1
|
Żak MM, Zangi L. Clinical development of therapeutic mRNA applications. Mol Ther 2025:S1525-0016(25)00208-4. [PMID: 40143545 DOI: 10.1016/j.ymthe.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/21/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025] Open
Abstract
mRNA therapeutics are emerging as a transformative approach in modern medicine, providing innovative, highly adaptable solutions for a wide range of diseases, from viral infections to cancer. Since the approval of the first mRNA therapeutic-the coronavirus disease 2019 vaccines in 2021-we have identified more than 70 current clinical trials utilizing mRNA for various diseases. We propose classifying mRNA therapeutics into four main categories: vaccines, protein replacement therapies, antibodies, and mRNA-based cell and gene therapies. Each category can be further divided into subcategories. Vaccines include those targeting viral antigens, bacterial or parasitic antigens, general and individualized cancer antigens, and self-antigens. Protein replacement therapies include maintenance therapeutics designed to treat genetic disorders and interventional therapeutics, where delivering therapeutic proteins could improve patient outcomes, such as vascular endothelial growth factor A for ischemic heart disease or proinflammatory cytokines in cancer. Therapeutic antibodies are based on mRNA sequences encoding the heavy and light chains of clinically relevant antibodies, enabling patient cells to produce them directly, bypassing the costly and complex process of manufacturing protein-ready antibodies. Another category of mRNA-based therapeutics encompasses cell and gene therapies, including CRISPR with mRNA-mediated delivery of Cas9 and the in vivo generation of cells expressing CAR through mRNA. We discuss examples of mRNA therapeutics currently in clinical trials within each category, providing a comprehensive overview of the field's progress and highlighting key advancements as of the end of 2024.
Collapse
Affiliation(s)
- Magdalena M Żak
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Lior Zangi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Fontanellas A, Berraondo P, Urigo F, Jericó D, Martini PGV, Pastor F, Avila MA. RNA-based therapies in liver metabolic diseases. Gut 2025:gutjnl-2023-331742. [PMID: 39988358 DOI: 10.1136/gutjnl-2023-331742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025]
Abstract
RNA-based therapeutics have rapidly emerged over the past decade, offering a new class of medicines that differ significantly from conventional drugs. These therapies can be programmed to target or restore defective genes, allowing for more personalised treatments and reducing side effects. Notably, RNA therapies have made significant progress in the treatment of genetic liver diseases, exemplified by small interfering RNA treatments for hereditary transthyretin amyloidosis, which use liver-targeting strategies such as GalNAc conjugation to improve efficacy and safety. RNA-based gene-editing technologies, such as base editor and prime editor clustered regularly interspaced short palindromic repeats systems, also show promise with their ability to minimise genomic rearrangements and cancer risk. While RNA therapies offer high precision, challenges remain in optimising delivery methods and ensuring long-term safety and efficacy. Lipid nanoparticle-mRNA therapeutics, particularly for protein replacement in rare diseases, have gained support from preclinical successes. Compared with viral gene therapies, mRNA therapies present a safer profile with reduced risks of genomic integration and oncogene activation. However, clinical trials, especially for rare diseases, face limitations such as small sample sizes and short observation periods. Further preclinical studies, including non-human primates, will be essential for refining trial designs. Despite their potential, the high costs of RNA therapies pose a challenge that will require cost-utility models to guide pricing and accessibility. Here, we discuss the fundamental aspects of RNA-based therapeutics and showcase the most relevant preclinical and clinical developments in genetic liver metabolic diseases.
Collapse
Affiliation(s)
- Antonio Fontanellas
- Hepatology, Porphyrias and Carcinogenesis Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red, Area de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| | - Pedro Berraondo
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
- Immunology and Immunotherapy Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red, Area de Oncologia (CIBERonc), Madrid, Spain
| | - Francesco Urigo
- Hepatology, Porphyrias and Carcinogenesis Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Daniel Jericó
- Hepatology, Porphyrias and Carcinogenesis Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | | | - Fernando Pastor
- Molecular Therapeutics Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| | - Matias A Avila
- Centro de Investigación Biomédica en Red, Area de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain
| |
Collapse
|
3
|
Wang J, Cai L, Li N, Luo Z, Ren H, Zhang B, Zhao Y. Developing mRNA Nanomedicines with Advanced Targeting Functions. NANO-MICRO LETTERS 2025; 17:155. [PMID: 39979495 PMCID: PMC11842722 DOI: 10.1007/s40820-025-01665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025]
Abstract
The emerging messenger RNA (mRNA) nanomedicines have sprung up for disease treatment. Developing targeted mRNA nanomedicines has become a thrilling research hotspot in recent years, as they can be precisely delivered to specific organs or tissues to enhance efficiency and avoid side effects. Herein, we give a comprehensive review on the latest research progress of mRNA nanomedicines with targeting functions. mRNA and its carriers are first described in detail. Then, mechanisms of passive targeting, endogenous targeting, and active targeting are outlined, with a focus on various biological barriers that mRNA may encounter during in vivo delivery. Next, emphasis is placed on summarizing mRNA-based organ-targeting strategies. Lastly, the advantages and challenges of mRNA nanomedicines in clinical translation are mentioned. This review is expected to inspire researchers in this field and drive further development of mRNA targeting technology.
Collapse
Affiliation(s)
- Ji Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Ning Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China
| | - Haozhen Ren
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- Department of Hepatobiliary Surgery, Hepatobiliary Institute, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Yuanjin Zhao
- Department of Radiology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
| |
Collapse
|
4
|
Tan LS, Lau HH, Abdelalim EM, Khoo CM, O'Brien RM, Tai ES, Teo AKK. The role of glucose-6-phosphatase activity in glucose homeostasis and its potential for diabetes therapy. Trends Mol Med 2025; 31:152-164. [PMID: 39426930 DOI: 10.1016/j.molmed.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Glucose-6-phosphatase catalytic subunit (G6PC)1 and G6PC2 are crucial for glucose metabolism, regulating processes like glycolysis, gluconeogenesis, and glycogenolysis. Despite their structural and functional similarities, G6PC1 and G6PC2 exhibit distinct tissue-specific expression patterns, G6P hydrolysis kinetics, and physiological functions. This review provides a comprehensive overview of their enzymology and distinct roles in glucose homeostasis. We examine how inactivating mutations in G6PC1 lead to glycogen storage disease, and how elevated G6PC1 and G6PC2 expression can affect the incidence of diabetic complications, risk for type 2 diabetes mellitus (T2DM) and various cancers. We also discuss the potential of inhibiting G6PC1 and G6PC2 to protect against complications from elevated blood glucose levels, and highlight drug development efforts targeting G6PC1 and G6PC2, and the therapeutic potential of inhibitors for disease prevention.
Collapse
Affiliation(s)
- Lay Shuen Tan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore; Dean's Office, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hwee Hui Lau
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Essam M Abdelalim
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Precision Medicine Translational Research Program (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - E Shyong Tai
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Precision Medicine Translational Research Program (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Precision Medicine Translational Research Program (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Bara-Ledesma N, Viteri-Noel A, Lopez Rodriguez M, Stamatakis K, Fabregate M, Vazquez-Santos A, Gomez del Olmo V. Advances in Gene Therapy for Rare Diseases: Targeting Functional Haploinsufficiency Through AAV and mRNA Approaches. Int J Mol Sci 2025; 26:578. [PMID: 39859294 PMCID: PMC11765483 DOI: 10.3390/ijms26020578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Most rare diseases (RDs) encompass a diverse group of inherited disorders that affect millions of people worldwide. A significant proportion of these diseases are driven by functional haploinsufficiency, which is caused by pathogenic genetic variants. Currently, most treatments for RDs are limited to symptom management, emphasizing the need for therapies that directly address genetic deficiencies. Recent advancements in gene therapy, particularly with adeno-associated viruses (AAVs) and lipid nanoparticle-encapsulated messenger RNA (mRNA), have introduced promising therapeutic approaches. AAV vectors offer durable gene expression, extensive tissue tropism, and a safety profile that makes them a leading choice for gene delivery; however, limitations remain, including packaging size and immune response. In contrast, mRNA therapeutics, formulated in LNPs, facilitate transient protein expression without the risk of genomic integration, supporting repeated dosing and pharmacokinetic control, though with less long-term expression than AAVs. This review analyzes the latest developments in AAV and mRNA technologies for rare monogenic disorders, focusing on preclinical and clinical outcomes, vector design, and delivery challenges. We also address key regulatory and immunological considerations impacting therapeutic success. Together, these advancements in AAV and mRNA technology underscore a new era in RD treatment, providing innovative tools to target the genetic root of these diseases and expanding therapeutic approaches for patients who currently face limited medical options.
Collapse
Affiliation(s)
- Nuria Bara-Ledesma
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain; (N.B.-L.)
- Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), 28805 Alcalá de Henares, Spain
| | - Adrian Viteri-Noel
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain; (N.B.-L.)
- Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), 28805 Alcalá de Henares, Spain
| | - Monica Lopez Rodriguez
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain; (N.B.-L.)
- Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), 28805 Alcalá de Henares, Spain
| | - Konstantinos Stamatakis
- Department of Molecular Biology, Universidad Autónoma de Madrid, IRYCIS, 28049 Madrid, Spain
| | - Martin Fabregate
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain; (N.B.-L.)
| | - Almudena Vazquez-Santos
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain; (N.B.-L.)
| | - Vicente Gomez del Olmo
- Internal Medicine Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034 Madrid, Spain; (N.B.-L.)
- Faculty of Medicine and Health Sciences, Universidad de Alcalá (UAH), 28805 Alcalá de Henares, Spain
| |
Collapse
|
6
|
Yuan Y, Sun W, Xie J, Zhang Z, Luo J, Han X, Xiong Y, Yang Y, Zhang Y. RNA nanotherapeutics for hepatocellular carcinoma treatment. Theranostics 2025; 15:965-992. [PMID: 39776807 PMCID: PMC11700867 DOI: 10.7150/thno.102964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality worldwide, particularly due to the limited effectiveness of current therapeutic options for advanced-stage disease. The efficacy of traditional treatments is often compromised by the intricate liver microenvironment and the inherent heterogeneity. RNA-based therapeutics offer a promising alternative, utilizing the innovative approach of targeting aberrant molecular pathways and modulating the tumor microenvironment. The integration of nanotechnology in this field, through the development of advanced nanocarrier delivery systems, especially lipid nanoparticles (LNPs), polymer nanoparticles (PNPs), and bioinspired vectors, enhances the precision and efficacy of RNA therapies. This review highlights the significant progress in RNA nanotherapeutics for HCC treatment, covering micro RNA (miRNA), small interfering RNA (siRNA), message RNA (mRNA), and small activating RNA (saRNA) mediated gene silencing, therapeutic protein restoration, gene activation, cancer vaccines, and concurrent therapy. It further comprehensively discusses the prevailing challenges within this therapeutic landscape and provides a forward-looking perspective on the potential of RNA nanotherapeutics to transform HCC treatment.
Collapse
Affiliation(s)
- Yihang Yuan
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
- Department of General Surgery Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School Nanjing University, Nanjing 210008, China
| | - Weijie Sun
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Jiaqi Xie
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Ziheng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jing Luo
- Department of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiangfei Han
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637600, China
| | - Yang Yang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Yang Zhang
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
7
|
Zhang Z, Wang Z. Cellular functions and biomedical applications of circular RNAs. Acta Biochim Biophys Sin (Shanghai) 2024; 57:157-168. [PMID: 39719879 PMCID: PMC11877143 DOI: 10.3724/abbs.2024241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024] Open
Abstract
Circular RNAs (circRNAs) have emerged as a large class of stable and conserved RNAs that are derived primarily from back-splicing of pre-mRNAs and expressed in a cell- and tissue-specific fashion. Recent studies have indicated that a subset of circRNAs may undergo translation through cap-independent pathways mediated by internal ribosome entry sites (IRESs), m6A modifications, or IRES-like short elements. Considering the stability and low immunogenicity of circRNAs, in vitro transcribed circRNAs hold great promise in biomedical applications. In this review, we briefly discuss the noncoding and coding functions of circRNAs in cells, as well as the methods for the in vitro synthesis of circRNAs and current advances in the applications of circRNAs in biomedicine.
Collapse
Affiliation(s)
- Zheyu Zhang
- CAS Key Laboratory of Computational BiologyChinese Academy of SciencesShanghai200031China
| | - Zefeng Wang
- Shool of Life ScienceSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
8
|
Tang X, Ding S, Yang S, Cheng Y, Liu H, Chen K, Han X. Polysorbate 80-containing ionizable lipid nanoparticles for mRNA delivery. Biomater Sci 2024; 12:5573-5581. [PMID: 39297400 DOI: 10.1039/d4bm00523f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Ionizable lipid nanoparticles have demonstrated remarkable success as mRNA vaccine carriers and represent one of the most promising gene drug delivery vehicles. However, polyethylene glycol (PEG), one of the major components, can cause immunogenic reactions, anaphylaxis and increased blood clearance, leading to toxic side effects and reduced efficacy. In this study, we utilize polysorbate 80 (PS80) as a PEG alternative in formulating eGFP mRNA-loaded ionizable lipid nanoparticles (PS80-iLNPs), aiming to enhance stealth properties, uptake efficiency, and biosafety. Our findings revealed that PS80-iLNPs enhanced the stealthiness and resistance to serum interference. Compared to PEG-containing ionizable lipid nanoparticles (PEG-iLNPs), PS80-iLNPs showed a 1.14-fold increase in stealthiness. Moreover, at a total lipid concentration of 50 μg mL-1, PS80-iLNPs exhibited 1.12 times higher cell viability compared to PEG-iLNPs. Notably, under serum interference, PEG-iLNPs showed a 44.97% uptake reduction, whereas PS80-iLNPs exhibited a modest 30.55% decrease, underscoring its superior serum resistance. This work demonstrated that PS80 could serve as a suitable substitute for PEG, thus signifying an excellent basis for the development of PEG-free ionizable lipid nanoparticles.
Collapse
Affiliation(s)
- Xuefeng Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Shixiao Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Shilin Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Yuqiao Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Hanyu Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Kexin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
9
|
D'Alessio AM, Boffa I, De Stefano L, Soria LR, Brunetti-Pierri N. Liver gene transfer for metabolite detoxification in inherited metabolic diseases. FEBS Lett 2024; 598:2372-2384. [PMID: 38884367 DOI: 10.1002/1873-3468.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Inherited metabolic disorders (IMDs) are a growing group of genetic diseases caused by defects in enzymes that mediate cellular metabolism, often resulting in the accumulation of toxic substrates. The liver is a highly metabolically active organ that hosts several thousands of chemical reactions. As such, it is an organ frequently affected in IMDs. In this article, we review current approaches for liver-directed gene-based therapy aimed at metabolite detoxification in a variety of IMDs. Moreover, we discuss current unresolved challenges in gene-based therapies for IMDs.
Collapse
Affiliation(s)
- Alfonso M D'Alessio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Iolanda Boffa
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Lucia De Stefano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Leandro R Soria
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
10
|
Kenney LL, Chiu RSY, Dutra MN, Wactor A, Honan C, Shelerud L, Corrigan JJ, Yu K, Ferrari JD, Jeffrey KL, Huang E, Stein PL. mRNA-delivery of IDO1 suppresses T cell-mediated autoimmunity. Cell Rep Med 2024; 5:101717. [PMID: 39243754 PMCID: PMC11525033 DOI: 10.1016/j.xcrm.2024.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
Indoleamine-2,3-dioxygenase (IDO)1 degrades tryptophan, obtained through dietary intake, into immunoregulatory metabolites of the kynurenine pathway. Deficiency or blockade of IDO1 results in the enhancement of autoimmune severity in rodent models and increased susceptibility to developing autoimmunity in humans. Despite this, therapeutic modalities that leverage IDO1 for the treatment of autoimmunity remain limited. Here, we use messenger (m)RNA formulated in lipid nanoparticles (LNPs) to deliver a human IDO1 variant containing the myristoylation site of Src to anchor the protein to the inner face of the plasma membrane. This membrane-anchored IDO1 has increased protein production, leading to increased metabolite changes, and ultimately ameliorates disease in three models of T cell-mediated autoimmunity: experimental autoimmune encephalomyelitis (EAE), rat collagen-induced arthritis (CIA), and acute graft-versus-host disease (aGVHD). The efficacy of IDO1 is correlated with hepatic expression and systemic tryptophan depletion. Thus, the delivery of membrane-anchored IDO1 by mRNA suppresses the immune response in several well-characterized models of autoimmunity.
Collapse
MESH Headings
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Animals
- Autoimmunity
- Humans
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Rats
- Tryptophan/metabolism
- Graft vs Host Disease/immunology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/pathology
- Mice
- Nanoparticles/chemistry
- Female
Collapse
Affiliation(s)
- Laurie L Kenney
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA.
| | - Rebecca Suet-Yan Chiu
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Michelle N Dutra
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Alexandra Wactor
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Chris Honan
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Lukas Shelerud
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Joshua J Corrigan
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Kelly Yu
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Joseph D Ferrari
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Kate L Jeffrey
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| | - Eric Huang
- Moderna Genomics, Moderna, Inc., 200 Technology Square, Cambridge, MA 02139, USA
| | - Paul L Stein
- Immune Therapeutic Discovery, Moderna, Inc., 325 Binney Street, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Eftekhari Z, Zohrabi H, Oghalaie A, Ebrahimi T, Shariati FS, Behdani M, Kazemi-Lomedasht F. Advancements and challenges in mRNA and ribonucleoprotein-based therapies: From delivery systems to clinical applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102313. [PMID: 39281702 PMCID: PMC11402252 DOI: 10.1016/j.omtn.2024.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The use of mRNA and ribonucleoproteins (RNPs) as therapeutic agents is a promising strategy for treating diseases such as cancer and infectious diseases. This review provides recent advancements and challenges in mRNA- and RNP-based therapies, focusing on delivery systems such as lipid nanoparticles (LNPs), which ensure efficient delivery to target cells. Strategies such as microfluidic devices are employed to prepare LNPs loaded with mRNA and RNPs, demonstrating effective genome editing and protein expression in vitro and in vivo. These applications extend to cancer treatment and infectious disease management, with promising results in genome editing for cancer therapy using LNPs encapsulating Cas9 mRNA and single-guide RNA. In addition, tissue-specific targeting strategies offer potential for improved therapeutic outcomes and reduced off-target effects. Despite progress, challenges such as optimizing delivery efficiency and targeting remain. Future research should enhance delivery efficiency, explore tissue-specific targeting, investigate combination therapies, and advance clinical translation. In conclusion, mRNA- and RNP-based therapies offer a promising avenue for treating various diseases and have the potential to revolutionize medicine, providing new hope for patients worldwide.
Collapse
Affiliation(s)
- Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Horieh Zohrabi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Tahereh Ebrahimi
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Sadat Shariati
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
12
|
Gao Y, Yang L, Li Z, Peng X, Li H. mRNA vaccines in tumor targeted therapy: mechanism, clinical application, and development trends. Biomark Res 2024; 12:93. [PMID: 39217377 PMCID: PMC11366172 DOI: 10.1186/s40364-024-00644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Malignant tumors remain a primary cause of human mortality. Among the various treatment modalities for neoplasms, tumor vaccines have consistently shown efficacy and promising potential. These vaccines offer advantages such as specificity, safety, and tolerability, with mRNA vaccines representing promising platforms. By introducing exogenous mRNAs encoding antigens into somatic cells and subsequently synthesizing antigens through gene expression systems, mRNA vaccines can effectively induce immune responses. Katalin Karikó and Drew Weissman were awarded the 2023 Nobel Prize in Physiology or Medicine for their great contributions to mRNA vaccine research. Compared with traditional tumor vaccines, mRNA vaccines have several advantages, including rapid preparation, reduced contamination, nonintegrability, and high biodegradability. Tumor-targeted therapy is an innovative treatment modality that enables precise targeting of tumor cells, minimizes damage to normal tissues, is safe at high doses, and demonstrates great efficacy. Currently, targeted therapy has become an important treatment option for malignant tumors. The application of mRNA vaccines in tumor-targeted therapy is expanding, with numerous clinical trials underway. We systematically outline the targeted delivery mechanism of mRNA vaccines and the mechanism by which mRNA vaccines induce anti-tumor immune responses, describe the current research and clinical applications of mRNA vaccines in tumor-targeted therapy, and forecast the future development trends of mRNA vaccine application in tumor-targeted therapy.
Collapse
Affiliation(s)
- Yu Gao
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Zhenning Li
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, 110001, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
13
|
Chu R, Wang Y, Kong J, Pan T, Yang Y, He J. Lipid nanoparticles as the drug carrier for targeted therapy of hepatic disorders. J Mater Chem B 2024; 12:4759-4784. [PMID: 38682294 DOI: 10.1039/d3tb02766j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The liver, a complex and vital organ in the human body, is susceptible to various diseases, including metabolic disorders, acute hepatitis, cirrhosis, and hepatocellular carcinoma. In recent decades, these diseases have significantly contributed to global morbidity and mortality. Currently, liver transplantation remains the most effective treatment for hepatic disorders. Nucleic acid therapeutics offer a selective approach to disease treatment through diverse mechanisms, enabling the regulation of relevant genes and providing a novel therapeutic avenue for hepatic disorders. It is expected that nucleic acid drugs will emerge as the third generation of pharmaceuticals, succeeding small molecule drugs and antibody drugs. Lipid nanoparticles (LNPs) represent a crucial technology in the field of drug delivery and constitute a significant advancement in gene therapies. Nucleic acids encapsulated in LNPs are shielded from the degradation of enzymes and effectively delivered to cells, where they are released and regulate specific genes. This paper provides a comprehensive review of the structure, composition, and applications of LNPs in the treatment of hepatic disorders and offers insights into prospects and challenges in the future development of LNPs.
Collapse
Affiliation(s)
- Runxuan Chu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| | - Yi Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tung, Hong Kong SAR, P. R. China.
| | - Jianglong Kong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tung, Hong Kong SAR, P. R. China.
| | - Ting Pan
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
- Department of Pharmaceutics School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yani Yang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, P. R. China.
| |
Collapse
|
14
|
Kapoor S, Kalmegh V, Kumar H, Mandoli A, Shard A. Rare diseases and pyruvate kinase M2: a promising therapeutic connection. Drug Discov Today 2024; 29:103949. [PMID: 38492882 DOI: 10.1016/j.drudis.2024.103949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Pyruvate kinase M2 (PKM2) is a key glycolytic enzyme that regulates proliferating cell metabolism. The role of PKM2 in common diseases has been well established, but its role in rare diseases (RDs) is less understood. Over the past few years, PKM2 has emerged as a crucial player in RDs, including, neoplastic, respiratory, metabolic, and neurological disorders. Herein, we summarize recent findings and developments highlighting PKM2 as an emerging key player in RDs. We also discuss the current status of PKM2 modulation in RDs with particular emphasis on preclinical and clinical studies in addition to current challenges in the field.
Collapse
Affiliation(s)
- Saumya Kapoor
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Vaishnavi Kalmegh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, NIPER-A, Gandhinagar, Gujarat, India.
| | - Amit Mandoli
- Department of Biotechnology, NIPER-A, Gandhinagar, Gujarat, India.
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India.
| |
Collapse
|
15
|
Shen G, Liu J, Yang H, Xie N, Yang Y. mRNA therapies: Pioneering a new era in rare genetic disease treatment. J Control Release 2024; 369:696-721. [PMID: 38580137 DOI: 10.1016/j.jconrel.2024.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Rare genetic diseases, often referred to as orphan diseases due to their low prevalence and limited treatment options, have long posed significant challenges to our medical system. In recent years, Messenger RNA (mRNA) therapy has emerged as a highly promising treatment approach for various diseases caused by genetic mutations. Chemically modified mRNA is introduced into cells using carriers like lipid-based nanoparticles (LNPs), producing functional proteins that compensate for genetic deficiencies. Given the advantages of precise dosing, biocompatibility, transient expression, and minimal risk of genomic integration, mRNA therapies can safely and effectively correct genetic defects in rare diseases and improve symptoms. Currently, dozens of mRNA drugs targeting rare diseases are undergoing clinical trials. This comprehensive review summarizes the progress of mRNA therapy in treating rare genetic diseases. It introduces the development, molecular design, and delivery systems of mRNA therapy, highlighting their research progress in rare genetic diseases based on protein replacement and gene editing. The review also summarizes research progress in various rare disease models and clinical trials. Additionally, it discusses the challenges and future prospects of mRNA therapy. Researchers are encouraged to join this field and collaborate to advance the clinical translation of mRNA therapy, bringing hope to patients with rare genetic diseases.
Collapse
Affiliation(s)
- Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Bitounis D, Jacquinet E, Rogers MA, Amiji MM. Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nat Rev Drug Discov 2024; 23:281-300. [PMID: 38263456 DOI: 10.1038/s41573-023-00859-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/25/2024]
Abstract
mRNA formulated with lipid nanoparticles is a transformative technology that has enabled the rapid development and administration of billions of coronavirus disease 2019 (COVID-19) vaccine doses worldwide. However, avoiding unacceptable toxicity with mRNA drugs and vaccines presents challenges. Lipid nanoparticle structural components, production methods, route of administration and proteins produced from complexed mRNAs all present toxicity concerns. Here, we discuss these concerns, specifically how cell tropism and tissue distribution of mRNA and lipid nanoparticles can lead to toxicity, and their possible reactogenicity. We focus on adverse events from mRNA applications for protein replacement and gene editing therapies as well as vaccines, tracing common biochemical and cellular pathways. The potential and limitations of existing models and tools used to screen for on-target efficacy and de-risk off-target toxicity, including in vivo and next-generation in vitro models, are also discussed.
Collapse
Affiliation(s)
- Dimitrios Bitounis
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Moderna, Inc., Cambridge, MA, USA
| | | | | | - Mansoor M Amiji
- Departments of Pharmaceutical Sciences and Chemical Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
17
|
Sinclair M, Stein RA, Sheehan JH, Hawes EM, O’Brien RM, Tajkhorshid E, Claxton DP. Integrative analysis of pathogenic variants in glucose-6-phosphatase based on an AlphaFold2 model. PNAS NEXUS 2024; 3:pgae036. [PMID: 38328777 PMCID: PMC10849595 DOI: 10.1093/pnasnexus/pgae036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Mediating the terminal reaction of gluconeogenesis and glycogenolysis, the integral membrane protein glucose-6-phosphate catalytic subunit 1 (G6PC1) regulates hepatic glucose production by catalyzing hydrolysis of glucose-6-phosphate (G6P) within the lumen of the endoplasmic reticulum. Consistent with its vital contribution to glucose homeostasis, inactivating mutations in G6PC1 causes glycogen storage disease (GSD) type 1a characterized by hepatomegaly and severe hypoglycemia. Despite its physiological importance, the structural basis of G6P binding to G6PC1 and the molecular disruptions induced by missense mutations within the active site that give rise to GSD type 1a are unknown. In this study, we determine the atomic interactions governing G6P binding as well as explore the perturbations imposed by disease-linked missense variants by subjecting an AlphaFold2 G6PC1 structural model to molecular dynamics simulations and in silico predictions of thermodynamic stability validated with robust in vitro and in situ biochemical assays. We identify a collection of side chains, including conserved residues from the signature phosphatidic acid phosphatase motif, that contribute to a hydrogen bonding and van der Waals network stabilizing G6P in the active site. The introduction of GSD type 1a mutations modified the thermodynamic landscape, altered side chain packing and substrate-binding interactions, and induced trapping of catalytic intermediates. Our results, which corroborate the high quality of the AF2 model as a guide for experimental design and to interpret outcomes, not only confirm the active-site structural organization but also identify previously unobserved mechanistic contributions of catalytic and noncatalytic side chains.
Collapse
Affiliation(s)
- Matt Sinclair
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Center for Applied Artificial Intelligence in Protein Dynamics, Vanderbilt University, Nashville, TN 37240, USA
| | - Jonathan H Sheehan
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Emily M Hawes
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Richard M O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Derek P Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Center for Applied Artificial Intelligence in Protein Dynamics, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
18
|
Sharma P, Hoorn D, Aitha A, Breier D, Peer D. The immunostimulatory nature of mRNA lipid nanoparticles. Adv Drug Deliv Rev 2024; 205:115175. [PMID: 38218350 DOI: 10.1016/j.addr.2023.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024]
Abstract
mRNA-Lipid nanoparticles (LNPs) are at the forefront of global medical research. With the development of mRNA-LNP vaccines to combat the COVID-19 pandemic, the clinical potential of this platform was unleashed. Upon administering 16 billion doses that protected billions of people, it became clear that a fraction of them witnessed mild and in some cases even severe adverse effects. Therefore, it is paramount to define the safety along with the therapeutic efficacy of the mRNA-LNP platform for the successful translation of new genetic medicines based on this technology. While mRNA was the effector molecule of this platform, the ionizable lipid component of the LNPs played an indispensable role in its success. However, both of these components possess the ability to induce undesired immunostimulation, which is an area that needs to be addressed systematically. The immune cell agitation caused by this platform is a two-edged sword as it may prove beneficial for vaccination but detrimental to other applications. Therefore, a key challenge in advancing the mRNA-LNP drug delivery platform from bench to bedside is understanding the immunostimulatory behavior of these components. Herein, we provide a detailed overview of the structural modifications and immunogenicity of synthetic mRNA. We discuss the effect of ionizable lipid structure on LNP functionality and offer a mechanistic overview of the ability of LNPs to elicit an immune response. Finally, we shed some light on the current status of this technology in clinical trials and discuss a few challenges to be addressed to advance the field.
Collapse
Affiliation(s)
- Preeti Sharma
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Daniek Hoorn
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Anjaiah Aitha
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dor Breier
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
19
|
Baruteau J, Brunetti-Pierri N, Gissen P. Liver-directed gene therapy for inherited metabolic diseases. J Inherit Metab Dis 2024; 47:9-21. [PMID: 38171926 DOI: 10.1002/jimd.12709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Gene therapy clinical trials are rapidly expanding for inherited metabolic liver diseases whilst two gene therapy products have now been approved for liver based monogenic disorders. Liver-directed gene therapy has recently become an option for treatment of haemophilias and is likely to become one of the favoured therapeutic strategies for inherited metabolic liver diseases in the near future. In this review, we present the different gene therapy vectors and strategies for liver-targeting, including gene editing. We highlight the current development of viral and nonviral gene therapy for a number of inherited metabolic liver diseases including urea cycle defects, organic acidaemias, Crigler-Najjar disease, Wilson disease, glycogen storage disease Type Ia, phenylketonuria and maple syrup urine disease. We describe the main limitations and open questions for further gene therapy development: immunogenicity, inflammatory response, genotoxicity, gene therapy administration in a fibrotic liver. The follow-up of a constantly growing number of gene therapy treated patients allows better understanding of its benefits and limitations and provides strategies to design safer and more efficacious treatments. Undoubtedly, liver-targeting gene therapy offers a promising avenue for innovative therapies with an unprecedented potential to address the unmet needs of patients suffering from inherited metabolic diseases.
Collapse
Affiliation(s)
- Julien Baruteau
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Trust, London, UK
- University College London Great Ormond Street Institute of Child Health, London, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Paul Gissen
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Trust, London, UK
- University College London Great Ormond Street Institute of Child Health, London, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK
| |
Collapse
|
20
|
Jia Y, Wang X, Li L, Li F, Zhang J, Liang XJ. Lipid Nanoparticles Optimized for Targeting and Release of Nucleic Acid. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305300. [PMID: 37547955 DOI: 10.1002/adma.202305300] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Lipid nanoparticles (LNPs) are currently the most promising clinical nucleic acids drug delivery vehicles. LNPs prevent the degradation of cargo nucleic acids during blood circulation. Upon entry into the cell, specific components of the lipid nanoparticles can promote the endosomal escape of nucleic acids. These are the basic properties of lipid nanoparticles as nucleic acid carriers. As LNPs exhibit hepatic aggregation characteristics, enhancing targeting out of the liver is a crucial way to improve LNPs administrated in vivo. Meanwhile, endosomal escape of nucleic acids loaded in LNPs is often considered inadequate, and therefore, much effort is devoted to enhancing the intracellular release efficiency of nucleic acids. Here, different strategies to efficiently deliver nucleic acid delivery from LNPs are concluded and their mechanisms are investigated. In addition, based on the information on LNPs that are in clinical trials or have completed clinical trials, the issues that are necessary to be approached in the clinical translation of LNPs are discussed, which it is hoped will shed light on the development of LNP nucleic acid drugs.
Collapse
Affiliation(s)
- Yaru Jia
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Xiuguang Wang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
| | - Luwei Li
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Jinchao Zhang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
| | - Xing-Jie Liang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Ito K, Tajima G, Kamisato C, Tsumura M, Iwamoto M, Sekiguchi Y, Numata Y, Watanabe K, Yabe Y, Kanki S, Fujieda Y, Goto K, Sogawa Y, Oitate M, Nagase H, Tsuji S, Nishizawa T, Kakuta M, Masuda T, Onishi Y, Koizumi M, Nakamura H, Okada S, Matsuo M, Takaishi K. A splice-switching oligonucleotide treatment ameliorates glycogen storage disease type 1a in mice with G6PC c.648G>T. J Clin Invest 2023; 133:e163464. [PMID: 37788110 PMCID: PMC10688987 DOI: 10.1172/jci163464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
Glycogen storage disease type 1a (GSD1a) is caused by a congenital deficiency of glucose-6-phosphatase-α (G6Pase-α, encoded by G6PC), which is primarily associated with life-threatening hypoglycemia. Although strict dietary management substantially improves life expectancy, patients still experience intermittent hypoglycemia and develop hepatic complications. Emerging therapies utilizing new modalities such as adeno-associated virus and mRNA with lipid nanoparticles are under development for GSD1a but potentially require complicated glycemic management throughout life. Here, we present an oligonucleotide-based therapy to produce intact G6Pase-α from a pathogenic human variant, G6PC c.648G>T, the most prevalent variant in East Asia causing aberrant splicing of G6PC. DS-4108b, a splice-switching oligonucleotide, was designed to correct this aberrant splicing, especially in liver. We generated a mouse strain with homozygous knockin of this variant that well reflected the pathophysiology of patients with GSD1a. DS-4108b recovered hepatic G6Pase activity through splicing correction and prevented hypoglycemia and various hepatic abnormalities in the mice. Moreover, DS-4108b had long-lasting efficacy of more than 12 weeks in mice that received a single dose and had favorable pharmacokinetics and tolerability in mice and monkeys. These findings together indicate that this oligonucleotide-based therapy could provide a sustainable and curative therapeutic option under easy disease management for GSD1a patients with G6PC c.648G>T.
Collapse
Affiliation(s)
- Kentaro Ito
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Go Tajima
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Division of Neonatal Screening, Research Institute, National Center for Child Health and Development, Tokyo, Japan
| | - Chikako Kamisato
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | | | | | | | - Kyoko Watanabe
- Drug Metabolism and Pharmacokinetics Research Laboratories
| | - Yoshiyuki Yabe
- Drug Metabolism and Pharmacokinetics Research Laboratories
| | - Satomi Kanki
- Drug Metabolism and Pharmacokinetics Research Laboratories
| | | | - Koichi Goto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | | - Hiroyuki Nagase
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Shinnosuke Tsuji
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Tomohiro Nishizawa
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Masayo Kakuta
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | | | | - Hidefumi Nakamura
- Department of Research and Development Supervision, National Center for Child Health and Development, Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masafumi Matsuo
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe, Japan
| | - Kiyosumi Takaishi
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
22
|
Strelkova Petersen DM, Chaudhary N, Arral ML, Weiss RM, Whitehead KA. The mixing method used to formulate lipid nanoparticles affects mRNA delivery efficacy and organ tropism. Eur J Pharm Biopharm 2023; 192:126-135. [PMID: 37838143 PMCID: PMC10826902 DOI: 10.1016/j.ejpb.2023.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
mRNA is a versatile drug molecule with therapeutic applications ranging from protein replacement therapies to in vivo gene engineering. mRNA delivery is often accomplished using lipid nanoparticles, which are formulated via mixing of aqueous and organic solutions. Although this has historically been accomplished by manual mixing for bench scale science, microfluidic mixing is required for scalable continuous manufacturing and batch to batch control. Currently, there is limited understanding on how the mixing process affects mRNA delivery efficacy, particularly in regard to tropism. To address this knowledge gap, we examined the influence of the type of mixing and microfluidic mixing parameters on the performance of lipid nanoparticles in mice. This was accomplished with a Design of Experiment approach using four nanoparticle formulations with varied ionizable lipid chemistry. We found that each formulation required unique optimization of mixing parameters, with the total delivery efficacy of each lipid nanoparticle generated with microfluidics ranging from 100-fold less to 4-fold more than manually mixed LNPs. Further, mixing parameters influenced organ tropism, with the most efficacious formulations disproportionately increasing liver delivery compared to other organs. These data suggest that mixing parameters for lipid nanoparticle production may require optimization for each unique chemical formulation, complicating translational efforts. Further, microfluidic parameters must be chosen carefully to balance overall mRNA delivery efficacy with application-specific tropism requirements.
Collapse
Affiliation(s)
- Daria M Strelkova Petersen
- Department of Biomedical Engineering, Carnegie Mellon University, 5000, Forbes Ave, Pittsburgh, PA 15213, USA
| | - Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, 5000, Forbes Ave, Pittsburgh, PA 15213, USA
| | - Mariah L Arral
- Department of Chemical Engineering, Carnegie Mellon University, 5000, Forbes Ave, Pittsburgh, PA 15213, USA
| | - Ryan M Weiss
- Department of Chemical Engineering, Carnegie Mellon University, 5000, Forbes Ave, Pittsburgh, PA 15213, USA
| | - Kathryn A Whitehead
- Department of Biomedical Engineering, Carnegie Mellon University, 5000, Forbes Ave, Pittsburgh, PA 15213, USA; Department of Chemical Engineering, Carnegie Mellon University, 5000, Forbes Ave, Pittsburgh, PA 15213, USA.
| |
Collapse
|
23
|
Suzuki Y, Katsurada Y, Hyodo K. Differences and Similarities of the Intravenously Administered Lipid Nanoparticles in Three Clinical Trials: Potential Linkage between Lipid Nanoparticles and Extracellular Vesicles. Mol Pharm 2023; 20:4883-4892. [PMID: 37717247 DOI: 10.1021/acs.molpharmaceut.3c00547] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Lipid nanoparticles (LNPs) are clinically validated drug-delivery carriers. However, clinical data on intravenously administered LNPs are limited compared with those on intramuscularly administered LNPs (mRNA vaccines against COVID-19). Here, we reviewed three clinically tested intravenously administered LNPs (patisiran, mRNA-1944, and NTLA-2001). We summarize the differences and similarities in their formulations, mechanisms of action, and pharmacokinetics profiles. In humans, patisiran and mRNA-1944 exhibited similar multiphasic pharmacokinetic profiles with a secondary peak in the RNA concentration. siRNA (patisiran) and mRNA (mRNA-1944) exhibited prolonged blood circulation and were detectable for more than 28 days after a single administration. We further summarize the basics of extracellular vesicles (EVs) and discuss the potential linkages between LNPs and EVs. This Review provides an understanding of the human clinical data of intravenous LNP formulations, which can be potentially explored to develop next-generation LNP-and EV-based drug delivery carriers.
Collapse
Affiliation(s)
- Yuta Suzuki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Yuri Katsurada
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Kenji Hyodo
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| |
Collapse
|
24
|
Zhang G, Tang T, Chen Y, Huang X, Liang T. mRNA vaccines in disease prevention and treatment. Signal Transduct Target Ther 2023; 8:365. [PMID: 37726283 PMCID: PMC10509165 DOI: 10.1038/s41392-023-01579-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/01/2023] [Accepted: 07/30/2023] [Indexed: 09/21/2023] Open
Abstract
mRNA vaccines have emerged as highly effective strategies in the prophylaxis and treatment of diseases, thanks largely although not totally to their extraordinary performance in recent years against the worldwide plague COVID-19. The huge superiority of mRNA vaccines regarding their efficacy, safety, and large-scale manufacture encourages pharmaceutical industries and biotechnology companies to expand their application to a diverse array of diseases, despite the nonnegligible problems in design, fabrication, and mode of administration. This review delves into the technical underpinnings of mRNA vaccines, covering mRNA design, synthesis, delivery, and adjuvant technologies. Moreover, this review presents a systematic retrospective analysis in a logical and well-organized manner, shedding light on representative mRNA vaccines employed in various diseases. The scope extends across infectious diseases, cancers, immunological diseases, tissue damages, and rare diseases, showcasing the versatility and potential of mRNA vaccines in diverse therapeutic areas. Furthermore, this review engages in a prospective discussion regarding the current challenge and potential direction for the advancement and utilization of mRNA vaccines. Overall, this comprehensive review serves as a valuable resource for researchers, clinicians, and industry professionals, providing a comprehensive understanding of the technical aspects, historical context, and future prospects of mRNA vaccines in the fight against various diseases.
Collapse
Affiliation(s)
- Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yinfeng Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, 310003, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, 310009, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Yamazaki K, Kubara K, Ishii S, Kondo K, Suzuki Y, Miyazaki T, Mitsuhashi K, Ito M, Tsukahara K. Lipid nanoparticle-targeted mRNA formulation as a treatment for ornithine-transcarbamylase deficiency model mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:210-226. [PMID: 37520683 PMCID: PMC10372164 DOI: 10.1016/j.omtn.2023.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
Ornithine transcarbamylase (OTC) plays a significant role in the urea cycle, a metabolic pathway functioning in the liver to detoxify ammonia. OTC deficiency (OTCD) is the most prevalent urea cycle disorder. Here, we show that intravenously delivered human OTC (hOTC) mRNA by lipid nanoparticles (LNP) was an effective treatment for OTCD by restoring the urea cycle. We observed a homotrimer conformation of hOTC proteins produced by the mRNA-LNP in cells by cryo-electron microscopy. The immunohistochemistry revealed the mitochondria localization of produced hOTC proteins in hepatocytes in mice. In livers of mice intravenously injected with hOTC-mRNA/LNP at 1.0 mg/kg, the delivered hOTC mRNA levels steeply decreased with a half-life (t1/2) of 7.1 h, whereas the produced hOTC protein levels retained for 5 days and then declined with a t1/2 of 2.2 days. In OTCD model mice (high-protein diet-fed Otcspf-ash hemizygous males), a single dose of hOTC-mRNA/LNP at 3.0 mg/kg ameliorated hyperammonemia and weight loss with prolonged survival rate (22 days) compared with that of untreated mice (11 days). Weekly repeated doses at 0.3 and 1.0 mg/kg were well tolerated in wild-type mice and showed a dose-dependent amelioration of survival rate in OTCD mice, thus, showing the therapeutic potential of LNP-formulated hOTC mRNA for OTCD.
Collapse
Affiliation(s)
- Kazuto Yamazaki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Kenji Kubara
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Satoko Ishii
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Keita Kondo
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Yuta Suzuki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Takayuki Miyazaki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Kaoru Mitsuhashi
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Masashi Ito
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Kappei Tsukahara
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| |
Collapse
|
26
|
Jeong M, Lee Y, Park J, Jung H, Lee H. Lipid nanoparticles (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications. Adv Drug Deliv Rev 2023; 200:114990. [PMID: 37423563 DOI: 10.1016/j.addr.2023.114990] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
RNA therapeutics show a significant breakthrough for the treatment of otherwise incurable diseases and genetic disorders by regulating disease-related gene expression. The successful development of COVID-19 mRNA vaccines further emphasizes the potential of RNA therapeutics in the prevention of infectious diseases as well as in the treatment of chronic diseases. However, the efficient delivery of RNA into cells remains a challenge, and nanoparticle delivery systems such as lipid nanoparticles (LNPs) are necessary to fully realize the potential of RNA therapeutics. While LNPs provide a highly efficient platform for the in vivo delivery of RNA by overcoming various biological barriers, several challenges remain to be resolved for further development and regulatory approval. These include a lack of targeted delivery to extrahepatic organs and a gradual loss of therapeutic potency with repeated doses. In this review, we highlight the fundamental aspects of LNPs and their uses in the development of novel RNA therapeutics. Recent advances in LNP-based therapeutics and preclinical/clinical studies are overviewed. Lastly, we discuss the current limitations of LNPs and introduce breakthrough technologies that might overcome these challenges in future applications.
Collapse
Affiliation(s)
- Michaela Jeong
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Yeji Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Jeongeun Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Hyein Jung
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
27
|
Zhong J, Gou Y, Zhao P, Dong X, Guo M, Li A, Hao A, Luu HH, He TC, Reid RR, Fan J. Glycogen storage disease type I: Genetic etiology, clinical manifestations, and conventional and gene therapies. PEDIATRIC DISCOVERY 2023; 1:e3. [PMID: 38370424 PMCID: PMC10874634 DOI: 10.1002/pdi3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 02/20/2024]
Abstract
Glycogen storage disease type I (GSDI) is an inherited metabolic disorder characterized by a deficiency of enzymes or proteins involved in glycogenolysis and gluconeogenesis, resulting in excessive intracellular glycogen accumulation. While GSDI is classified into four different subtypes based on molecular genetic variants, GSDIa accounts for approximately 80%. GSDIa and GSDIb are autosomal recessive disorders caused by deficiencies in glucose-6-phosphatase (G6Pase-α) and glucose-6-phosphate-transporter (G6PT), respectively. For the past 50 years, the care of patients with GSDI has been improved following elaborate dietary managements. GSDI patients currently receive dietary therapies that enable patients to improve hypoglycemia and alleviate early symptomatic signs of the disease. However, dietary therapies have many limitations with a risk of calcium, vitamin D, and iron deficiency and cannot prevent long-term complications, such as progressive liver and renal failure. With the deepening understanding of the pathogenesis of GSDI and the development of gene therapy technology, there is great progress in the treatment of GSDI. Here, we review the underlying molecular genetics and the current clinical management strategies of GSDI patients with an emphasis on promising experimental gene therapies.
Collapse
Affiliation(s)
- Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Meichun Guo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Aohua Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ailing Hao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| |
Collapse
|
28
|
Berg T, Krag A. The future of hepatology - "The best way to predict your future is to create it". J Hepatol 2023:S0168-8278(23)00308-2. [PMID: 37321461 DOI: 10.1016/j.jhep.2023.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig, University Medical Center, Germany.
| | - Aleksander Krag
- Department of Hepatology, Odense University Hospital, Denmark
| |
Collapse
|
29
|
Chou JY, Mansfield BC. Gene therapy and genome editing for type I glycogen storage diseases. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1167091. [PMID: 39086673 PMCID: PMC11285695 DOI: 10.3389/fmmed.2023.1167091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 08/02/2024]
Abstract
Type I glycogen storage diseases (GSD-I) consist of two major autosomal recessive disorders, GSD-Ia, caused by a reduction of glucose-6-phosphatase-α (G6Pase-α or G6PC) activity and GSD-Ib, caused by a reduction in the glucose-6-phosphate transporter (G6PT or SLC37A4) activity. The G6Pase-α and G6PT are functionally co-dependent. Together, the G6Pase-α/G6PT complex catalyzes the translocation of G6P from the cytoplasm into the endoplasmic reticulum lumen and its subsequent hydrolysis to glucose that is released into the blood to maintain euglycemia. Consequently, all GSD-I patients share a metabolic phenotype that includes a loss of glucose homeostasis and long-term risks of hepatocellular adenoma/carcinoma and renal disease. A rigorous dietary therapy has enabled GSD-I patients to maintain a normalized metabolic phenotype, but adherence is challenging. Moreover, dietary therapies do not address the underlying pathological processes, and long-term complications still occur in metabolically compensated patients. Animal models of GSD-Ia and GSD-Ib have delineated the disease biology and pathophysiology, and guided development of effective gene therapy strategies for both disorders. Preclinical studies of GSD-I have established that recombinant adeno-associated virus vector-mediated gene therapy for GSD-Ia and GSD-Ib are safe, and efficacious. A phase III clinical trial of rAAV-mediated gene augmentation therapy for GSD-Ia (NCT05139316) is in progress as of 2023. A phase I clinical trial of mRNA augmentation for GSD-Ia was initiated in 2022 (NCT05095727). Alternative genetic technologies for GSD-I therapies, such as gene editing, are also being examined for their potential to improve further long-term outcomes.
Collapse
Affiliation(s)
- Janice Y. Chou
- Section on Cellular Differentiation, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|
30
|
Cao J, Markel A, Hanahoe E, Ketova T, Mihai C, Zalinger Z, Marquardt D, Amato NJ, Cheng YM, Reid DW, Dousis A, Giangrande PH, Schultz JR, Martini PGV, Finn PF. Amnio acid substitution at position 298 of human glucose-6 phosphatase-α significantly impacts its stability in mammalian cells. Amino Acids 2023:10.1007/s00726-023-03263-8. [PMID: 36944899 DOI: 10.1007/s00726-023-03263-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023]
Abstract
Glucose-6-phosphatase-α (G6Pase-α) catalyzes the hydrolysis of glucose-6-phosphate to glucose and functions as a key regulator in maintaining blood glucose homeostasis. Deficiency in G6Pase-α causes glycogen storage disease 1a (GSD1a), an inherited disorder characterized by life-threatening hypoglycemia and other long-term complications. We have developed a potential mRNA-based therapy for GSD1a and demonstrated that a human G6Pase-α (hG6Pase-α) variant harboring a single serine (S) to cysteine (C) substitution at the amino acid site 298 (S298C) had > twofold increase in protein expression, resulting in improved in vivo efficacy. Here, we sought to investigate the mechanisms contributing to the increased expression of the S298C variant. Mutagenesis of hG6Pase-α identified distinct protein variants at the 298 amino acid position with substantial reduction in protein expression in cultured cells. Kinetic analysis of expression and subcellular localization in mammalian cells, combined with cell-free in vitro translation assays, revealed that altered protein expression stemmed from differences in cellular protein stability rather than biosynthetic rates. Site-specific mutagenesis studies targeting other cysteines of the hG6Pase-α S298C variant suggest the observed improvements in stability are not due to additional disulfide bond formation. The glycosylation at Asparagine (N)-96 is critical in maintaining enzymatic activity and mutations at position 298 mainly affected glycosylated forms of hG6Pase-α. Finally, proteasome inhibition by lactacystin improved expression levels of unstable hG6Pase-α variants. Taken together, these data uncover a critical role for a single amino acid substitution impacting the stability of G6Pase-α and provide insights into the molecular genetics of GSD1a and protein engineering for therapeutic development.
Collapse
Affiliation(s)
- Jingsong Cao
- Rare Diseases, Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Arianna Markel
- Rare Diseases, Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Erin Hanahoe
- Platform, Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Tatiana Ketova
- Platform, Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Cosmin Mihai
- Platform, Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Zach Zalinger
- Platform, Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - David Marquardt
- Platform, Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Nicholas J Amato
- Platform, Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Yi Min Cheng
- Platform, Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - David W Reid
- Platform, Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Athanasios Dousis
- Platform, Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
- Current Address: Tessera Therapeutics, Somerville, MA, USA
| | - Paloma H Giangrande
- Rare Diseases, Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
- Current Address: Wave Life Sciences, Cambridge, MA, USA
| | - Joshua R Schultz
- Rare Diseases, Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA
| | - Paolo G V Martini
- Rare Diseases, Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA.
| | - Patrick F Finn
- Rare Diseases, Moderna, Inc., 200 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
31
|
Liu Y, Liu X, Huang J, Shi Y, Luo Z, Zhang J, Guo X, Jiang M, Li X, Yin H, Qin B, Guan G, Luo L, Zhou Y, You J. Nonlysosomal Route of mRNA Delivery and Combining with Epigenetic Regulation Optimized Antitumor Immunoprophylactic Efficacy. Adv Healthc Mater 2023; 12:e2202460. [PMID: 36366890 DOI: 10.1002/adhm.202202460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Indexed: 11/13/2022]
Abstract
Currently, mRNA-based tumor therapies are in full flow because in vitro-transcribed (IVT) mRNA has the potential to express tumor antigens to initiate the adaptive immune responses. However, the efficacy of such therapy relies heavily on the delivery system. Here, a pardaxin-modified liposome loaded with tumor antigen-encoding mRNA and adjuvant (2',3'-cGAMP, (cyclic [G(2',5')pA(3',5')p])), termed P-Lipoplex-CDN is reported. Due to an nonlysosomal delivery route, the transfection efficiency on dendritic cells (DCs) is improved by reducing the lysosome disruption of cargos. The mRNA modified DCs efficiently induce tumor antigen-specific immune responses both in vitro and in vivo. As prophylactic vaccines, mRNA transfected DCs significantly delay the occurrence and development of tumors, and several immunized mice are even completely resistant to tumors. Interestingly, the efficacy depends on the major histocompatibility complex class I (MHC-I) expression level on tumor cells. Furthermore, epigenetic modification (decitabine, DAC) is applied as a combination strategy to deal with malignant tumor progression caused by deficient tumor MHC-I expression. This study highlights the close relationship between mRNA-DCs vaccine efficacy and the expression level of tumor cell MHC-I molecules. Moreover, a feasible strategy for tumor MHC-I expression deficiency is proposed, which may provide clinical guidance for the design and application of mRNA-based tumor therapies.
Collapse
Affiliation(s)
- Yu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Jiaxin Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xuemeng Guo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Mengshi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Hang Yin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Bing Qin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Guannan Guan
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| | - Yun Zhou
- Zhejiang Center of Drug and Cosmetic Evaluation, No. 39 Yile Road, Hangzhou, Zhejiang, 310012, P. R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
32
|
Petrova IO, Smirnikhina SA. Studies on glycogen storage disease type 1a animal models: a brief perspective. Transgenic Res 2022; 31:593-606. [PMID: 36006546 DOI: 10.1007/s11248-022-00325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/09/2022] [Indexed: 01/20/2023]
Abstract
Glycogen storage disease type 1 (GSD1) is a rare hereditary monogenic disease characterized by the disturbed glucose metabolism. The most widespread variant of GSD1 is GSD1a, which is a deficiency of glucose-6-phosphatase-ɑ. Glucose-6-phosphatase-ɑ is expressed only in liver, kidney, and intestine, and these organs are primarily affected by its deficiency, and long-term complications of GSD1a include hepatic tumors and chronic liver disease. This article is a brief overview of existing animal models for GSD1a, from the first mouse model of 1996 to modern CRISPR/Cas9-generated ones. First whole-body murine models demonstrated exact metabolic symptoms of GSD1a, but the animals did not survive weaning. The protocol for glucose treatment allowed prolonged survival of affected animals, but long-term complications, such as hepatic tumorigenesis, could not be investigated. Next, organ-specific knockout models were developed, and most of the metabolic research was performed on liver glucose-6-phosphate-deficient mice. Naturally occuring mutation was also discovered in dogs. All these models are widely used to study GSD1a from metabolic and physiological standpoints and to develop possible treatments involving gene therapy. Research performed using these models helped elucidate the role of glycogen and lipid accumulation, hypoxia, mitochondrial dysfunction, and autophagy impairment in long-term complications of GSD1a, including hepatic tumorigenesis. Recently, gene replacement therapy and genome editing were tested on described models, and some of the developed approaches have reached clinical trials.
Collapse
Affiliation(s)
- Irina O Petrova
- Laboratory of Genome Editing, Research Center for Medical Genetics, Moskvorechye 1, Moscow, Russia, 115478.
| | - Svetlana A Smirnikhina
- Laboratory of Genome Editing, Research Center for Medical Genetics, Moskvorechye 1, Moscow, Russia, 115478
| |
Collapse
|
33
|
Unlocking the promise of mRNA therapeutics. Nat Biotechnol 2022; 40:1586-1600. [PMID: 36329321 DOI: 10.1038/s41587-022-01491-z] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/11/2022] [Accepted: 07/07/2022] [Indexed: 11/06/2022]
Abstract
The extraordinary success of mRNA vaccines against coronavirus disease 2019 (COVID-19) has renewed interest in mRNA as a means of delivering therapeutic proteins. Early clinical trials of mRNA therapeutics include studies of paracrine vascular endothelial growth factor (VEGF) mRNA for heart failure and of CRISPR-Cas9 mRNA for a congenital liver-specific storage disease. However, a series of challenges remains to be addressed before mRNA can be established as a general therapeutic modality with broad relevance to both rare and common diseases. An array of new technologies is being developed to surmount these challenges, including approaches to optimize mRNA cargos, lipid carriers with inherent tissue tropism and in vivo percutaneous delivery systems. The judicious integration of these advances may unlock the promise of biologically targeted mRNA therapeutics, beyond vaccines and other immunostimulatory agents, for the treatment of diverse clinical indications.
Collapse
|
34
|
Cacicedo ML, Limeres MJ, Gehring S. mRNA-Based Approaches to Treating Liver Diseases. Cells 2022; 11:3328. [PMID: 36291194 PMCID: PMC9601253 DOI: 10.3390/cells11203328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Diseases that affect the liver account for approximately 2 million deaths worldwide each year. The increasing prevalence of these diseases and the limited efficacy of current treatments are expected to stimulate substantial growth in the global market for therapeutics that target the liver. Currently, liver transplantation is the only curative option available for many liver diseases. Gene therapy represents a valuable approach to treatment. The liver plays a central role in a myriad of essential metabolic functions, making it an attractive organ for gene therapy; hepatocytes comprise the most relevant target. To date, viral vectors constitute the preferred approach to targeting hepatocytes with genes of therapeutic interest. Alternatively, mRNA-based therapy offers a number of comparative advantages. Clinical and preclinical studies undertaken to treat inherited metabolic diseases affecting the liver, cirrhosis and fibrosis, hepatocellular carcinoma, hepatitis B, and cytomegalovirus using lipid nanoparticle-encapsulated mRNAs that encode the therapeutic or antigenic protein of interest are discussed.
Collapse
Affiliation(s)
- Maximiliano L. Cacicedo
- Children’s Hospital, University Medical Center Mainz of the Johannes-Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | | | | |
Collapse
|
35
|
Furtado D, Cortez-Jugo C, Hung YH, Bush AI, Caruso F. mRNA Treatment Rescues Niemann-Pick Disease Type C1 in Patient Fibroblasts. Mol Pharm 2022; 19:3987-3999. [PMID: 36125338 DOI: 10.1021/acs.molpharmaceut.2c00463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Messenger RNA (mRNA) holds great potential as a disease-modifying treatment for a wide array of monogenic disorders. Niemann-Pick disease type C1 (NP-C1) is an ultrarare monogenic disease that arises due to loss-of-function mutations in the NPC1 gene, resulting in the entrapment of unesterified cholesterol in the lysosomes of affected cells and a subsequent reduction in their capacity for cholesterol esterification. This causes severe damage to various organs including the brain, liver, and spleen. In this work, we describe the use of NPC1-encoded mRNA to rescue the protein insufficiency and pathogenic phenotype caused by biallelic NPC1 mutations in cultured fibroblasts derived from an NP-C1 patient. We first evaluated engineering strategies for the generation of potent mRNAs capable of eliciting high protein expression across multiple cell types. We observed that "GC3" codon optimization, coupled with N1-methylpseudouridine base modification, yielded an mRNA that was approximately 1000-fold more potent than wild-type, unmodified mRNA in a luciferase reporter assay and consistently superior to other mRNA variants. Our data suggest that the improved expression associated with this design strategy was due in large part to the increased secondary structure of the designed mRNAs. Both codon optimization and base modification appear to contribute to increased secondary structure. Applying these principles to the engineering of NPC1-encoded mRNA, we observed a normalization in NPC1 protein levels after mRNA treatment, as well as a rescue of the mutant phenotype. Specifically, mRNA treatment restored the cholesterol esterification capacity of patient cells to wild-type levels and induced a significant reduction in both unesterified cholesterol levels (>57% reduction compared to Lipofectamine-treated control in a cholesterol esterification assay) and lysosome size (157 μm2 reduction compared to Lipofectamine-treated control). These findings show that engineered mRNA can correct the deficit caused by NPC1 mutations. More broadly, they also serve to further validate the potential of this technology to correct diseases associated with loss-of-function mutations in genes coding for large, complex, intracellular proteins.
Collapse
Affiliation(s)
- Denzil Furtado
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ya Hui Hung
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
36
|
Zadory M, Lopez E, Babity S, Gravel SP, Brambilla D. Current knowledge on the tissue distribution of mRNA nanocarriers for therapeutic protein expression. Biomater Sci 2022; 10:6077-6115. [PMID: 36097955 DOI: 10.1039/d2bm00859a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exogenously delivered mRNA-based drugs are emerging as a new class of therapeutics with the potential to treat several diseases. Over the last decade, advancements in the design of non-viral delivery tools have enabled mRNA to be evaluated for several therapeutic purposes including protein replacement therapies, gene editing, and vaccines. However, in vivo delivery of mRNA to targeted organs and cells remains a critical challenge. Evaluation of the biodistribution of mRNA vehicles is of utmost importance for the development of effective pharmaceutical candidates. In this review, we discuss the recent advances in the design of nanoparticles loaded with mRNA and extrapolate the key factors influencing their biodistribution following administration. Finally, we highlight the latest developments in the preclinical and clinical translation of mRNA therapeutics for protein supplementation therapy.
Collapse
Affiliation(s)
- Matthias Zadory
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| | - Elliot Lopez
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| | - Samuel Babity
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| | - Simon-Pierre Gravel
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| | - Davide Brambilla
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, Canada, H3T 1J4.
| |
Collapse
|
37
|
Zabaleta N, Torella L, Weber ND, Gonzalez‐Aseguinolaza G. mRNA and gene editing: Late breaking therapies in liver diseases. Hepatology 2022; 76:869-887. [PMID: 35243655 PMCID: PMC9546265 DOI: 10.1002/hep.32441] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
Abstract
The efficient delivery of RNA molecules to restore the expression of a missing or inadequately functioning protein in a target cell and the intentional specific modification of the host genome using engineered nucleases represent therapeutic concepts that are revolutionizing modern medicine. The initiation of several clinical trials using these approaches to treat metabolic liver disorders as well as the recently reported remarkable results obtained by patients with transthyretin amyloidosis highlight the advances in this field and show the potential of these therapies to treat these diseases safely and efficaciously. These advances have been possible due, firstly, to significant improvements made in RNA chemistry that increase its stability and prevent activation of the innate immune response and, secondly, to the development of very efficient liver-targeted RNA delivery systems. In parallel, the breakout of CRISPR/CRISPR-associated 9-based technology in the gene editing field has marked a turning point in in vivo modification of the cellular genome with therapeutic purposes, which can be based on gene supplementation, correction, or silencing. In the coming years we are likely to witness the therapeutic potential of these two strategies both separately and in combination. In this review we summarize the preclinical data obtained in animal models treated with mRNA as a therapeutic agent and discuss the different gene editing strategies applied to the treatment of liver diseases, highlighting both their therapeutic efficacy as well as safety concerns.
Collapse
Affiliation(s)
- Nerea Zabaleta
- Grousbeck Gene Therapy CenterSchepens Eye Research InstituteMass Eye and EarBostonMassachusettsUSA
| | - Laura Torella
- Gene Therapy and Regulation of Gene expression Program, Foundation for Applied Medical ResearchUniversity of NavarraIdisNAPamplonaSpain
| | | | - Gloria Gonzalez‐Aseguinolaza
- Gene Therapy and Regulation of Gene expression Program, Foundation for Applied Medical ResearchUniversity of NavarraIdisNAPamplonaSpain,Vivet TherapeuticsPamplonaSpain
| |
Collapse
|
38
|
Rossi A, Venema A, Haarsma P, Feldbrugge L, Burghard R, Rodriguez-Buritica D, Parenti G, Oosterveer MH, Derks TGJ. A Prospective Study on Continuous Glucose Monitoring in Glycogen Storage Disease Type Ia: Toward Glycemic Targets. J Clin Endocrinol Metab 2022; 107:e3612-e3623. [PMID: 35786777 PMCID: PMC9387687 DOI: 10.1210/clinem/dgac411] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Although previous research has shown the benefit of continuous glucose monitoring (CGM) for hepatic glycogen storage diseases (GSDs), current lack of prospectively collected CGM metrics and glycemic targets for CGM-derived outcomes in the hepatic GSD population limits its use. OBJECTIVE To assess CGM metrics for glycemic variation and glycemic control in adult patients with GSDIa as compared to matched healthy volunteers. DESIGN Prospective CGM data were collected during the ENGLUPRO GSDIa trial (NCT04311307) in which a Dexcom G6 device was used. Ten adult patients with GSDIa and 10 age-, sex- and body mass index-matched healthy volunteers were enrolled. Capillary blood glucose was concurrently measured during 2 standardized 2-hour time intervals. Descriptive [eg, glycemic variability (GV), time below range, time in range (TIR), time above range (TAR)] and advanced (ie, first- and second-order derivatives, Fourier analysis) CGM outcomes were calculated. For each descriptive CGM outcome measure, 95% CIs were computed in patients with GSDIa and healthy volunteers, respectively. RESULTS CGM overestimation was higher under preprandial and level 1 hypoglycemia (ie, capillary glucose values ≥ 3.0 mmol/L and < 3.9 mmol/L) conditions. GV and TAR were higher while TIR was lower in patients with GSDIa compared to healthy volunteers (P < 0.05). Three patients with GSDIa showed descriptive CGM outcomes outside the calculated 95% CI in GSDIa patients. Advanced CGM analysis revealed a distinct pattern (ie, first- and second-order derivatives and glucose curve amplitude) in each of these 3 patients within the patients group. CONCLUSIONS This is the first study to prospectively compare CGM outcomes between adult patients with GSDIa and matched healthy volunteers. The generation of a set of CGM metrics will provide guidance in using and interpreting CGM data in GSDIa and will be useful for the definition of glycemic targets for CGM in patients with GSDIa. Future studies should investigate the prognostic value of CGM outcomes and their major determinants in patients with GSDIa.
Collapse
Affiliation(s)
- Alessandro Rossi
- Section of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Department of Translational Medicine, Section of Pediatrics, University of Naples “Federico II,”Naples, Italy
| | - Annieke Venema
- Section of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Petra Haarsma
- Section of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | | | - David Rodriguez-Buritica
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX,USA
| | - Giancarlo Parenti
- Department of Translational Medicine, Section of Pediatrics, University of Naples “Federico II,”Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Maaike H Oosterveer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
39
|
Córdoba KM, Jericó D, Sampedro A, Jiang L, Iraburu MJ, Martini PGV, Berraondo P, Avila MA, Fontanellas A. Messenger RNA as a personalized therapy: The moment of truth for rare metabolic diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:55-96. [PMID: 36064267 DOI: 10.1016/bs.ircmb.2022.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inborn errors of metabolism (IEM) encompass a group of monogenic diseases affecting both pediatric and adult populations and currently lack effective treatments. Some IEM such as familial hypercholesterolemia or X-linked protoporphyria are caused by gain of function mutations, while others are characterized by an impaired protein function, causing a metabolic pathway blockage. Pathophysiology classification includes intoxication, storage and energy-related metabolic disorders. Factors specific to each disease trigger acute metabolic decompensations. IEM require prompt and effective care, since therapeutic delay has been associated with the development of fatal events including severe metabolic acidosis, hyperammonemia, cerebral edema, and death. Rapid expression of therapeutic proteins can be achieved hours after the administration of messenger RNAs (mRNA), representing an etiological solution for acute decompensations. mRNA-based therapy relies on modified RNAs with enhanced stability and translatability into therapeutic proteins. The proteins produced in the ribosomes can be targeted to specific intracellular compartments, the cell membrane, or be secreted. Non-immunogenic lipid nanoparticle formulations have been optimized to prevent RNA degradation and to allow safe repetitive administrations depending on the disease physiopathology and clinical status of the patients, thus, mRNA could be also an effective chronic treatment for IEM. Given that the liver plays a key role in most of metabolic pathways or can be used as bioreactor for excretable proteins, this review focuses on the preclinical and clinical evidence that supports the implementation of mRNA technology as a promising personalized strategy for liver metabolic disorders such as acute intermittent porphyria, ornithine transcarbamylase deficiency or glycogen storage disease.
Collapse
Affiliation(s)
- Karol M Córdoba
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Daniel Jericó
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ana Sampedro
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Lei Jiang
- Moderna Inc, Cambridge, MA, United States
| | - María J Iraburu
- Department of Biochemistry and Genetics. School of Sciences, University of Navarra, Pamplona, Spain
| | | | - Pedro Berraondo
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Program of Immunology and Immunotherapy, CIMA-University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Matías A Avila
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Fontanellas
- Hepatology Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
40
|
DBS Screening for Glycogen Storage Disease Type 1a: Detection of c.648G>T Mutation in G6PC by Combination of Modified Competitive Oligonucleotide Priming-PCR and Melting Curve Analysis. Int J Neonatal Screen 2021; 7:ijns7040079. [PMID: 34842616 PMCID: PMC8628980 DOI: 10.3390/ijns7040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
Glycogen storage disease type Ia (GSDIa) is an autosomal recessive disorder caused by glucose-6-phosphatase (G6PC) deficiency. GSDIa causes not only life-threatening hypoglycemia in infancy, but also hepatocellular adenoma as a long-term complication. Hepatocellular adenoma may undergo malignant transformation to hepatocellular carcinoma. New treatment approaches are keenly anticipated for the prevention of hepatic tumors. Gene replacement therapy (GRT) is a promising approach, although early treatment in infancy is essential for its safety and efficiency. Thus, GRT requires screening systems for early disease detection. In this study, we developed a screening system for GSDIa using dried blood spots (DBS) on filter paper, which can detect the most common causative mutation in the East-Asian population, c.648G>T in the G6PC gene. Our system consisted of nested PCR analysis with modified competitive oligonucleotide priming (mCOP)-PCR in the second round and melting curve analysis of the amplified products. Here, we tested 54 DBS samples from 50 c.648G (wild type) controls and four c.648T (mutant) patients. This system, using DBS samples, specifically amplified and clearly detected wild-type and mutant alleles from controls and patients, respectively. In conclusion, our system will be applicable to newborn screening for GSDIa in the real world.
Collapse
|