSAR models for serotonin and norepinephrine transporters have been made available in a new module of the SerotoninAI application to enhance usability for scientists.
Collapse
Affiliation(s)
- Natalia Łapińska
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, 30-688 Kraków, Poland; (N.Ł.); (A.P.); (A.M.)
| | - Jakub Szlęk
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, 30-688 Kraków, Poland; (N.Ł.); (A.P.); (A.M.)
- Bioinformatics and In Silico Analysis Laboratory, Center for the Development of Therapies for Civilization and Age-Related Diseases (CDT-CARD), 8 Skawińska St., 31-066 Kraków, Poland
| | - Adam Pacławski
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, 30-688 Kraków, Poland; (N.Ł.); (A.P.); (A.M.)
| | - Aleksander Mendyk
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, 30-688 Kraków, Poland; (N.Ł.); (A.P.); (A.M.)
| |
Collapse
|
5
|
Chen X, Mo X, Zhang Y, He D, Xiao R, Cheng Q, Wang H, Liu L, Li WW, Xie P. A comprehensive analysis of the differential expression in the hippocampus of depression induced by gut microbiota compared to traditional stress. Gene 2024; 927:148633. [PMID: 38838871 DOI: 10.1016/j.gene.2024.148633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
Depression, which is a disease of heterogeneous etiology, is characterized by high disability and mortality rates. Gut microbiota are associated with the development of depression. To further explore any differences in the mechanisms of depression induced by gut microbiota and traditional stresses, as well as facilitate the development of microbiota-based interventions, a fecal microbiota transplantation (FMT) depression model was made. This was achieved by transplanting feces from major depressive disorder (MDD) patients into germ-free mice. Second, the mechanisms of the depression induced by gut microbiota were analyzed in comparison with those of the depression caused by different forms of stress. It turned out that mice exhibited depressive-like behavior after FMT. Then, PCR array analysis was performed on the hippocampus of the depressed mice to identify differentially expressed genes (DEGs). The KEGG analysis revealed that the pathways of depression induced by gut microbes are closely associated with immuno-inflammation. To determine the pathogenic pathways of physiological stress and psychological stress-induced depression, raw data was extracted from several databases and KEGG analysis was performed. The results from the analysis revealed that the mechanisms of depression induced by physiological and psychological stress are closely related to the regulation of neurotransmitters and energy metabolism. Interestingly, the immunoinflammatory response was distinct across different etiologies that induced depression. The findings showed that gut microbiota dysbiosis-induced depression was mainly associated with adaptive immunity, while physiological stress-induced depression was more linked to innate immunity. This study compared the pathogenesis of depression caused by gut microbiota dysbiosis, and physiological and psychological stress. We explored new intervention methods for depression and laid the foundation for precise treatment.
Collapse
Affiliation(s)
- Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; School of Basic Medical Sciences, Department of Pathology, Chongqing Medical University, Chongqing 400016, China
| | - Xiaolong Mo
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dian He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rui Xiao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; School of Basic Medical Sciences, Department of Pathology, Chongqing Medical University, Chongqing 400016, China
| | - Qisheng Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lanxiang Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Wen-Wen Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; School of Basic Medical Sciences, Department of Pathology, Chongqing Medical University, Chongqing 400016, China; Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China; Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China.
| |
Collapse
|
6
|
Song A, Wu X. Mechanistic insights of substrate transport and inhibitor binding revealed by high-resolution structures of human norepinephrine transporter. Cell Res 2024; 34:810-813. [PMID: 39223283 PMCID: PMC11528112 DOI: 10.1038/s41422-024-01024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Ailong Song
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xudong Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Dilweg MA, Mocking TAM, Maragkoudakis P, van Westen GJP, Heitman LH, IJzerman AP, Jespers W, van der Es D. Stereochemical optimization of N,2-substituted cycloalkylamines as norepinephrine reuptake inhibitors. RSC Med Chem 2024:d4md00521j. [PMID: 39345718 PMCID: PMC11428037 DOI: 10.1039/d4md00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
The norepinephrine transporter (NET), encoded by the SLC6A2 gene, is one of three key monoamine neurotransmitter transporters. Inhibition of NET-mediated reuptake of norepinephrine by monoamine reuptake inhibitors has been the main therapeutic strategy to treat disorders such as depression, ADHD and Parkinson's disease. Nevertheless, lack of efficacy as well as risk of adverse effects are still common for these treatments underscoring the necessity to improve drug discovery efforts for this target. In this study, we developed new inhibitors based on 4-((2-(3,4-dichlorophenyl)cyclopentyl)amino)butan-1-ol (8), a potent NET inhibitor, which emerged from earlier virtual screening efforts using a predictive proteochemometric model. Hence, we optimized the N,2-substituted cycloalkylamine scaffold in three regions to design twenty new derivatives. To establish structure-activity relationships for these NET inhibitors, all novel compounds were tested utilizing an impedance-based 'transporter activity through receptor activation' assay. Moreover, all stereoisomers of the most potent compound (27) were synthesized and evaluated for their inhibitory potencies. Initial screening indicated that modifications in the cyclopentylamine moiety and phenyl substitutions decreased NET inhibition compared to 8, emphasizing the importance of the five-membered ring, secondary amine and dichloro-substitution pattern in NET binding. Substituting the original butylalcohol at the R 2 position with a rigid cyclohexanol yielded lead compound 27, with potency similar to reference inhibitor nisoxetine. Pharmacological characterization of all eight stereoisomers of 27 revealed varying inhibitory potencies, favoring a trans-orientation of the N,2-substituted cyclopentyl moiety. Molecular docking highlighted key interactions and the impact of a hydrophilic region in the binding pocket. This study presents a novel set of moderate to highly potent NET inhibitors, elucidating the influence of molecular orientation in the NET binding pocket and offering valuable insights into drug discovery efforts for monoamine transport-related treatments.
Collapse
Affiliation(s)
- Majlen A Dilweg
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Tamara A M Mocking
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Pantelis Maragkoudakis
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gerard J P van Westen
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
- Oncode Institute 2333 CC Leiden The Netherlands
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Willem Jespers
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Daan van der Es
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
8
|
Ji W, Miao A, Liang K, Liu J, Qi Y, Zhou Y, Duan X, Sun J, Lai L, Wu JX. Substrate binding and inhibition mechanism of norepinephrine transporter. Nature 2024; 633:473-479. [PMID: 39143211 DOI: 10.1038/s41586-024-07810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
Norepinephrine transporter (NET; encoded by SLC6A2) reuptakes the majority of the released noradrenaline back to the presynaptic terminals, thereby affecting the synaptic noradrenaline level1. Genetic mutations and dysregulation of NET are associated with a spectrum of neurological conditions in humans, making NET an important therapeutic target1. However, the structure and mechanism of NET remain unclear. Here we provide cryogenic electron microscopy structures of the human NET (hNET) in three functional states-the apo state, and in states bound to the substrate meta-iodobenzylguanidine (MIBG) or the orthosteric inhibitor radafaxine. These structures were captured in an inward-facing conformation, with a tightly sealed extracellular gate and an open intracellular gate. The substrate MIBG binds at the centre of hNET. Radafaxine also occupies the substrate-binding site and might block the structural transition of hNET for inhibition. These structures provide insights into the mechanism of substrate recognition and orthosteric inhibition of hNET.
Collapse
Affiliation(s)
- Wenming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Anran Miao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Kai Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jiameng Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yuhan Qi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yue Zhou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xinli Duan
- Beijing Jingtai Technology, Beijing, P. R. China
| | - Jixue Sun
- Beijing Jingtai Technology, Beijing, P. R. China
| | - Lipeng Lai
- Beijing Jingtai Technology, Beijing, P. R. China
| | - Jing-Xiang Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
9
|
Nielsen JC, Salomon K, Kalenderoglou IE, Bargmeyer S, Pape T, Shahsavar A, Loland CJ. Structure of the human dopamine transporter in complex with cocaine. Nature 2024; 632:678-685. [PMID: 39112703 DOI: 10.1038/s41586-024-07804-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
The dopamine transporter (DAT) is crucial for regulating dopamine signalling and is the prime mediator for the rewarding and addictive effects of cocaine1. As part of the neurotransmitter sodium symporter family, DAT uses the Na+ gradient across cell membranes to transport dopamine against its chemical gradient2. The transport mechanism involves both intra- and extracellular gates that control substrate access to a central site. However, the molecular intricacies of this process and the inhibitory mechanism of cocaine have remained unclear. Here, we present the molecular structure of human DAT in complex with cocaine at a resolution of 2.66 Å. Our findings reveal that DAT adopts the expected LeuT-fold, posing in an outward-open conformation with cocaine bound at the central (S1) site. Notably, while an Na+ occupies the second Na+ site (Na2), the Na1 site seems to be vacant, with the side chain of Asn82 occupying the presumed Na+ space. This structural insight elucidates the mechanism for the cocaine inhibition of human DAT and deepens our understanding of neurotransmitter transport. By shedding light on the molecular underpinnings of how cocaine acts, our study lays a foundation for the development of targeted medications to combat addiction.
Collapse
Affiliation(s)
- Jeppe C Nielsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Salomon
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iris E Kalenderoglou
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Bargmeyer
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tillmann Pape
- Structural Molecular Biology Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Core Facility for Integrated Microscopy (CFIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Azadeh Shahsavar
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus J Loland
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Tan J, Xiao Y, Kong F, Zhang X, Xu H, Zhu A, Liu Y, Lei J, Tian B, Yuan Y, Yan C. Molecular basis of human noradrenaline transporter reuptake and inhibition. Nature 2024; 632:921-929. [PMID: 39048818 DOI: 10.1038/s41586-024-07719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Noradrenaline, also known as norepinephrine, has a wide range of activities and effects on most brain cell types1. Its reuptake from the synaptic cleft heavily relies on the noradrenaline transporter (NET) located in the presynaptic membrane2. Here we report the cryo-electron microscopy (cryo-EM) structures of the human NET in both its apo state and when bound to substrates or antidepressant drugs, with resolutions ranging from 2.5 Å to 3.5 Å. The two substrates, noradrenaline and dopamine, display a similar binding mode within the central substrate binding site (S1) and within a newly identified extracellular allosteric site (S2). Four distinct antidepressants, namely, atomoxetine, desipramine, bupropion and escitalopram, occupy the S1 site to obstruct substrate transport in distinct conformations. Moreover, a potassium ion was observed within sodium-binding site 1 in the structure of the NET bound to desipramine under the KCl condition. Complemented by structural-guided biochemical analyses, our studies reveal the mechanism of substrate recognition, the alternating access of NET, and elucidate the mode of action of the four antidepressants.
Collapse
Affiliation(s)
- Jiaxin Tan
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuan Xiao
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Fang Kong
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaochun Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Hanwen Xu
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Angqi Zhu
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiming Liu
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianlin Lei
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Boxue Tian
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yafei Yuan
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Hu T, Yu Z, Zhao J, Meng Y, Salomon K, Bai Q, Wei Y, Zhang J, Xu S, Dai Q, Yu R, Yang B, Loland CJ, Zhao Y. Transport and inhibition mechanisms of the human noradrenaline transporter. Nature 2024; 632:930-937. [PMID: 39085602 DOI: 10.1038/s41586-024-07638-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/31/2024] [Indexed: 08/02/2024]
Abstract
The noradrenaline transporter (also known as norepinephrine transporter) (NET) has a critical role in terminating noradrenergic transmission by utilizing sodium and chloride gradients to drive the reuptake of noradrenaline (also known as norepinephrine) into presynaptic neurons1-3. It is a pharmacological target for various antidepressants and analgesic drugs4,5. Despite decades of research, its structure and the molecular mechanisms underpinning noradrenaline transport, coupling to ion gradients and non-competitive inhibition remain unknown. Here we present high-resolution complex structures of NET in two fundamental conformations: in the apo state, and bound to the substrate noradrenaline, an analogue of the χ-conotoxin MrlA (χ-MrlAEM), bupropion or ziprasidone. The noradrenaline-bound structure clearly demonstrates the binding modes of noradrenaline. The coordination of Na+ and Cl- undergoes notable alterations during conformational changes. Analysis of the structure of NET bound to χ-MrlAEM provides insight into how conotoxin binds allosterically and inhibits NET. Additionally, bupropion and ziprasidone stabilize NET in its inward-facing state, but they have distinct binding pockets. These structures define the mechanisms governing neurotransmitter transport and non-competitive inhibition in NET, providing a blueprint for future drug design.
Collapse
Affiliation(s)
- Tuo Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuoya Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Yufei Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kristine Salomon
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Qinru Bai
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiqing Wei
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinghui Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shujing Xu
- Beijing Institute of Biotechnology, Beijing, China
| | - Qiuyun Dai
- Beijing Institute of Biotechnology, Beijing, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Bei Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Claus J Loland
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Yan Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
12
|
Stary D, Bajda M. Structural Studies of the Taurine Transporter: A Potential Biological Target from the GABA Transporter Subfamily in Cancer Therapy. Int J Mol Sci 2024; 25:7339. [PMID: 39000444 PMCID: PMC11242302 DOI: 10.3390/ijms25137339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
The taurine transporter (TauT, SLC6A6) is a member of the solute carrier 6 (SLC6) family, which plays multiple physiological roles. The SLC6 family is divided into four subfamilies: GABA (γ-aminobutyric acid), monoamine, glycine and neutral amino acid transporters. Proteins from the GABA group, including the taurine transporter, are primarily considered therapeutic targets for treating central nervous system disorders. However, recent studies have suggested that inhibitors of SLC6A6 could also serve as anticancer agents. Overexpression of TauT has been associated with the progression of colon and gastric cancer. The pool of known ligands of this transporter is limited and the exact spatial structure of taurine transporter remains unsolved. Understanding its structure could aid in the development of novel inhibitors. Therefore, we utilized homology modelling techniques to create models of TauT. Docking studies and molecular dynamics simulations were conducted to describe protein-ligand interactions. We compared the obtained information for TauT with literature data on other members of the GABA transporter group. Our in silico analysis allowed us to characterize the transporter structure and point out amino acids crucial for ligand binding: Glu406, Gly62 and Tyr138. The significance of selected residues was confirmed through structural studies of mutants. These results will aid in the development of novel taurine transporter inhibitors, which can be explored as anticancer agents.
Collapse
Affiliation(s)
- Dorota Stary
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 16, 31-530 Cracow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| |
Collapse
|
13
|
Zhang H, Yin YL, Dai A, Zhang T, Zhang C, Wu C, Hu W, He X, Pan B, Jin S, Yuan Q, Wang MW, Yang D, Xu HE, Jiang Y. Dimerization and antidepressant recognition at noradrenaline transporter. Nature 2024; 630:247-254. [PMID: 38750358 DOI: 10.1038/s41586-024-07437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/17/2024] [Indexed: 06/07/2024]
Abstract
The noradrenaline transporter has a pivotal role in regulating neurotransmitter balance and is crucial for normal physiology and neurobiology1. Dysfunction of noradrenaline transporter has been implicated in numerous neuropsychiatric diseases, including depression and attention deficit hyperactivity disorder2. Here we report cryo-electron microscopy structures of noradrenaline transporter in apo and substrate-bound forms, and as complexes with six antidepressants. The structures reveal a noradrenaline transporter dimer interface that is mediated predominantly by cholesterol and lipid molecules. The substrate noradrenaline binds deep in the central binding pocket, and its amine group interacts with a conserved aspartate residue. Our structures also provide insight into antidepressant recognition and monoamine transporter selectivity. Together, these findings advance our understanding of noradrenaline transporter regulation and inhibition, and provide templates for designing improved antidepressants to treat neuropsychiatric disorders.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Antao Dai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tianwei Zhang
- Lingang Laboratory, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chao Zhang
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Fudan University, Shanghai, China
| | - Canrong Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wen Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | | | - Qingning Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Wei Wang
- Research Center for Deepsea Bioresources, Sanya, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- School of Pharmacy, Hainan Medical University, Haikou, China
| | - Dehua Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Advanced Electron Microscope Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Yi Jiang
- Lingang Laboratory, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
14
|
Wu E, Qi D, Nizamutdinov D, Huang JH. Astrocytic calcium waves: unveiling their roles in sleep and arousal modulation. Neural Regen Res 2024; 19:984-987. [PMID: 37862199 PMCID: PMC10749589 DOI: 10.4103/1673-5374.385287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 10/22/2023] Open
Abstract
Neuron-astrocyte interactions are vital for the brain's connectome. Understanding astrocyte activities is crucial for comprehending the complex neural network, particularly the population-level functions of neurons in different cortical states and associated behaviors in mammals. Studies on animal sleep and wakefulness have revealed distinct cortical synchrony patterns between neurons. Astrocytes, outnumbering neurons by nearly fivefold, support and regulate neuronal and synaptic function. Recent research on astrocyte activation during cortical state transitions has emphasized the influence of norepinephrine as a neurotransmitter and calcium waves as key components of ion channel signaling. This summary focuses on a few recent studies investigating astrocyte-neuron interactions in mouse models during sleep, wakefulness, and arousal levels, exploring the involvement of noradrenaline signaling, ion channels, and glutamatergic signaling in different cortical states. These findings highlight the significant impact of astrocytes on large-scale neuronal networks, influencing brain activity and responsiveness. Targeting astrocytic signaling pathways shows promise for treating sleep disorders and arousal dysregulation. More research is needed to understand astrocytic calcium signaling in different brain regions and its implications for dysregulated brain states, requiring future human studies to comprehensively investigate neuron-astrocyte interactions and pave the way for therapeutic interventions in sleep- and arousal-related disorders.
Collapse
Affiliation(s)
- Erxi Wu
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, USA
- Texas A&M University School of Medicine, Temple, TX, USA
- Texas A&M University School of Pharmacy, College Station, TX, USA
- LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, the University of Texas at Austin, Austin, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX, USA
| | - Dan Qi
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, USA
| | - Damir Nizamutdinov
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, USA
- Texas A&M University School of Medicine, Temple, TX, USA
| | - Jason H. Huang
- Department of Neurosurgery and Neuroscience Institute, Baylor Scott & White Health, Temple, TX, USA
- Texas A&M University School of Medicine, Temple, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX, USA
| |
Collapse
|
15
|
Kalinichenko L, Kornhuber J, Sinning S, Haase J, Müller CP. Serotonin Signaling through Lipid Membranes. ACS Chem Neurosci 2024; 15:1298-1320. [PMID: 38499042 PMCID: PMC10995955 DOI: 10.1021/acschemneuro.3c00823] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Serotonin (5-HT) is a vital modulatory neurotransmitter responsible for regulating most behaviors in the brain. An inefficient 5-HT synaptic function is often linked to various mental disorders. Primarily, membrane proteins controlling the expression and activity of 5-HT synthesis, storage, release, receptor activation, and inactivation are critical to 5-HT signaling in synaptic and extra-synaptic sites. Moreover, these signals represent information transmission across membranes. Although the lipid membrane environment is often viewed as fairly stable, emerging research suggests significant functional lipid-protein interactions with many synaptic 5-HT proteins. These protein-lipid interactions extend to almost all the primary lipid classes that form the plasma membrane. Collectively, these lipid classes and lipid-protein interactions affect 5-HT synaptic efficacy at the synapse. The highly dynamic lipid composition of synaptic membranes suggests that these lipids and their interactions with proteins may contribute to the plasticity of the 5-HT synapse. Therefore, this broader protein-lipid model of the 5-HT synapse necessitates a reconsideration of 5-HT's role in various associated mental disorders.
Collapse
Affiliation(s)
- Liubov
S. Kalinichenko
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Steffen Sinning
- Department
of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Jana Haase
- School
of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Christian P. Müller
- Department
of Psychiatry and Psychotherapy, University
Clinic, Friedrich-Alexander-University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
- Institute
of Psychopharmacology, Central Institute of Mental Health, Medical
Faculty Mannheim, Heidelberg University, 69047, Mannheim, Germany
| |
Collapse
|
16
|
Nguyen H, Cheng MH, Lee JY, Aggarwal S, Mortensen OV, Bahar I. Allosteric modulation of serotonin and dopamine transporters: New insights from computations and experiments. Curr Res Physiol 2024; 7:100125. [PMID: 38836245 PMCID: PMC11148570 DOI: 10.1016/j.crphys.2024.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 06/06/2024] Open
Abstract
Human monoamine transporters (MATs) are critical to regulating monoaminergic neurotransmission by translocating their substrates from the synaptic space back into the presynaptic neurons. As such, their primary substrate binding site S1 has been targeted by a wide range of compounds for treating neuropsychiatric and neurodegenerative disorders including depression, ADHD, neuropathic pain, and anxiety disorders. We present here a comparative study of the structural dynamics and ligand-binding properties of two MATs, dopamine transporter (DAT) and serotonin transporter (SERT), with focus on the allosteric modulation of their transport function by drugs or substrates that consistently bind a secondary site S2, proposed to serve as an allosteric site. Our systematic analysis of the conformational space and dynamics of a dataset of 50 structures resolved for DAT and SERT in the presence of one or more ligands/drugs reveals the specific residues playing a consistent role in coordinating the small molecules bound to subsites S2-I and S2-II within S2, such as R476 and Y481 in dDAT and E494, P561, and F556 in hSERT. Further analysis reveals how DAT and SERT differ in their two principal modes of structural changes, PC1 and PC2. Notably, PC1 underlies the transition between outward- and inward-facing states of the transporters as well as their gating; whereas PC2 supports the rearrangements of TM helices near the S2 site. Finally, the examination of cross-correlations between structural elements lining the respective sites S1 and S2 point to the crucial role of coupled motions between TM6a and TM10. In particular, we note the involvement of hSERT residues F335 and G338, and E493-E494-T497 belonging to these two respective helices, in establishing the allosteric communication between S1 and S2. These results help understand the molecular basis of the action of drugs that bind to the S2 site of DAT or SERT. They also provide a basis for designing allosteric modulators that may provide better control of specific interactions and cellular pathways, rather than indiscriminately inhibiting the transporter by targeting its orthosteric site.
Collapse
Affiliation(s)
- Hoang Nguyen
- Laufer Center for Physical and Quantitative Biology and, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Ji Young Lee
- Laufer Center for Physical and Quantitative Biology and, USA
| | - Shaili Aggarwal
- Department of Pharmacology and Physiology, Drexel University School of Medicine, Philadelphia, PA, 19102, USA
| | - Ole Valente Mortensen
- Department of Pharmacology and Physiology, Drexel University School of Medicine, Philadelphia, PA, 19102, USA
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology and, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
17
|
Fu T, Zeng S, Zheng Q, Zhu F. The Important Role of Transporter Structures in Drug Disposition, Efficacy, and Toxicity. Drug Metab Dispos 2023; 51:1316-1323. [PMID: 37295948 DOI: 10.1124/dmd.123.001275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The ATP-binding cassette (ABC) and solute carrier (SLC) transporters are critical determinants of drug disposition, clinical efficacy, and toxicity as they specifically mediate the influx and efflux of various substrates and drugs. ABC transporters can modulate the pharmacokinetics of many drugs via mediating the translocation of drugs across biologic membranes. SLC transporters are important drug targets involved in the uptake of a broad range of compounds across the membrane. However, high-resolution experimental structures have been reported for a very limited number of transporters, which limits the study of their physiologic functions. In this review, we collected structural information on ABC and SLC transporters and described the application of computational methods in structure prediction. Taking P-glycoprotein (ABCB1) and serotonin transporter (SLC6A4) as examples, we assessed the pivotal role of structure in transport mechanisms, details of ligand-receptor interactions, drug selectivity, the molecular mechanisms of drug-drug interactions, and differences caused by genetic polymorphisms. The data collected contributes toward safer and more effective pharmacological treatments. SIGNIFICANCE STATEMENT: The experimental structure of ATP-binding cassette and solute carrier transporters was collected, and the application of computational methods in structure prediction was described. P-glycoprotein and serotonin transporter were used as examples to reveal the pivotal role of structure in transport mechanisms, drug selectivity, the molecular mechanisms of drug-drug interactions, and differences caused by genetic polymorphisms.
Collapse
Affiliation(s)
- Tingting Fu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Su Zeng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Qingchuan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| |
Collapse
|
18
|
Kalaba P, Pacher K, Neill PJ, Dragacevic V, Zehl M, Wackerlig J, Kirchhofer M, Sartori SB, Gstach H, Kouhnavardi S, Fabisikova A, Pillwein M, Monje-Quiroga F, Ebner K, Prado-Roller A, Singewald N, Urban E, Langer T, Pifl C, Lubec J, Leban JJ, Lubec G. Chirality Matters: Fine-Tuning of Novel Monoamine Reuptake Inhibitors Selectivity through Manipulation of Stereochemistry. Biomolecules 2023; 13:1415. [PMID: 37759815 PMCID: PMC10527105 DOI: 10.3390/biom13091415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The high structural similarity, especially in transmembrane regions, of dopamine, norepinephrine, and serotonin transporters, as well as the lack of all crystal structures of human isoforms, make the specific targeting of individual transporters rather challenging. Ligand design itself is also rather limited, as many chemists, fully aware of the synthetic and analytical challenges, tend to modify lead compounds in a way that reduces the number of chiral centers and hence limits the potential chemical space of synthetic ligands. We have previously shown that increasing molecular complexity by introducing additional chiral centers ultimately leads to more selective and potent dopamine reuptake inhibitors. Herein, we significantly extend our structure-activity relationship of dopamine transporter-selective ligands and further demonstrate how stereoisomers of defined absolute configuration may fine-tune and direct the activity towards distinct targets. From the pool of active compounds, using the examples of stereoisomers 7h and 8h, we further showcase how in vitro activity significantly differs in in vivo drug efficacy experiments, calling for proper validation of individual stereoisomers in animal studies. Furthermore, by generating a large library of compounds with defined absolute configurations, we lay the groundwork for computational chemists to further optimize and rationally design specific monoamine transporter reuptake inhibitors.
Collapse
Affiliation(s)
- Predrag Kalaba
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Katharina Pacher
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Philip John Neill
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Vladimir Dragacevic
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Martin Zehl
- Mass Spectrometry Centre, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria; (M.Z.); (A.F.)
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Judith Wackerlig
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Michael Kirchhofer
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Simone B. Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, 6020 Innsbruck, Austria; (S.B.S.); (K.E.); (N.S.)
| | - Hubert Gstach
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Shima Kouhnavardi
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Anna Fabisikova
- Mass Spectrometry Centre, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria; (M.Z.); (A.F.)
| | - Matthias Pillwein
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Francisco Monje-Quiroga
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, 6020 Innsbruck, Austria; (S.B.S.); (K.E.); (N.S.)
| | - Alexander Prado-Roller
- X-ray Structure Analysis Centre, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, 6020 Innsbruck, Austria; (S.B.S.); (K.E.); (N.S.)
| | - Ernst Urban
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Christian Pifl
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria; (J.L.); (J.J.L.)
| | - Johann Jakob Leban
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria; (J.L.); (J.J.L.)
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria; (J.L.); (J.J.L.)
| |
Collapse
|
19
|
Nayak SR, Joseph D, Höfner G, Dakua A, Athreya A, Wanner KT, Kanner BI, Penmatsa A. Cryo-EM structure of GABA transporter 1 reveals substrate recognition and transport mechanism. Nat Struct Mol Biol 2023; 30:1023-1032. [PMID: 37400654 PMCID: PMC10352132 DOI: 10.1038/s41594-023-01011-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 05/04/2023] [Indexed: 07/05/2023]
Abstract
The inhibitory neurotransmitter γ-aminobutyric acid (GABA) is cleared from the synaptic cleft by the sodium- and chloride-coupled GABA transporter GAT1. Inhibition of GAT1 prolongs the GABAergic signaling at the synapse and is a strategy to treat certain forms of epilepsy. In this study, we present the cryo-electron microscopy structure of Rattus norvegicus GABA transporter 1 (rGAT1) at a resolution of 3.1 Å. The structure elucidation was facilitated by epitope transfer of a fragment-antigen binding (Fab) interaction site from the Drosophila dopamine transporter (dDAT) to rGAT1. The structure reveals rGAT1 in a cytosol-facing conformation, with a linear density in the primary binding site that accommodates a molecule of GABA, a displaced ion density proximal to Na site 1 and a bound chloride ion. A unique insertion in TM10 aids the formation of a compact, closed extracellular gate. Besides yielding mechanistic insights into ion and substrate recognition, our study will enable the rational design of specific antiepileptics.
Collapse
Affiliation(s)
| | - Deepthi Joseph
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Georg Höfner
- Department of Pharmacy, Center for Drug Research, Ludwig Maximilians University of Munich, Munich, Germany
| | - Archishman Dakua
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- Biophysics Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Arunabh Athreya
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Klaus T Wanner
- Department of Pharmacy, Center for Drug Research, Ludwig Maximilians University of Munich, Munich, Germany
| | - Baruch I Kanner
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
20
|
Bongers BJ, Sijben HJ, Hartog PBR, Tarnovskiy A, IJzerman AP, Heitman LH, van Westen GJP. Proteochemometric Modeling Identifies Chemically Diverse Norepinephrine Transporter Inhibitors. J Chem Inf Model 2023; 63:1745-1755. [PMID: 36926886 PMCID: PMC10052348 DOI: 10.1021/acs.jcim.2c01645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Solute carriers (SLCs) are relatively underexplored compared to other prominent protein families such as kinases and G protein-coupled receptors. However, proteins from the SLC family play an essential role in various diseases. One such SLC is the high-affinity norepinephrine transporter (NET/SLC6A2). In contrast to most other SLCs, the NET has been relatively well studied. However, the chemical space of known ligands has a low chemical diversity, making it challenging to identify chemically novel ligands. Here, a computational screening pipeline was developed to find new NET inhibitors. The approach increases the chemical space to model for NETs using the chemical space of related proteins that were selected utilizing similarity networks. Prior proteochemometric models added data from related proteins, but here we use a data-driven approach to select the optimal proteins to add to the modeled data set. After optimizing the data set, the proteochemometric model was optimized using stepwise feature selection. The final model was created using a two-step approach combining several proteochemometric machine learning models through stacking. This model was applied to the extensive virtual compound database of Enamine, from which the top predicted 22,000 of the 600 million virtual compounds were clustered to end up with 46 chemically diverse candidates. A subselection of 32 candidates was synthesized and subsequently tested using an impedance-based assay. There were five hit compounds identified (hit rate 16%) with sub-micromolar inhibitory potencies toward NET, which are promising for follow-up experimental research. This study demonstrates a data-driven approach to diversify known chemical space to identify novel ligands and is to our knowledge the first to select this set based on the sequence similarity of related targets.
Collapse
Affiliation(s)
- Brandon J Bongers
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Huub J Sijben
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Peter B R Hartog
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | | | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands.,Oncode Institute, Jaarbeursplein 6, Utrecht 3521 AL, The Netherlands
| | - Gerard J P van Westen
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
21
|
Two-photon fluorescence imaging and specifically biosensing of norepinephrine on a 100-ms timescale. Nat Commun 2023; 14:1419. [PMID: 36918539 PMCID: PMC10014876 DOI: 10.1038/s41467-023-36869-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
Norepinephrine (NE) is a key neurotransmitter in the central nervous system of organisms; however, specifically tracking the transient NE dynamics with high spatiotemporal resolution in living systems remains a great challenge. Herein, we develop a small molecular fluorescent probe that can precisely anchor on neuronal cytomembranes and specifically respond to NE on a 100-ms timescale. A unique dual acceleration mechanism of molecular-folding and water-bridging is disclosed, which boosts the reaction kinetics by ˃105 and ˃103 times, respectively. Benefiting from its excellent spatiotemporal resolution, the probe is applied to monitor NE dynamics at the single-neuron level, thereby, successfully snapshotting the fast fluctuation of NE levels at neuronal cytomembranes within 2 s. Moreover, two-photon fluorescence imaging of acute brain tissue slices reveals a close correlation between downregulated NE levels and Alzheimer's disease pathology as well as antioxidant therapy.
Collapse
|
22
|
Mueller NPF, Carloni P, Alfonso-Prieto M. Molecular determinants of acrylamide neurotoxicity through covalent docking. Front Pharmacol 2023; 14:1125871. [PMID: 36937867 PMCID: PMC10018202 DOI: 10.3389/fphar.2023.1125871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Acrylamide (ACR) is formed during food processing by Maillard reaction between sugars and proteins at high temperatures. It is also used in many industries, from water waste treatment to manufacture of paper, fabrics, dyes and cosmetics. Unfortunately, cumulative exposure to acrylamide, either from diet or at the workplace, may result in neurotoxicity. Such adverse effects arise from covalent adducts formed between acrylamide and cysteine residues of several neuronal proteins via a Michael addition reaction. The molecular determinants of acrylamide reactivity and its impact on protein function are not completely understood. Here we have compiled a list of acrylamide protein targets reported so far in the literature in connection with neurotoxicity and performed a systematic covalent docking study. Our results indicate that acrylamide binding to cysteine is favored in the presence of nearby positively charged amino acids, such as lysines and arginines. For proteins with more than one reactive Cys, docking scores were able to discriminate between the primary ACR modification site and secondary sites modified only at high ACR concentrations. Therefore, docking scores emerge as a potential filter to predict Cys reactivity against acrylamide. Inspection of the ACR-protein complex structures provides insights into the putative functional consequences of ACR modification, especially for non-enzyme proteins. Based on our study, covalent docking is a promising computational tool to predict other potential protein targets mediating acrylamide neurotoxicity.
Collapse
Affiliation(s)
- Nicolas Pierre Friedrich Mueller
- Institute for Advanced Simulations IAS-5, Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Paolo Carloni
- Institute for Advanced Simulations IAS-5, Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - Mercedes Alfonso-Prieto
- Institute for Advanced Simulations IAS-5, Institute of Neuroscience and Medicine INM-9, Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
23
|
Priya AM, Aazaad B, Biju DM. A Density Functional Theory Investigation On Norepinephrine Interaction With Amino Acids And Alcohols. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
24
|
Tutov A, Chen X, Werner RA, Mühlig S, Zimmermann T, Nose N, Koshino K, Lapa C, Decker M, Higuchi T. Rationalizing the Binding Modes of PET Radiotracers Targeting the Norepinephrine Transporter. Pharmaceutics 2023; 15:pharmaceutics15020690. [PMID: 36840011 PMCID: PMC9963373 DOI: 10.3390/pharmaceutics15020690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
PURPOSE A new PET radiotracer 18F-AF78 showing great potential for clinical application has been reported recently. It belongs to a new generation of phenethylguanidine-based norepinephrine transporter (NET)-targeting radiotracers. Although many efforts have been made to develop NET inhibitors as antidepressants, systemic investigations of the structure-activity relationships (SARs) of NET-targeting radiotracers have rarely been performed. METHODS Without changing the phenethylguanidine pharmacophore and 3-fluoropropyl moiety that is crucial for easy labeling, six new analogs of 18F-AF78 with different meta-substituents on the benzene-ring were synthesized and evaluated in a competitive cellular uptake assay and in in vivo animal experiments in rats. Computational modeling of these tracers was established to quantitatively rationalize the interaction between the radiotracers and NET. RESULTS Using non-radiolabeled reference compounds, a competitive cellular uptake assay showed a decrease in NET-transporting affinity from meta-fluorine to iodine (0.42 and 6.51 µM, respectively), with meta-OH being the least active (22.67 µM). Furthermore, in vivo animal studies with radioisotopes showed that heart-to-blood ratios agreed with the cellular experiments, with AF78(F) exhibiting the highest cardiac uptake. This result correlates positively with the electronegativity rather than the atomic radius of the meta-substituent. Computational modeling studies revealed a crucial influence of halogen substituents on the radiotracer-NET interaction, whereby a T-shaped π-π stacking interaction between the benzene-ring of the tracer and the amino acid residues surrounding the NET binding site made major contributions to the different affinities, in accordance with the pharmacological data. CONCLUSION The SARs were characterized by in vitro and in vivo evaluation, and computational modeling quantitatively rationalized the interaction between radiotracers and the NET binding site. These findings pave the way for further evaluation in different species and underline the potential of AF78(F) for clinical application, e.g., cardiac innervation imaging or molecular imaging of neuroendocrine tumors.
Collapse
Affiliation(s)
- Anna Tutov
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, D-97074 Würzburg, Germany
| | - Xinyu Chen
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, D-86156 Augsburg, Germany
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, D-97080 Würzburg, Germany
| | - Rudolf A. Werner
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, D-97080 Würzburg, Germany
- Division of Nuclear Medicine, The Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Saskia Mühlig
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, D-97080 Würzburg, Germany
| | - Thomas Zimmermann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, D-97074 Würzburg, Germany
| | - Naoko Nose
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-0082, Japan
| | - Kazuhiro Koshino
- Department of Systems and Informatics, Hokkaido Information University, Ebetsu 069-0832, Japan
| | - Constantin Lapa
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, D-86156 Augsburg, Germany
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, D-97074 Würzburg, Germany
- Correspondence: (M.D.); (T.H.); Tel.: +49-(931)-201-35455 (T.H.)
| | - Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, D-97080 Würzburg, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-0082, Japan
- Correspondence: (M.D.); (T.H.); Tel.: +49-(931)-201-35455 (T.H.)
| |
Collapse
|
25
|
Stary D, Bajda M. Taurine and Creatine Transporters as Potential Drug Targets in Cancer Therapy. Int J Mol Sci 2023; 24:ijms24043788. [PMID: 36835201 PMCID: PMC9964810 DOI: 10.3390/ijms24043788] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Cancer cells are characterized by uncontrolled growth, proliferation, and impaired apoptosis. Tumour progression could be related to poor prognosis and due to this fact, researchers have been working on novel therapeutic strategies and antineoplastic agents. It is known that altered expression and function of solute carrier proteins from the SLC6 family could be associated with severe diseases, including cancers. These proteins were noticed to play important physiological roles through transferring nutrient amino acids, osmolytes, neurotransmitters, and ions, and many of them are necessary for survival of the cells. Herein, we present the potential role of taurine (SLC6A6) and creatine (SLC6A8) transporters in cancer development as well as therapeutic potential of their inhibitors. Experimental data indicate that overexpression of analyzed proteins could be connected with colon or breast cancers, which are the most common types of cancers. The pool of known inhibitors of these transporters is limited; however, one ligand of SLC6A8 protein is currently tested in the first phase of clinical trials. Therefore, we also highlight structural aspects useful for ligand development. In this review, we discuss SLC6A6 and SLC6A8 transporters as potential biological targets for anticancer agents.
Collapse
Affiliation(s)
- Dorota Stary
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Cracow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 16 St., 31-530 Cracow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Cracow, Poland
- Correspondence:
| |
Collapse
|
26
|
Yan H, Wang Y, Huo F, Yin C. Fast-Specific Fluorescent Probes to Visualize Norepinephrine Signaling Pathways and Its Flux in the Epileptic Mice Brain. J Am Chem Soc 2023; 145:3229-3237. [PMID: 36701205 DOI: 10.1021/jacs.2c13223] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Norepinephrine (NE) is synthesized in the locus coeruleus and widely projected throughout the brain and spinal cord. It regulates various actions and consciousness linked to a variety of neurological diseases. A "hunting-shooting" strategy was proposed in this work to improve the specificity and response rate of an NE fluorescent probe: 2-(cyclohex-2-en-1-ylidene)malononitrile derivatives were chosen as a fluorophore. To create a dual-site probe, an aldehyde group was added to the ortho of the ester group (or benzene sulfonate). Because of its excellent electrophilic activity, the aldehyde group could rapidly "hunt" the amino group and then form an intramolecular five-membered ring via the nucleophilic reaction with the β-hydroxyl group. The -NH- in the five-membered ring "shoots" the adjacent ester group, releasing the fluorophore and allowing for rapid and specific NE detection. The NE release and reuptake ″emetic″-″swallow″ transient process is captured and visualized under the action of the primary NE receptor drug. Furthermore, by introducing halogen into the fluorophore to lengthen the absorption wavelength, improve lipid solubility, and adjust the pKa appropriately, the probe successfully penetrated the blood-brain barrier (BBB). In situ synchronous probe imaging was used to detect the NE level in the brains of epileptic and normal mice, and abnormal expression of NE in the brain was discovered during epilepsy. Brain anatomy was used to examine the distribution and level changes of NE in various brain regions before and after epilepsy. This research provides useful tools and a theoretical foundation for diagnosing and treating central nervous system diseases early.
Collapse
Affiliation(s)
- Huming Yan
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yuting Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
27
|
Pugh CF, DeVree BT, Schmidt SG, Loland CJ. Pharmacological Characterization of Purified Full-Length Dopamine Transporter from Drosophila melanogaster. Cells 2022; 11:cells11233811. [PMID: 36497070 PMCID: PMC9740255 DOI: 10.3390/cells11233811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The dopamine transporter (DAT) is a member of the neurotransmitter:sodium symporter (NSS) family, mediating the sodium-driven reuptake of dopamine from the extracellular space thereby terminating dopaminergic neurotransmission. Our current structural understanding of DAT is derived from the resolutions of DAT from Drosophila melanogaster (dDAT). Despite extensive structural studies of purified dDAT in complex with a variety of antidepressants, psychostimulants and its endogenous substrate, dopamine, the molecular pharmacology of purified, full length dDAT is yet to be elucidated. In this study, we functionally characterized purified, full length dDAT in detergent micelles using radioligand binding with the scintillation proximity assay. We elucidate the consequences of Na+ and Cl- binding on [3H]nisoxetine affinity and use this to evaluate the binding profiles of substrates and inhibitors to the transporter. Additionally, the technique allowed us to directly determine a equilibrium binding affinity (Kd) for [3H]dopamine to dDAT. To compare with a more native system, the affinities of specified monoamines and inhibitors was determined on dDAT, human DAT and human norepinephrine transporter expressed in COS-7 cells. With our gathered data, we established a pharmacological profile for purified, full length dDAT that will be useful for subsequent biophysical studies using dDAT as model protein for the mammalian NSS family of proteins.
Collapse
|
28
|
Anderson CMH, Edwards N, Watson AK, Althaus M, Thwaites DT. Reshaping the Binding Pocket of the Neurotransmitter:Solute Symporter (NSS) Family Transporter SLC6A14 (ATB 0,+) Selectively Reduces Access for Cationic Amino Acids and Derivatives. Biomolecules 2022; 12:biom12101404. [PMID: 36291613 PMCID: PMC9599917 DOI: 10.3390/biom12101404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
SLC6A14 (ATB0,+) is unique among SLC proteins in its ability to transport 18 of the 20 proteinogenic (dipolar and cationic) amino acids and naturally occurring and synthetic analogues (including anti-viral prodrugs and nitric oxide synthase (NOS) inhibitors). SLC6A14 mediates amino acid uptake in multiple cell types where increased expression is associated with pathophysiological conditions including some cancers. Here, we investigated how a key position within the core LeuT-fold structure of SLC6A14 influences substrate specificity. Homology modelling and sequence analysis identified the transmembrane domain 3 residue V128 as equivalent to a position known to influence substrate specificity in distantly related SLC36 and SLC38 amino acid transporters. SLC6A14, with and without V128 mutations, was heterologously expressed and function determined by radiotracer solute uptake and electrophysiological measurement of transporter-associated current. Substituting the amino acid residue occupying the SLC6A14 128 position modified the binding pocket environment and selectively disrupted transport of cationic (but not dipolar) amino acids and related NOS inhibitors. By understanding the molecular basis of amino acid transporter substrate specificity we can improve knowledge of how this multi-functional transporter can be targeted and how the LeuT-fold facilitates such diversity in function among the SLC6 family and other SLC amino acid transporters.
Collapse
Affiliation(s)
- Catriona M. H. Anderson
- School of Natural & Environmental Sciences, Faculty of Science, Engineering & Agriculture, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Correspondence: (C.M.H.A.); (D.T.T.)
| | - Noel Edwards
- Biosciences Institute, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andrew K. Watson
- Biosciences Institute, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Mike Althaus
- School of Natural & Environmental Sciences, Faculty of Science, Engineering & Agriculture, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Department of Natural Sciences & Institute for Functional Gene Analytics, Bonn-Rhein-Sieg University of Applied Sciences, 53359 Rheinbach, Germany
| | - David T. Thwaites
- Biosciences Institute, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: (C.M.H.A.); (D.T.T.)
| |
Collapse
|
29
|
Joseph D, Nayak SR, Penmatsa A. Structural insights into GABA transport inhibition using an engineered neurotransmitter transporter. EMBO J 2022; 41:e110735. [PMID: 35796008 PMCID: PMC9340486 DOI: 10.15252/embj.2022110735] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 01/14/2023] Open
Abstract
γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter, and its levels in the synaptic space are controlled by the GABA transporter isoforms (GATs). GATs are structurally related to biogenic amine transporters but display interactions with distinct inhibitors used as anti-epileptics. In this study, we engineer the binding pocket of Drosophila melanogaster dopamine transporter to resemble GAT1 and determine high-resolution X-ray structures of the modified transporter in the substrate-free state and in complex with GAT1 inhibitors NO711 and SKF89976a that are analogs of tiagabine, a medication prescribed for the treatment of partial seizures. We observe that the primary binding site undergoes substantial shifts in subsite architecture in the modified transporter to accommodate the two GAT1 inhibitors. We also observe that SKF89976a additionally interacts at an allosteric site in the extracellular vestibule, yielding an occluded conformation. Interchanging SKF89976a interacting residue in the extracellular loop 4 between GAT1 and dDAT suggests a role for this motif in the selective control of neurotransmitter uptake. Our findings, therefore, provide vital insights into the organizational principles dictating GAT1 activity and inhibition.
Collapse
Affiliation(s)
- Deepthi Joseph
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | | | - Aravind Penmatsa
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|
30
|
Del Alamo D, Meiler J, Mchaourab HS. Principles of Alternating Access in LeuT-fold Transporters: Commonalities and Divergences. J Mol Biol 2022; 434:167746. [PMID: 35843285 DOI: 10.1016/j.jmb.2022.167746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/15/2022]
Abstract
Found in all domains of life, transporters belonging to the LeuT-fold class mediate the import and exchange of hydrophilic and charged compounds such as amino acids, metals, and sugar molecules. Nearly two decades of investigations on the eponymous bacterial transporter LeuT have yielded a library of high-resolution snapshots of its conformational cycle linked by solution-state experimental data obtained from multiple techniques. In parallel, its topology has been observed in symporters and antiporters characterized by a spectrum of substrate specificities and coupled to gradients of distinct ions. Here we review and compare mechanistic models of transport for LeuT, its well-studied homologs, as well as functionally distant members of the fold, emphasizing the commonalities and divergences in alternating access and the corresponding energy landscapes. Our integrated summary illustrates how fold conservation, a hallmark of the LeuT fold, coincides with divergent choreographies of alternating access that nevertheless capitalize on recurrent structural motifs. In addition, it highlights the knowledge gap that hinders the leveraging of the current body of research into detailed mechanisms of transport for this important class of membrane proteins.
Collapse
Affiliation(s)
- Diego Del Alamo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA. https://twitter.com/DdelAlamo
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Institute for Drug Discovery, Leipzig University, Leipzig, DE, USA. https://twitter.com/MeilerLab
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
31
|
Functional characterization of dopamine and norepinephrine transport across the apical and basal plasma membranes of the human placental syncytiotrophoblast. Sci Rep 2022; 12:11603. [PMID: 35804076 PMCID: PMC9270497 DOI: 10.1038/s41598-022-15790-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
The human placenta represents a unique non-neuronal site of monoamine transporter expression, with pathophysiological relevance during the prenatal period. Monoamines (serotonin, dopamine, norepinephrine) are crucial neuromodulators for proper placenta functions and fetal development, including cell proliferation, differentiation, and neuronal migration. Accumulating evidence suggests that even a transient disruption of monoamine balance during gestation may lead to permanent changes in the fetal brain structures and functions, projecting into adulthood. Nonetheless, little is known about the transfer of dopamine and norepinephrine across the placental syncytiotrophoblast. Employing the method of isolated membranes from the human term placenta, here we delineate the transport mechanisms involved in dopamine and norepinephrine passage across the apical microvillous (MVM) and basal membranes. We show that the placental uptake of dopamine and norepinephrine across the mother-facing MVM is mediated via the high-affinity and low-capacity serotonin (SERT/SLC6A4) and norepinephrine (NET/SLC6A2) transporters. In the fetus-facing basal membrane, however, the placental uptake of both monoamines is controlled by the organic cation transporter 3 (OCT3/SLC22A3). Our findings thus provide insights into physiological aspects of dopamine and norepinephrine transport across both the maternal and fetal sides of the placenta. As monoamine transporters represent targets for several neuroactive drugs such as antidepressants, our findings are pharmacologically relevant to ensure the safety of drug use during pregnancy.
Collapse
|
32
|
Consensus combining outcomes of multiple ensemble dockings: examples using dDAT crystalized complexes. MethodsX 2022; 9:101788. [PMID: 35935527 PMCID: PMC9352961 DOI: 10.1016/j.mex.2022.101788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
Docking using different programs provides more reliable information about the interaction of molecules than data obtained in a single program. An exponential consensus ranking (ECR) was developed to combine scoring functions across docking programs differing in efficiencies and scales of measurements. The ECR method was adapted to merge results of re- and cross-dockings (i.e., ensemble docking) made in multiple docking programs. Adapted ECR consisted of four consecutive steps: 1- determination of scoring functions for a ligand with a series of macromolecules in multiple docking programs; 2- ranking of the scoring functions per macromolecule in each program; 3- combining the ranking across the programs creating a ranking per macromolecule; 4- averaging the ranking per macromolecule creating a final ranking. This last step incorporated the heterogeneity of the macromolecule conformations in the consensual score. The final ranking based on the adapted ECR represents relative affinity of a series of ligands to a macromolecule on average. As an example, a ranking of the average affinity of antidepressants and other ligands to the Drosophila melanogaster dopamine transporter (dDAT) was presented. Adapted ECR generated a ranking similar to that based on the affinity constant of each ligand obtained from the literature. • A final ranking of the average relative affinity of different ligands to the dDAT. • A consensus method combining multiple ensemble dockings. • A complete protocol to make re-docking and cross-docking using Autodock Vina, Gold and DockThor.
Collapse
|
33
|
Liu J, Shang Y, Xiao J, Fan H, Jiang M, Fan S, Bai G. Phenotype-Based HPLC-Q-TOF-MS/MS Coupled With Zebrafish Behavior Trajectory Analysis System for the Identification of the Antidepressant Components in Methanol Extract of Anshen Buxin Six Pills. Front Pharmacol 2021; 12:764388. [PMID: 34880758 PMCID: PMC8645982 DOI: 10.3389/fphar.2021.764388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/03/2021] [Indexed: 12/02/2022] Open
Abstract
Phenotype screening has become an important tool for the discovery of active components in traditional Chinese medicine. Anshen Buxin Six Pills (ASBX) are a traditional Mongolian medicine used for the treatment of neurosis in clinical settings. However, its antidepressant components have not been explicitly identified and studied. Here, the antidepressant effect of ASBX was evaluated in adult zebrafish. High performance liquid chromatography-mass spectrometry (HPLC-Q-TOF-MS/MS) was combined with zebrafish behavior trajectory analysis to screen and identify the antidepressant-active extract fraction and active components of ASBX. Finally, the antidepressant effect of the active ingredients were verified by the behavior, pathology, biochemical indices and protein level of adult fish. The novel tank driving test (NTDT) showed that ASBX can effectively improve the depressive effect of reserpine on zebrafish. Petroleum ether and dichloromethane extracts of ASBX were screened as antidepressant active extracts. Costunolide (COS) and dehydrocostus lactone (DHE) were screened as the active components of ASBX. COS had been shown to significantly improve the depressive behavior, nerve injury and neurotransmitter levels (5-hydroxytryptamine (5-HT) and norepinephrine (NE)) of zebrafish by inhibiting the high expression of serotonin transporter and norepinephrine transporter induced by reserpine suggesting the antidepressant effect of COS may be related to its effect on 5-HT and NE pathways. This study provided a phenotype based screening method for antidepressant components of traditional Chinese medicines, so as to realize the separation, identification and activity screening of components at the same time.
Collapse
Affiliation(s)
- Jiani Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Yue Shang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Juanlan Xiao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huirong Fan
- The Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Saijun Fan
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
34
|
Sahai M, Opacka-Juffry J. Molecular mechanisms of action of stimulant novel psychoactive substances that target the high-affinity transporter for dopamine. Neuronal Signal 2021; 5:NS20210006. [PMID: 34888062 PMCID: PMC8630395 DOI: 10.1042/ns20210006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
Drug misuse is a significant social and public health problem worldwide. Misused substances exert their neurobehavioural effects through changing neural signalling within the brain, many of them leading to substance dependence and addiction in the longer term. Among drugs with addictive liability, there are illicit classical stimulants such as cocaine and amphetamine, and their more recently available counterparts known as novel psychoactive substances (NPS). Stimulants normally increase dopamine availability in the brain, including the pathway implicated in reward-related behaviour. This pattern is observed in both animal and human brain. The main biological target of stimulants, both classical and NPS, is the dopamine transporter (DAT) implicated in the dopamine-enhancing effects of these drugs. This article aims at reviewing research on the molecular mechanisms underpinning the interactions between stimulant NPS, such as benzofurans, cathinones or piperidine derivatives and DAT, to achieve a greater understanding of the core phenomena that decide about the addictive potential of stimulant NPS. As the methodology is essential in the process of experimental research in this area, we review the applications of in vitro, in vivo and in silico approaches. The latter, including molecular dynamics, attracts the focus of the present review as the method of choice in molecular and atomistic investigations of the mechanisms of addiction of stimulant NPS. Research of this kind is of interest to not only scientists but also health professionals as updated knowledge of NPS, their modes of action and health risks, is needed to tackle the challenges posed by NPS misuse.
Collapse
Affiliation(s)
- Michelle A. Sahai
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, U.K
| | | |
Collapse
|
35
|
Kowalska M, Fijałkowski Ł, Nowaczyk A. Assessment of Paroxetine Molecular Interactions with Selected Monoamine and γ-Aminobutyric Acid Transporters. Int J Mol Sci 2021; 22:6293. [PMID: 34208199 PMCID: PMC8230779 DOI: 10.3390/ijms22126293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Thus far, many hypotheses have been proposed explaining the cause of depression. Among the most popular of these are: monoamine, neurogenesis, neurobiology, inflammation and stress hypotheses. Many studies have proven that neurogenesis in the brains of adult mammals occurs throughout life. The generation of new neurons persists throughout adulthood in the mammalian brain due to the proliferation and differentiation of adult neural stem cells. For this reason, the search for drugs acting in this mechanism seems to be a priority for modern pharmacotherapy. Paroxetine is one of the most commonly used antidepressants. However, the exact mechanism of its action is not fully understood. The fact that the therapeutic effect after the administration of paroxetine occurs after a few weeks, even if the levels of monoamine are rapidly increased (within a few minutes), allows us to assume a neurogenic mechanism of action. Due to the confirmed dependence of depression on serotonin, norepinephrine, dopamine and γ-aminobutyric acid levels, studies have been undertaken into paroxetine interactions with these primary neurotransmitters using in silico and in vitro methods. We confirmed that paroxetine interacts most strongly with monoamine transporters and shows some interaction with γ-aminobutyric acid transporters. However, studies of the potency inhibitors and binding affinity values indicate that the neurogenic mechanism of paroxetine's action may be determined mainly by its interactions with serotonin transporters.
Collapse
Affiliation(s)
| | | | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland; (M.K.); (Ł.F.)
| |
Collapse
|