1
|
Negi MS, Krishnan VP, Saraf N, Vijayraghavan U. Prp16 enables efficient splicing of introns with diverse exonic consensus elements in the short-intron rich Cryptococcus neoformans transcriptome. RNA Biol 2025; 22:1-14. [PMID: 40065603 PMCID: PMC11913375 DOI: 10.1080/15476286.2025.2477844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
DEAH box splicing helicase Prp16 in budding yeast governs spliceosomal remodelling from the branching conformation (C complex) to the exon ligation conformation (C* complex). In this study, we examined the genome-wide functions of Prp16 in the short intron-rich genome of the basidiomycete yeast Cryptococcus neoformans. The presence of multiple introns per transcript with intronic features that are more similar to those of higher eukaryotes makes it a promising model for studying spliceosomal splicing. Using a promoter-shutdown conditional Prp16 knockdown strain, we uncovered genome-wide but substrate-specific roles in C. neoformans splicing. The splicing functions of Prp16 are dependent on helicase motifs I and II, which are conserved motifs for helicase activity. A small subset of introns spliced independent of Prp16 activity was investigated to discover that exonic sequences at the 5' splice site (5'SS) and 3' splice site (3'SS) with stronger affinity for U5 loop 1 are a common feature in these introns. Furthermore, short (60-100nts) and ultrashort introns (<60nts) prevalent in the C. neoformans transcriptome were more sensitive to Prp16 knockdown than longer introns, indicating that Prp16 is required for the efficient splicing of short and ultrashort introns. We propose that stronger U5 snRNA-pre-mRNA interactions enable efficient transition of the spliceosome from the first to the second catalytic confirmation in Prp16 knockdown, particularly for short introns and introns with suboptimal features. This study provides insights into fine-tuning spliceosomal helicase function with variations in cis-element features.
Collapse
Affiliation(s)
- Manendra Singh Negi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Vishnu Priya Krishnan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Niharika Saraf
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
2
|
Soni K, Horvath A, Dybkov O, Schwan M, Trakansuebkul S, Flemming D, Wild K, Urlaub H, Fischer T, Sinning I. Structures of aberrant spliceosome intermediates on their way to disassembly. Nat Struct Mol Biol 2025; 32:914-925. [PMID: 39833470 PMCID: PMC12086092 DOI: 10.1038/s41594-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Intron removal during pre-mRNA splicing is of extraordinary complexity and its disruption causes a vast number of genetic diseases in humans. While key steps of the canonical spliceosome cycle have been revealed by combined structure-function analyses, structural information on an aberrant spliceosome committed to premature disassembly is not available. Here, we report two cryo-electron microscopy structures of post-Bact spliceosome intermediates from Schizosaccharomyces pombe primed for disassembly. We identify the DEAH-box helicase-G-patch protein pair (Gih35-Gpl1, homologous to human DHX35-GPATCH1) and show how it maintains catalytic dormancy. In both structures, Gpl1 recognizes a remodeled active site introduced by an overstabilization of the U5 loop I interaction with the 5' exon leading to a single-nucleotide insertion at the 5' splice site. Remodeling is communicated to the spliceosome surface and the Ntr1 complex that mediates disassembly is recruited. Our data pave the way for a targeted analysis of splicing quality control.
Collapse
Affiliation(s)
- Komal Soni
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| | - Attila Horvath
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Merlin Schwan
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Sasanan Trakansuebkul
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Tamás Fischer
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| |
Collapse
|
3
|
Porat J. Circuit logic: interdependent RNA modifications shape mRNA and noncoding RNA structure and function. RNA (NEW YORK, N.Y.) 2025; 31:613-622. [PMID: 40044218 PMCID: PMC12001972 DOI: 10.1261/rna.080421.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025]
Abstract
Continued advances in high-throughput detection of posttranscriptional RNA modifications have enabled large-scale, mechanistic studies into the importance of RNA modifications in regulating the structure, function, and stability of coding and noncoding RNAs. More recently, this has expanded beyond investigations of independent single modifications, revealing the breadth of modification complexities in single transcripts and the biogenesis pathways involved that lead to coordinately modified RNA species. This has resulted in the concept of modification circuits, where one modification can promote or inhibit the subsequent installation of other modifications, or when modifications are coordinated across different RNA species. These circuits play important roles in the biogenesis of multistepped posttranscriptional modifications, modulate ribonucleoprotein complex formation and conformational switches, and mediate codon-biased translation through the coordination of mRNA and tRNA modifications. Here, I review evidence of complex modification circuits in mRNA and noncoding RNA and highlight open questions concerning the molecular mechanisms giving rise to modification circuits and their importance in the context of RNA processing and maturation.
Collapse
MESH Headings
- RNA, Messenger/genetics
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/chemistry
- RNA, Untranslated/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer/chemistry
- Nucleic Acid Conformation
- Humans
- Animals
Collapse
Affiliation(s)
- Jennifer Porat
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02215, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
4
|
Li Y, Fischer P, Wang M, Zhou Q, Song A, Yuan R, Meng W, Chen FX, Lührmann R, Lau B, Hurt E, Cheng J. Structural insights into spliceosome fidelity: DHX35-GPATCH1- mediated rejection of aberrant splicing substrates. Cell Res 2025; 35:296-308. [PMID: 40016598 PMCID: PMC11958768 DOI: 10.1038/s41422-025-01084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
The spliceosome, a highly dynamic macromolecular assembly, catalyzes the precise removal of introns from pre-mRNAs. Recent studies have provided comprehensive structural insights into the step-wise assembly, catalytic splicing and final disassembly of the spliceosome. However, the molecular details of how the spliceosome recognizes and rejects suboptimal splicing substrates remained unclear. Here, we show cryo-electron microscopy structures of spliceosomal quality control complexes from a thermophilic eukaryote, Chaetomium thermophilum. The spliceosomes, henceforth termed B*Q, are stalled at a catalytically activated state but prior to the first splicing reaction due to an aberrant 5' splice site conformation. This state is recognized by G-patch protein GPATCH1, which is docked onto PRP8-EN and -RH domains and has recruited the cognate DHX35 helicase to its U2 snRNA substrate. In B*Q, DHX35 has dissociated the U2/branch site helix, while the disassembly helicase DHX15 is docked close to its U6 RNA 3'-end substrate. Our work thus provides mechanistic insights into the concerted action of two spliceosomal helicases in maintaining splicing fidelity by priming spliceosomes that are bound to aberrant splice substrates for disassembly.
Collapse
Affiliation(s)
- Yi Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Paulina Fischer
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Mengjiao Wang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Qianxing Zhou
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Aixia Song
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Rui Yuan
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Wanyu Meng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Fei Xavier Chen
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China
| | - Reinhard Lührmann
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Benjamin Lau
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Ed Hurt
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Kenny CJ, McGurk MP, Schüler S, Cordero A, Laubinger S, Burge CB. LUC7 proteins define two major classes of 5' splice sites in animals and plants. Nat Commun 2025; 16:1574. [PMID: 39979239 PMCID: PMC11842720 DOI: 10.1038/s41467-025-56577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Mutation or deletion of the U1 snRNP-associated factor LUC7L2 is associated with myeloid neoplasms, and knockout of LUC7L2 alters cellular metabolism. Here, we show that members of the LUC7 protein family differentially regulate two major classes of 5' splice sites (5'SS) and broadly regulate mRNA splicing in both human cell lines and leukemias with LUC7L2 copy number variation. We describe distinctive 5'SS features of exons impacted by the three human LUC7 paralogs: LUC7L2 and LUC7L enhance splicing of "right-handed" 5'SS with stronger consensus matching on the intron side of the near invariant /GU, while LUC7L3 enhances splicing of "left-handed" 5'SS with stronger consensus matching upstream of the /GU. We validated our model of sequence-specific 5'SS regulation both by mutating splice sites and swapping domains between human LUC7 proteins. Evolutionary analysis indicates that the LUC7L2/LUC7L3 subfamilies evolved before the split between animals and plants. Analysis of Arabidopsis thaliana mutants confirmed that plant LUC7 orthologs possess similar specificity to their human counterparts, indicating that 5'SS regulation by LUC7 proteins is highly conserved.
Collapse
Affiliation(s)
- Connor J Kenny
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael P McGurk
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sandra Schüler
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Aidan Cordero
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sascha Laubinger
- Institute of Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Lee ES, Smith HW, Wang YE, Ihn SS, Scalize de Oliveira L, Kejiou NS, Liang YL, Nabeel-Shah S, Jomphe RY, Pu S, Greenblatt JF, Palazzo AF. N-6-methyladenosine (m6A) promotes the nuclear retention of mRNAs with intact 5' splice site motifs. Life Sci Alliance 2025; 8:e202403142. [PMID: 39626965 PMCID: PMC11629677 DOI: 10.26508/lsa.202403142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
In humans, misprocessed mRNAs containing intact 5' Splice Site (5'SS) motifs are nuclear retained and targeted for decay by ZFC3H1, a component of the Poly(A) Exosome Targeting complex, and U1-70K, a component of the U1 snRNP. In S. pombe, the ZFC3H1 homolog, Red1, binds to the YTH domain-containing protein Mmi1 and targets certain RNA transcripts to nuclear foci for nuclear retention and decay. Here we show that YTHDC1 and YTHDC2, two YTH domain-containing proteins that bind to N-6-methyladenosine (m6A) modified RNAs, interact with ZFC3H1 and U1-70K, and are required for the nuclear retention of mRNAs with intact 5'SS motifs. Disruption of m6A deposition inhibits both the nuclear retention of these transcripts and their accumulation in YTHDC1-enriched foci that are adjacent to nuclear speckles. Endogenous RNAs with intact 5'SS motifs, such as intronic poly-adenylated transcripts, tend to be m6A-modified at low levels. Thus, the m6A modification acts on a conserved quality control mechanism that targets misprocessed mRNAs for nuclear retention and decay.
Collapse
Affiliation(s)
- Eliza S Lee
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Harrison W Smith
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Yifan E Wang
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Sean Sj Ihn
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | | | - Nevraj S Kejiou
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Yijing L Liang
- Centre for Computational Medicine, Hospital for Sick Children, Toronto, Canada
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
| | - Robert Y Jomphe
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Cell Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Shuye Pu
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
| | - Jack F Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, Toronto, Canada
| | | |
Collapse
|
7
|
Yamashita S, Tomita K. Cryo-EM structure of human TUT1:U6 snRNA complex. Nucleic Acids Res 2025; 53:gkae1314. [PMID: 39831302 PMCID: PMC11734702 DOI: 10.1093/nar/gkae1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/14/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025] Open
Abstract
U6 snRNA (small nuclear ribonucleic acid) is a ribozyme that catalyzes pre-messenger RNA (pre-mRNA) splicing and undergoes epitranscriptomic modifications. After transcription, the 3'-end of U6 snRNA is oligo-uridylylated by the multi-domain terminal uridylyltransferase (TUTase), TUT1. The 3'- oligo-uridylylated tail of U6 snRNA is crucial for U4/U6 di-snRNP (small nuclear ribonucleoprotein) formation and pre-mRNA splicing. Here, we present the cryo-electron microscopy structure of the human TUT1:U6 snRNA complex. The AUA-rich motif between the 5'-short stem-loop and the telestem of U6 snRNA is clamped by the N-terminal zinc finger (ZF)-RNA recognition motif and the catalytic Palm of TUT1, and the telestem is gripped by the N-terminal ZF and the Fingers, positioning the 3'-end of the telestem in the catalytic pocket. The internal stem-loop in the 3'-stem-loop of U6 snRNA is anchored by the C-terminal kinase-associated 1 domain, preventing U6 snRNA from dislodging on the TUT1 surface during oligo-uridylylation. TUT1 recognizes the sequence and structural features of U6 snRNA, and holds the entire U6 snRNA body using multiple domains to ensure oligo-uridylylation. This highlights the specificity of TUT1 as a U6 snRNA-targeting TUTase.
Collapse
Affiliation(s)
- Seisuke Yamashita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
8
|
Parker MT, Fica SM, Simpson GG. RNA splicing: a split consensus reveals two major 5' splice site classes. Open Biol 2025; 15:240293. [PMID: 39809319 PMCID: PMC11732430 DOI: 10.1098/rsob.240293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
The established consensus sequence for human 5' splice sites masks the presence of two major splice site classes defined by preferential base-pairing potentials with either U5 snRNA loop 1 or the U6 snRNA ACAGA box. The two 5' splice site classes are separable in genome sequences, sensitized by specific genotypes and associated with splicing complexity. The two classes reflect the commitment to 5' splice site usage occurring primarily during 5' splice site transfer to U6 snRNA. Separating the human 5' splice site consensus into its two major constituents can help us understand fundamental features of eukaryote genome architecture and splicing mechanisms and inform treatment design for diseases caused by genetic variation affecting splicing.
Collapse
|
9
|
Barone S, Cerchia C, Summa V, Brindisi M. Methyl-Transferase-Like Protein 16 (METTL16): The Intriguing Journey of a Key Epitranscriptomic Player Becoming an Emerging Biological Target. J Med Chem 2024; 67:14786-14806. [PMID: 39150226 DOI: 10.1021/acs.jmedchem.4c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Key epitranscriptomic players have been increasingly characterized for their structural features and their involvement in several diseases. Accordingly, the design and synthesis of novel epitranscriptomic modulators have started opening a glimmer for drug discovery. m6A is a reversible modification occurring on a specific site and is catalyzed by three sets of proteins responsible for opposite functions. Writers (e.g., methyl-transferase-like protein (METTL) 3/METTL14 complex and METTL16) introduce the methyl group on adenosine N-6, by transferring the methyl group from the methyl donor S-adenosyl-methionine (SAM) to the substrate. Despite the rapidly advancing drug discovery progress on METTL3/METTL14, the METTL16 m6A writer has been marginally explored so far. We herein provide the first comprehensive overview of structural and biological features of METTL16, highlighting the state of the art in the field of its biological and structural characterization. We also showcase initial efforts in the identification of structural templates and preliminary structure-activity relationships for METTL16 modulators.
Collapse
Affiliation(s)
- Simona Barone
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Carmen Cerchia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Margherita Brindisi
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
10
|
Miyokawa R, Sasaki E. The role of FIONA1 in alternative splicing and its effects on flowering regulation in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 243:2055-2060. [PMID: 39056273 DOI: 10.1111/nph.19995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Affiliation(s)
- Ryo Miyokawa
- Faculty of Science, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Eriko Sasaki
- Faculty of Science, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
11
|
Shen A, Hencel K, Parker M, Scott R, Skukan R, Adesina A, Metheringham C, Miska E, Nam Y, Haerty W, Simpson G, Akay A. U6 snRNA m6A modification is required for accurate and efficient splicing of C. elegans and human pre-mRNAs. Nucleic Acids Res 2024; 52:9139-9160. [PMID: 38808663 PMCID: PMC11347140 DOI: 10.1093/nar/gkae447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024] Open
Abstract
pre-mRNA splicing is a critical feature of eukaryotic gene expression. Both cis- and trans-splicing rely on accurately recognising splice site sequences by spliceosomal U snRNAs and associated proteins. Spliceosomal snRNAs carry multiple RNA modifications with the potential to affect different stages of pre-mRNA splicing. Here, we show that the conserved U6 snRNA m6A methyltransferase METT-10 is required for accurate and efficient cis- and trans-splicing of C. elegans pre-mRNAs. The absence of METT-10 in C. elegans and METTL16 in humans primarily leads to alternative splicing at 5' splice sites with an adenosine at +4 position. In addition, METT-10 is required for splicing of weak 3' cis- and trans-splice sites. We identified a significant overlap between METT-10 and the conserved splicing factor SNRNP27K in regulating 5' splice sites with +4A. Finally, we show that editing endogenous 5' splice site +4A positions to +4U restores splicing to wild-type positions in a mett-10 mutant background, supporting a direct role for U6 snRNA m6A modification in 5' splice site recognition. We conclude that the U6 snRNA m6A modification is important for accurate and efficient pre-mRNA splicing.
Collapse
Affiliation(s)
- Aykut Shen
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| | - Katarzyna Hencel
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| | - Matthew T Parker
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Robyn Scott
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Roberta Skukan
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| | | | | | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK
| | - Yunsun Nam
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wilfried Haerty
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Gordon G Simpson
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
- Cell & Molecular Sciences, James Hutton Institute, Invergowrie, DD2 5DA, UK
| | - Alper Akay
- School of Biological Sciences, University of East Anglia, NR4 7TJ Norwich, UK
| |
Collapse
|
12
|
He J, Hao F, Song S, Zhang J, Zhou H, Zhang J, Li Y. METTL Family in Healthy and Disease. MOLECULAR BIOMEDICINE 2024; 5:33. [PMID: 39155349 PMCID: PMC11330956 DOI: 10.1186/s43556-024-00194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024] Open
Abstract
Transcription, RNA splicing, RNA translation, and post-translational protein modification are fundamental processes of gene expression. Epigenetic modifications, such as DNA methylation, RNA modifications, and protein modifications, play a crucial role in regulating gene expression. The methyltransferase-like protein (METTL) family, a constituent of the 7-β-strand (7BS) methyltransferase subfamily, is broadly distributed across the cell nucleus, cytoplasm, and mitochondria. Members of the METTL family, through their S-adenosyl methionine (SAM) binding domain, can transfer methyl groups to DNA, RNA, or proteins, thereby impacting processes such as DNA replication, transcription, and mRNA translation, to participate in the maintenance of normal function or promote disease development. This review primarily examines the involvement of the METTL family in normal cell differentiation, the maintenance of mitochondrial function, and its association with tumor formation, the nervous system, and cardiovascular diseases. Notably, the METTL family is intricately linked to cellular translation, particularly in its regulation of translation factors. Members represent important molecules in disease development processes and are associated with patient immunity and tolerance to radiotherapy and chemotherapy. Moreover, future research directions could include the development of drugs or antibodies targeting its structural domains, and utilizing nanomaterials to carry miRNA corresponding to METTL family mRNA. Additionally, the precise mechanisms underlying the interactions between the METTL family and cellular translation factors remain to be clarified.
Collapse
Affiliation(s)
- Jiejie He
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Fengchen Hao
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Shiqi Song
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Junli Zhang
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Hongyu Zhou
- Department of Radiology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Jun Zhang
- Department of Urology Surgery, Affiliated Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai Province, China.
| | - Yan Li
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai Province, China.
| |
Collapse
|
13
|
Mehravar M, Wong JJL. Interplay between N 6-adenosine RNA methylation and mRNA splicing. Curr Opin Genet Dev 2024; 87:102211. [PMID: 38838495 DOI: 10.1016/j.gde.2024.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant modification to mRNAs. Loss-of-function studies of main m6A regulators have indicated the role of m6A in pre-mRNA splicing. Recent studies have reported the role of splicing in preventing m6A deposition. Understanding the interplay between m6A and mRNA splicing holds the potential to clarify the significance of these fundamental molecular mechanisms in cell development and function, thereby shedding light on their involvement in the pathogenesis of myriad diseases.
Collapse
Affiliation(s)
- Majid Mehravar
- Epigenetics and RNA Biology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Justin J-L Wong
- Epigenetics and RNA Biology Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia.
| |
Collapse
|
14
|
Becker MA, Meiser N, Schmidt-Dengler M, Richter C, Wacker A, Schwalbe H, Hengesbach M. m 6A Methylation of Transcription Leader Sequence of SARS-CoV-2 Impacts Discontinuous Transcription of Subgenomic mRNAs. Chemistry 2024; 30:e202401897. [PMID: 38785102 DOI: 10.1002/chem.202401897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The SARS-CoV-2 genome has been shown to be m6A methylated at several positions in vivo. Strikingly, a DRACH motif, the recognition motif for adenosine methylation, resides in the core of the transcriptional regulatory leader sequence (TRS-L) at position A74, which is highly conserved and essential for viral discontinuous transcription. Methylation at position A74 correlates with viral pathogenicity. Discontinuous transcription produces a set of subgenomic mRNAs that function as templates for translation of all structural and accessory proteins. A74 is base-paired in the short stem-loop structure 5'SL3 that opens during discontinuous transcription to form long-range RNA-RNA interactions with nascent (-)-strand transcripts at complementary TRS-body sequences. A74 can be methylated by the human METTL3/METTL14 complex in vitro. Here, we investigate its impact on the structural stability of 5'SL3 and the long-range TRS-leader:TRS-body duplex formation necessary for synthesis of subgenomic mRNAs of all four viral structural proteins. Methylation uniformly destabilizes 5'SL3 and long-range duplexes and alters their relative equilibrium populations, suggesting that the m6A74 modification acts as a regulator for the abundance of viral structural proteins due to this destabilization.
Collapse
Affiliation(s)
- Matthias A Becker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Nathalie Meiser
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Martina Schmidt-Dengler
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Martin Hengesbach
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
15
|
Yang WQ, Ge JY, Zhang X, Zhu WY, Lin L, Shi Y, Xu B, Liu RJ. THUMPD2 catalyzes the N2-methylation of U6 snRNA of the spliceosome catalytic center and regulates pre-mRNA splicing and retinal degeneration. Nucleic Acids Res 2024; 52:3291-3309. [PMID: 38165050 PMCID: PMC11014329 DOI: 10.1093/nar/gkad1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
The mechanisms by which the relatively conserved spliceosome manages the enormously large number of splicing events that occur in humans (∼200 000 versus ∼300 in yeast) are poorly understood. Here, we show deposition of one RNA modification-N2-methylguanosine (m2G) on the G72 of U6 snRNA (the catalytic center of the spliceosome) promotes efficient pre-mRNA splicing activity in human cells. This modification was identified to be conserved among vertebrates. Further, THUMPD2 was demonstrated as the methyltransferase responsible for U6 m2G72 by explicitly recognizing the U6-specific sequences and structural elements. The knock-out of THUMPD2 eliminated U6 m2G72 and impaired the pre-mRNA splicing activity, resulting in thousands of changed alternative splicing events of endogenous pre-mRNAs in human cells. Notably, the aberrantly spliced pre-mRNA population elicited the nonsense-mediated mRNA decay pathway. We further show that THUMPD2 was associated with age-related macular degeneration and retinal function. Our study thus demonstrates how an RNA epigenetic modification of the major spliceosome regulates global pre-mRNA splicing and impacts physiology and disease.
Collapse
Affiliation(s)
- Wen-Qing Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian-Yang Ge
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaofeng Zhang
- Division of Reproduction and Genetics, The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, 230027 Hefei, China
| | - Wen-Yu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lin Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yigong Shi
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310064,Zhejiang Province, China
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
16
|
Albihlal WS, Chan WY, van Werven FJ. Budding yeast as an ideal model for elucidating the role of N 6-methyladenosine in regulating gene expression. Yeast 2024; 41:148-157. [PMID: 38238962 DOI: 10.1002/yea.3925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 02/24/2024] Open
Abstract
N6-methyladenosine (m6A) is a highly abundant and evolutionarily conserved messenger RNA (mRNA) modification. This modification is installed on RRACH motifs on mRNAs by a hetero-multimeric holoenzyme known as m6A methyltransferase complex (MTC). The m6A mark is then recognised by a group of conserved proteins known as the YTH domain family proteins which guide the mRNA for subsequent downstream processes that determine its fate. In yeast, m6A is installed on thousands of mRNAs during early meiosis by a conserved MTC and the m6A-modified mRNAs are read by the YTH domain-containing protein Mrb1/Pho92. In this review, we aim to delve into the recent advances in our understanding of the regulation and roles of m6A in yeast meiosis. We will discuss the potential functions of m6A in mRNA translation and decay, unravelling their significance in regulating gene expression. We propose that yeast serves as an exceptional model organism for the study of fundamental molecular mechanisms related to the function and regulation of m6A-modified mRNAs. The insights gained from yeast research not only expand our knowledge of mRNA modifications and their molecular roles but also offer valuable insights into the broader landscape of eukaryotic posttranscriptional regulation of gene expression.
Collapse
Affiliation(s)
- Waleed S Albihlal
- The Francis Crick Institute, Cell Fate and Gene Regulation Laboratory, London, UK
| | - Wei Yee Chan
- The Francis Crick Institute, Cell Fate and Gene Regulation Laboratory, London, UK
| | - Folkert J van Werven
- The Francis Crick Institute, Cell Fate and Gene Regulation Laboratory, London, UK
| |
Collapse
|
17
|
Yoshinaga M, Takeuchi O. Regulation of inflammatory diseases via the control of mRNA decay. Inflamm Regen 2024; 44:14. [PMID: 38491500 PMCID: PMC10941436 DOI: 10.1186/s41232-024-00326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
Inflammation orchestrates a finely balanced process crucial for microorganism elimination and tissue injury protection. A multitude of immune and non-immune cells, alongside various proinflammatory cytokines and chemokines, collectively regulate this response. Central to this regulation is post-transcriptional control, governing gene expression at the mRNA level. RNA-binding proteins such as tristetraprolin, Roquin, and the Regnase family, along with RNA modifications, intricately dictate the mRNA decay of pivotal mediators and regulators in the inflammatory response. Dysregulated activity of these factors has been implicated in numerous human inflammatory diseases, underscoring the significance of post-transcriptional regulation. The increasing focus on targeting these mechanisms presents a promising therapeutic strategy for inflammatory and autoimmune diseases. This review offers an extensive overview of post-transcriptional regulation mechanisms during inflammatory responses, delving into recent advancements, their implications in human diseases, and the strides made in therapeutic exploitation.
Collapse
Affiliation(s)
- Masanori Yoshinaga
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
18
|
Höfler S, Duss O. Interconnections between m 6A RNA modification, RNA structure, and protein-RNA complex assembly. Life Sci Alliance 2024; 7:e202302240. [PMID: 37935465 PMCID: PMC10629537 DOI: 10.26508/lsa.202302240] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
Protein-RNA complexes exist in many forms within the cell, from stable machines such as the ribosome to transient assemblies like the spliceosome. All protein-RNA assemblies rely on spatially and temporally coordinated interactions between specific proteins and RNAs to achieve a functional form. RNA folding and structure are often critical for successful protein binding and protein-RNA complex formation. RNA modifications change the chemical nature of a given RNA and often alter its folding kinetics. Both these alterations can affect how and if proteins or other RNAs can interact with the modified RNA and assemble into complexes. N6-methyladenosine (m6A) is the most common base modification on mRNAs and regulatory noncoding RNAs and has been shown to impact RNA structure and directly modulate protein-RNA interactions. In this review, focusing on the mechanisms and available quantitative information, we discuss first how the METTL3/14 m6A writer complex is specifically targeted to RNA assisted by protein-RNA and other interactions to enable site-specific and co-transcriptional RNA modification and, once introduced, how the m6A modification affects RNA folding and protein-RNA interactions.
Collapse
Affiliation(s)
- Simone Höfler
- Structural and Computational Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Olivier Duss
- Structural and Computational Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Xie J, Wang L, Lin RJ. Variations of intronic branchpoint motif: identification and functional implications in splicing and disease. Commun Biol 2023; 6:1142. [PMID: 37949953 PMCID: PMC10638238 DOI: 10.1038/s42003-023-05513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
The branchpoint (BP) motif is an essential intronic element for spliceosomal pre-mRNA splicing. In mammals, its sequence composition, distance to the downstream exon, and number of BPs per 3´ splice site are highly variable, unlike the GT/AG dinucleotides at the intron ends. These variations appear to provide evolutionary advantages for fostering alternative splicing, satisfying more diverse cellular contexts, and promoting resilience to genetic changes, thus contributing to an extra layer of complexity for gene regulation. Importantly, variants in the BP motif itself or in genes encoding BP-interacting factors cause human genetic diseases or cancers, highlighting the critical function of BP motif and the need to precisely identify functional BPs for faithful interpretation of their roles in splicing. In this perspective, we will succinctly summarize the major findings related to BP motif variations, discuss the relevant issues/challenges, and provide our insights.
Collapse
Affiliation(s)
- Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| | - Ren-Jang Lin
- Center for RNA Biology & Therapeutics, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
20
|
Hunter OV, Ruiz JC, Flaherty JN, Conrad NK. Functional analysis of 3'-UTR hairpins supports a two-tiered model for posttranscriptional regulation of MAT2A by METTL16. RNA (NEW YORK, N.Y.) 2023; 29:1725-1737. [PMID: 37567786 PMCID: PMC10578476 DOI: 10.1261/rna.079695.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
S-adenosylmethionine (SAM) is the methyl donor for nearly all cellular methylation events, so cells need to carefully control SAM levels. MAT2A encodes the only SAM synthetase expressed in the majority of human cells, and its 3'-UTR has six conserved regulatory hairpins (hp1-6) that can be methylated by the N6-methyladenosine methyltransferase METTL16. Hp1 begins 8 nt from the stop codon, whereas hp2-6 are clustered further downstream (∼800 nt). These hairpins have been proposed to regulate MAT2A mRNA levels in response to intracellular SAM levels by regulating intron detention of the last intron of MAT2A and by modulating the stability of the fully spliced mRNA. However, a dissection of these two posttranscriptional mechanisms has not been previously reported. Using a modular reporter system, we show that hp1 functions primarily when the detained intron is included in the reporter and when that intron has a suboptimal polypyrimidine tract. In contrast, the hp2-6 cluster modulates mRNA stability independent of the detained intron, although hp1 may make a minor contribution to the regulation of decay as well. Taken with previously published reports, these data support a two-tiered model for MAT2A posttranscriptional regulation by METTL16 through its interactions with hp1 and hp2-6. In the upstream tier, hp1 and METTL16 control MAT2A intron detention, whereas the second tier involves METTL16-dependent methylation of hp2-6 to control MAT2A mRNA stability. Thus, cells use a similar set of molecular factors to achieve considerable complexity in the posttranscriptional regulation of SAM homeostasis.
Collapse
Affiliation(s)
- Olga V Hunter
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Julio C Ruiz
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Juliana N Flaherty
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Nicholas K Conrad
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
21
|
Parker MT, Fica SM, Barton GJ, Simpson GG. Inter-species association mapping links splice site evolution to METTL16 and SNRNP27K. eLife 2023; 12:e91997. [PMID: 37787376 PMCID: PMC10581693 DOI: 10.7554/elife.91997] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
Eukaryotic genes are interrupted by introns that are removed from transcribed RNAs by splicing. Patterns of splicing complexity differ between species, but it is unclear how these differences arise. We used inter-species association mapping with Saccharomycotina species to correlate splicing signal phenotypes with the presence or absence of splicing factors. Here, we show that variation in 5' splice site sequence preferences correlate with the presence of the U6 snRNA N6-methyladenosine methyltransferase METTL16 and the splicing factor SNRNP27K. The greatest variation in 5' splice site sequence occurred at the +4 position and involved a preference switch between adenosine and uridine. Loss of METTL16 and SNRNP27K orthologs, or a single SNRNP27K methionine residue, was associated with a preference for +4 U. These findings are consistent with splicing analyses of mutants defective in either METTL16 or SNRNP27K orthologs and models derived from spliceosome structures, demonstrating that inter-species association mapping is a powerful orthogonal approach to molecular studies. We identified variation between species in the occurrence of two major classes of 5' splice sites, defined by distinct interaction potentials with U5 and U6 snRNAs, that correlates with intron number. We conclude that variation in concerted processes of 5' splice site selection by U6 snRNA is associated with evolutionary changes in splicing signal phenotypes.
Collapse
Affiliation(s)
- Matthew T Parker
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Sebastian M Fica
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | | | - Gordon G Simpson
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
- Cell & Molecular Sciences, James Hutton InstituteInvergowrieUnited Kingdom
| |
Collapse
|
22
|
Porat J, Slat VA, Rader SD, Bayfield MA. The fission yeast methyl phosphate capping enzyme Bmc1 guides 2'-O-methylation of the U6 snRNA. Nucleic Acids Res 2023; 51:8805-8819. [PMID: 37403782 PMCID: PMC10484740 DOI: 10.1093/nar/gkad563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
Splicing requires the tight coordination of dynamic spliceosomal RNAs and proteins. U6 is the only spliceosomal RNA transcribed by RNA Polymerase III and undergoes an extensive maturation process. In humans and fission yeast, this includes addition of a 5' γ-monomethyl phosphate cap by members of the Bin3/MePCE family as well as snoRNA guided 2'-O-methylation. Previously, we have shown that the Bin3/MePCE homolog Bmc1 is recruited to the S. pombe telomerase holoenzyme by the LARP7 family protein Pof8, where it acts in a catalytic-independent manner to protect the telomerase RNA and facilitate holoenzyme assembly. Here, we show that Bmc1 and Pof8 are required for the formation of a distinct U6 snRNP that promotes 2'-O-methylation of U6, and identify a non-canonical snoRNA that guides this methylation. We also show that the 5' γ-monomethyl phosphate capping activity of Bmc1 is not required for its role in promoting snoRNA guided 2'-O-methylation, and that this role relies on different regions of Pof8 from those required for Pof8 function in telomerase. Our results are consistent with a novel role for Bmc1/MePCE family members in stimulating 2'-O-methylation and a more general role for Bmc1 and Pof8 in guiding noncoding RNP assembly beyond the telomerase RNP.
Collapse
Affiliation(s)
| | - Viktor A Slat
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Stephen D Rader
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, Canada
| | | |
Collapse
|
23
|
Breger K, Kunkler CN, O'Leary NJ, Hulewicz JP, Brown JA. Ghost authors revealed: The structure and function of human N 6 -methyladenosine RNA methyltransferases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1810. [PMID: 37674370 PMCID: PMC10915109 DOI: 10.1002/wrna.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 09/08/2023]
Abstract
Despite the discovery of modified nucleic acids nearly 75 years ago, their biological functions are still being elucidated. N6 -methyladenosine (m6 A) is the most abundant modification in eukaryotic messenger RNA (mRNA) and has also been detected in non-coding RNAs, including long non-coding RNA, ribosomal RNA, and small nuclear RNA. In general, m6 A marks can alter RNA secondary structure and initiate unique RNA-protein interactions that can alter splicing, mRNA turnover, and translation, just to name a few. Although m6 A marks in human RNAs have been known to exist since 1974, the structures and functions of methyltransferases responsible for writing m6 A marks have been established only recently. Thus far, there are four confirmed human methyltransferases that catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to the N6 position of adenosine, producing m6 A: methyltransferase-like protein (METTL) 3/METTL14 complex, METTL16, METTL5, and zinc-finger CCHC-domain-containing protein 4. Though the methyltransferases have unique RNA targets, all human m6 A RNA methyltransferases contain a Rossmann fold with a conserved SAM-binding pocket, suggesting that they utilize a similar catalytic mechanism for methyl transfer. For each of the human m6 A RNA methyltransferases, we present the biological functions and links to human disease, RNA targets, catalytic and kinetic mechanisms, and macromolecular structures. We also discuss m6 A marks in human viruses and parasites, assigning m6 A marks in the transcriptome to specific methyltransferases, small molecules targeting m6 A methyltransferases, and the enzymes responsible for hypermodified m6 A marks and their biological functions in humans. Understanding m6 A methyltransferases is a critical steppingstone toward establishing the m6 A epitranscriptome and more broadly the RNome. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kurtis Breger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Charlotte N Kunkler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Nathan J O'Leary
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jacob P Hulewicz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
24
|
Lin W, Mo CQ, Kong LJ, Chen L, Wu KL, Wu X. FTO-mediated epigenetic upregulation of LINC01559 confers cell resistance to docetaxel in breast carcinoma by suppressing miR-1343-3p. Kaohsiung J Med Sci 2023; 39:873-882. [PMID: 37584416 DOI: 10.1002/kjm2.12728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/27/2023] [Accepted: 06/04/2023] [Indexed: 08/17/2023] Open
Abstract
This study was to explore the regulatory effect of long non-coding RNA LINC01559 on Docetaxel resistance in breast carcinoma (BCa) and its underlying mechanism. In the present study, we found that LINC01559 expression was elevated and LINC01559 overexpression facilitated docetaxel resistance in BCa cells. Moreover, it was revealed that the upregulation of LINC01559 in BCa cells was induced by FTO-mediated demethylation in an m6A-YTHDF2-dependent manner. Additionally, Dual-luciferase reporter assay confirmed the binding ability between LINC01559 and miR-1343-3p, and Pearson correlation analysis showed a negative correlation between them. Particularly, miR-1343-3p inhibition partly abolished the suppression on docetaxel resistance in BCa cells caused by LINC01559 knockdown. To sum up, FTO-mediated epigenetic upregulation of LINC01559 promoted cell resistance to Docetaxel in BCa by negatively regulating miR-1343-3p.
Collapse
Affiliation(s)
- Wei Lin
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Cai-Qin Mo
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ling-Jun Kong
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Kun-Lin Wu
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xian Wu
- Department of Thyroid and Breast Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
25
|
Willet AH, Ren L, Turner LA, Gould KL. Isolation of mutant alleles of the U6 snRNA m 6 A methyltransferase Mtl16 and characterization of their genetic interactions with splicing mutants in Schizosaccharomyces pombe. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000948. [PMID: 37637271 PMCID: PMC10457676 DOI: 10.17912/micropub.biology.000948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Schizosaccharomyces pombe Dim1 is a conserved essential component of the U4/U6.U5 tri-snRNP complex essential for pre-mRNA splicing. In a synthetic lethal screen with the temperature-sensitive dim1-35 mutant, we isolated multiple alleles of non-essential mtl16 that encodes the U6 snRNA m 6 A methyltransferase. Further genetic analysis revealed strong and specific negative genetic interactions between mtl16 and a mutation in the Dim1 binding partner, Prp31, and between dim1-35 and a mutation in the Prp31 binding partner, Prp6. Our work provides additional tools to study pre-mRNA splicing in S. pombe and biological confirmation of the importance of the Prp6-Prp31-Dim1-U6 snRNA interactions for pre-mRNA splicing.
Collapse
Affiliation(s)
- Alaina H. Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN US
| | - Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN US
| | - Lesley A. Turner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN US
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN US
| |
Collapse
|
26
|
Ju J, Aoyama T, Yashiro Y, Yamashita S, Kuroyanagi H, Tomita K. Structure of the Caenorhabditis elegans m6A methyltransferase METT10 that regulates SAM homeostasis. Nucleic Acids Res 2023; 51:2434-2446. [PMID: 36794723 PMCID: PMC10018337 DOI: 10.1093/nar/gkad081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
In Caenorhabditis elegans, the N6-methyladenosine (m6A) modification by METT10, at the 3'-splice sites in S-adenosyl-l-methionine (SAM) synthetase (sams) precursor mRNA (pre-mRNA), inhibits sams pre-mRNA splicing, promotes alternative splicing coupled with nonsense-mediated decay of the pre-mRNAs, and thereby maintains the cellular SAM level. Here, we present structural and functional analyses of C. elegans METT10. The structure of the N-terminal methyltransferase domain of METT10 is homologous to that of human METTL16, which installs the m6A modification in the 3'-UTR hairpins of methionine adenosyltransferase (MAT2A) pre-mRNA and regulates the MAT2A pre-mRNA splicing/stability and SAM homeostasis. Our biochemical analysis suggested that C. elegans METT10 recognizes the specific structural features of RNA surrounding the 3'-splice sites of sams pre-mRNAs, and shares a similar substrate RNA recognition mechanism with human METTL16. C. elegans METT10 also possesses a previously unrecognized functional C-terminal RNA-binding domain, kinase associated 1 (KA-1), which corresponds to the vertebrate-conserved region (VCR) of human METTL16. As in human METTL16, the KA-1 domain of C. elegans METT10 facilitates the m6A modification of the 3'-splice sites of sams pre-mRNAs. These results suggest the well-conserved mechanisms for the m6A modification of substrate RNAs between Homo sapiens and C. elegans, despite their different regulation mechanisms for SAM homeostasis.
Collapse
Affiliation(s)
- Jue Ju
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Tomohiko Aoyama
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Yuka Yashiro
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Seisuke Yamashita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Hidehito Kuroyanagi
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa 903-0125, Japan
| | - Kozo Tomita
- To whom correspondence should be addressed. Tel: +81 471 36 3611; Fax: +81 471 36 3611;
| |
Collapse
|
27
|
Sendinc E, Shi Y. RNA m6A methylation across the transcriptome. Mol Cell 2023; 83:428-441. [PMID: 36736310 DOI: 10.1016/j.molcel.2023.01.006] [Citation(s) in RCA: 174] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/05/2023]
Abstract
Since the early days of foundational studies of nucleic acids, many chemical moieties have been discovered to decorate RNA and DNA in diverse organisms. In mammalian cells, one of these chemical modifications, N6-methyl adenosine (m6A), is unique in a way that it is highly abundant not only on RNA polymerase II (RNAPII) transcribed, protein-coding transcripts but also on non-coding RNAs, such as ribosomal RNAs and snRNAs, mediated by distinct, evolutionarily conserved enzymes. Here, we review RNA m6A modification in the light of the recent appreciation of nuclear roles for m6A in regulating chromatin states and gene expression, as well as the recent discoveries of the evolutionarily conserved methyltransferases, which catalyze methylation of adenosine on diverse sets of RNAs. Considering that the substrates of these enzymes are involved in many important biological processes, this modification warrants further research to understand the molecular mechanisms and functions of m6A in health and disease.
Collapse
Affiliation(s)
- Erdem Sendinc
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yang Shi
- Ludwig Institute for Cancer Research, University of Oxford, Roosevelt Dr, Headington, Oxford OX3 7DQ, UK.
| |
Collapse
|
28
|
Chuong NN, Doan PPT, Wang L, Kim JH, Kim J. Current Insights into m 6A RNA Methylation and Its Emerging Role in Plant Circadian Clock. PLANTS (BASEL, SWITZERLAND) 2023; 12:624. [PMID: 36771711 PMCID: PMC9920239 DOI: 10.3390/plants12030624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
N6-adenosine methylation (m6A) is a prevalent form of RNA modification found in the expressed transcripts of many eukaryotic organisms. Moreover, m6A methylation is a dynamic and reversible process that requires the functioning of various proteins and their complexes that are evolutionarily conserved between species and include methylases, demethylases, and m6A-binding proteins. Over the past decade, the m6A methylation process in plants has been extensively studied and the understanding thereof has drastically increased, although the regulatory function of some components relies on information derived from animal systems. Notably, m6A has been found to be involved in a variety of factors in RNA processing, such as RNA stability, alternative polyadenylation, and miRNA regulation. The circadian clock in plants is a molecular timekeeping system that regulates the daily and rhythmic activity of many cellular and physiological processes in response to environmental changes such as the day-night cycle. The circadian clock regulates the rhythmic expression of genes through post-transcriptional regulation of mRNA. Recently, m6A methylation has emerged as an additional layer of post-transcriptional regulation that is necessary for the proper functioning of the plant circadian clock. In this review, we have compiled and summarized recent insights into the molecular mechanisms behind m6A modification and its various roles in the regulation of RNA. We discuss the potential role of m6A modification in regulating the plant circadian clock and outline potential future directions for the study of mRNA methylation in plants. A deeper understanding of the mechanism of m6A RNA regulation and its role in plant circadian clocks will contribute to a greater understanding of the plant circadian clock.
Collapse
Affiliation(s)
- Nguyen Nguyen Chuong
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 690756, Republic of Korea
| | - Phan Phuong Thao Doan
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 690756, Republic of Korea
| | - Lanshuo Wang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 690756, Republic of Korea
| | - Jin Hee Kim
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 690756, Republic of Korea
| | - Jeongsik Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 690756, Republic of Korea
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 690756, Republic of Korea
- Faculty of Science Education, Jeju National University, Jeju 690756, Republic of Korea
| |
Collapse
|
29
|
Wong DK, Grisdale CJ, Slat VA, Rader SD, Fast NM. The evolution of pre-mRNA splicing and its machinery revealed by reduced extremophilic red algae. J Eukaryot Microbiol 2023; 70:e12927. [PMID: 35662328 DOI: 10.1111/jeu.12927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Cyanidiales are a group of mostly thermophilic and acidophilic red algae that thrive near volcanic vents. Despite their phylogenetic relationship, the reduced genomes of Cyanidioschyzon merolae and Galdieria sulphuraria are strikingly different with respect to pre-mRNA splicing, a ubiquitous eukaryotic feature. Introns are rare and spliceosomal machinery is extremely reduced in C. merolae, in contrast to G. sulphuraria. Previous studies also revealed divergent spliceosomes in the mesophilic red alga Porphyridium purpureum and the red algal derived plastid of Guillardia theta (Cryptophyta), along with unusually high levels of unspliced transcripts. To further examine the evolution of splicing in red algae, we compared C. merolae and G. sulphuraria, investigating splicing levels, intron position, intron sequence features, and the composition of the spliceosome. In addition to identifying 11 additional introns in C. merolae, our transcriptomic analysis also revealed typical eukaryotic splicing in G. sulphuraria, whereas most transcripts in C. merolae remain unspliced. The distribution of intron positions within their host genes was examined to provide insight into patterns of intron loss in red algae. We observed increasing variability of 5' splice sites and branch donor regions with increasing intron richness. We also found these relationships to be connected to reductions in and losses of corresponding parts of the spliceosome. Our findings highlight patterns of intron and spliceosome evolution in related red algae under the pressures of genome reduction.
Collapse
Affiliation(s)
- Donald K Wong
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Cameron J Grisdale
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | - Viktor A Slat
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Stephen D Rader
- Department of Chemistry, University of Northern British Columbia, Prince George, BC, Canada
| | - Naomi M Fast
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Ni WJ, Lu H, Ma NN, Hou BB, Zeng J, Zhou H, Shao W, Meng XM. RNA N 6 -methyladenosine modifications and potential targeted therapeutic strategies in kidney disease. Br J Pharmacol 2023; 180:5-24. [PMID: 36196023 DOI: 10.1111/bph.15968] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications have received increasing attention and have been shown to be extensively involved in kidney development and disease progression. Among them, the most common RNA modification, N6 -methyladenosine (m6 A), has been shown to dynamically and reversibly exert its functions in multiple ways, including splicing, export, decay and translation initiation efficiency to regulate mRNA fate. Moreover, m6 A has also been reported to exert biological effects by destabilizing base pairing to modulate various functions of RNAs. Most importantly, an increasing number of kidney diseases, such as renal cell carcinoma, acute kidney injury and chronic kidney disease, have been found to be associated with aberrant m6 A patterns. In this review, we comprehensively review the critical roles of m6 A in kidney diseases and discuss the possibilities and relevance of m6 A-targeted epigenetic therapy, with an integrated comprehensive description of the detailed alterations in specific loci that contribute to cellular processes that are associated with kidney diseases.
Collapse
Affiliation(s)
- Wei-Jian Ni
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China.,Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hao Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Nan-Nan Ma
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Bing-Bing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jing Zeng
- Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
31
|
Abstract
Methyltransferase-like protein 16 (METTL16) is one of four catalytically active, S-adenosylmethionine (SAM)-dependent m6A RNA methyltransferases in humans. Well-known methylation targets of METTL16 are U6 small nuclear RNA (U6 snRNA) and the MAT2A mRNA hairpins; however, METTL16 binds to other RNAs, including the 3' triple helix of the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). Herein, we investigated the kinetic mechanism and biochemical properties of METTL16. METTL16 is a monomer in complex with either the MALAT1 triple helix or U6 snRNA and binds to these RNAs with respective dissociation constants of 31 nM and 18 nM, whereas binding to the methylated U6 snRNA product is 1.1 μM. The MALAT1 triple helix, on the other hand, is not methylated by METTL16 under in vitro conditions. Using the U6 snRNA to study methylation steps, preincubation and isotope partitioning assays indicated an ordered-sequential mechanism, whereby METTL16 binds U6 snRNA before SAM. The apparent dissociation constant for the METTL16·U6 snRNA·SAM ternary complex is 126 μM. Steady-state kinetic assays established a kcat of 0.07 min-1, and single-turnover assays established a kchem of 0.56 min-1. Furthermore, the methyltransferase domain of METTL16 methylated U6 snRNA with an apparent dissociation constant of 736 μM and a kchem of 0.42 min-1, suggesting that the missing vertebrate conserved regions weaken the ternary complex but do not induce any rate-limiting conformational rearrangements of the U6 snRNA. This study helps us to better understand the catalytic activity of METTL16 in the context of its biological functions.
Collapse
|
32
|
Mermoud JE. The Role of the m 6A RNA Methyltransferase METTL16 in Gene Expression and SAM Homeostasis. Genes (Basel) 2022; 13:genes13122312. [PMID: 36553579 PMCID: PMC9778287 DOI: 10.3390/genes13122312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The RNA methylation of adenosine at the N6-position (m6A) has attracted significant attention because of its abundance and dynamic nature. It accounts for more than 80% of all RNA modifications present in bacteria and eukaryotes and regulates crucial aspects of RNA biology and gene expression in numerous biological processes. The majority of m6A found in mammals is deposited by a multicomponent complex formed between methyltransferase-like (METTL) proteins METTL3 and METTL14. In the last few years, the list of m6A writers has grown, resulting in an expansion of our understanding of the importance of m6A and the methylation machinery. The characterization of the less familiar family member METTL16 has uncovered a new function of the m6A methylation apparatus, namely the fine-tuning of the cellular levels of the major methyl donor S-adenosylmethionine (SAM). METTL16 achieves this by adjusting the levels of the enzyme that synthesizes SAM in direct response to fluctuations in the SAM availability. This review summarizes recent progress made in understanding how METTL16 can sense and relay metabolic information and considers the wider implications. A brief survey highlights similarities and differences between METTL16 and the better-known METTL3/14 complex, followed by a discussion of the target specificity, modes of action and potential roles of METTL16.
Collapse
Affiliation(s)
- Jacqueline E Mermoud
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
33
|
Parker MT, Soanes BK, Kusakina J, Larrieu A, Knop K, Joy N, Breidenbach F, Sherwood AV, Barton GJ, Fica SM, Davies BH, Simpson GG. m 6A modification of U6 snRNA modulates usage of two major classes of pre-mRNA 5' splice site. eLife 2022; 11:e78808. [PMID: 36409063 PMCID: PMC9803359 DOI: 10.7554/elife.78808] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Alternative splicing of messenger RNAs is associated with the evolution of developmentally complex eukaryotes. Splicing is mediated by the spliceosome, and docking of the pre-mRNA 5' splice site into the spliceosome active site depends upon pairing with the conserved ACAGA sequence of U6 snRNA. In some species, including humans, the central adenosine of the ACAGA box is modified by N6 methylation, but the role of this m6A modification is poorly understood. Here, we show that m6A modified U6 snRNA determines the accuracy and efficiency of splicing. We reveal that the conserved methyltransferase, FIONA1, is required for Arabidopsis U6 snRNA m6A modification. Arabidopsis fio1 mutants show disrupted patterns of splicing that can be explained by the sequence composition of 5' splice sites and cooperative roles for U5 and U6 snRNA in splice site selection. U6 snRNA m6A influences 3' splice site usage. We generalise these findings to reveal two major classes of 5' splice site in diverse eukaryotes, which display anti-correlated interaction potential with U5 snRNA loop 1 and the U6 snRNA ACAGA box. We conclude that U6 snRNA m6A modification contributes to the selection of degenerate 5' splice sites crucial to alternative splicing.
Collapse
Affiliation(s)
- Matthew T Parker
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Beth K Soanes
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Jelena Kusakina
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Antoine Larrieu
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Katarzyna Knop
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Nisha Joy
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Friedrich Breidenbach
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld UniversityBielefeldGermany
| | - Anna V Sherwood
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | | | - Sebastian M Fica
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Brendan H Davies
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of LeedsLeedsUnited Kingdom
| | - Gordon G Simpson
- School of Life Sciences, University of DundeeDundeeUnited Kingdom
- Cell & Molecular Sciences, James Hutton InstituteInvergowrieUnited Kingdom
| |
Collapse
|
34
|
Zhang C, Zhang W, Shui Y, Li P, Tian Z, Duan S, Wei Q. Implications of m6A-associated snRNAs in the prognosis and immunotherapeutic responses of hepatocellular carcinoma. Front Immunol 2022; 13:1001506. [PMID: 36405741 PMCID: PMC9667552 DOI: 10.3389/fimmu.2022.1001506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most prevalent pathological type of liver cancer worldwide with high mortality and poor prognosis. N6-methyladenosine (m6A) can modify RNAs such as mRNA, lncRNA, miRNA, and tRNA, thereby playing a critical role in the pathogenesis of HCC. However, the role of m6A-associated small nuclear RNA (snRNA) in the prognostic value and immunotherapeutic response in HCC remains unclear. Materials and methods In this study, snRNA expression data, gene mutation data, and clinical data of HCC patients were acquired from The Cancer Genome Atlas (TCGA) database. We used the least absolute shrinkage and selection operator (LASSO) Cox regression analysis to identify significant prognostic m6A-associated snRNAs, and then developed a multivariate Cox model based on the selected snRNAs. HCC patients were split into low- and high-risk groups based on the median risk score. We subsequently performed Kaplan-Meier curve analysis to estimate overall survival (OS) by clinicopathological characteristics and tumor mutational burden (TMB) status in low- and high-risk HCC patients. Finally, we compared the immunotherapeutic response as represented by tumor immune dysfunction and exclusion (TIDE) scores between the two risk groups. Results Eight m6A-associated snRNAs were selected as independent predictors to develop the risk model. Our results revealed that the OS of HCC patients in the high-risk group was significantly worse than that in the low-risk group on clinicopathologic characteristics, including age (≤65 years and >65 years), gender (male), grade (G I-II and G III-IV) and TNM staging (Stage I-II and Stage III-IV). In addition, the OS of low-TMB and low-risk group was longer than that of high-TMB and high-risk group. The TIDE score indicated that HCC patients in the high-risk group were more susceptible to immunotherapy. Conclusion Our study suggests that m6A-associated snRNAs may be useful biomarkers for the prognosis of HCC and that m6A-associated snRNA models can predict the effect of immunotherapy in HCC patients.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wangjian Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yongjie Shui
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ping Li
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhifeng Tian
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China
- *Correspondence: Qichun Wei, ; Shiwei Duan,
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Qichun Wei, ; Shiwei Duan,
| |
Collapse
|
35
|
Yoshinaga M, Han K, Morgens DW, Horii T, Kobayashi R, Tsuruyama T, Hia F, Yasukura S, Kajiya A, Cai T, Cruz PHC, Vandenbon A, Suzuki Y, Kawahara Y, Hatada I, Bassik MC, Takeuchi O. The N 6-methyladenosine methyltransferase METTL16 enables erythropoiesis through safeguarding genome integrity. Nat Commun 2022; 13:6435. [PMID: 36307435 PMCID: PMC9616860 DOI: 10.1038/s41467-022-34078-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/12/2022] [Indexed: 02/07/2023] Open
Abstract
During erythroid differentiation, the maintenance of genome integrity is key for the success of multiple rounds of cell division. However, molecular mechanisms coordinating the expression of DNA repair machinery in erythroid progenitors are poorly understood. Here, we discover that an RNA N6-methyladenosine (m6A) methyltransferase, METTL16, plays an essential role in proper erythropoiesis by safeguarding genome integrity via the control of DNA-repair-related genes. METTL16-deficient erythroblasts exhibit defective differentiation capacity, DNA damage and activation of the apoptotic program. Mechanistically, METTL16 controls m6A deposition at the structured motifs in DNA-repair-related transcripts including Brca2 and Fancm mRNAs, thereby upregulating their expression. Furthermore, a pairwise CRISPRi screen revealed that the MTR4-nuclear RNA exosome complex is involved in the regulation of METTL16 substrate mRNAs in erythroblasts. Collectively, our study uncovers that METTL16 and the MTR4-nuclear RNA exosome act as essential regulatory machinery to maintain genome integrity and erythropoiesis.
Collapse
Affiliation(s)
- Masanori Yoshinaga
- grid.258799.80000 0004 0372 2033Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Kyuho Han
- grid.168010.e0000000419368956Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - David W. Morgens
- grid.168010.e0000000419368956Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Takuro Horii
- grid.256642.10000 0000 9269 4097Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, 371-8512 Japan
| | - Ryosuke Kobayashi
- grid.256642.10000 0000 9269 4097Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, 371-8512 Japan
| | - Tatsuaki Tsuruyama
- grid.258799.80000 0004 0372 2033Department of Drug and Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Fabian Hia
- grid.258799.80000 0004 0372 2033Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Shota Yasukura
- grid.258799.80000 0004 0372 2033Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Asako Kajiya
- grid.258799.80000 0004 0372 2033Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Ting Cai
- grid.258799.80000 0004 0372 2033Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Pedro H. C. Cruz
- grid.136593.b0000 0004 0373 3971Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Alexis Vandenbon
- grid.258799.80000 0004 0372 2033Laboratory of Tissue Homeostasis, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507 Japan
| | - Yutaka Suzuki
- grid.26999.3d0000 0001 2151 536XLaboratory of Functional Genomics, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562 Japan
| | - Yukio Kawahara
- grid.136593.b0000 0004 0373 3971Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, 565-0871 Japan
| | - Izuho Hatada
- grid.256642.10000 0000 9269 4097Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, 371-8512 Japan ,grid.256642.10000 0000 9269 4097Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8512 Japan
| | - Michael C. Bassik
- grid.168010.e0000000419368956Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Osamu Takeuchi
- grid.258799.80000 0004 0372 2033Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| |
Collapse
|
36
|
Hernández-Elvira M, Sunnerhagen P. Post-transcriptional regulation during stress. FEMS Yeast Res 2022; 22:6585650. [PMID: 35561747 PMCID: PMC9246287 DOI: 10.1093/femsyr/foac025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/12/2022] Open
Abstract
To remain competitive, cells exposed to stress of varying duration, rapidity of onset, and intensity, have to balance their expenditure on growth and proliferation versus stress protection. To a large degree dependent on the time scale of stress exposure, the different levels of gene expression control: transcriptional, post-transcriptional and post-translational, will be engaged in stress responses. The post-transcriptional level is appropriate for minute-scale responses to transient stress, and for recovery upon return to normal conditions. The turnover rate, translational activity, covalent modifications, and subcellular localisation of RNA species are regulated under stress by multiple cellular pathways. The interplay between these pathways is required to achieve the appropriate signalling intensity and prevent undue triggering of stress-activated pathways at low stress levels, avoid overshoot, and down-regulate the response in a timely fashion. As much of our understanding of post-transcriptional regulation has been gained in yeast, this review is written with a yeast bias, but attempts to generalise to other eukaryotes. It summarises aspects of how post-transcriptional events in eukaryotes mitigate short-term environmental stresses, and how different pathways interact to optimise the stress response under shifting external conditions.
Collapse
Affiliation(s)
- Mariana Hernández-Elvira
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, S-405 30 Göteborg, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, S-405 30 Göteborg, Sweden
| |
Collapse
|
37
|
El Fatimy R, Zhang Y, Deforzh E, Ramadas M, Saravanan H, Wei Z, Rabinovsky R, Teplyuk NM, Uhlmann EJ, Krichevsky AM. A nuclear function for an oncogenic microRNA as a modulator of snRNA and splicing. Mol Cancer 2022; 21:17. [PMID: 35033060 PMCID: PMC8760648 DOI: 10.1186/s12943-022-01494-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND miRNAs are regulatory transcripts established as repressors of mRNA stability and translation that have been functionally implicated in carcinogenesis. miR-10b is one of the key onco-miRs associated with multiple forms of cancer. Malignant gliomas exhibit particularly striking dependence on miR-10b. However, despite the therapeutic potential of miR-10b targeting, this miRNA's poorly investigated and largely unconventional properties hamper the clinical translation. METHODS We utilized Covalent Ligation of Endogenous Argonaute-bound RNAs and their high-throughput RNA sequencing to identify miR-10b interactome and a combination of biochemical and imaging approaches for target validation. They included Crosslinking and RNA immunoprecipitation with spliceosomal proteins, a combination of miRNA FISH with protein immunofluorescence in glioma cells and patient-derived tumors, native Northern blotting, and the transcriptome-wide analysis of alternative splicing. RESULTS We demonstrate that miR-10b binds to U6 snRNA, a core component of the spliceosomal machinery. We provide evidence of the direct binding between miR-10b and U6, in situ imaging of miR-10b and U6 co-localization in glioma cells and tumors, and biochemical co-isolation of miR-10b with the components of the spliceosome. We further demonstrate that miR-10b modulates U6 N-6-adenosine methylation and pseudouridylation, U6 binding to splicing factors SART3 and PRPF8, and regulates U6 stability, conformation, and levels. These effects on U6 result in global splicing alterations, exemplified by the altered ratio of the isoforms of a small GTPase CDC42, reduced overall CDC42 levels, and downstream CDC42 -mediated effects on cell viability. CONCLUSIONS We identified U6 snRNA, the key RNA component of the spliceosome, as the top miR-10b target in glioblastoma. We, therefore, present an unexpected intersection of the miRNA and splicing machineries and a new nuclear function for a major cancer-associated miRNA.
Collapse
Affiliation(s)
- Rachid El Fatimy
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
- Current Address: Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), 43150, Benguerir, Morocco
| | - Yanhong Zhang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Evgeny Deforzh
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Mahalakshmi Ramadas
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Harini Saravanan
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
- Current Address: Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Nadiya M Teplyuk
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Erik J Uhlmann
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA.
| |
Collapse
|
38
|
Worpenberg L, Paolantoni C, Roignant JY. Functional interplay within the epitranscriptome: Reality or fiction? Bioessays 2021; 44:e2100174. [PMID: 34873719 DOI: 10.1002/bies.202100174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/11/2022]
Abstract
RNA modifications have recently emerged as an important regulatory layer of gene expression. The most prevalent and reversible modification on messenger RNA (mRNA), N6-methyladenosine, regulates most steps of RNA metabolism and its dysregulation has been associated with numerous diseases. Other modifications such as 5-methylcytosine and N1-methyladenosine have also been detected on mRNA but their abundance is lower and still debated. Adenosine to inosine RNA editing is widespread on coding and non-coding RNA and can alter mRNA decoding as well as protect against autoimmune diseases. 2'-O-methylation of the ribose and pseudouridine are widespread on ribosomal and transfer RNA and contribute to proper RNA folding and stability. While the understanding of the individual role of RNA modifications has now reached an unprecedented stage, still little is known about their interplay in the control of gene expression. In this review we discuss the examples where such interplay has been observed and speculate that with the progress of mapping technologies more of those will rapidly accumulate.
Collapse
Affiliation(s)
- Lina Worpenberg
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Chiara Paolantoni
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jean-Yves Roignant
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
39
|
Li X, Peng J, Yi C. The epitranscriptome of small non-coding RNAs. Noncoding RNA Res 2021; 6:167-173. [PMID: 34820590 PMCID: PMC8581453 DOI: 10.1016/j.ncrna.2021.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Small non-coding RNAs are short RNA molecules and involved in many biological processes, including cell proliferation and differentiation, immune response, cell death, epigenetic regulation, metabolic control. A diversity of RNA modifications have been identified in these small non-coding RNAs, including transfer RNAs (tRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nuclear RNA (snRNA), small nucleolar RNAs (snoRNAs), and tRNA-derived small RNAs (tsRNAs). These post-transcriptional modifications are involved in the biogenesis and function of these small non-coding RNAs. In this review, we will summarize the existence of RNA modifications in the small non-coding RNAs and the emerging roles of these epitranscriptomic marks.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
40
|
Satterwhite ER, Mansfield KD. RNA methyltransferase METTL16: Targets and function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1681. [PMID: 34227247 PMCID: PMC9286414 DOI: 10.1002/wrna.1681] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022]
Abstract
The N6-methyladenosine (m6A) RNA methyltransferase METTL16 is an emerging player in the RNA modification landscape of the human cell. Originally thought to be a ribosomal RNA methyltransferase, it has now been shown to bind and methylate the MAT2A messenger RNA (mRNA) and U6 small nuclear RNA (snRNA). It has also been shown to bind the MALAT1 long noncoding RNA and several other RNAs. METTL16's methyltransferase domain contains the Rossmann-like fold of class I methyltransferases and uses S-adenosylmethionine (SAM) as the methyl donor. It has an RNA methylation consensus sequence of UACAGARAA (modified A underlined), and structural requirements for its known RNA interactors. In addition to the methyltransferase domain, METTL16 protein has two other RNA binding domains, one of which resides in a vertebrate conserved region, and a putative nuclear localization signal. The role of METTL16 in the cell is still being explored, however evidence suggests it is essential for most cells. This is currently hypothesized to be due to its role in regulating the splicing of MAT2A mRNA in response to cellular SAM levels. However, one of the more pressing questions remaining is what role METTL16's methylation of U6 snRNA plays in splicing and potentially cellular survival. METTL16 also has several other putative coding and noncoding RNA interactors but the definitive methylation status of those RNAs and the role METTL16 plays in their life cycle is yet to be determined. Overall, METTL16 is an intriguing RNA binding protein and methyltransferase whose important functions in the cell are just beginning to be understood. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Emily R Satterwhite
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Kyle D Mansfield
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|