1
|
Song B. Efforts to Downsize Base Editors for Clinical Applications. Int J Mol Sci 2025; 26:2357. [PMID: 40076976 PMCID: PMC11900391 DOI: 10.3390/ijms26052357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Since the advent of the clustered regularly interspaced short palindromic repeats (CRISPR) system in the gene editing field, diverse CRISPR-based gene editing tools have been developed for treating genetic diseases. Of these, base editors (BEs) are promising because they can carry out precise gene editing at single-nucleotide resolution without inducing DNA double-strand breaks (DSBs), which pose significant risks of genomic instability. Despite their outstanding advantages, the clinical application of BEs remains challenging due to their large size, which limits their efficient delivery, particularly in adeno-associated virus (AAV)-based systems. To address this issue, various strategies have been explored to reduce the size of BEs. These approaches include truncating the nonessential domains and replacing the bulky components with smaller substitutes without compromising the editing efficiency. In this review, we highlight the importance of downsizing BEs for therapeutic applications and introduce recent advances in size-reduction strategies. Additionally, we introduce the ongoing efforts to overcome other limitations of BEs, providing insights into their potential for improving in vivo gene editing.
Collapse
Affiliation(s)
- Beomjong Song
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| |
Collapse
|
2
|
Askary A, Chen W, Choi J, Du LY, Elowitz MB, Gagnon JA, Schier AF, Seidel S, Shendure J, Stadler T, Tran M. The lives of cells, recorded. Nat Rev Genet 2025; 26:203-222. [PMID: 39587306 DOI: 10.1038/s41576-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/27/2024]
Abstract
A paradigm for biology is emerging in which cells can be genetically programmed to write their histories into their own genomes. These records can subsequently be read, and the cellular histories reconstructed, which for each cell could include a record of its lineage relationships, extrinsic influences, internal states and physical locations, over time. DNA recording has the potential to transform the way that we study developmental and disease processes. Recent advances in genome engineering are driving the development of systems for DNA recording, and meanwhile single-cell and spatial omics technologies increasingly enable the recovery of the recorded information. Combined with advances in computational and phylogenetic inference algorithms, the DNA recording paradigm is beginning to bear fruit. In this Perspective, we explore the rationale and technical basis of DNA recording, what aspects of cellular biology might be recorded and how, and the types of discovery that we anticipate this paradigm will enable.
Collapse
Affiliation(s)
- Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Wei Chen
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Junhong Choi
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucia Y Du
- Biozentrum, University of Basel, Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Michael B Elowitz
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
| | - James A Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Alexander F Schier
- Biozentrum, University of Basel, Basel, Switzerland.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| | - Sophie Seidel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Martin Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
3
|
Chey YCJ, Gierus L, Lushington C, Arudkumar JC, B Geiger A, Staker LG, Robertson LJ, Pfitzner C, Kennedy JG, Lee RHB, Godahewa GI, Adikusuma F, Thomas PQ. Optimal SpCas9- and SaCas9-mediated gene editing by enhancing gRNA transcript levels through scaffold poly-T tract reduction. BMC Genomics 2025; 26:138. [PMID: 39939860 PMCID: PMC11823040 DOI: 10.1186/s12864-025-11317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Ensuring sufficient gRNA transcript levels is critical for obtaining optimal CRISPR-Cas9 gene editing efficiency. The standard gRNA scaffold contains a sequence of four thymine nucleotides (4T), which is known to inhibit transcription from Pol III promoters such as the U6 promoter. Our study showed that using standard plasmid transfection protocols, the presence of these 4Ts did not significantly affect editing efficiency, as most of the gRNAs tested (55 gRNAs) achieved near-perfect editing outcomes. We observed that gRNAs with lower activity were T-rich and had reduced gRNA transcript levels. However, this issue can be effectively resolved by increasing transcript levels, which can be readily achieved by shortening the 4T sequences. In this study, we demonstrated this by modifying the sequences to 3TC. Although the 3TC scaffold modification did not improve editing efficiency for already efficient gRNAs when high vector quantities were available, it proved highly beneficial under conditions of limited vector availability, where the 3TC scaffold yielded higher editing efficiency. Additionally, we demonstrated that the 3TC scaffold is compatible with SpCas9 high-fidelity variants and ABEmax base editing, enhancing their editing efficiency. Another commonly used natural Cas9 variant, SaCas9, also benefited from the 3TC scaffold sequence modification, which increased gRNA transcription and subsequently improved editing activity. This modification was applied to the EDIT-101 therapeutic strategy, where it demonstrated marked improvements in performance. This study highlights the importance of shortening the 4T sequences in the gRNA scaffold to optimize gRNA transcript expression for enhanced CRISPR-Cas9 gene editing efficiency. This optimization is particularly important for therapeutic applications, where the quantity of vector is often limited, ensuring more effective and optimal outcomes.
Collapse
Affiliation(s)
- Yu C J Chey
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Luke Gierus
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Caleb Lushington
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jayshen C Arudkumar
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Ashleigh B Geiger
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Lachlan G Staker
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Louise J Robertson
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Chandran Pfitzner
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Jesse G Kennedy
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Ryan H B Lee
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Gelshan I Godahewa
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Fatwa Adikusuma
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.
| | - Paul Q Thomas
- School of Biomedicine and Robinson Research Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.
- South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia.
- South Australian Genome Editing (SAGE) Facility, SAHMRI, Adelaide, South Australia, Australia.
| |
Collapse
|
4
|
Zhang Z, Niu H, Qu Q, Guo D, Wan X, Yang Q, Mo Z, Tan S, Xiang Q, Tian X, Yang H, Liu Z. Advancements in Lactiplantibacillus plantarum: probiotic characteristics, gene editing technologies and applications. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39745813 DOI: 10.1080/10408398.2024.2448562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The exploration of microorganisms in fermented products has become a pivotal area of scientific research, primarily due to their widespread availability and profound potential to improve human health. Among these, Lactiplantibacillus plantarum (formerly known as Lactobacillus plantarum) stands out as a versatile lactic acid bacterium, prevalent across diverse ecological niches. Its appeal extends beyond its well-documented probiotic benefits to include the remarkable plasticity of its genome, which has captivated both scientific and industrial stakeholders. Despite this interest, substantial challenges persist in fully understanding and harnessing the potential of L. plantarum. This review aims to illuminate the probiotic attributes of L. plantarum, consolidate current advancements in gene editing technologies, and explore the multifaceted applications of both wild-type and genetically engineered strains.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haorui Niu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiu Qu
- Division of geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Dingming Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xuchun Wan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Mo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Siyu Tan
- Department of Biotechnology, Wuhan No. 2 High School, Wuhan, China
| | - Qian Xiang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Tian
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongju Yang
- Division of geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Wu L, Jiang S, Shi M, Yuan T, Li Y, Huang P, Li Y, Zuo E, Zhou C, Sun Y. Adenine base editors induce off-target structure variations in mouse embryos and primary human T cells. Genome Biol 2024; 25:291. [PMID: 39529170 PMCID: PMC11552398 DOI: 10.1186/s13059-024-03434-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The safety of CRISPR-based gene editing methods is of the utmost priority in clinical applications. Previous studies have reported that Cas9 cleavage induced frequent aneuploidy in primary human T cells, but whether cleavage-mediated editing of base editors would generate off-target structure variations remains unknown. Here, we investigate the potential off-target structural variations associated with CRISPR/Cas9, ABE, and CBE editing in mouse embryos and primary human T cells by whole-genome sequencing and single-cell RNA-seq analyses. RESULTS The results show that both Cas9 and ABE generate off-target structural variations (SVs) in mouse embryos, while CBE induces rare SVs. In addition, off-target large deletions are detected in 32.74% of primary human T cells transfected with Cas9 and 9.17% of cells transfected with ABE. Moreover, Cas9-induced aneuploid cells activate the P53 and apoptosis pathways, whereas ABE-associated aneuploid cells significantly upregulate cell cycle-related genes and are arrested in the G0 phase. A percentage of 16.59% and 4.29% aneuploid cells are still observable at 3 weeks post transfection of Cas9 or ABE. These off-target phenomena in ABE are universal as observed in other cell types such as B cells and Huh7. Furthermore, the off-target SVs are significantly reduced in cells treated with high-fidelity ABE (ABE-V106W). CONCLUSIONS This study shows both CRISPR/Cas9 and ABE induce off-target SVs in mouse embryos and primary human T cells, raising an urgent need for the development of high-fidelity gene editing tools.
Collapse
Affiliation(s)
- Leilei Wu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | - Shutan Jiang
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | - Meisong Shi
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | - Tanglong Yuan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Yaqin Li
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | | | - Yingqi Li
- Epigenic Therapeutics, Inc, Shanghai, 201315, China
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China.
| | - Changyang Zhou
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
6
|
Xiao YL, Wu Y, Tang W. An adenine base editor variant expands context compatibility. Nat Biotechnol 2024; 42:1442-1453. [PMID: 38168987 DOI: 10.1038/s41587-023-01994-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/15/2023] [Indexed: 01/05/2024]
Abstract
Adenine base editors (ABEs) are precise gene-editing agents that convert A:T pairs into G:C through a deoxyinosine intermediate. Existing ABEs function most effectively when the target A is in a TA context. Here we evolve the Escherichia coli transfer RNA-specific adenosine deaminase (TadA) to generate TadA8r, which extends potent deoxyadenosine deamination to RA (R = A or G) and is faster in processing GA than TadA8.20 and TadA8e, the two most active TadA variants reported so far. ABE8r, comprising TadA8r and a Streptococcus pyogenes Cas9 nickase, expands the editing window at the protospacer adjacent motif-distal end and outperforms ABE7.10, ABE8.20 and ABE8e in correcting disease-associated G:C-to-A:T transitions in the human genome, with a controlled off-target profile. We show ABE8r-mediated editing of clinically relevant sites that are poorly accessed by existing editors, including sites in PCSK9, whose disruption reduces low-density lipoprotein cholesterol, and ABCA4-p.Gly1961Glu, the most frequent mutation in Stargardt disease.
Collapse
Affiliation(s)
- Yu-Lan Xiao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Yuan Wu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Weixin Tang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
7
|
Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z, Liu T, Wang D. CRISPR technology in human diseases. MedComm (Beijing) 2024; 5:e672. [PMID: 39081515 PMCID: PMC11286548 DOI: 10.1002/mco2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gene editing is a growing gene engineering technique that allows accurate editing of a broad spectrum of gene-regulated diseases to achieve curative treatment and also has the potential to be used as an adjunct to the conventional treatment of diseases. Gene editing technology, mainly based on clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein systems, which is capable of generating genetic modifications in somatic cells, provides a promising new strategy for gene therapy for a wide range of human diseases. Currently, gene editing technology shows great application prospects in a variety of human diseases, not only in therapeutic potential but also in the construction of animal models of human diseases. This paper describes the application of gene editing technology in hematological diseases, solid tumors, immune disorders, ophthalmological diseases, and metabolic diseases; focuses on the therapeutic strategies of gene editing technology in sickle cell disease; provides an overview of the role of gene editing technology in the construction of animal models of human diseases; and discusses the limitations of gene editing technology in the treatment of diseases, which is intended to provide an important reference for the applications of gene editing technology in the human disease.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Qirong Li
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Zhan Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Ziping Jiang
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Tianjia Liu
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
8
|
Fiumara M, Ferrari S, Omer-Javed A, Beretta S, Albano L, Canarutto D, Varesi A, Gaddoni C, Brombin C, Cugnata F, Zonari E, Naldini MM, Barcella M, Gentner B, Merelli I, Naldini L. Genotoxic effects of base and prime editing in human hematopoietic stem cells. Nat Biotechnol 2024; 42:877-891. [PMID: 37679541 PMCID: PMC11180610 DOI: 10.1038/s41587-023-01915-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/26/2023] [Indexed: 09/09/2023]
Abstract
Base and prime editors (BEs and PEs) may provide more precise genetic engineering than nuclease-based approaches because they bypass the dependence on DNA double-strand breaks. However, little is known about their cellular responses and genotoxicity. Here, we compared state-of-the-art BEs and PEs and Cas9 in human hematopoietic stem and progenitor cells with respect to editing efficiency, cytotoxicity, transcriptomic changes and on-target and genome-wide genotoxicity. BEs and PEs induced detrimental transcriptional responses that reduced editing efficiency and hematopoietic repopulation in xenotransplants and also generated DNA double-strand breaks and genotoxic byproducts, including deletions and translocations, at a lower frequency than Cas9. These effects were strongest for cytidine BEs due to suboptimal inhibition of base excision repair and were mitigated by tailoring delivery timing and editor expression through optimized mRNA design. However, BEs altered the mutational landscape of hematopoietic stem and progenitor cells across the genome by increasing the load and relative proportions of nucleotide variants. These findings raise concerns about the genotoxicity of BEs and PEs and warrant further investigation in view of their clinical application.
Collapse
Affiliation(s)
- Martina Fiumara
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Attya Omer-Javed
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Pediatric Immunohematology Unit and BMT Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelica Varesi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Gaddoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Brombin
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Cugnata
- University Center for Statistics in the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
| | - Erika Zonari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Maria Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- National Research Council, Institute for Biomedical Technologies, Segrate, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
9
|
Ye M, Chen Y, Liu Z, Wang Y, Yi C. Detection of ribophagy in yeast and mammals. BIOPHYSICS REPORTS 2024; 10:82-101. [PMID: 38774349 PMCID: PMC11103720 DOI: 10.52601/bpr.2024.240002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 05/24/2024] Open
Abstract
Ribophagy, the cellular process wherein ribosomes are selectively self-digested through autophagy, plays a pivotal role in maintaining ribosome turnover. Understanding the molecular regulatory mechanisms governing ribophagy is pivotal to uncover its significance. Consequently, the establishment of methods for detecting ribophagy becomes important. In this protocol, we have optimized, enriched, and advanced existing ribophagy detection techniques, including immunoblotting, fluorescence microscopy, and transmission electron microscopy (TEM), to precisely monitor and quantify ribophagic events. Particularly noteworthy is the introduction of TEM technology for yeast ribophagy detection. In summary, the delineated methods are applicable for detecting ribophagy in both yeast and mammals, laying a solid foundation for further exploring the physiological importance of ribophagy and its potential implications in diverse cellular environments.
Collapse
Affiliation(s)
- Miao Ye
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yuting Chen
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhaojie Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510182, China
| | - Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Cong Yi
- Department of Biochemistry, and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
10
|
Sun Y, Chen Q, Cheng Y, Wang X, Deng Z, Zhou F, Sun Y. Design and Engineering of Light-Induced Base Editors Facilitating Genome Editing with Enhanced Fidelity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305311. [PMID: 38039441 PMCID: PMC10837352 DOI: 10.1002/advs.202305311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/27/2023] [Indexed: 12/03/2023]
Abstract
Base editors, which enable targeted locus nucleotide conversion in genomic DNA without double-stranded breaks, have been engineered as powerful tools for biotechnological and clinical applications. However, the application of base editors is limited by their off-target effects. Continuously expressed deaminases used for gene editing may lead to unwanted base alterations at unpredictable genomic locations. In the present study, blue-light-activated base editors (BLBEs) are engineered based on the distinct photoswitches magnets that can switch from a monomer to dimerization state in response to blue light. By fusing the N- and C-termini of split DNA deaminases with photoswitches Magnets, efficient A-to-G and C-to-T base editing is achieved in response to blue light in prokaryotic and eukaryotic cells. Furthermore, the results showed that BLBEs can realize precise blue light-induced gene editing across broad genomic loci with low off-target activity at the DNA- and RNA-level. Collectively, these findings suggest that the optogenetic utilization of base editing and optical base editors may provide powerful tools to promote the development of optogenetic genome engineering.
Collapse
Affiliation(s)
- Yangning Sun
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Qi Chen
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Yanbing Cheng
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Xi Wang
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Zixin Deng
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| | - Fuling Zhou
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
| | - Yuhui Sun
- Department of HematologyZhongnan Hospital of Wuhan UniversitySchool of Pharmaceutical SciencesWuhan UniversityWuhan430071China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education)Wuhan UniversityWuhan430071China
| |
Collapse
|
11
|
Yuan B, Zhang S, Song L, Chen J, Cao J, Qiu J, Qiu Z, Chen J, Zhao XM, Cheng TL. Engineering of cytosine base editors with DNA damage minimization and editing scope diversification. Nucleic Acids Res 2023; 51:e105. [PMID: 37843111 PMCID: PMC10639057 DOI: 10.1093/nar/gkad855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Cytosine base editors (CBEs), which enable precise C-to-T substitutions, have been restricted by potential safety risks, including DNA off-target edits, RNA off-target edits and additional genotoxicity such as DNA damages induced by double-strand breaks (DSBs). Though DNA and RNA off-target edits have been ameliorated via various strategies, evaluation and minimization of DSB-associated DNA damage risks for most CBEs remain to be resolved. Here we demonstrate that YE1, an engineered CBE variant with minimized DNA and RNA off-target edits, could induce prominent DSB-associated DNA damage risks, manifested as γH2AX accumulation in human cells. We then perform deaminase engineering for two deaminases lamprey LjCDA1 and human APOBEC3A, and generate divergent CBE variants with eliminated DSB-associated DNA damage risks, in addition to minimized DNA/RNA off-target edits. Furthermore, the editing scopes and sequence preferences of APOBEC3A-derived CBEs could be further diversified by internal fusion strategy. Taken together, this study provides updated evaluation platform for DSB-associated DNA damage risks of CBEs and further generates a series of safer toolkits with diversified editing signatures to expand their applications.
Collapse
Affiliation(s)
- Bo Yuan
- Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuqian Zhang
- Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
- Department of Pediatrics, Qilu Hospital of Shandong University, Ji’nan 250012, China
| | - Liting Song
- Institute of Science and Technology for Brain-inspired Intelligence, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jinlong Chen
- Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jixin Cao
- Institute of Science and Technology for Brain-inspired Intelligence, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Jiayi Qiu
- Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Songjiang Hospital, Songjiang Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-inspired Intelligence, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-inspired Intelligence, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Tian-Lin Cheng
- Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Casirati G, Cosentino A, Mucci A, Salah Mahmoud M, Ugarte Zabala I, Zeng J, Ficarro SB, Klatt D, Brendel C, Rambaldi A, Ritz J, Marto JA, Pellin D, Bauer DE, Armstrong SA, Genovese P. Epitope editing enables targeted immunotherapy of acute myeloid leukaemia. Nature 2023; 621:404-414. [PMID: 37648862 PMCID: PMC10499609 DOI: 10.1038/s41586-023-06496-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Despite the considerable efficacy observed when targeting a dispensable lineage antigen, such as CD19 in B cell acute lymphoblastic leukaemia1,2, the broader applicability of adoptive immunotherapies is hampered by the absence of tumour-restricted antigens3-5. Acute myeloid leukaemia immunotherapies target genes expressed by haematopoietic stem/progenitor cells (HSPCs) or differentiated myeloid cells, resulting in intolerable on-target/off-tumour toxicity. Here we show that epitope engineering of donor HSPCs used for bone marrow transplantation endows haematopoietic lineages with selective resistance to chimeric antigen receptor (CAR) T cells or monoclonal antibodies, without affecting protein function or regulation. This strategy enables the targeting of genes that are essential for leukaemia survival regardless of shared expression on HSPCs, reducing the risk of tumour immune escape. By performing epitope mapping and library screenings, we identified amino acid changes that abrogate the binding of therapeutic monoclonal antibodies targeting FLT3, CD123 and KIT, and optimized a base-editing approach to introduce them into CD34+ HSPCs, which retain long-term engraftment and multilineage differentiation ability. After CAR T cell treatment, we confirmed resistance of epitope-edited haematopoiesis and concomitant eradication of patient-derived acute myeloid leukaemia xenografts. Furthermore, we show that multiplex epitope engineering of HSPCs is feasible and enables more effective immunotherapies against multiple targets without incurring overlapping off-tumour toxicities. We envision that this approach will provide opportunities to treat relapsed/refractory acute myeloid leukaemia and enable safer non-genotoxic conditioning.
Collapse
Affiliation(s)
- Gabriele Casirati
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Milano-Bicocca University, Milan, Italy
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Andrea Cosentino
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
- Department of Oncology and Hematology, University of Milan and Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Adele Mucci
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Mohammed Salah Mahmoud
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Iratxe Ugarte Zabala
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Denise Klatt
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
- Harvard Medical School, Boston, MA, USA
| | - Alessandro Rambaldi
- Department of Oncology and Hematology, University of Milan and Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Jerome Ritz
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Danilo Pellin
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
- Harvard Medical School, Boston, MA, USA
| | - Scott A Armstrong
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
- Harvard Medical School, Boston, MA, USA
| | - Pietro Genovese
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Sretenovic S, Green Y, Wu Y, Cheng Y, Zhang T, Van Eck J, Qi Y. Genome- and transcriptome-wide off-target analyses of a high-efficiency adenine base editor in tomato. PLANT PHYSIOLOGY 2023; 193:291-303. [PMID: 37315207 DOI: 10.1093/plphys/kiad347] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023]
Abstract
Adenine base editors (ABEs) are valuable, precise genome editing tools in plants. In recent years, the highly promising ADENINE BASE EDITOR8e (ABE8e) was reported for efficient A-to-G editing. However, compared to monocots, comprehensive off-target analyses for ABE8e are lacking in dicots. To determine the occurrence of off-target effects in tomato (Solanum lycopersicum), we assessed ABE8e and a high-fidelity version, ABE8e-HF, at 2 independent target sites in protoplasts, as well as stable T0 lines. Since ABE8e demonstrated higher on-target efficiency than ABE8e-HF in tomato protoplasts, we focused on ABE8e for off-target analyses in T0 lines. We conducted whole-genome sequencing (WGS) of wild-type (WT) tomato plants, green fluorescent protein (GFP)-expressing T0 lines, ABE8e-no-gRNA control T0 lines, and edited T0 lines. No guide RNA (gRNA)-dependent off-target edits were detected. Our data showed an average of approximately 1,200 to 1,500 single-nucleotide variations (SNVs) in either GFP control plants or base-edited plants. Also, no specific enrichment of A-to-G mutations were found in base-edited plants. We also conducted RNA sequencing (RNA-seq) of the same 6 base-edited and 3 GFP control T0 plants. On average, approximately 150 RNA-level SNVs were discovered per plant for either base-edited or GFP controls. Furthermore, we did not find enrichment of a TA motif on mutated adenine in the genomes and transcriptomes in base-edited tomato plants, as opposed to the recent discovery in rice (Oryza sativa). Hence, we could not find evidence for genome- and transcriptome-wide off-target effects by ABE8e in tomato.
Collapse
Affiliation(s)
- Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Yumi Green
- The Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Yuechao Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yanhao Cheng
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Joyce Van Eck
- The Boyce Thompson Institute, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY 14853, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| |
Collapse
|
14
|
Chen X, McAndrew MJ, Lapinaite A. Unlocking the secrets of ABEs: the molecular mechanism behind their specificity. Biochem Soc Trans 2023; 51:1635-1646. [PMID: 37526140 PMCID: PMC10586758 DOI: 10.1042/bst20221508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
CRISPR-Cas, the bacterial immune systems, have transformed the field of genome editing by providing efficient, easily programmable, and accessible tools for targeted genome editing. DNA base editors (BE) are state-of-the-art CRISPR-based technology, allowing for targeted modifications of individual nucleobases within the genome. Among the BEs, adenine base editors (ABEs) have shown great potential due to their ability to convert A-to-G with high efficiency. However, current ABEs have limitations in terms of their specificity and targeting range. In this review, we provide an overview of the molecular mechanism of ABEs, with a focus on the mechanism of deoxyadenosine deamination by evolved tRNA-specific adenosine deaminase (TadA). We discuss how mutations and adjustments introduced via both directed evolution as well as rational design have improved ABE efficiency and specificity. This review offers insights into the molecular mechanism of ABEs, providing a roadmap for future developments in the precision genome editing field.
Collapse
Affiliation(s)
- Xiaoyu Chen
- School of Molecular Sciences, Arizona State University, Tempe, AZ, U.S.A
| | | | - Audrone Lapinaite
- School of Molecular Sciences, Arizona State University, Tempe, AZ, U.S.A
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, U.S.A
| |
Collapse
|
15
|
Zhang Z, Bao X, Lin CP. Progress and Prospects of Gene Editing in Pluripotent Stem Cells. Biomedicines 2023; 11:2168. [PMID: 37626665 PMCID: PMC10452926 DOI: 10.3390/biomedicines11082168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Applying programmable nucleases in gene editing has greatly shaped current research in basic biology and clinical translation. Gene editing in human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), is highly relevant to clinical cell therapy and thus should be examined with particular caution. First, since all mutations in PSCs will be carried to all their progenies, off-target edits of editors will be amplified. Second, due to the hypersensitivity of PSCs to DNA damage, double-strand breaks (DSBs) made by gene editing could lead to low editing efficiency and the enrichment of cell populations with defective genomic safeguards. In this regard, DSB-independent gene editing tools, such as base editors and prime editors, are favored due to their nature to avoid these consequences. With more understanding of the microbial world, new systems, such as Cas-related nucleases, transposons, and recombinases, are also expanding the toolbox for gene editing. In this review, we discuss current applications of programmable nucleases in PSCs for gene editing, the efforts researchers have made to optimize these systems, as well as new tools that can be potentially employed for differentiation modeling and therapeutic applications.
Collapse
Affiliation(s)
| | | | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (Z.Z.); (X.B.)
| |
Collapse
|
16
|
Liang Y, Chen F, Wang K, Lai L. Base editors: development and applications in biomedicine. Front Med 2023; 17:359-387. [PMID: 37434066 DOI: 10.1007/s11684-023-1013-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/19/2023] [Indexed: 07/13/2023]
Abstract
Base editor (BE) is a gene-editing tool developed by combining the CRISPR/Cas system with an individual deaminase, enabling precise single-base substitution in DNA or RNA without generating a DNA double-strand break (DSB) or requiring donor DNA templates in living cells. Base editors offer more precise and secure genome-editing effects than other conventional artificial nuclease systems, such as CRISPR/Cas9, as the DSB induced by Cas9 will cause severe damage to the genome. Thus, base editors have important applications in the field of biomedicine, including gene function investigation, directed protein evolution, genetic lineage tracing, disease modeling, and gene therapy. Since the development of the two main base editors, cytosine base editors (CBEs) and adenine base editors (ABEs), scientists have developed more than 100 optimized base editors with improved editing efficiency, precision, specificity, targeting scope, and capacity to be delivered in vivo, greatly enhancing their application potential in biomedicine. Here, we review the recent development of base editors, summarize their applications in the biomedical field, and discuss future perspectives and challenges for therapeutic applications.
Collapse
Affiliation(s)
- Yanhui Liang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
17
|
Chen L, Zhu B, Ru G, Meng H, Yan Y, Hong M, Zhang D, Luan C, Zhang S, Wu H, Gao H, Bai S, Li C, Ding R, Xue N, Lei Z, Chen Y, Guan Y, Siwko S, Cheng Y, Song G, Wang L, Yi C, Liu M, Li D. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat Biotechnol 2023; 41:663-672. [PMID: 36357717 DOI: 10.1038/s41587-022-01532-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022]
Abstract
Cytosine base editors (CBEs) efficiently generate precise C·G-to-T·A base conversions, but the activation-induced cytidine deaminase/apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family deaminase component induces considerable off-target effects and indels. To explore unnatural cytosine deaminases, we repurpose the adenine deaminase TadA-8e for cytosine conversion. The introduction of an N46L variant in TadA-8e eliminates its adenine deaminase activity and results in a TadA-8e-derived C-to-G base editor (Td-CGBE) capable of highly efficient and precise C·G-to-G·C editing. Through fusion with uracil glycosylase inhibitors and further introduction of additional variants, a series of Td-CBEs was obtained either with a high activity similar to that of BE4max or with higher precision compared to other reported accurate CBEs. Td-CGBE/Td-CBEs show very low indel effects and a background level of Cas9-dependent or Cas9-independent DNA/RNA off-target editing. Moreover, Td-CGBE/Td-CBEs are more efficient in generating accurate edits in homopolymeric cytosine sites in cells or mouse embryos, suggesting their accuracy and safety for gene therapy and other applications.
Collapse
Affiliation(s)
- Liang Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Biyun Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Gaomeng Ru
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Haowei Meng
- School of Life Sciences, Peking University, Beijing, China
| | - Yongchang Yan
- School of Life Sciences, Peking University, Beijing, China
| | - Mengjia Hong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Changming Luan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shun Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hao Wu
- School of Life Sciences, Peking University, Beijing, China
| | - Hongyi Gao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Sijia Bai
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Changqing Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Ruoyi Ding
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Niannian Xue
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhixin Lei
- School of Life Sciences, Peking University, Beijing, China
| | - Yuting Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Center for Genome Engineering and Therapy, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Stefan Siwko
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Chengqi Yi
- School of Life Sciences, Peking University, Beijing, China.
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
- BRL Medicine, Inc., Shanghai, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
18
|
Guo J, Yu W, Li M, Chen H, Liu J, Xue X, Lin J, Huang S, Shu W, Huang X, Liu Z, Wang S, Qiao Y. A DddA ortholog-based and transactivator-assisted nuclear and mitochondrial cytosine base editors with expanded target compatibility. Mol Cell 2023; 83:1710-1724.e7. [PMID: 37141888 DOI: 10.1016/j.molcel.2023.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/21/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
Bacterial double-stranded DNA (dsDNA) cytosine deaminase DddAtox-derived cytosine base editor (DdCBE) and its evolved variant, DddA11, guided by transcription-activator-like effector (TALE) proteins, enable mitochondrial DNA (mtDNA) editing at TC or HC (H = A, C, or T) sequence contexts, while it remains relatively unattainable for GC targets. Here, we identified a dsDNA deaminase originated from a Roseburia intestinalis interbacterial toxin (riDddAtox) and generated CRISPR-mediated nuclear DdCBEs (crDdCBEs) and mitochondrial CBEs (mitoCBEs) using split riDddAtox, which catalyzed C-to-T editing at both HC and GC targets in nuclear and mitochondrial genes. Moreover, transactivator (VP64, P65, or Rta) fusion to the tail of DddAtox- or riDddAtox-mediated crDdCBEs and mitoCBEs substantially improved nuclear and mtDNA editing efficiencies by up to 3.5- and 1.7-fold, respectively. We also used riDddAtox-based and Rta-assisted mitoCBE to efficiently stimulate disease-associated mtDNA mutations in cultured cells and in mouse embryos with conversion frequencies of up to 58% at non-TC targets.
Collapse
Affiliation(s)
- Junfan Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenxia Yu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; WLA Laboratories, Shanghai 201208, China
| | - Min Li
- Shanghai Institute of Precision Medicine, Shanghai 200125, China; Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hongyu Chen
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Liu
- Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaowen Xue
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jianxiang Lin
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | | | - Wenjie Shu
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Xingxu Huang
- Zhejiang Lab, Hangzhou 311121, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing 100850, China.
| | - Yunbo Qiao
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Shanghai Institute of Precision Medicine, Shanghai 200125, China.
| |
Collapse
|
19
|
Bhoopalan SV, Yen JS, Levine RM, Sharma A. Editing human hematopoietic stem cells: advances and challenges. Cytotherapy 2023; 25:261-269. [PMID: 36123234 DOI: 10.1016/j.jcyt.2022.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023]
Abstract
Genome editing of hematopoietic stem and progenitor cells is being developed for the treatment of several inherited disorders of the hematopoietic system. The adaptation of CRISPR-Cas9-based technologies to make precise changes to the genome, and developments in altering the specificity and efficiency, and improving the delivery of nucleases to target cells have led to several breakthroughs. Many clinical trials are ongoing, and several pre-clinical models have been reported that would allow these genetic therapies to one day offer a potential cure to patients with diseases where limited options currently exist. However, there remain several challenges with respect to establishing safety, expanding accessibility and improving the manufacturing processes of these therapeutic products. This review focuses on some of the recent advances in the field of genome editing of hematopoietic stem and progenitor cells and illustrates the ongoing challenges.
Collapse
Affiliation(s)
- Senthil Velan Bhoopalan
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jonathan S Yen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
20
|
Li M, Zhao Y, Xue X, Zhong J, Lin J, Zhou J, Yu W, Chen J, Qiao Y. Cas9-orthologue-mediated cytosine and adenine base editors recognizing NNAAAA PAM sequences. Biotechnol J 2023; 18:e2200533. [PMID: 36800529 DOI: 10.1002/biot.202200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
CRISPR/Cas9 system has been applied as an effective genome-targeting technology. By fusing deaminases with Cas9 nickase (nCas9), various cytosine and adenine base editors (CBEs and ABEs) have been successfully developed that can efficiently induce nucleotide conversions and install pathogenic single nucleotide variants (SNVs) in cultured cells and animal models. However, the applications of BEs are frequently limited by the specific protospacer adjacent motif (PAM) sequences and protein sizes. To expand the toolbox for BEs that can recognize novel PAM sequences, we cloned a Cas9 ortholog from Streptococcus sinensis (named as SsiCas9) with a smaller size and constructed it into APOBEC1- or APOBEC3A-composed CBEs and TadA or TadA*-composed ABEs, which yield high editing efficiencies, low off-targeting activities, and low indel rates in human cells. Compared to PAMless SpRY Cas9-composed BE4max, SsiCas9-mediated BE4max displayed higher editing efficiencies for targets with "NNAAAA" PAM sequences. Moreover, SsiCas9-mediated BE4max induced highly efficient C-to-T conversions in the mouse Ar gene (R841C) to introduce a human androgen resistance syndrome-related mutation (AR R820C) in early mouse embryos. Thus, we developed novel BEs mediated by SsiCas9, expanded the toolbox for base conversions, and broadened the range of editable genomes in vitro and in vivo.
Collapse
Affiliation(s)
- Min Li
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yuting Zhao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaowen Xue
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jingli Zhong
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jianxiang Lin
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| | - Jiankui Zhou
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Wenhua Yu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunbo Qiao
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Institute of Precision Medicine, Shanghai, China
| |
Collapse
|
21
|
Wang H, Wang Y, Luo Z, Lin X, Liu M, Wu F, Shao H, Zhang W. Advances in Off-Target Detection for CRISPR-Based Genome Editing. Hum Gene Ther 2023; 34:112-128. [PMID: 36453226 DOI: 10.1089/hum.2022.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-based genome editing system exhibits marked potential for both gene editing and gene therapy, and its continuous improvement contributes to its great clinical potential. However, the largest hindrance to its application in clinical practice is the presence of off-target effects (OTEs). Thus, in addition to continuous optimization of the CRISPR system to reduce and eventually eliminate OTEs, further development of unbiased genome-wide detection of OTEs is key for its successful clinical application. This article summarizes detection strategies for OTEs of different CRISPR systems, to provide detailed guidance for the detection of OTEs in CRISPR-based genome editing.
Collapse
Affiliation(s)
- Haozheng Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and.,Department of Pharmacy, Meizhou People's Hospital, Meizhou, People's Republic of China
| | - Yangmin Wang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Zhongtao Luo
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Xinjian Lin
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Meilin Liu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Fenglin Wu
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Hongwei Shao
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| | - Wenfeng Zhang
- Guangdong Province Key Laboratory of Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China; and
| |
Collapse
|
22
|
Zhang S, Song L, Yuan B, Zhang C, Cao J, Chen J, Qiu J, Tai Y, Chen J, Qiu Z, Zhao XM, Cheng TL. TadA reprogramming to generate potent miniature base editors with high precision. Nat Commun 2023; 14:413. [PMID: 36702845 PMCID: PMC9879996 DOI: 10.1038/s41467-023-36004-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Although miniature CRISPR-Cas12f systems were recently developed, the editing efficacy and targeting range of derived miniature cytosine and adenine base editors (miniCBEs and miniABEs) have not been comprehensively addressed. Moreover, functional miniCBEs have not yet be established. Here we generate various Cas12f-derived miniCBEs and miniABEs with improved editing activities and diversified targeting scopes. We reveal that miniCBEs generated with traditional cytidine deaminases exhibit wide editing windows and high off-targeting effects. To improve the editing signatures of classical CBEs and derived miniCBEs, we engineer TadA deaminase with mutagenesis screening to generate potent miniCBEs with high precision and minimized off-target effects. We show that newly designed miniCBEs and miniABEs are able to correct pathogenic mutations in cell lines and introduce genetic mutations efficiently via adeno-associated virus delivery in the brain in vivo. Together, this study provides alternative strategies for CBE development, expands the toolkits of miniCBEs and miniABEs and offers promising therapeutic tools for clinical applications.
Collapse
Affiliation(s)
- Shuqian Zhang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
- Department of Pediatrics, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Liting Song
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Bo Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng Zhang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Jixin Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jinlong Chen
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Jiayi Qiu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Yilin Tai
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hopsital, Fudan University, Shanghai, 200032, China.
- Songjiang Hospital, Songjiang Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Tian-Lin Cheng
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Zhang S, Yuan B, Cao J, Song L, Chen J, Qiu J, Qiu Z, Zhao XM, Chen J, Cheng TL. TadA orthologs enable both cytosine and adenine editing of base editors. Nat Commun 2023; 14:414. [PMID: 36702837 PMCID: PMC9880001 DOI: 10.1038/s41467-023-36003-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Cytidine and adenosine deaminases are required for cytosine and adenine editing of base editors respectively, and no single deaminase could enable concurrent and comparable cytosine and adenine editing. Additionally, distinct properties of cytidine and adenosine deaminases lead to various types of off-target effects, including Cas9-indendepent DNA off-target effects for cytosine base editors (CBEs) and RNA off-target effects particularly severe for adenine base editors (ABEs). Here we demonstrate that 25 TadA orthologs could be engineered to generate functional ABEs, CBEs or ACBEs via single or double mutations, which display minimized Cas9-independent DNA off-target effects and genotoxicity, with orthologs B5ZCW4, Q57LE3, E8WVH3, Q13XZ4 and B3PCY2 as promising candidates for further engineering. Furthermore, RNA off-target effects of TadA ortholog-derived base editors could be further reduced or even eliminated by additional single mutation. Taken together, our work expands the base editing toolkits, and also provides important clues for the potential evolutionary process of deaminases.
Collapse
Affiliation(s)
- Shuqian Zhang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
- Department of Pediatrics, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Bo Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jixin Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Liting Song
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jinlong Chen
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Jiayi Qiu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- National Clinical Research Center for Aging and Medicine, Huashan Hopsital, Fudan University, Shanghai, 200032, China
- Songjiang Hospital, Songjiang Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jingqi Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Tian-Lin Cheng
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Tao J, Bauer DE, Chiarle R. Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing. Nat Commun 2023; 14:212. [PMID: 36639728 PMCID: PMC9838544 DOI: 10.1038/s41467-023-35886-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
CRISPR-Cas gene editing has revolutionized experimental molecular biology over the past decade and holds great promise for the treatment of human genetic diseases. Here we review the development of CRISPR-Cas9/Cas12/Cas13 nucleases, DNA base editors, prime editors, and RNA base editors, focusing on the assessment and improvement of their editing precision and safety, pushing the limit of editing specificity and efficiency. We summarize the capabilities and limitations of each CRISPR tool from DNA editing to RNA editing, and highlight the opportunities for future improvements and applications in basic research, as well as the therapeutic and clinical considerations for their use in patients.
Collapse
Affiliation(s)
- Jianli Tao
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute, Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, 10126, Italy.
| |
Collapse
|
25
|
Gaillochet C, Peña Fernández A, Goossens V, D'Halluin K, Drozdzecki A, Shafie M, Van Duyse J, Van Isterdael G, Gonzalez C, Vermeersch M, De Saeger J, Develtere W, Audenaert D, De Vleesschauwer D, Meulewaeter F, Jacobs TB. Systematic optimization of Cas12a base editors in wheat and maize using the ITER platform. Genome Biol 2023; 24:6. [PMID: 36639800 PMCID: PMC9838060 DOI: 10.1186/s13059-022-02836-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Testing an ever-increasing number of CRISPR components is challenging when developing new genome engineering tools. Plant biotechnology has few high-throughput options to perform iterative design-build-test-learn cycles of gene-editing reagents. To bridge this gap, we develop ITER (Iterative Testing of Editing Reagents) based on 96-well arrayed protoplast transfections and high-content imaging. RESULTS We validate ITER in wheat and maize protoplasts using Cas9 cytosine and adenine base editors (ABEs), allowing one optimization cycle - from design to results - within 3 weeks. Given that previous LbCas12a-ABEs have low or no activity in plants, we use ITER to develop an optimized LbCas12a-ABE. We show that sequential improvement of five components - NLS, crRNA, LbCas12a, adenine deaminase, and linker - leads to a remarkable increase in activity from almost undetectable levels to 40% on an extrachromosomal GFP reporter. We confirm the activity of LbCas12a-ABE at endogenous targets in protoplasts and obtain base-edited plants in up to 55% of stable wheat transformants and the edits are transmitted to T1 progeny. We leverage these improvements to develop a highly mutagenic LbCas12a nuclease and a LbCas12a-CBE demonstrating that the optimizations can be broadly applied to the Cas12a toolbox. CONCLUSION Our data show that ITER is a sensitive, versatile, and high-throughput platform that can be harnessed to accelerate the development of genome editing technologies in plants. We use ITER to create an efficient Cas12a-ABE by iteratively testing a large panel of vector components. ITER will likely be useful to create and optimize genome editing reagents in a wide range of plant species.
Collapse
Affiliation(s)
- Christophe Gaillochet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Alexandra Peña Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Vera Goossens
- Screening Core, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Katelijn D'Halluin
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052, Ghent, Belgium
| | - Andrzej Drozdzecki
- Screening Core, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Myriam Shafie
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052, Ghent, Belgium
| | - Julie Van Duyse
- VIB Flow Core, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | | | - Camila Gonzalez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Jonas De Saeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Ward Develtere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Dominique Audenaert
- Screening Core, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- Centre for Bioassay Development and Screening (C-BIOS), Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - David De Vleesschauwer
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052, Ghent, Belgium
| | - Frank Meulewaeter
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052, Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
| |
Collapse
|
26
|
Zhao Y, Li M, Liu J, Xue X, Zhong J, Lin J, Ye B, Chen J, Qiao Y. Dual guide RNA-mediated concurrent C&G-to-T&A and A&T-to-G&C conversions using CRISPR base editors. Comput Struct Biotechnol J 2023; 21:856-868. [PMID: 36698964 PMCID: PMC9842798 DOI: 10.1016/j.csbj.2022.12.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Base editing tools enable precise genome modifications, disease modeling, and promising gene therapy. However, many human genetic diseases are elicited by multi-nucleotide variants (MNVs) with heterogeneous substitutions at the same genomic locus. Based on the adenine and cytosine base editors, dual base editors that can catalyze concurrent C-to-T and A-to-G editing have been developed, while simultaneous C&G-to-T&A and A&T-to-G&C conversions on the same allele have not been achieved at the desirable site. Here we propose a strategy of combining base editors with dual guide RNAs (gRNAs) that target two overlapped neighboring loci on the opposite strands, which can induce simultaneous C&G-to-T&A and A&T-to-G&C conversions within their overlapping targeting windows. Moreover, one of the paired gRNAs is mutated to perfectly match another gRNA-edited sequence, efficiently facilitating concurrent base conversions on the same allele. To further expand the targeting scopes, PAMless SpRY Cas9-mediated base editors are combined with our optimized dual gRNAs system to induce expected concurrent base editing and to install neighboring pathogenic MNVs in TP53 in cancer cells. In addition, more complex mutation types can be achieved by integrating dual base editors and our dual gRNAs strategy. Thus, we establish a general strategy to efficiently induce MNVs in human genome, helping to dissect the functions of pathogenic MNVs with multifarious types.
Collapse
Affiliation(s)
- Yuting Zhao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Min Li
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jie Liu
- Guangzhou Medical University, Guangzhou 511495, China
| | - Xiaowen Xue
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jingli Zhong
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jianxiang Lin
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Bo Ye
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China,Corresponding authors.
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China,Corresponding authors.
| | - Yunbo Qiao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China,Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China,Shanghai Institute of Precision Medicine, Shanghai 200125, China,Corresponding author at: Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
27
|
CRISPR-Based Tools for Fighting Rare Diseases. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121968. [PMID: 36556333 PMCID: PMC9787644 DOI: 10.3390/life12121968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
Rare diseases affect the life of a tremendous number of people globally. The CRISPR-Cas system emerged as a powerful genome engineering tool and has facilitated the comprehension of the mechanism and development of therapies for rare diseases. This review focuses on current efforts to develop the CRISPR-based toolbox for various rare disease therapy applications and compares the pros and cons of different tools and delivery methods. We further discuss the therapeutic applications of CRISPR-based tools for fighting different rare diseases.
Collapse
|
28
|
Sheriff A, Guri I, Zebrowska P, Llopis-Hernandez V, Brooks IR, Tekkela S, Subramaniam K, Gebrezgabher R, Naso G, Petrova A, Balon K, Onoufriadis A, Kujawa D, Kotulska M, Newby G, Łaczmański Ł, Liu DR, McGrath JA, Jacków J. ABE8e adenine base editor precisely and efficiently corrects a recurrent COL7A1 nonsense mutation. Sci Rep 2022; 12:19643. [PMID: 36385635 PMCID: PMC9666996 DOI: 10.1038/s41598-022-24184-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Base editing introduces precise single-nucleotide edits in genomic DNA and has the potential to treat genetic diseases such as the blistering skin disease recessive dystrophic epidermolysis bullosa (RDEB), which is characterized by mutations in the COL7A1 gene and type VII collagen (C7) deficiency. Adenine base editors (ABEs) convert A-T base pairs to G-C base pairs without requiring double-stranded DNA breaks or donor DNA templates. Here, we use ABE8e, a recently evolved ABE, to correct primary RDEB patient fibroblasts harboring the recurrent RDEB nonsense mutation c.5047 C > T (p.Arg1683Ter) in exon 54 of COL7A1 and use a next generation sequencing workflow to interrogate post-treatment outcomes. Electroporation of ABE8e mRNA into a bulk population of RDEB patient fibroblasts resulted in remarkably efficient (94.6%) correction of the pathogenic allele, restoring COL7A1 mRNA and expression of C7 protein in western blots and in 3D skin constructs. Off-target DNA analysis did not detect off-target editing in treated patient-derived fibroblasts and there was no detectable increase in A-to-I changes in the RNA. Taken together, we have established a highly efficient pipeline for gene correction in primary fibroblasts with a favorable safety profile. This work lays a foundation for developing therapies for RDEB patients using ex vivo or in vivo base editing strategies.
Collapse
Affiliation(s)
- Adam Sheriff
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Ina Guri
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Paulina Zebrowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Virginia Llopis-Hernandez
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Imogen R Brooks
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Stavroula Tekkela
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Kavita Subramaniam
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Ruta Gebrezgabher
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Gaetano Naso
- Molecular and Cellular Immunology Unit, UCL GOS Institute of Child Health, London, UK
| | - Anastasia Petrova
- Molecular and Cellular Immunology Unit, UCL GOS Institute of Child Health, London, UK
| | - Katarzyna Balon
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Alexandros Onoufriadis
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Dorota Kujawa
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Martyna Kotulska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Gregory Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Łukasz Łaczmański
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - John A McGrath
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK
| | - Joanna Jacków
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, 9th Floor Tower Wing, Guy's Hospital, Great Maze Pond Road, London, SE1 9RT, UK.
| |
Collapse
|
29
|
Tan J, Forner J, Karcher D, Bock R. DNA base editing in nuclear and organellar genomes. Trends Genet 2022; 38:1147-1169. [PMID: 35853769 DOI: 10.1016/j.tig.2022.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/12/2022] [Accepted: 06/24/2022] [Indexed: 01/24/2023]
Abstract
Genome editing continues to revolutionize biological research. Due to its simplicity and flexibility, CRISPR/Cas-based editing has become the preferred technology in most systems. Cas nucleases tolerate fusion to large protein domains, thus allowing combination of their DNA recognition properties with new enzymatic activities. Fusion to nucleoside deaminase or reverse transcriptase domains has produced base editors and prime editors that, instead of generating double-strand breaks in the target sequence, induce site-specific alterations of single (or a few adjacent) nucleotides. The availability of protein-only genome editing reagents based on transcription activator-like effectors has enabled the extension of base editing to the genomes of chloroplasts and mitochondria. In this review, we summarize currently available base editing methods for nuclear and organellar genomes. We highlight recent advances with improving precision, specificity, and efficiency and discuss current limitations and future challenges. We also provide a brief overview of applications in agricultural biotechnology and gene therapy.
Collapse
Affiliation(s)
- Junjie Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Innovation Center for Genome Editing and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
30
|
Mashima R, Takada S. Lipid Nanoparticles: A Novel Gene Delivery Technique for Clinical Application. Curr Issues Mol Biol 2022; 44:5013-5027. [PMID: 36286056 PMCID: PMC9600891 DOI: 10.3390/cimb44100341] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/08/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid nanoparticles (LNPs) are an emerging vehicle for gene delivery that accommodate both nucleic acid and protein. Based on the experience of therapeutic liposomes, current LNPs have been developed based on the chemistry of lipids and RNA and on the biology of human disease. LNPs have been used for the development of Onpattro, an siRNA drug for transthyretin-mediated amyloidosis, in 2018. The subsequent outbreak of COVID-19 required a vaccine for its suppression. LNP-based vaccine production received much attention for this and resulted in great success. In this review, the essential technology of LNP gene delivery has been described according to the chemistry for LNP production and biology for its clinical application.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
- Correspondence:
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| |
Collapse
|
31
|
Li J, Lin J, Huang S, Li M, Yu W, Zhao Y, Guo J, Zhang P, Huang X, Qiao Y. Functional Phosphoproteomics in Cancer Chemoresistance Using CRISPR-Mediated Base Editors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200717. [PMID: 36045417 PMCID: PMC9596822 DOI: 10.1002/advs.202200717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Selective inhibition of targeted protein kinases is an effective therapeutic approach for treatment of human malignancies, which interferes phosphorylation of cellular substrates. However, a drug-imposed selection creates pressures for tumor cells to acquire chemoresistance-conferring mutations or activating alternative pathways, which can bypass the inhibitory effects of kinase inhibitors. Thus, identifying downstream phospho-substrates conferring drug resistance is of great importance for developing poly-pharmacological and targeted therapies. To identify functional phosphorylation sites involved in 5-fluorouracil (5-FU) resistance during its treatment of colorectal cancer cells, CRISPR-mediated cytosine base editor (CBE) and adenine base editor (ABE) are utilized for functional screens by mutating phosphorylated amino acids with two libraries specifically targeting 7779 and 10 149 phosphorylation sites. Among the top enriched gRNAs-induced gain-of-function mutants, the target genes are involved in cell cycle and post-translational covalent modifications. Moreover, several substrates of RSK2 and PAK4 kinases are discovered as main effectors in responding to 5-FU chemotherapy, and combinational treatment of colorectal cancer cells with 5-FU and RSK2 inhibitor or PAK4 inhibitor can largely inhibit cell growth and enhance cell apoptosis through a RSK2/TP53BP1/γ-H2AX phosphorylation signaling axis. It is proposed that this screen approach can be used for functional phosphoproteomics in chemotherapy of various human diseases.
Collapse
Affiliation(s)
- Jianan Li
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- Zhejiang LabHangzhouZhejiang311121China
| | - Jianxiang Lin
- Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125China
- Shanghai Institute of Precision MedicineShanghai200125China
| | | | - Min Li
- Precise Genome Engineering CenterSchool of Life SciencesGuangzhou UniversityGuangzhou510006China
| | - Wenxia Yu
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Yuting Zhao
- Precise Genome Engineering CenterSchool of Life SciencesGuangzhou UniversityGuangzhou510006China
| | - Junfan Guo
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated Hospitaland Institute of Translational MedicineZhejiang University School of MedicineHangzhou310029China
| | - Xingxu Huang
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated Hospitaland Institute of Translational MedicineZhejiang University School of MedicineHangzhou310029China
| | - Yunbo Qiao
- Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200125China
- Shanghai Institute of Precision MedicineShanghai200125China
- Precise Genome Engineering CenterSchool of Life SciencesGuangzhou UniversityGuangzhou510006China
| |
Collapse
|
32
|
Zhang Z, Tao W, Huang S, Sun W, Wang Y, Jiang W, Huang X, Lin CP. Engineering an adenine base editor in human embryonic stem cells with minimal DNA and RNA off-target activities. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:502-510. [PMID: 35991312 PMCID: PMC9375152 DOI: 10.1016/j.omtn.2022.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/22/2022] [Indexed: 12/26/2022]
Abstract
Genome editing in pluripotent stem cells (PSCs) using CRISPR technology holds great promise for therapeutic applications. Yet, it has been reported that Cas9-mediated cleavage could cause large deletions or rearrangements of DNA, and the selection of edited PSCs could acquire p53 mutations. Adenine base editors (ABEs) do not introduce DNA double-strand breaks and thus have been proposed as alternatives to circumvent those problems, but their off-target effects still limit their applications. Here, we tested different combinations of off-target reduction methods to further diminish off-target effects of ABEs without compromising their on-target editing efficiencies. We subsequently chose the best editor, CE-8e-dV, which contains V106W substitution, R153 deletion, and Cas-embedding strategy, to establish a single-cell-derived human embryonic stem cell (hESC) line expressing tetracycline-inducible CE-8e-dV. By performing RNA and whole-genome sequencing, we demonstrated that the expression of CE-8e-dV did not produce nearly any DNA or RNA off-target effects in hESCs. Our results provide stringent proof of the safety of ABEs in PSCs and suggest that CE-8e-dV could be suitable for related therapeutic strategies, such as generation of engineered stem cells in vitro and gene therapy in vivo.
Collapse
Affiliation(s)
- Zhenwu Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wanyu Tao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Wenjun Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Jiang
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Zhejiang Lab, Hangzhou, Zhejiang 311121, China
- Corresponding author Xingxu Huang, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Corresponding author Chao-Po Lin, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
33
|
Sen T, Thummer RP. CRISPR and iPSCs: Recent Developments and Future Perspectives in Neurodegenerative Disease Modelling, Research, and Therapeutics. Neurotox Res 2022; 40:1597-1623. [PMID: 36044181 PMCID: PMC9428373 DOI: 10.1007/s12640-022-00564-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022]
Abstract
Neurodegenerative diseases are prominent causes of pain, suffering, and death worldwide. Traditional approaches modelling neurodegenerative diseases are deficient, and therefore, improved strategies that effectively recapitulate the pathophysiological conditions of neurodegenerative diseases are the need of the hour. The generation of human-induced pluripotent stem cells (iPSCs) has transformed our ability to model neurodegenerative diseases in vitro and provide an unlimited source of cells (including desired neuronal cell types) for cell replacement therapy. Recently, CRISPR/Cas9-based genome editing has also been gaining popularity because of the flexibility they provide to generate and ablate disease phenotypes. In addition, the recent advancements in CRISPR/Cas9 technology enables researchers to seamlessly target and introduce precise modifications in the genomic DNA of different human cell lines, including iPSCs. CRISPR-iPSC-based disease modelling, therefore, allows scientists to recapitulate the pathological aspects of most neurodegenerative processes and investigate the role of pathological gene variants in healthy non-patient cell lines. This review outlines how iPSCs, CRISPR/Cas9, and CRISPR-iPSC-based approaches accelerate research on neurodegenerative diseases and take us closer to a cure for neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic Lateral Sclerosis, and so forth.
Collapse
Affiliation(s)
- Tirthankar Sen
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| |
Collapse
|
34
|
Cao X, Guo J, Huang S, Yu W, Li G, An L, Li X, Tao W, Liu Q, Huang X, Jin X, Ma X. Engineering of near-PAMless adenine base editor with enhanced editing activity and reduced off-target. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:732-742. [PMID: 35664696 PMCID: PMC9126838 DOI: 10.1016/j.omtn.2022.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/29/2022] [Indexed: 11/22/2022]
Abstract
About 47% of pathogenic point mutations could be corrected by ABE-induced A·T-to-G·C conversions. However, the applications of ABEs are still hindered by undesired editing efficiency, limited editing scopes, and off-targeting effects. Here, we develop a new adenine base editor, by embedding TadA-8e monomer into SpRY-nCas9, named as CE-8e-SpRY, which exhibits higher activity at NRN than NYN PAMs favored by SpRY nuclease. CE-8e-SpRY could target nearly all genomic sites in principle and induces the highest targeting efficiency among tested SpRY-based ABEs. In addition, CE-8e-SpRY also shows reduced RNA and DNA off-targeting activities. With optimized sgRNAs, CE-8e-SpRY induces efficient or desired target editing at some disease-relevant loci where conventional ABEs were unable to induce precise and satisfied editing. Taken together, our CE-8e-SpRY could broaden the applicability of ABEs in correcting or introducing pathogenic point mutations.
Collapse
Affiliation(s)
- Xiaofang Cao
- National Research Institute for Family Planning, Beijing 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
- National Human Genetic Resources Center, Beijing 102206, China
| | - Junfan Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shisheng Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxia Yu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanglei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lisha An
- National Research Institute for Family Planning, Beijing 100081, China
- National Human Genetic Resources Center, Beijing 102206, China
| | - Xiangyang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanyu Tao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Liu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaohua Jin
- National Research Institute for Family Planning, Beijing 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
- National Human Genetic Resources Center, Beijing 102206, China
- Corresponding author Xiaohua Jin, National Research Institute for Family Planning, Beijing 100081, China.
| | - Xu Ma
- National Research Institute for Family Planning, Beijing 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
- National Human Genetic Resources Center, Beijing 102206, China
- Corresponding author Xu Ma, National Research Institute for Family Planning, Beijing 100081, China.
| |
Collapse
|
35
|
Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 2022; 185:1764-1776.e12. [PMID: 35472302 DOI: 10.1016/j.cell.2022.03.039] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 02/02/2023]
Abstract
Mitochondrial DNA (mtDNA) editing paves the way for disease modeling of mitochondrial genetic disorders in cell lines and animals and also for the treatment of these diseases in the future. Bacterial cytidine deaminase DddA-derived cytosine base editors (DdCBEs) enabling mtDNA editing, however, are largely limited to C-to-T conversions in the 5'-TC context (e.g., TC-to-TT conversions), suitable for generating merely 1/8 of all possible transition (purine-to-purine and pyrimidine-to-pyrimidine) mutations. Here, we present transcription-activator-like effector (TALE)-linked deaminases (TALEDs), composed of custom-designed TALE DNA-binding arrays, a catalytically impaired, full-length DddA variant or split DddA originated from Burkholderia cenocepacia, and an engineered deoxyadenosine deaminase derived from the E. coli TadA protein, which induce targeted A-to-G editing in human mitochondria. Custom-designed TALEDs were highly efficient in human cells, catalyzing A-to-G conversions at a total of 17 target sites in various mitochondrial genes with editing frequencies of up to 49%.
Collapse
|
36
|
Hua K, Han P, Zhu JK. Improvement of base editors and prime editors advances precision genome engineering in plants. PLANT PHYSIOLOGY 2022; 188:1795-1810. [PMID: 34962995 PMCID: PMC8968349 DOI: 10.1093/plphys/kiab591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 05/11/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein (Cas)-mediated gene disruption has revolutionized biomedical research as well as plant and animal breeding. However, most disease-causing mutations and agronomically important genetic variations are single base polymorphisms (single-nucleotide polymorphisms) that require precision genome editing tools for correction of the sequences. Although homology-directed repair of double-stranded breaks (DSBs) can introduce precise changes, such repairs are inefficient in differentiated animal and plant cells. Base editing and prime editing are two recently developed genome engineering approaches that can efficiently introduce precise edits into target sites without requirement of DSB formation or donor DNA templates. They have been applied in several plant species with promising results. Here, we review the extensive literature on improving the efficiency, target scope, and specificity of base editors and prime editors in plants. We also highlight recent progress on base editing in plant organellar genomes and discuss how these precision genome editing tools are advancing basic plant research and crop breeding.
Collapse
Affiliation(s)
- Kai Hua
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Peijin Han
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| |
Collapse
|
37
|
Wu S, Li L, Li M, Sun S, Zhao Y, Xue X, Chen F, Zhong J, Guo J, Qu Q, Wang X, Liu Z, Qiao Y. Two Compact Cas9 Ortholog-Based Cytosine Base Editors Expand the DNA Targeting Scope and Applications In Vitro and In Vivo. Front Cell Dev Biol 2022; 10:809922. [PMID: 35300420 PMCID: PMC8921874 DOI: 10.3389/fcell.2022.809922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9-based base editing tools enable precise genomic installation and hold great promise for gene therapy, whereas the big size of Cas9 nucleases and its reliability on specific protospacer adjacent motif (PAM) sequences as well as target site preferences restrict the extensive applications of base editing tools. Here, we generate two cytosine base editors (CBEs) by fusing cytidine deaminases with two compact codon-optimized Cas9 orthologs from Streptococcus_gordonii_str._Challis_substr._CH1 (ancSgo-BE4) and Streptococcus_thermophilus_LMG_18311 (ancSth1a-BE4), which are much smaller than Streptococcus pyogenes (SpCas9) and recognize NNAAAG and NHGYRAA PAM sequences, respectively. Both CBEs display high activity, high fidelity, a different editing window, and low by-products for cytosine base editing with minimal DNA and RNA off-targeting activities in mammalian cells. Moreover, both editors show comparable or higher editing efficiencies than two engineered SpCas9 variant (SpCas9-NG and SpRY)-based CBEs in our tested target sites, which perfectly match the PAM sequences for ancSgo-BE4 or ancSth1a-BE4. In addition, we successfully generate two mouse models harboring clinically relevant mutations at the Ar gene via ancSgo-BE4 and ancSth1a-BE4, which display androgen insensitivity syndrome and/or developmental lethality in founder mice. Thus, the two novel CBEs broaden the base editing tool kits with expanded targeting scope and window for efficient gene modification and applications, respectively.
Collapse
Affiliation(s)
- Susu Wu
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Liping Li
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Min Li
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Shiyu Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Zhao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaowen Xue
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Feiyu Chen
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jingli Zhong
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Junfan Guo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qianhui Qu
- Shanghai Stomatological Hospital, Institutes of Biomedical Science, Department of Systems Biology for Medicine, Fudan University, Shanghai, China
| | - Xiongjun Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yunbo Qiao
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
38
|
Li S, Liu L, Sun W, Zhou X, Zhou H. A large-scale genome and transcriptome sequencing analysis reveals the mutation landscapes induced by high-activity adenine base editors in plants. Genome Biol 2022; 23:51. [PMID: 35139891 PMCID: PMC8826654 DOI: 10.1186/s13059-022-02618-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/18/2022] [Indexed: 12/30/2022] Open
Abstract
Background The high-activity adenine base editors (ABEs), engineered with the recently-developed tRNA adenosine deaminases (TadA8e and TadA9), show robust base editing activity but raise concerns about off-target effects. Results In this study, we perform a comprehensive evaluation of ABE8e- and ABE9-induced DNA and RNA mutations in Oryza sativa. Whole-genome sequencing analysis of plants transformed with four ABEs, including SpCas9n-TadA8e, SpCas9n-TadA9, SpCas9n-NG-TadA8e, and SpCas9n-NG-TadA9, reveal that ABEs harboring TadA9 lead to a higher number of off-target A-to-G (A>G) single-nucleotide variants (SNVs), and that those harboring CRISPR/SpCas9n-NG lead to a higher total number of off-target SNVs in the rice genome. An analysis of the T-DNAs carrying the ABEs indicates that the on-target mutations could be introduced before and/or after T-DNA integration into plant genomes, with more off-target A>G SNVs forming after the ABEs had integrated into the genome. Furthermore, we detect off-target A>G RNA mutations in plants with high expression of ABEs but not in plants with low expression of ABEs. The off-target A>G RNA mutations tend to cluster, while off-target A>G DNA mutations rarely clustered. Conclusion Our findings that Cas proteins, TadA variants, temporal expression of ABEs, and expression levels of ABEs contribute to ABE specificity in rice provide insight into the specificity of ABEs and suggest alternative ways to increase ABE specificity besides engineering TadA variants. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02618-w.
Collapse
Affiliation(s)
- Shaofang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Lang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin, 541399, China.,Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Wenxian Sun
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Zhejiang, Hangzhou, China
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin, 541399, China.
| |
Collapse
|
39
|
Wang Y, Wang H, Jian Y, Luo Z, Shao H, Zhang W. Strategies for optimization of the CRISPR-based genome editing system for enhanced editing specificity. Hum Gene Ther 2021; 33:358-370. [PMID: 34963339 DOI: 10.1089/hum.2021.283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system is inarguably the most valuable gene editing tool ever discovered. Currently, three classes of CRISPR-based genome editing systems have been developed for gene editing, including CRISPR/Cas nucleases, base editors (BEs) and prime editors (PEs). Ever-evolving CRISPR technology plays an important role in medicine; however, the biggest obstacle to its use in clinical practice is the induction of off-target effects (OTEs) during targeted editing. Therefore, continuous improvement and optimization of the CRISPR system for reduction of OTEs is a major focus in the field of CRISPR research. This review aims to provide a comprehensive guide for optimization of the CRISPR-based genome editing system.
Collapse
Affiliation(s)
- Yangmin Wang
- Guangdong Pharmaceutical University, 71237, Guangzhou, Guangdong, China;
| | - Haozheng Wang
- Guangdong Pharmaceutical University, 71237, Guangzhou, Guangdong, China;
| | - Yingzhen Jian
- Guangdong Pharmaceutical University, 71237, Guangzhou, Guangdong, China;
| | - Zhongtao Luo
- Guangdong Pharmaceutical University, 71237, Guangzhou, Guangdong, China;
| | - Hongwei Shao
- Guangdong Pharmaceutical University, 71237, Guangzhou, Guangdong, China;
| | - Wenfeng Zhang
- Guangdong Pharmaceutical University, 71237, School of Biosciences and Biopharmaceutics , 28 E. Rd outside the City of Guangzhou University, Guangzhou, China, 510006;
| |
Collapse
|