1
|
Taufik A, Yoko A, Han C, Wahyudiono, Ohara S, Adschiri T. Facet Dependent Pt Adsorption on Rutile TiO 2 Surface for Efficient Photocatalytic VOCs Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412727. [PMID: 40051151 PMCID: PMC12001305 DOI: 10.1002/smll.202412727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/20/2025] [Indexed: 04/17/2025]
Abstract
Removing volatile organic compounds (VOCs) from the environment via photocatalytic reactions is highly effective for achieving clean air. While Pt deposition on TiO₂ surfaces is recognized as a viable catalytic method, understanding Pt interaction, dispersion, and facet optimization remain incomplete, leading to suboptimal performance and cost inefficiencies. This study investigates Pt adsorption on rutile TiO2 surfaces, focusing on the (101) and (110) facets. It reveals that Pt attachment is strongly influenced by surface facet and Pt ion species. The (101) facet exhibits superior adsorption for Pt ions, such as Pt(OH)2 and PtCl5 -, due to its higher surface energy that leads to higher reactivity for adsorption of Pt species. The photocatalytic result reveals that the higher Pt(OH)2 adsorption on (101) surface facet exhibits higher photocatalytic reaction for toluene degradation. Moreover, the strong Pt(OH)2 adsorption on (101) facet increases Pt dispersibility that leads to increased photocatalytic performance. These findings suggest the control of facet orientation of TiO2 and adsorb Pt ion are important for optimizing Pt deposition, which will benefit future photocatalytic research and development.
Collapse
Affiliation(s)
- Ardiansyah Taufik
- WPI – Advanced Institute for Materials Research (WPI‐AIMR)Tohoku University2‐1‐1 Katahira, Aoba‐kuSendaiMiyagi980‐8577Japan
| | - Akira Yoko
- WPI – Advanced Institute for Materials Research (WPI‐AIMR)Tohoku University2‐1‐1 Katahira, Aoba‐kuSendaiMiyagi980‐8577Japan
- International Center for Synchrotron Radiation Innovation Smart (SRIS)Tohoku UniversityAramaki Aza‐Aoba, Aoba‐kuSendai980‐8572Japan
| | - Chunli Han
- WPI – Advanced Institute for Materials Research (WPI‐AIMR)Tohoku University2‐1‐1 Katahira, Aoba‐kuSendaiMiyagi980‐8577Japan
| | - Wahyudiono
- New Industry Creation Hatchery CenterTohoku UniversitySendai980‐8579Japan
| | - Satoshi Ohara
- New Industry Creation Hatchery CenterTohoku UniversitySendai980‐8579Japan
| | - Tadafumi Adschiri
- WPI – Advanced Institute for Materials Research (WPI‐AIMR)Tohoku University2‐1‐1 Katahira, Aoba‐kuSendaiMiyagi980‐8577Japan
- New Industry Creation Hatchery CenterTohoku UniversitySendai980‐8579Japan
| |
Collapse
|
2
|
Zhang J, Vikrant K, Yeon C, Lee CW, Kim KH. The practical feasibility of bismuth oxyhalide semiconductors with controlled surface defects in photocatalytic degradation of toluene in air. J Colloid Interface Sci 2025; 683:90-100. [PMID: 39671903 DOI: 10.1016/j.jcis.2024.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/09/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
The photocatalytic degradation (PCD) of toluene (as model aromatic volatile organic compound (VOC)) is studied using two-dimensional semiconductors (bismuth oxyhalides (BiOX (X = Cl and Br)) synthesized with surface defects (BiOX-R (R = reduction)) through a solvothermal-induced reduction process. The PCD efficiency of BiOCl-R against 5 ppm toluene (20 % relative humidity (RH)) is 98.6 % under ultraviolet light irradiation with the quantum yield and clean air delivery rate of 1.04E-03 molecules photon-1 and 3 L/h, respectively. A combined evaluation of catalyst properties, experimental data, and density functional theory simulations consistently indicates that the formation of surface defects should promote the adsorption and activation of toluene, molecular oxygen (O2), and water (H2O) molecules. Meanwhile, the geometric and electronic structure of defective BiOX favorably generates superoxide anion (O2-) and hydroxyl (OH) radicals through electron (e-)-assisted O2 activation and hole (h+)-mediated H2O oxidation, respectively. Notably, the BiOCl-R surface becomes more advantageous to reduce the reaction energy barrier in the ring-opening processes of intermediate forms like benzaldehyde and benzoic acid. Overall, the results of this study offer practical guidelines for the design of advanced photocatalysts with controlled surface defects for the efficient PCD of aromatic VOCs in air.
Collapse
Affiliation(s)
- Jinjian Zhang
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
| | - Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
| | - Changho Yeon
- Energy AI & Computational Science Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea; Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chan-Woo Lee
- Energy AI & Computational Science Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
3
|
Jourshabani M, Razi Asrami M, Lee BK. Solar-Active Carbon Nitride Film Integrated by Free Radical Copolymerization for Photocatalytic Indoor Air Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410261. [PMID: 39831822 DOI: 10.1002/smll.202410261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/13/2025] [Indexed: 01/22/2025]
Abstract
The current lack of stable, scalable, and efficient coating technology dramatically limits the exploitation of solar-driven graphitic carbon nitride (CN) photocatalysts. Herein, a unique, efficient, and scalable method is reported to immobilize CN powder on various substrates ranging from Fluorine tin oxide (FTO), glass, Plexiglas, Al foil, Ti foil, and Granite stone, to even wood. The film shows an outstanding thickness of 212 µm, which is the highest value ever reported. The formation process is ascribed to free radical copolymerization between the tri-s-triazine backbone and polyacrylamide, followed by cross-linking. The smooth, non-oxidizable, and well-defined continuous coating exhibits excellent adherence and durability. The distinctive sequence segments preserve the light transition within the film while enhancing the optical absorption in the solar spectrum. Under visible light illumination, the film shows outstanding photodegradation performance toward air pollutants, whether for gaseous acetaldehyde (Act) or toluene (Tol). This method is a great step forward that can open new opportunities for the commercial applications of CN powder.
Collapse
Affiliation(s)
- Milad Jourshabani
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan, 44610, Republic of Korea
| | - Mahdieh Razi Asrami
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan, 44610, Republic of Korea
| | - Byeong-Kyu Lee
- Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan, 44610, Republic of Korea
| |
Collapse
|
4
|
Zhao Z, Law CS, Zhao Y, Baron Jaimez JA, Talebian‐Kiakalaieh A, Li H, Ran J, Jiao Y, Abell AD, Santos A. Elucidating Synergies of Single-Atom Catalysts in a Model Thin Film Photoelectrocatalyst to Maximize Hydrogen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407598. [PMID: 39231320 PMCID: PMC11538634 DOI: 10.1002/advs.202407598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/10/2024] [Indexed: 09/06/2024]
Abstract
Realization of the full potential of single-atom photoelectrocatalysts in sustainable energy generation requires careful consideration of the design of the host material. Here, a comprehensive methodology for the rational design of photoelectrocatalysts using anodic titanium dioxide (TiO2) nanofilm as a model platform is presented. The properties of these nanofilms are precisely engineered to elucidate synergies across structural, chemical, optoelectronic, and electrochemical properties to maximize the efficiency of the hydrogen evolution reaction (HER). These findings clearly demonstrate that thicker TiO2 nanofilms in anatase phase with pits on the surface can accommodate single-atom platinum catalysts in an optimal configuration to increase HER performance. It is also evident that the electrolyte temperature can further enhance HER output through thermochemical effect. A judicious design incorporating all these factors into one system gives rise to a ten-fold HER enhancement. However, the reusability of the host photoelectrocatalyst is limited by the leaching of the Pt atom, worsening HER. Density-functional theory calculations have provided insights into the mechanism underlying the experimental observations in terms of moderate hydrogen adsorption and enhanced gas generation. This improved understanding of the critical factors determining HER performance in a model photoelectrocatalyst paves the way for future advances in scalable and translatable photoelectrocatalyst technologies.
Collapse
Affiliation(s)
- Zichu Zhao
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
- Institute for Photonics and Advanced Sensing (IPAS)The University of AdelaideAdelaideSouth Australia5005Australia
| | - Cheryl Suwen Law
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
- Institute for Photonics and Advanced Sensing (IPAS)The University of AdelaideAdelaideSouth Australia5005Australia
| | - Yanzhang Zhao
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
| | - Jairo Alberto Baron Jaimez
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
- Institute for Photonics and Advanced Sensing (IPAS)The University of AdelaideAdelaideSouth Australia5005Australia
| | | | - Haobo Li
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
| | - Jingrun Ran
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
| | - Yan Jiao
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
| | - Andrew D. Abell
- Institute for Photonics and Advanced Sensing (IPAS)The University of AdelaideAdelaideSouth Australia5005Australia
- Department of ChemistryThe University of AdelaideAdelaideSouth Australia5005Australia
| | - Abel Santos
- School of Chemical EngineeringThe University of AdelaideAdelaideSouth Australia5005Australia
- Institute for Photonics and Advanced Sensing (IPAS)The University of AdelaideAdelaideSouth Australia5005Australia
| |
Collapse
|
5
|
Samy M, Tang S, Zhang Y, Leung DYC. Understanding the variations in degradation pathways and generated by-products of antibiotics in modified TiO 2 and ZnO photodegradation systems: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122402. [PMID: 39243651 DOI: 10.1016/j.jenvman.2024.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/05/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
This review examines various modification techniques, including metal doping, non-metal doping, multi doping, mixed doping, and the construction of heterojunction photocatalysts, for enhancing the performance of pure TiO2 and ZnO in the photodegradation of antibiotics. The study finds that mixed and multi doping approaches are more effective in improving photodegradation performance compared to single doping. Furthermore, the selection of suitable semiconductors for constructing heterojunction photocatalysts is crucial for achieving an efficient charge carrier separation. The environmental impacts, recent research, and real application of photocatalysis process have been discussed. The review also investigates the impact of operating parameters on the degradation pathways and the generation of by-products for different antibiotics. Additionally, the toxicity of the by-products resulting from the photodegradation of antibiotics using modified ZnO and TiO2 photocatalysts is explored, revealing that these by-products may exhibit higher toxicity than the original antibiotics. Consequently, to enable the widespread implementation of photodegradation systems, researchers should focus on optimizing degradation systems to control the conversion pathways of by-products, developing innovative photoreactors, and evaluating toxicity in real wastewater matrices.
Collapse
Affiliation(s)
- Mahmoud Samy
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China; Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Shaoru Tang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yingguang Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dennis Y C Leung
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
6
|
Ma H, Huang C, Tan T, Li W, Xu W, Shen Y, Li Y, Fang R, Dong F. S-Scheme heterojunction of Cs 2SnBr 6/C 3N 4 with interfacial electron exchange toward efficient photocatalytic NO abatement. J Colloid Interface Sci 2024; 671:486-495. [PMID: 38815384 DOI: 10.1016/j.jcis.2024.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Photocatalytic technology is of great significance in environmental purification due to its eco-friendly and cost-effective operations. However, low charge-transfer efficiency restricts the photocatalytic activity of the catalyst. Herein, we report Cs2SnBr6/C3N4 composite catalysts that exhibit a robust interfacial electron exchange thereby enhancing photocatalytic nitric oxide (NO) oxidation. A comprehensive study has demonstrated the S-scheme electron transfer mechanism. Benefiting from the interfacial internal electric field, the C-Br bond serves as a direct electron transfer channel, resulting in enhanced charge separation. Furthermore, the S-scheme heterojunction effectively traps high redox potential electrons and holes, leading to the production of abundant reactive oxygen radicals that enhance photocatalytic NO abatement. The NO removal rate of the Cs2SnBr6/C3N4 heterogeneous system can reach 86.8 %, which is approximately 3-fold and 18-fold that of pristine C3N4 and Cs2SnBr6, respectively. The comprehensive understanding of the electron transfer between heterojunction atomic interfaces will provide a novel perspective on efficient environmental photocatalysis.
Collapse
Affiliation(s)
- Hao Ma
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Chunyan Huang
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Tianqi Tan
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Wenting Li
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Wei Xu
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yuhan Li
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Ruimei Fang
- National Research Base of Intelligent Manufacturing Service, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; State Centre for International Cooperation on Designer Low Carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Qu W, Xu Z, Gruber CG, Li H, Hu X, Zhou L, Duan H, Zhang J, Liu M, Cortés E, Zhang D. Accelerating Toluene Oxidation over Boron-Titanium-Oxygen Interface: Steric Hindrance of the Methyl Group Induced by the Plane-Adsorption Configuration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16215-16224. [PMID: 39190430 DOI: 10.1021/acs.est.4c06079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Elimination of dilute gaseous toluene is one of the critical concerns within the field of indoor air remediation. The typical degradation route on titanium-based catalysts, "toluene-benzaldehyde-carbon dioxide", necessitates the oxidation of the methyl group as a prerequisite for photocatalytic toluene oxidation. However, the inherent planar adsorption configuration of toluene molecules, dominated by the benzene rings, leads to significant steric hindrance for the methyl group. This steric hindrance prevents the methyl group from contacting the active species on the catalyst surface, thereby limiting the removal of toluene under indoor conditions. To date, no effective strategy to control the steric hindrance of the methyl group has been identified. Herein, we showed a B-Ti-O interface that exhibits significantly enhanced toluene removal efficiency under indoor conditions. In-depth investigations revealed that, compared to typical Ti-based photocatalysts, the steric hindrance between the methyl group and the catalyst surface decreased from 3.42 to 3.03 Å on the designed interface. This reduction originates from the matching of orbital energy levels between Ti 3dz2 and C 2pz of the benzene ring. The decreased steric hindrance improved the efficiency of toluene being attacked by surface active species, allowing for rapid conversion into benzaldehyde and benzoic acid species for subsequent reactions. Our work provides novel insights into the steric hindrance effect in the elimination of aromatic volatile organic compounds.
Collapse
Affiliation(s)
- Wenqiang Qu
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zixiang Xu
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Christoph G Gruber
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München 80539, Germany
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Xiaonan Hu
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Limin Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Haiyan Duan
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jin Zhang
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, Changsha 410083, China
| | - Emiliano Cortés
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München 80539, Germany
| | - Dengsong Zhang
- Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Nawaz F, Ali M, Ahmad S, Yong Y, Rahman S, Naseem M, Hussain S, Razzaq A, Khan A, Ali F, Al Balushi RA, Al-Hinaai MM, Ali N. Carbon based nanocomposites, surface functionalization as a promising material for VOCs (volatile organic compounds) treatment. CHEMOSPHERE 2024; 364:143014. [PMID: 39121955 DOI: 10.1016/j.chemosphere.2024.143014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Urban residential and industrial growth development affects sustainable and healthful indoor environments. Environmental issues are a global problem. The deterioration of indoor air quality has prompted the creation of several air cleansing techniques. This review explains how carbon-based materials have influenced the development of air purification systems using photocatalysis. These carbon-based materials offer unique properties and advantages in VOC removal processes. Biochar, produced from biomass pyrolysis, provides an environmentally sustainable solution with its porous structure and carbon-rich composition. Carbon quantum dots, with their quantum confinement effects and tunable surface properties, show promise in VOC sensing and removal applications. Polymers incorporating reduced graphene oxide demonstrate enhanced adsorption capabilities owing to the synergistic effects of graphene and polymer matrices. Activated carbon fibers, characterized by their high aspect ratio and interconnected porosity, provide efficient VOC removal with rapid kinetics. With their unique electronic and structural properties, graphitic carbon nitrides offer opportunities for photocatalytic degradation of VOCs under visible light. Catalysts integrated with MXene, a two-dimensional nanomaterial, exhibit enhanced catalytic activity for VOC oxidation reactions. Using various carbon-based materials in VOC removal showcases the versatility and effectiveness of carbon-based approaches in addressing environmental challenges associated with indoor air pollution. Metal-organic-framework materials are carbon-based compounds. It examines the correlation between VOC mineralization and specific characteristics of carbon materials, including surface area, adsorption capability, surface functional groups, and optoelectronic properties. Discussions include the basics of PCO, variables influencing how well catalysts degrade, and degradation mechanisms. It explores how technology will improve in the future to advance studies on healthy and sustainable indoor air quality.
Collapse
Affiliation(s)
- Farooq Nawaz
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Muhammad Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Shakeel Ahmad
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Yang Yong
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Suhaib Rahman
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Muhammad Naseem
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Sadam Hussain
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology(NUST), Islamabad, 44000, Pakistan.
| | - Abdul Razzaq
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan.
| | - Farman Ali
- Department of Chemistry, Hazara University, Mansehra, 21300, Pakistan.
| | - Rayya Ahmed Al Balushi
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman.
| | - Mohammad M Al-Hinaai
- Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman.
| | - Nisar Ali
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China; Department of Basic and Applied Sciences, College of Applied and Health Sciences, A'Sharqiyah University, P.O. Box 42, Ibra P.O. 400, Sultanate of Oman.
| |
Collapse
|
9
|
Kubiak B, Muzioł T, Jabłoński M, Radtke A, Piszczek P. Investigation of titanium(IV)-oxo complexes stabilized with α-hydroxy carboxylate ligands: structural analysis and DFT studies. Dalton Trans 2024; 53:14457-14468. [PMID: 39148380 DOI: 10.1039/d4dt01710b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
This paper explores the findings on the structures and physicochemical properties of titanium-oxo complexes (TOCs) stabilized by 9-hydroxy-9-fluorenecarboxylate ligands. Two complexes, with the overall formulas [Ti4O(OiPr)10(O3C14H8)2] (1) and [Ti6O4(OiPr)2(O3C14H8)4(O2CEt)6] (2), have been synthesized. The structures of the isolated crystals (1 and 2) were determined using single-crystal X-ray diffraction. Molecular structure analysis of the crystals also employed vibrational spectroscopic techniques (IR and Raman), UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRS), and powder X-ray diffraction (XRD). Density functional theory (DFT) was utilized to elucidate the electronic structures of these complexes. Furthermore, the theoretical charge distribution in 1 and 2 and their reactivity were calculated. The results of these investigations suggest that the reactivity of 2 is significantly greater than that of 1.
Collapse
Affiliation(s)
- Barbara Kubiak
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| | - Tadeusz Muzioł
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| | - Mirosław Jabłoński
- Department of Quantum Chemistry and Atomic Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Aleksandra Radtke
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| | - Piotr Piszczek
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
| |
Collapse
|
10
|
Link MF, Robertson R, Claflin MS, Poppendieck D. Quantification of Byproduct Formation from Portable Air Cleaners Using a Proposed Standard Test Method. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7916-7923. [PMID: 38683040 PMCID: PMC11132699 DOI: 10.1021/acs.est.3c09331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
In response to the COVID-19 pandemic, air cleaning technologies were promoted as useful tools for disinfecting public spaces and combating airborne pathogen transmission. However, no standard method exists to assess the potentially harmful byproduct formation from air cleaners. Through a consensus standard development process, a draft standard test method to assess portable air cleaner performance was developed, and a suite of air cleaners employing seven different technologies was tested. The test method quantifies not only the removal efficiency of a challenge chemical suite and ultrafine particulate matter but also byproduct formation. Clean air delivery rates (CADRs) are used to quantify the chemical and particle removal efficiencies, and an emission rate framework is used to quantify the formation of formaldehyde, ozone, and other volatile organic compounds. We find that the tested photocatalytic oxidation and germicidal ultraviolet light (GUV) technologies produced the highest levels of aldehyde byproducts having emission rates of 202 and 243 μg h-1, respectively. Additionally, GUV using two different wavelengths, 222 and 254 nm, both produced ultrafine particulate matter.
Collapse
Affiliation(s)
- Michael F. Link
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Rileigh Robertson
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | | |
Collapse
|
11
|
Zhao Z, Zhang T, Yue S, Wang P, Bao Y, Zhan S. Spin Polarization: A New Frontier in Efficient Photocatalysis for Environmental Purification and Energy Conversion. Chemphyschem 2024; 25:e202300726. [PMID: 38059760 DOI: 10.1002/cphc.202300726] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
As a promising strategy to improve photocatalytic efficiency, spin polarization has attracted enormous attention in recent years, which could be involved in various steps of photoreaction. The Pauli repulsion principle and the spin selection rule dictate that the behavior of two electrons in a spatial eigenstate is based on their spin states, and this fact opens up a new avenue for manipulating photocatalytic efficiency. In this review, recent advances in modulating the photocatalytic activity with spin polarization are systematically summarized. Fundamental insights into the influence of spin-polarization effects on photon absorption, carrier separation, and migration, and the behaviors of reaction-related substances from the photon uptake to reactant desorption are highlighted and discussed in detail, and various photocatalytic applications for environmental purification and energy conversion are presented. This review is expected to deliver a timely overview of the recent developments in spin-polarization-modulated photocatalysis for environmental purification and energy conversion in terms of their practical applications.
Collapse
Affiliation(s)
- Zhiyong Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Shuai Yue
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Pengfei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Yueping Bao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
12
|
Si Z, Pei M, Liu Y, Li B, Kang F. Boosting the photocatalytic activity of β-FeOOH catalyst for toluene oxidation by constructing internal electric field at 0D/1D homojunction interfaces. J Colloid Interface Sci 2024; 654:300-307. [PMID: 37844501 DOI: 10.1016/j.jcis.2023.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Photocatalytic degradation is considered as the most energy-efficient, environmentally benign, and effective method for treating low fraction organic contaminants. However, the photocatalysts still suffer from low utilization efficiency of visible-light and severe carrier recombination. Heterojunctions can resolve these two main problems in some extent but still be restrained by the low quality of hetero-interface. In this study, homojunction was constructed of β-FeOOH quantum dots and nanorods with the same lattice by a two-step precipitation method, to avoid the heterointerface with too many defects and possess good charge separation as a consequence. The catalysts were characterized by activity test, electron spin resonance, Mott-Schottky plots, photocurrent density tests and open-circuit potential measurements, etc. The results revealed that a strong internal electric fields (IEFs) was created at the interface of catalyst. Beneficently, the electron rearrangement leads to a more rational distribution of oxygen vacancies in the catalyst, resulting in more efficient dissociation of oxygen molecules and formation of active radicals, thus facilitating the efficient degradation of toluene. This study proposes a novel strategy to boosting the photocatalytic activity of low dimensional semiconductors via forming homojunction interfaces to improve their charge transfer.
Collapse
Affiliation(s)
- Zhichun Si
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mengxi Pei
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yishui Liu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bo Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Feiyu Kang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
13
|
Shang H, Jia H, Zhang W, Li S, Wang Q, Yang Q, Zhang C, Shi Y, Wang Y, Li P, He Y, Xiao S, Wang D, Zhang D. Surface Hydrogen Bond-Induced Oxygen Vacancies of TiO 2 for Two-Electron Molecular Oxygen Activation and Efficient NO Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20400-20409. [PMID: 37987747 DOI: 10.1021/acs.est.3c06593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Defect engineering can provide a feasible approach to achieving ambient molecular oxygen activation. However, conventional surface defects (e.g., oxygen vacancies, OVs), featured with the coordinatively unsaturated metal sites, often favor the reduction of O2 to •O2- rather than O22- via two-electron transfer, hindering the efficient pollutant removal with high electron utilization. Herein, we demonstrate that this bottleneck can be well discharged by modulating the electronic structure of OVs via phosphorization. As a proof of concept, TiO2 nanoparticles are adopted as a model material for NaH2PO2 (HP) modification, in which HP induces the formation of OVs via weakening the Ti-O bonds through the hydrogen bond interactions. Additionally, the formed Ti-O-P covalent bond refines the electronic structure of OVs, which enables rapid electron transfer for two-electron molecular oxygen activation. As exemplified by NO oxidation, HP-modified TiO2 with abundant OVs achieved complete NO removal with high selectivity for benign nitrate, superior to that of pristine TiO2. This study highlights a promising approach to regulate the O2 activation via an electronic structure modulation and provides fresh insights into the rational design of a photocatalyst for environmental remediation.
Collapse
Affiliation(s)
- Huan Shang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Hongbao Jia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Wenbin Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shuangjun Li
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Qing Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Qingyu Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Chi Zhang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yuxin Shi
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yongjie Wang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Pengpeng Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yucheng He
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shuning Xiao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Dieqing Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| |
Collapse
|
14
|
Matter ME, Čamdžić L, Stache EE. Photothermal Conversion by Carbon Black Facilitates Aryl Migration by Photon-Promoted Temperature Gradients. Angew Chem Int Ed Engl 2023; 62:e202308648. [PMID: 37579057 DOI: 10.1002/anie.202308648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/16/2023]
Abstract
The Newman Kwart Rearrangement (NKR) offers an efficient and high-yielding method for producing substituted thiophenols from phenols. While an industrially important protocol, it suffers from high activation energy barriers (35-43 kcal/mol), requiring the use of extreme temperatures (>200 °C) and specialty equipment. This report details a highly efficient and straightforward method for facilitating the NKR using photothermal conversion. This underused, unique reactivity pathway arises from the irradiation of nanomaterials that relax via a non-radiative decay pathway to generate intense thermal gradients. We show carbon black (CB) can be an inexpensive and abundant photothermal agent under visible light irradiation to achieve a facile NKR under mild conditions. The scope includes a wide array of stereo- and electronically diverse substrates with increasing difficulty of rearrangement, including BHT and BINOL as effective substrates. Furthermore, we demonstrate the unique application for temporal control in a thermal reaction and tunability of thermal gradients by modulating light intensity. Ultimately, photothermal conversion enables high-temperature reactions with simple, visible light irradiation.
Collapse
Affiliation(s)
- Megan E Matter
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY, 14850, USA
| | - Lejla Čamdžić
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY, 14850, USA
| | - Erin E Stache
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY, 14850, USA
| |
Collapse
|
15
|
Vallejo W, Cantillo A, Díaz-Uribe C. Improvement of the photocatalytic activity of ZnO thin films doped with manganese. Heliyon 2023; 9:e20809. [PMID: 37860572 PMCID: PMC10582510 DOI: 10.1016/j.heliyon.2023.e20809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/07/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
In the herein report, we synthesized ZnO thin films doped with manganese (Mn). We studied the impact of Mn doping loads (1 %, 3 %, 5 % wt.) on physicochemical properties of the compounds. Furthermore, we presented the photocatalytic efficiency in removal of methylene blue dye. The structural assay indicated ZnO conserve the wurtzite crystalline structure after dopant insertion. Furthermore, the crystalline size of catalysts was reduced after dopant incorporation. The SEM analysis showed a change in surface morphology after modification of ZnO thin films. Furthermore, Raman spectroscopy verified the Mn insertion inside the ZnO lattice. After the doping process, band gap was reduced by 16 %, in comparison to bare ZnO. After the photocatalytic test, the doped catalysts showed better performance than bare ZnO in removing MB. The best test showed a kinetics constant value of 2.9 × 10-3 min-1 after 120 min of visible irradiation. Finally, the Mn(5 %):ZnO thin film was suitable after five degradation cycles, and the degradation process efficiency was reduced by 32%.
Collapse
Affiliation(s)
- William Vallejo
- Grupo de Fotoquímica y Fotobiología, Facultad de Ciencias Básicas, Universidad del Atlántico, 081007, Puerto Colombia, Colombia
| | - Alvaro Cantillo
- Grupo de Fotoquímica y Fotobiología, Facultad de Ciencias Básicas, Universidad del Atlántico, 081007, Puerto Colombia, Colombia
| | - Carlos Díaz-Uribe
- Grupo de Fotoquímica y Fotobiología, Facultad de Ciencias Básicas, Universidad del Atlántico, 081007, Puerto Colombia, Colombia
| |
Collapse
|
16
|
Duran F, Diaz-Uribe C, Vallejo W, Muñoz-Acevedo A, Schott E, Zarate X. Adsorption and Photocatalytic Degradation of Methylene Blue on TiO 2 Thin Films Impregnated with Anderson-Evans Al-Polyoxometalates: Experimental and DFT Study. ACS OMEGA 2023; 8:27284-27292. [PMID: 37546624 PMCID: PMC10399183 DOI: 10.1021/acsomega.3c02657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/01/2023] [Indexed: 08/08/2023]
Abstract
In this work, we fabricated a TiO2 thin film, and the same film was modified with an Anderson aluminum polyoxometalate (TiO2-AlPOM). Physical-chemical characterization of the catalysts showed a significant change in morphological and optical properties of the TiO2 thin films after surface modification. We applied the kinetic and isothermal models to the methylene blue (MB) adsorption process on both catalysts. The pseudo-second order model was the best fitting model for the kinetic results; qe (mg/g) was 11.9 for TiO2 thin films and 14.6 for TiO2-AlPOM thin films, and k2 (g mg-1 min-1) was 16.3 × 10-2 for TiO2 thin films and 28.2 × 10-2 for TiO2-AlPOM thin films. Furthermore, the Freundlich model was suitable to describe the isothermal behavior of TiO2, KF (5.42 mg/g), and 1/n (0.312). The kinetics of photocatalytic degradation was fitted using the Langmuir-Hinshelwood model; kap was 7 × 10-4 min-1 for TiO2 and 13 × 10-4 min-1 for TiO2-AlPOM. The comparative study showed that TiO2 thin films reach a 19.6% MB degradation under UV irradiation and 9.1% MB adsorption, while the TiO2-AlPOM thin films reach a 32.6% MB degradation and 12.2% MB adsorption on their surface. The surface modification improves the morphological, optical, and photocatalytic properties of the thin films. Finally, the DFT study supports all the previously shown results.
Collapse
Affiliation(s)
- Freider Duran
- Grupo
de Investigación en Fotoquímica y Fotobiología.
Programa de Química. Facultad de Ciencias Básicas. Universidad del Atlántico. Puerto Colombia 81007, Colombia
| | - Carlos Diaz-Uribe
- Grupo
de Investigación en Fotoquímica y Fotobiología.
Programa de Química. Facultad de Ciencias Básicas. Universidad del Atlántico. Puerto Colombia 81007, Colombia
| | - William Vallejo
- Grupo
de Investigación en Fotoquímica y Fotobiología.
Programa de Química. Facultad de Ciencias Básicas. Universidad del Atlántico. Puerto Colombia 81007, Colombia
| | - Amner Muñoz-Acevedo
- Grupo
de Investigación en Química y Biología, Universidad del Norte, Puerto Colombia 81007, Colombia
| | - Eduardo Schott
- Departamento
de Química Inorgánica, Facultad de Química y
Farmacia, Centro de Energía UC, Centro de Investigación
en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, Santiago 4860, Chile
- Millenium
Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Concepción 4030000, Chile
| | - Ximena Zarate
- Instituto
de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile. Avenida Pedro de Valdivia 425, Santiago 7500912, Chile
| |
Collapse
|
17
|
Xue T, Chen L, Li K, Lei B, Wang H, Dong F, Yang Y. Highly Enhanced Photocatalytic NO Removal and Inhibited Peroxyacetyl Nitrate Formation in Synergistic Acetaldehyde Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8174-8182. [PMID: 37199463 DOI: 10.1021/acs.est.3c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The coexistence of NO and CH3CHO in the air is considered to produce secondary peroxyacetyl nitrate (PAN) under sunlight irradiation, threatening the ecological environment and public health. Herein, we provide a simple strategy for the photocatalytic removal of NO and acetaldehyde (CH3CHO) on Sr2Sb2O7. In comparison with the single removal, the nearly complete removal of NO is reached by deep oxidation to NO3- with the assistance of CH3CHO. The underlying mechanism is revealed by GC-MS, in situ DRIFTS, and density functional theory calculations. The intermediates •CH3 from CH3CHO and NO2- from NO tend to bond and further oxidize to CH3ONO2, thus promoting NO removal. CH3NO2 and CH3ONO2 are the key products instead of PAN on Sr2Sb2O7 from the synergistic degradation of NO and CH3CHO. This work brings new insights into reaction pathway regulation for promoting performance and suppressing byproducts during synergistic air pollutant removal.
Collapse
Affiliation(s)
- Ting Xue
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lvcun Chen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
| | - Kanglu Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ben Lei
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Hong Wang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
- State Centre for International Cooperation on Designer Low-Carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Synergy Innovation Institute of GDUT, Shantou 515041, Guangdong, China
| |
Collapse
|
18
|
Wang Y, Dai J, Wang M, Qi F, Jin X, Zhang L. Enhanced toluene oxidation by photothermal synergetic catalysis on manganese oxide embedded with Pt single-atoms. J Colloid Interface Sci 2023; 636:577-587. [PMID: 36669451 DOI: 10.1016/j.jcis.2023.01.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The degradation of volatile organic compounds (VOCs) at low temperature remains a big challenge. Photothermal catalysis coupling the advantages of photocatalysis and thermocatalysis is promising to address this issue. However, there is still a long way to construct highly active catalysts and deeply understand the mechanism of photothermal catalysis. Herein, maganese oxide (MnO2)catalysts embedded with Pt single-atoms (0.11 wt% Pt) have achieved greatly enhanced toluene conversion of 95%, far surpassing most supported Pt photothermal catalysts. The excellent catalytic activity has been disclosed to derive from the synergetic effect oflight-driven thermocatalysis and photocatalysis. The light-driven thermocatalysis predominates and the strong electron transfer from Pt single-atoms to MnO2 improves the activity of surface lattice oxygen to boost the generation of benzoic acid and the mineralization of toluene. Meanwhile, in photocatalytic process, Pt single-atoms accelerate the generation of superoxide radicals (O2-), which facilitate the ring-opening and deep oxidation of toluene. This understanding on the photothermal synergetic mechanism will inspire the design of highly efficient catalysts for VOCs oxidation.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Jinyu Dai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China
| | - Min Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Fenggang Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Xixiong Jin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China
| | - Lingxia Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai 200050, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China.
| |
Collapse
|
19
|
Markowska-Szczupak A, Paszkiewicz O, Yoshiiri K, Wang K, Kowalska E. Can photocatalysis help in the fight against COVID-19 pandemic? CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY 2023; 40:100769. [PMID: 36846296 PMCID: PMC9942773 DOI: 10.1016/j.cogsc.2023.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Mould fungi are serious threats to humans and animals (allergen) and might be the main cause of COVID-19-associated pulmonary aspergillosis. The common methods of disinfection are not highly effective against fungi due to the high resistance of fungal spores. Recently, photocatalysis has attracted significant attention towards antimicrobial action. Outstanding properties of titania photocatalysts have already been used in many areas, e.g., for building materials, air conditioner filters, and air purifiers. Here, the efficiency of photocatalytic methods to remove fungi and bacteria (risk factors for Severe Acute Respiratory Syndrome Coronavirus 2 co-infection) is presented. Based on the relevant literature and own experience, there is no doubt that photocatalysis might help in the fight against microorganisms, and thus prevent the severity of COVID-19 pandemic.
Collapse
Affiliation(s)
- Agata Markowska-Szczupak
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| | - Oliwia Paszkiewicz
- Department of Chemical and Process Engineering, West Pomeranian University of Technology in Szczecin, Piastow 42, 71-065 Szczecin, Poland
| | - Kenta Yoshiiri
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, N10, W5, 060-0810 Sapporo, Japan
| | - Kunlei Wang
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
| | - Ewa Kowalska
- Institute for Catalysis (ICAT), Hokkaido University, N21, W10, 001-0021 Sapporo, Japan
- Graduate School of Environmental Science, Hokkaido University, N10, W5, 060-0810 Sapporo, Japan
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
20
|
Lee S, Bae HS, Choi W. Selective Control and Characteristics of Water Oxidation and Dioxygen Reduction in Environmental Photo(electro)catalytic Systems. Acc Chem Res 2023; 56:867-877. [PMID: 36947463 PMCID: PMC10077592 DOI: 10.1021/acs.accounts.3c00002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
ConspectusEmploying semiconductor materials is a popular engineering method to harvest solar energy, which is widely investigated for photocatalysis (PC) and photoelectrocatalysis (PEC) that convert solar light to chemical energy. In particular, environmental photo(electro)catalysis has been extensively studied as a sustainable method for water treatment, air purification, and resource recovery. Environmental PC/PEC processes working in ambient conditions are initiated mainly through hole transfer to water (water oxidation) and electron transfer to dioxygen (O2 reduction) and the subsequent photoredox transformation of water and dioxygen serves as a base of various PC/PEC systems. Through the redox transformations, different products can be generated depending on the number of transferred electrons and holes. The single electron/hole transfer generates radical species and reactive oxygen species (ROS) which initiate the degradation/transformation of various pollutants in water and air, while the multicharge transfer can generate energy-rich chemicals (e.g., H2, H2O2). Therefore, understanding the characteristics of the photoredox reactions of water and dioxygen on the semiconductor surface is critically important in controlling the selectivity and efficiency of photoconversion processes.In this Account, we describe various environmental PC/PEC conversions with a particular focus on how the phototransformation of dioxygen and water is related to the overall processes occurring on diverse semiconductor materials. The activation of water or dioxygen can be controlled by modifying the properties of semiconductors, changing the kind of counterpart half-reaction and the experimental conditions. If water can be used as a ubiquitous reductant under solar irradiation, many kinds of reductive transformations can be carried out under ambient environmental conditions. For example, various toxic oxyanions (or metal ions) can be reductively transformed to harmless or less harmful species or useful chemicals/fuels can be synthesized under ambient conditions if water can provide electrons and protons via solar water oxidation. On the other hand, dioxygen can turn into reactive oxygen species (ROS) as a versatile oxidant or to a chemical like H2O2. There should be many more possibilities of utilizing the photoconversion of water and dioxygen for environmentally significant purposes, which are yet to be further developed and demonstrated. In this Account, we highlight the recent strategies and the novel functional materials for effective activation of water and dioxygen in environmental PC/PEC systems. Design of environmentally functional PC/PEC systems should be based on better understanding of water and dioxygen activation.
Collapse
Affiliation(s)
- Shinbi Lee
- KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea
| | - Ho-Sub Bae
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Wonyong Choi
- KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea
| |
Collapse
|
21
|
Zhang J, Lin Y, Liu L. Electron transfer in heterojunction catalysts. Phys Chem Chem Phys 2023; 25:7106-7119. [PMID: 36846919 DOI: 10.1039/d2cp05150h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heterojunction catalysis, the cornerstone of the modern chemical industry, shows potential to tackle the growing energy and environmental crises. Electron transfer (ET) is ubiquitous in heterojunction catalysts, and it holds great promise for improving the catalytic efficiency by tuning the electronic structures or building internal electric fields at interfaces. This perspective summarizes the recent progress of catalysis involving ET in heterojunction catalysts and pinpoints its crucial role in catalytic mechanisms. We specifically highlight the occurrence, driving forces, and applications of ET in heterojunction catalysis. For corroborating the ET processes, common techniques with measurement principles are introduced. We end with the limitations of the current study on ET, and envision future challenges in this field.
Collapse
Affiliation(s)
- Jianhua Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Yuan Lin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Lijun Liu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| |
Collapse
|
22
|
Yin H, Peng Y, Li J. Electrocatalytic Reduction of Nitrate to Ammonia via a Au/Cu Single Atom Alloy Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3134-3144. [PMID: 36785514 DOI: 10.1021/acs.est.2c07968] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrocatalytic ammonia (NH3) synthesis from the reduction of nitrate (NO3-) is one of the effective and mild methods to treat nitrogen-containing wastewater from stationary sources and to obtain NH3 readily compared with the Haber-Bosch process. However, the low efficiency of electrocatalytic NO3- reduction to NH3 on traditional Cu-based catalysts hinders their practical application. Here, we prepare a Au/Cu single atom (SA) alloy (Au/Cu SAA) that shows a high performance of NH3 synthesis with 99.69% Faradaic efficiency at -0.80 V vs RHE. The structures of Au SAs and alloyed Au/Cu are confirmed by the detailed characterizations. Online differential electrochemical mass spectrometry confirms the occurrence of key reaction intermediates (*NO2, *NO, and *NH3). Density functional theory calculations demonstrate that Au SAs efficiently reduce the adsorption energy of *NO3-, and the newly formed Au-Cu bonds boost the reduction process of *NO2 to *NO. Meanwhile, Au/Cu SAAs produce significantly less N2 and N2O byproducts due to the prohibition of N-N coupling on single atoms, which finally leads to excellent Faradaic efficiency and NH3 selectivity.
Collapse
Affiliation(s)
- Haibo Yin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
23
|
Zhang Y, Wang Y, Xie R, Huang H, Leung MKH, Li J, Leung DYC. Photocatalytic Oxidation for Volatile Organic Compounds Elimination: From Fundamental Research to Practical Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16582-16601. [PMID: 36367480 DOI: 10.1021/acs.est.2c05444] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Photocatalysis is regarded as one of the most promising technologies for indoor volatile organic compounds (VOCs) elimination due to its low cost, safe operation, energy efficiency, and high mineralization efficiency under ambient conditions. However, the practical applications of this technology are limited, despite considerable research efforts in recent decades. Until now, most of the works were carried out in the laboratory and focused on exploring new catalytic materials. Only a few works involved the immobilization of catalysts and the design of reactors for practical applications. Therefore, this review systematically summarizes the research and development on photocatalytic oxidation (PCO) of VOCs, with emphasis on recent catalyst's immobilization and reactor designs in detail. First, different types of photocatalytic materials and the mechanisms for PCO of VOCs are briefly discussed. Then, both the catalyst's immobilization techniques and reactor designs are reviewed in detail. Finally, the existing challenges and future perspectives for PCO of VOCs are proposed. This work aims to provide updated information and research inspirations for the commercialization of this technology in the future.
Collapse
Affiliation(s)
- Yingguang Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yifei Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, 518071, China
| | - Ruijie Xie
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Michael K H Leung
- School of Energy & Environment, City University of Hong Kong, Hong Kong, China
| | - Jiantao Li
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116045, China
| | - Dennis Y C Leung
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
24
|
Sun W, Zhang M, Li J, Peng C. Solar-Driven Catalytic Urea Oxidation for Environmental Remediation and Energy Recovery. CHEMSUSCHEM 2022; 15:e202201263. [PMID: 35972075 DOI: 10.1002/cssc.202201263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The water-energy nexus is highly related to sustainable societal development. As one of the most abundant biowastes discharged into the environment, mild abatements and green conversions of urea wastewater have been widely investigated. Due to abundant sources, global distribution, and easy control, light-based catalytic strategies have become alternative on-site treatment approaches. After comprehensively surveying the recent progress, recent achievements of urea oxidation under light irradiation are reviewed herein. Several typical light-promoted systems employed in urea conversion, including photocatalysis, photo-electrocatalysis, photo-biocatalysis, and photocatalytic fuel cells, are meticulously introduced and discussed, from catalyst designs and medium conditions to established mechanisms. To realize the goal of sustainability, the chemical energy in urea-rich water could be utilized for the value-added production of hydrogen fuel and electricity. Finally, based on current developments, existing challenges are enumerated and developmental prospects in the future of light-driven urea conversion technologies are proposed.
Collapse
Affiliation(s)
- Wenbo Sun
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Meng Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Jianan Li
- National Engineering Research Centre of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chong Peng
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
25
|
Ma H, Wang X, Jin R, Tan T, Zhou X, Fang R, Shen Y, Dong F, Sun Y. Promote hydroxyl radical and key intermediates formation for deep toluene mineralization via unique electron transfer channel. J Colloid Interface Sci 2022; 630:704-713. [DOI: 10.1016/j.jcis.2022.10.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
|
26
|
Sharma S, Kumar R, Raizada P, Ahamad T, Alshehri SM, Nguyen VH, Thakur S, Nguyen CC, Kim SY, Le QV, Singh P. An overview on recent progress in photocatalytic air purification: Metal-based and metal-free photocatalysis. ENVIRONMENTAL RESEARCH 2022; 214:113995. [PMID: 35932830 DOI: 10.1016/j.envres.2022.113995] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Air pollution is becoming a distinctly growing concern and the most pressing universal problem as a result of increased energy consumption, with the multiplication of the human population and industrial enterprises, resulting in the generation of hazardous pollutants. Among these, carbon monoxide, nitrogen oxides, Volatile organic compounds, Semi volatile organic compounds, and other inorganic gases not only have an adverse impact on human health both outdoors and indoors, but have also substantially altered the global climate, resulting in several calamities around the world. Thus, the purification of air is a crucial matter to deal with. Photocatalytic oxidation is one of the most recent and promising technologies, and it has been the subject of numerous studies over the past two decades. Hence, the photocatalyst is the most reassuring aspirant due to its adequate bandgap and exquisite stability. The process of photocatalysis has provided many benefits to the atmosphere by removing pollutants. In this review, our work focuses on four main themes. Firstly, we briefly elaborated on the general mechanism of air pollutant degradation, followed by an overview of the typical TiO2 photocatalyst, which is the most researched photocatalyst for photocatalytic destruction of gaseous VOCs. The influence of operating parameters influencing the process of photocatalytic oxidation (such as mass transfer, light source and intensity, pollutant concentration, and relative humidity) was then summarized. Afterwards, the progress and drawbacks of some typical photoreactors (including monolithic reactors, microreactors, optical fiber reactors, and packed bed reactors) were described and differentiated. Lastly, the most noteworthy coverage is dedicated to different types of modification strategies aimed at ameliorating the performance of photocatalysts for degradation of air pollutants, which were proposed and addressed. In addition, the review winds up with a brief deliberation for more exploration into air purification photocatalysis.
Collapse
Affiliation(s)
- Sarika Sharma
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan (HP), 173229, India
| | - Rohit Kumar
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan (HP), 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan (HP), 173229, India
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram district-603103, Tamil Nadu, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Chinh Chien Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan (HP), 173229, India.
| |
Collapse
|
27
|
Almaie S, Vatanpour V, Rasoulifard MH, Koyuncu I. Volatile organic compounds (VOCs) removal by photocatalysts: A review. CHEMOSPHERE 2022; 306:135655. [PMID: 35817187 DOI: 10.1016/j.chemosphere.2022.135655] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Amplified anthropogenic release of volatile organic compounds (VOCs) gets worse air quality and human health. Photocatalytic degradation of VOCs is the practical strategy due to its low cost, simplicity, high efficiency, and environmental sustainability. Different types of photocatalyst activated by UV and visible lights are applied for VOC degradation. This review tries to investigate the state-of-art of recently published papers on this subject with a focus on the high-efficiency photocatalyst. The novel photocatalysts are introduced and enhancing photocatalytic activity strategies such as the hybrid of two/three photocatalyst, impurity doping, and heterojunctions with narrow bandgap semiconductors have been explained. The procedures of visible light activation of the photocatalysts are discussed with attention to current problems and future challenges. In addition, effective operational parameters in the photocatalytic degradation of VOCs have been reviewed with their advantages and drawbacks. A series of strategies are developed for the efficient utilization of visible light photocatalysts and improving new materials or design structures to degrade produced toxic intermediates/by-products during photocatalytic degradation of VOCs. This review shows that there are significant challenges in the applications of photocatalysts in the selective removal of VOCs. Several approaches should be combined to produce synergistic effects, which may lead to much higher photocatalytic performance than individual strategies. Another challenge is to develop efficient photocatalysts to meet real problems on an industrial scale.
Collapse
Affiliation(s)
- Soudeh Almaie
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | - Mohammad Hossein Rasoulifard
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
28
|
Cai M, Wang C, Liu Y, Yan R, Li S. Boosted photocatalytic antibiotic degradation performance of Cd0.5Zn0.5S/carbon dots/Bi2WO6 S-scheme heterojunction with carbon dots as the electron bridge. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
29
|
Zhang T, Zhou P, Zhang L, Xia C, Xie M, Guo Q, Chen M, Yuan J, Li X, Xu Y. Construction lamellar BaFe 12O 19/Bi 3.64Mo 0.36O 6.55 photocatalyst for enhanced photocatalytic activity via a photo-Fenton-like Mo 6+/Mo 4+redox cycle. CHEMOSPHERE 2022; 307:135909. [PMID: 35940412 DOI: 10.1016/j.chemosphere.2022.135909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The novel BaFe12O19/Bi3.64Mo0.36O6.55 composite materials were constructed as magnetically recyclable photo-Fenton-like degradation systems. The composite catalyst not only promoted the effective transfer of photo-generated electrons and improved the Mo6+/Mo4+ cycle consequent, but also activated hydrogen peroxide to generate oxidizing free radicals. BaFe12O19/Bi3.64Mo0.36O6.55-0.25 exhibited an outstanding degradation performance for tetracycline hydrochloride it is 1.3 times to Bi3.64Mo0.36O6.55. The thermal catalytic performance of the Bi3.64Mo0.36O6.55 monomer is similar to that of the BaFe12O19/Bi3.64Mo0.36O6.55 material without light. However, the removal rate of BaFe12O19/Bi3.64Mo0.36O6.55 material reaches 84.5% after 60 min with light, far exceeding that of Bi3.64Mo0.36O6.55 material. By way of the contrast experiment with light and without light, it is further demonstrated that interfacial interaction between BaFe12O19 and Bi3.64Mo0.36O6.55 acted a key role in the photocatalytic reaction system. It is also a good advantage that pollutants can be efficiently degraded without adjusting the pH. The characterization of photocurrent and X-ray photoelectron spectroscopy (XPS) also further proved the synergy between the two materials, which is useful to the separation of electrons and holes. The synergy ultimately improves the degradation performance. Besides, BaFe12O19/Bi3.64Mo0.36O6.55 can be easily separated by an external magnetic field after the photocatalytic activity reaction owing to BaFe12O19's magnetic properties. It provides a new research idea for the construction and iron-based heterogeneous Fenton-like system for magnetic degradation of antibiotics.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Puyang Zhou
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Lingxiao Zhang
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Changkun Xia
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Meng Xie
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Qiting Guo
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Min Chen
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Junjie Yuan
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Xiang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, PR China.
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
30
|
Wang Y, Wang M. Recent progresses on single-atom catalysts for the removal of air pollutants. Front Chem 2022; 10:1039874. [DOI: 10.3389/fchem.2022.1039874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The booming industrialization has aggravated emission of air pollutants, inflicting serious harm on environment and human health. Supported noble-metals are one of the most popular catalysts for the oxidation removal of air pollutants. Unfortunately, the high price and large consumption restrict their development and practical application. Single-atom catalysts (SACs) emerge and offer an optimizing approach to address this issue. Due to maximal atom utilization, tunable coordination and electron environment and strong metal-support interaction, SACs have shown remarkable catalytic performance on many reactions. Over the last decade, great potential of SACs has been witnessed in the elimination of air pollutants. In this review, we first briefly summarize the synthesis methods and modulation strategies together with the characterization techniques of SACs. Next, we highlight the application of SACs in the abatement of air pollutants including CO, volatile organic compounds (VOCs) and NOx, unveiling the related catalytic mechanism of SACs. Finally, we propose the remaining challenges and future perspectives of SACs in fundamental research and practical application in the field of air pollutant removal.
Collapse
|
31
|
Pham MT, Tran DPH, Bui XT, You SJ. Rapid fabrication of MgO@g-C 3N 4 heterojunctions for photocatalytic nitric oxide removal. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1141-1154. [PMID: 36320428 PMCID: PMC9592965 DOI: 10.3762/bjnano.13.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Nitric oxide (NO) is an air pollutant impacting the environment, human health, and other biotas. Among the technologies to treat NO pollution, photocatalytic oxidation under visible light is considered an effective means. This study describes photocatalytic oxidation to degrade NO under visible light with the support of a photocatalyst. MgO@g-C3N4 heterojunction photocatalysts were synthesized by one-step pyrolysis of MgO and urea at 550 °C for two hours. The photocatalytic NO removal efficiency of the MgO@g-C3N4 heterojunctions was significantly improved and reached a maximum value of 75.4% under visible light irradiation. Differential reflectance spectroscopy (DRS) was used to determine the optical properties and bandgap energies of the material. The bandgap of the material decreases with increasing amounts of MgO. The photoluminescence spectra indicate that the recombination of electron-hole pairs is hindered by doping MgO onto g-C3N4. Also, NO conversion, DeNOx index, apparent quantum efficiency, trapping tests, and electron spin resonance measurements were carried out to understand the photocatalytic mechanism of the materials. The high reusability of the MgO@g-C3N4 heterojunction was shown by a five-cycle recycling test. This study provides a simple way to synthesize photocatalytic heterojunction materials with high reusability and the potential of heterojunction photocatalysts in the field of environmental remediation.
Collapse
Affiliation(s)
- Minh-Thuan Pham
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Duyen P H Tran
- Department of Civil Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Xuan-Thanh Bui
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Viet Nam
| | - Sheng-Jie You
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
- Center for Environmental Risk Management, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
32
|
Cho YS, Nguyen HH, Nguyen TTH. Modeling of slurry-type photocatalytic reactors containing core-shell particles for predicting transient behaviours based on Langmuir-Hinshelwood kinetics. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Zhou X, Zhang J, Wang X, Tan T, Fang R, Chen S, Dong F. Efficient NO removal and photocatalysis mechanism over Bi-metal@Bi 2O 2[BO 2(OH)] with oxygen vacancies. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129271. [PMID: 35739786 DOI: 10.1016/j.jhazmat.2022.129271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Photocatalysis technology prevails as a feasible option for air pollution control, in which high-efficiency charge separation and effective pollutant activation are the crucial issues. Here, this work designed Bi-metal@ Bi2O2[BO2(OH)] with oxygen vacancies (OVs) catalyst for photocatalytic oxidation of NO under visible light, to shed light on the above two processes. Experimental characterizations and density functional theory (DFT) calculations reveal that a unique electron transfer covalent loop([Bi2O2]2+ → Bi-metal → O2-)can be formed during the reaction to guide the directional transfer of carriers, significantly improving the charge separation efficiency and the yield of active oxygen species. Simultaneously, the defect levels served by OVs also play a part. During the NO purification process, in-situ DRIFTS assisted with DFT calculations reveal that Bi metals could be functioned as electron donors to activate NO molecules and form NO-, a key intermediate. This induces a new reaction path of NO → NO- → NO3- to achieve the harmless conversion of NO, effectively restraining the generation of noxious intermediates (NO2, N2O4). It is expected that this study would inspire the design of more artful photocatalysts for effective charge transfer and safe pollutants purification.
Collapse
Affiliation(s)
- Xi Zhou
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jin Zhang
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xuemei Wang
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Tianqi Tan
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ruimei Fang
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China
| | - Si Chen
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China.
| | - Fan Dong
- College of Environment and Resources, Chongqing Key Laboratory of Catalysis and New Environmental Materials, Chongqing Technology and Business University, Chongqing 400067, China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China; State Centre for International Cooperation on Designer Low Carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
34
|
Li M, Cheng Q, Shen C, Hong B, Jiang Y, Wei Y, Cai M, Chen J, Sun S. Piezoelectric built-in electric field advancing TiO 2 for highly efficient photocatalytic air purification. RSC Adv 2022; 12:22410-22415. [PMID: 36105997 PMCID: PMC9364438 DOI: 10.1039/d2ra03751c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
Photocatalytic air purification is a promising technology; however, it suffers from a limited rate of photocatalytic mineralization (easily inactivated surfactant sites of hydroxyls) and poor kinetics of degradation. Herein, we report a ferroelectric strategy, employing a polyvinylidene fluoride (PVDF) layer embedded with TiO2, where the polarization field of stretched PVDF dramatically enhances and stabilizes active adsorption sites for the promotion of charge separation. The F (-) and H (+) atomic layers with distinct local structures in stretched PVDF increase the electron cloud density around Ti which simultaneously promotes the dissociation of water to form hydroxyl groups which are easier to activate for adsorption of formaldehyde molecules. Besides, the ferroelectric field of stretched PVDF effectively separates the photogenerated charge carriers and facilitates the carriers' transportation of TiO2/PVDF. The optimal stretched TiO2/PVDF exhibits excellent photocatalytic mineralization for formaldehyde with considerable stability. This work may evolve the polarization field as a new method to enhance adsorption and activation of hydroxyls and disclose the mechanism by which hydroxyl radicals mineralize gaseous formaldehyde for photocatalytic air purification.
Collapse
Affiliation(s)
- Mengmeng Li
- School of Chemistry and Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Qin Cheng
- School of Chemistry and Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Cheng Shen
- School of Chemistry and Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Bin Hong
- Hefei Innovation Research Institute, Beihang University Hefei Anhui 230013 China
| | - Yong Jiang
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201204 China
| | - Yuxue Wei
- School of Chemistry and Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Mengdie Cai
- School of Chemistry and Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Jingshuai Chen
- School of Chemistry and Chemical Engineering, Anhui University Hefei Anhui 230601 China
| | - Song Sun
- School of Chemistry and Chemical Engineering, Anhui University Hefei Anhui 230601 China
| |
Collapse
|
35
|
Koivisto AJ, Trabucco S, Ravegnani F, Calzolari F, Nicosia A, Del Secco B, Altin M, Morabito E, Blosi M, Costa A, Belosi F. Nanosized titanium dioxide particle emission potential from a commercial indoor air purifier photocatalytic surface: A case study. OPEN RESEARCH EUROPE 2022; 2:84. [PMID: 37645270 PMCID: PMC10446146 DOI: 10.12688/openreseurope.14771.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 08/31/2023]
Abstract
Background: Photocatalytic air purifiers based on nano-titanium dioxide (TiO 2) visible light activation provide an efficient solution for removing and degrading contaminants in air. The potential detachment of TiO 2 particles from the air purifier to indoor air could cause a safety concern. A TiO 2 release potential was measured for one commercially available photocatalytic air purifier "Gearbox Wivactive" to ensure a successful implementation of the photocatalytic air purifying technology. Methods: In this study, the TiO 2 release was studied under laboratory-simulated conditions from a Gearbox Wivactive consisting of ceramic honeycombs coated with photocatalytic nitrogen doped TiO 2 particles. The TiO 2 particle release factor was measured in scalable units according to the photoactive surface area and volume flow (TiO 2-ng/m 2×m 3). The impact of Gearbox Wivactive on indoor concentration level under reasonable worst-case conditions was predicted by using the release factor and a well-mixed indoor aerosol model. Results: The instrumentation and experimental setup was not sufficiently sensitive to quantify the emissions from the photoactive surfaces. The upper limit for TiO 2 mass release was <185×10 -3 TiO 2-ng/m 2×m 3. Under realistic conditions the TiO 2 concentration level in a 20 m 3 room ventilated at rate of 0.5 1/h and containing two Gearbox Wivactive units resulted <20×10 -3 TiO 2-ng/m 3. Conclusions: The release potential was quantified for a photocatalytic surface in generalized units that can be used to calculate the emission potential for different photocatalytic surfaces used in various operational conditions. This study shows that the TiO 2 nanoparticle release potential was low in this case and the release does not cause relevant exposure as compared to proposed occupational exposure limit values for nanosized TiO 2. The TiO 2 release risk was adequately controlled under reasonable worst-case operational conditions.
Collapse
Affiliation(s)
- Antti Joonas Koivisto
- Air Pollution Management (APM), Mattilanmäki 38, 33610 Tampere, Finland
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, PL 64, FI-00014, Helsinki, Finland
- ARCHE Consulting, Liefkensstraat 35D, B-9032 Wondelgem, Belgium
| | - Sara Trabucco
- ISAC-CRN, Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy
| | - Fabrizio Ravegnani
- ISAC-CRN, Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy
| | - Francescopiero Calzolari
- ISAC-CRN, Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy
| | - Alessia Nicosia
- ISAC-CRN, Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy
| | - Benedetta Del Secco
- ISAC-CRN, Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy
| | - Marko Altin
- Witek srl, Via Siena 47, 50142 Firenze, 50142, Italy
| | - Elisa Morabito
- Department of Environmental Sciences, Informatics and Statistics, Cá Foscari University, Via Torino 155, 30172 Venice, Italy
| | - Magda Blosi
- ISTEC-CNR, Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018 Faenza, Italy
| | - Anna Costa
- ISTEC-CNR, Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018 Faenza, Italy
| | - Franco Belosi
- ISAC-CRN, Institute of Atmospheric Sciences and Climate, National Research Council of Italy, Via Gobetti, 101, 40129 Bologna, Italy
| |
Collapse
|
36
|
Exploring the synergistic role of crystal facet and phase at hetero-interface towards light-switchable chemoselective oxidation over bismuth-based catalysts. J Colloid Interface Sci 2022; 617:651-662. [DOI: 10.1016/j.jcis.2022.03.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/06/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
|
37
|
Design of Photocatalytic Functional Coatings Based on the Immobilization of Metal Oxide Particles by the Combination of Electrospinning and Layer-by-Layer Deposition Techniques. COATINGS 2022. [DOI: 10.3390/coatings12060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work reports the design and characterization of functional photocatalytic coatings based on the combination of two different deposition techniques. In a first step, a poly(acrylic acid) + β-Cyclodextrin (denoted as PAA+ β-CD) electrospun fiber mat was deposited by using the electrospinning technique followed by a thermal treatment in order to provide an enhancement in the resultant adhesion and mechanical resistance. In a second step, a layer-by-layer (LbL) assembly process was performed in order to immobilize the metal oxide particles onto the previously electrospun fiber mat. In this context, titanium dioxide (TiO2) was used as the main photocatalytic element, acting as the cationic element in the multilayer LbL structure. In addition, two different metal oxides, such as tungsten oxide (WO3) and iron oxide (Fe2O3), were added into PAA anionic polyelectrolyte solution with the objective of optimizing the photocatalytic efficiency of the coating. All of the coatings were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) images, showing an increase in the original fiber diameter and a decrease in roughness of the mats because of the LbL second step. The variation in the wettability properties from a superhydrophilic surface to a less wettable surface as a function of the incorporation of the metal oxides was also observed by means of water contact angle (WCA) measurements. With the aim of analyzing the photocatalytic efficiency of the samples, degradation of methyl blue (MB) azo-dye was studied, showing an almost complete discoloration of the dye in the irradiated area. This study reports a novel combination method of two deposition techniques in order to obtain a functional, homogeneous and efficient photocatalytic coating.
Collapse
|
38
|
Abstract
The ISO standard 22197-1:2016 used for the evaluation of the photocatalytic nitric oxide removal has a main drawback, which allows only the decrease of nitric oxide to be determined specifically. The remaining amount, expressed as “NO2”, is considered as a sum of HNO3, HONO NO2, and other nitrogen-containing species, which can be potentially formed during the photocatalytic reaction. Therefore, we developed a new methodology combining our custom-made analyzers, which can accurately determine the true NO2 and HONO species, with the conventional NO one. Their function was validated via a photocatalytic experiment in which 100 ppbv of either NO or NO2 dispersed in air passed over (3 L min−1) an Aeroxide© TiO2 P25 surface. The gas-phase analysis was complemented with the spectrophotometric determination of nitrates (NO3−) and/or nitrites (NO2−) deposited on the P25 layer. Importantly, an almost perfect mass balance (94%) of the photocatalytic NOx abatement was achieved. The use of custom-made analyzers enables to obtain (i) no interference, (ii) high sensitivity, (iii) good linearity in the relevant concentration range, (iv) rapid response, and (v) long-term stability. Therefore, our approach enables to reveal the reaction complexity and is highly recommended for the photocatalytic NOx testing.
Collapse
|
39
|
Photoelectrochemical oxidation assisted air purifiers; perspective as potential tools to control indoor SARS-CoV-2 Exposure. APPLIED SURFACE SCIENCE ADVANCES 2022; 9:100236. [PMCID: PMC8939627 DOI: 10.1016/j.apsadv.2022.100236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 06/16/2023]
Abstract
Coronavirus diseases 2019 (COVID-19), a viral infection pandemic, arises due to easy human-to-human transmission of severe acute respiratory syndrome coronavirus (SARS-CoV-2). The SARS-CoV-2 causes severe respiratory disorders and other life-threatening diseases (during/post-infection) such as black mold disease, diabetes, cardiovascular, and neurological disorders/diseases. COVID-19 infection emerged challenging to control as SARS-CoV-2 transmits through respiratory droplets (> 10 µm size range), aerosols (< 5 µm), airborne, and particulate matter (PM1.0 PM2.5 and PM10.0). SARS-CoV-2 is more infective in indoor premises due to aerodynamics where droplets, aerosols, and PM1.0/2.5/10.0 float for a longer time and distance leading to a higher probability of it entering upper and lower respiratory tracts. To avoid human-to-human transmission, it is essential to trap and destroy SARS-CoV-2 from the air and provide virus-free air that will significantly reduce indoor viral exposure concerns. In this process, an efficient nano-enable photoelectrochemical oxidation (PECO, a destructive approach to neutralize bio-organism) assisted air purification is undoubtedly a good technological choice. This technical perspective explores the role of PECO-assisted Air-Purifiers (i.e., Molekule as a focus example for proof-of-concept) to trap and destroy indoor microorganisms (bacteria and viruses including Coronaviruses), molds, and allergens, and other indoor air pollutants, such as volatile organic compounds (VOCs) and PM1.0/2.5/10.0. It is observed through various standard and non-standard tests that stimuli-responsive nanomaterials coated filter technology traps and destroys microbial particles. Due to technological advancements according to premises requirements and high-performance desired outcomes, Molekule air purifiers, Air Pro Air -Rx, Air Mini, and Air Mini+, have received Food and Drug Administration (FDA) clearance as a Class II medical device for the destruction of bacteria and viruses.
Collapse
|
40
|
Serhane Y, Belkessa N, Bouzaza A, Wolbert D, Assadi AA. Continuous air purification by front flow photocatalytic reactor: Modelling of the influence of mass transfer step under simulated real conditions. CHEMOSPHERE 2022; 295:133809. [PMID: 35122816 DOI: 10.1016/j.chemosphere.2022.133809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/03/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In this work, a solution for the treatment of toxic gases based on a photocatalytic process using TiO2 coated on a cellulosic support, has been investigated. Here, cyclohexane was chosen as the reference for testing its removal efficiency via a continuous front flow reactor as type A anti-gas filters. The photocatalytic support was firstly characterized by EDX, to confirm its elemental composition. Then, the experiments were carried out, starting with a batch reactor in order to evaluate the degradation efficiency of the photocatalytic media, as well as the monitoring of the photocatalytic process which allowed the establishing of a carbon mass balance corresponding to the stoichiometric number of our target pollutant. The transition to a continuous treatment with a front flow reactor aims to highlight the influence of the input concentration (0.29-1.78 mM m-3) under different flow rates (12, 18 and 36 L min-1). The relative humidity effect was also investigated (from 5 to 90% of humidity) where an optimum rate was obtained around 35-45%. In addition, the mineralization rate was monitored. The major rates obtained were for a cyclohexane input concentration of 0.29 mM m-3 in wet condition (38%) at an air flow rate of 18 L min-1, where the CO2 selectivity reached 77% for an abatement of 62%. In order to understand the limiting steps of the photocatalytic process, a model considering the reactor geometry and the hydraulic flow was developed. The obtained results showed that the mass transfer must be considered in the photocatalytic process for a continuous treatment. The Langmuir-Hinshelwood bimolecular model was also developed to represent the influence of the humidity.
Collapse
Affiliation(s)
- Youcef Serhane
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Nacer Belkessa
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Abdelkrim Bouzaza
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Dominique Wolbert
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Aymen Amin Assadi
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
41
|
Zhang X, Wang H, Gao M, Zhao P, Xia W, Yang R, Huang Y, Wang L, Liu M, Wei T, Wang L, Yao R, Li X, Fan Z. Template-directed synthesis of pomegranate-shaped zinc oxide@zeolitic imidazolate framework for visible light photocatalytic degradation of tetracycline. CHEMOSPHERE 2022; 294:133782. [PMID: 35093425 DOI: 10.1016/j.chemosphere.2022.133782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The development of photocatalysts for efficient tetracycline (TC) degradation under visible light is urgently needed yet remains a great challenge. Most semiconductor photocatalysts with low specific surface area are easy to agglomerate in solution and unfavorable for enriching pollutants. Herein, we present the preparation of pomegranate-shaped zinc oxide@zeolitic imidazolate framework (ZnO@ZIF-8) by in situ growth of ZIF-8 on a petal-shaped ZnO template that enhances the adsorption and photocatalytic degradation of TC. ZnO@ZIF-8 exhibits an excellent photostability and a TC photodegradation efficiency of 91% under visible light (λ > 420 nm) in 50 min at room temperature, which can be recycled over five times without any loss of activity. Moreover, the plausible photocatalysis reaction mechanism and the degradation intermediates are elucidated with the aid of three-dimensional excitation-emission matrix spectra and liquid chromatography-mass spectrometry system. This study offers new insights into the design of antibiotic degradation photocatalysts and the development of photocatalysts with broad-spectrum responses for efficient TC elimination.
Collapse
Affiliation(s)
- Xingmao Zhang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Hang Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China.
| | - Mingming Gao
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, PR China
| | - Pengfei Zhao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Wenli Xia
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Ruile Yang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Yichao Huang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Lin Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Mingxu Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Tong Wei
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Lu Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China
| | - Ruxin Yao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004, Shanxi, PR China
| | - Xiang Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, PR China
| | - Zhuangjun Fan
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, PR China.
| |
Collapse
|
42
|
Photocatalytic Fuel Cells for Simultaneous Wastewater Treatment and Power Generation: Mechanisms, Challenges, and Future Prospects. ENERGIES 2022. [DOI: 10.3390/en15093216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Technological advancement is accompanied by excessive consumption of fossil fuels and affluent uses of chemical substances in many sectors, including transportation and manufacturing companies, and so on. Being an exhaustible resource, the excessive use of fossil fuels and of chemical substances may lead to a serious energy crisis in the long run, and it may additionally impose environmental pollution. Attempts have been made in the solution of such serious issues from every nook and corner. Nonetheless, no method has been found to be a panacea in waste water treatment and subsequent beneficiaries. One of the attempts in the solution to such issues is the application of photocatalytic technology, which could serve as a dual function in environmental remediation and clean energy production. A photocatalytic fuel cell is a tool developed for the recovery of energy from organic wastes. A rational cell construction needs the fabrication of photoelectrodes, the design of a photoanode and a photocathode chamber, in addition to an ion-transport membrane for pollution treatment and electricity generation. In this review, comprehensive fundamental assessments and recent developments in the design of photocatalytic fuel cells, their applications, future prospects, and challenges are covered.
Collapse
|
43
|
Qiao Q, Chen Y, Wang Y, Ren Y, Cao J, Huang F, Bian Z. Surface modification of phosphate ion to promote photocatalytic recovery of precious metals. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Matias ML, Pimentel A, Reis-Machado AS, Rodrigues J, Deuermeier J, Fortunato E, Martins R, Nunes D. Enhanced Fe-TiO 2 Solar Photocatalysts on Porous Platforms for Water Purification. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1005. [PMID: 35335818 PMCID: PMC8955547 DOI: 10.3390/nano12061005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023]
Abstract
In this study, polyethylene glycol-modified titanium dioxide (PEG-modified TiO2) nanopowders were prepared using a fast solvothermal method under microwave irradiation, and without any further calcination processes. These nanopowders were further impregnated on porous polymeric platforms by drop-casting. The effect of adding iron with different molar ratios (1, 2, and 5%) of iron precursor was investigated. The characterization of the produced materials was carried out by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Optical characterization of all the materials was also carried out. SEM showed that pure TiO2 and Fe-TiO2 nanostructures presented similar nanosized and spherical particles, which uniformly covered the substrates. From XRD, pure TiO2 anatase was obtained for all nanopowders produced, which was further confirmed by Raman spectroscopy on the impregnated substrates. XPS and UV-VIS absorption spectroscopy emission spectra revealed that the presence of Fe ions on the Fe-TiO2 nanostructures led to the introduction of new intermediate energy levels, as well as defects that contributed to an enhancement in the photocatalytic performance. The photocatalytic results under solar radiation demonstrated increased photocatalytic activity in the presence of the 5% Fe-TiO2 nanostructures (Rhodamine B degradation of 85% after 3.5 h, compared to 74% with pure TiO2 for the same exposure time). The photodegradation rate of RhB dye with the Fe-TiO2 substrate was 1.5-times faster than pure TiO2. Reusability tests were also performed. The approach developed in this work originated novel functionalized photocatalytic platforms, which were revealed to be promising for the removal of organic dyes from wastewater.
Collapse
Affiliation(s)
- Maria Leonor Matias
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| | - Ana Pimentel
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| | - Ana S. Reis-Machado
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Joana Rodrigues
- Physics Department & I3N, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal;
| | - Jonas Deuermeier
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| | - Elvira Fortunato
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| | - Rodrigo Martins
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| | - Daniela Nunes
- CENIMAT|i3N, Department of Materials Science, School of Science and Technology, NOVA University Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal; (M.L.M.); (A.P.); (J.D.); (E.F.)
| |
Collapse
|
45
|
Hydrogenated Amorphous Titania with Engineered Surface Oxygen Vacancy for Efficient Formaldehyde and Dye Removals under Visible-Light Irradiation. NANOMATERIALS 2022; 12:nano12050742. [PMID: 35269228 PMCID: PMC8911576 DOI: 10.3390/nano12050742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 01/19/2023]
Abstract
Hydrogenated crystalized TiO2−x with oxygen vacant (OV) doping has attracted considerable attraction, owing to its impressive photoactivity. However, amorphous TiO2, as a common allotrope of titania, is ignored as a hydrogenated templet. In this work, hydrogenated amorphous TiO2−x (HAm-TiO2−x) with engineered surface OV and high surface area (176.7 cm2 g−1) was first prepared using a unique liquid plasma hydrogenation strategy. In HAm-TiO2−x, we found that OV was energetically retained in the subsurface region; in particular, the subsurface OV-induced energy level preferred to remain under the conduction band (0.5 eV) to form a conduction band tail and deep trap states, resulting in a narrow bandgap (2.36 eV). With the benefits of abundant light absorption and efficient photocarrier transportation, HAm-TiO2−x coated glass has demonstrated superior visible-light-driven self-cleaning performances. To investigate its formaldehyde photodegradation under harsh indoor conditions, HAm-TiO2−x was used to decompose low-concentration formaldehyde (~0.6 ppm) with weak-visible light (λ = 600 nm, power density = 0.136 mW/cm2). Thus, HAm-TiO2−x achieved high quantum efficiency of 3 × 10−6 molecules/photon and photoactivity of 92.6%. The adsorption capabilities of O2 (−1.42 eV) and HCHO (−1.58 eV) in HAm-TiO2−x are both largely promoted in the presence of subsurface OV. The surface reaction pathway and formaldehyde decomposition mechanism over HAm-TiO2−x were finally clarified. This work opened a promising way to fabricate hydrogenated amorphous photocatalysts, which could contribute to visible-light-driven photocatalytic environmental applications.
Collapse
|
46
|
Luo T, Wang Z, Wei X, Huang X, Bai S, Chen J. Surface Enriching Promotes Decomposition of Benzene from Air. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02296b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The low generation rate and short lifetime of reactive oxidation radicals typical like ·OH strictly limit the photocatalytic degradation of benzene in the air. Here, we adopt copper dopant to...
Collapse
|
47
|
Lu G, Chu F, Huang X, Li Y, Liang K, Wang G. Recent advances in Metal-Organic Frameworks-based materials for photocatalytic selective oxidation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214240] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Bonardd S, Díaz Díaz D, Leiva A, Saldías C. Chromophoric Dendrimer-Based Materials: An Overview of Holistic-Integrated Molecular Systems for Fluorescence Resonance Energy Transfer (FRET) Phenomenon. Polymers (Basel) 2021; 13:4404. [PMID: 34960954 PMCID: PMC8705239 DOI: 10.3390/polym13244404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Dendrimers (from the Greek dendros → tree; meros → part) are macromolecules with well-defined three-dimensional and tree-like structures. Remarkably, this hyperbranched architecture is one of the most ubiquitous, prolific, and recognizable natural patterns observed in nature. The rational design and the synthesis of highly functionalized architectures have been motivated by the need to mimic synthetic and natural-light-induced energy processes. Dendrimers offer an attractive material scaffold to generate innovative, technological, and functional materials because they provide a high amount of peripherally functional groups and void nanoreservoirs. Therefore, dendrimers emerge as excellent candidates since they can play a highly relevant role as unimolecular reactors at the nanoscale, acting as versatile and sophisticated entities. In particular, they can play a key role in the properties of light-energy harvesting and non-radiative energy transfer, allowing them to function as a whole unit. Remarkably, it is possible to promote the occurrence of the FRET phenomenon to concentrate the absorbed energy in photoactive centers. Finally, we think an in-depth understanding of this mechanism allows for diverse and prolific technological applications, such as imaging, biomedical therapy, and the conversion and storage of light energy, among others.
Collapse
Affiliation(s)
- Sebastián Bonardd
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, La Laguna, 38206 Tenerife, Spain; (S.B.); (D.D.D.)
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Spain
| | - David Díaz Díaz
- Departamento de Química Orgánica, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez S/N, La Laguna, 38206 Tenerife, Spain; (S.B.); (D.D.D.)
- Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, La Laguna, 38206 Tenerife, Spain
- Institutfür Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Angel Leiva
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, CL 7820436, USA;
| | - César Saldías
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, CL 7820436, USA;
| |
Collapse
|
49
|
Figures of Merit for Photocatalysis: Comparison of NiO/La-NaTaO3 and Synechocystis sp. PCC 6803 as a Semiconductor and a Bio-Photocatalyst for Water Splitting. Catalysts 2021. [DOI: 10.3390/catal11111415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
While photocatalysis is considered a promising sustainable technology in the field of heterogeneous catalysis as well as biocatalysis, figures of merit (FOM) for comparing catalytic performance, especially between disciplines, are not well established. Here, photocatalytic water splitting was conducted using a semiconductor (NiO/La-NaTaO3) and a bio-photocatalyst (Synechocystis sp. PCC 6803) in the same setup under similar reaction conditions, eliminating the often ill-defined influence of the setup on the FOMs obtained. Comparing the results enables the critical evaluation of existing FOMs and a quantitative comparison of both photocatalytic systems. A single FOM is insufficient to compare the photocatalysts, instead a combination of multiple FOMs (reaction rate, photocatalytic space time yield and a redefined apparent quantum yield) is superior for assessing a variety of photocatalytic systems.
Collapse
|
50
|
Li K, He Y, Li J, Sheng J, Sun Y, Li J, Dong F. Identification of deactivation-resistant origin of In(OH) 3 for efficient and durable photodegradation of benzene, toluene and their mixtures. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126208. [PMID: 34492969 DOI: 10.1016/j.jhazmat.2021.126208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Aromatic hydrocarbon is a representative type of VOCs, which causes adverse effects to human health. The degradation stability of aromatic hydrocarbon is of vital importance to commercializing a photocatalyst for its practical application. The most commonly used titanium dioxide photocatalyst (P25) was deactivated rapidly in the photocatalytic VOCs degradation process. In this work, the indium hydroxide (In(OH)3) photocatalyst was developed, which exhibited not only higher efficient activity but also ultra-stable stability for degradation of benzene, toluene and their mixtures. The origin of the activity difference between two catalysts was investigated by combined experimental and theoretical ways. Based on in situ DRIFTS and GC-MS, it was revealed that benzoic acid and carbonaceous byproducts were specifically formed and accumulated on P25, which were responsible for deactivation of photocatalyst. In contrast, as revealed by both DFT calculations and experimental results, the reaction pathway with byproducts blocking the active sites can be thermodynamically avoided on In(OH)3. This rendered high durability to In(OH)3 photocatalyst in degradations of aromatic pollutants. The elucidation of deactivation-resistant effect and reaction mechanism as an ideal photocatalyst for practical usage were provided.
Collapse
Affiliation(s)
- Kanglu Li
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China; Yangtze Delta Region Institute (Huzhou) & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Ye He
- Yangtze Delta Region Institute (Huzhou) & School of Resources and Environment, University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Jieyuan Li
- Yangtze Delta Region Institute (Huzhou) & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Jianping Sheng
- Yangtze Delta Region Institute (Huzhou) & School of Resources and Environment, University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Yanjuan Sun
- Yangtze Delta Region Institute (Huzhou) & School of Resources and Environment, University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Jianjun Li
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou) & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Huzhou 313001, China.
| |
Collapse
|