1
|
Martiniakova M, Kovacova V, Biro R, Mondockova V, Sarocka A, Penzes N, Folwarczna J, Omelka R. Relationships among osteoporosis, redox homeostasis, and alcohol addiction: Importance of the brain-bone axis. Biomed Pharmacother 2025; 187:118063. [PMID: 40253828 DOI: 10.1016/j.biopha.2025.118063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Overabundance of reactive oxygen species (oxidative distress) leads to redox homeostasis disturbance and is associated with many pathological conditions. Accumulating evidence suggests that oxidative distress may contribute to osteoporosis. This review thoroughly outlines the relationships among osteoporosis, redox homeostasis, and alcohol addiction, since these relations are not sufficiently known and subsequently summarized. The brain-bone axis plays a crucial role in alcohol-induced damage to the nervous and skeletal systems. Alterations in the nervous system can lead to osteoporosis because the central nervous system is involved in bone remodeling through various neural pathways. Conversely, as an endocrine organ, bone secretes a number of bone-derived factors (osteokines), which can influence brain function and behavior. As a result, osteoporosis is more common in individuals with neurological disorders, and sudden neurological events can rapidly increase the risk of osteoporosis. Excessive alcohol consumption is linked to many neurological complications, as well as osteoporosis, which are manifested by disrupted redox homeostasis, inflammation, neurodegeneration, inhibition of neurogenesis, decreased bone mineral density, impaired bone microarchitecture, altered mineral homeostasis, raising fracture risk, hormonal dysregulation, and altered gut microbiota composition. Compared to men, alcohol dependence has more negative consequences for women, including an increased risk of liver, cardiovascular, metabolic, mental disorders, and breast cancer. Abstinence has been demonstrated to improve bone and brain health in alcohol addiction. The discovery of the brain-bone axis may lead to the development of new therapeutic approaches for alcohol and other substance addictions. Further research is needed in this direction, as many questions remain unanswered.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia.
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Anna Sarocka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Noemi Penzes
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia
| | - Joanna Folwarczna
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Sosnowiec 41-200, Poland
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra 949 01, Slovakia.
| |
Collapse
|
2
|
Hu X, Liu C, Tang Z, Pan M, Fang A, Li L, Meng X, Tang X, Liu Y, Wang X, Gao H, Zou J, Qiu Z. Sophoraflavanone G as an ectosteric inhibitor of cathepsin K attenuates ovariectomy-induced bone loss by suppressing bone resorption. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156720. [PMID: 40220429 DOI: 10.1016/j.phymed.2025.156720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Cathepsin K (CTSK) is a key enzyme in bone resorption, making it a promising target for osteoporosis treatment. Active-site inhibitors of CTSK are effective but have undesirable side effects, while ectosteric inhibitors may provide a safer alternative. PURPOSE This study investigates whether Sophoraflavanone G (SG), derived from Rhizoma Drynariae, can act as an ectosteric CTSK inhibitor to attenuate osteoporotic bone loss and explores its underlying mechanisms. STUDY DESIGN SG's effects were evaluated in an ovariectomized (OVX) osteoporotic mice model, with in vitro experiments assessing SG's interaction and binding affinity with CTSK. METHODS Micro-CT, histology, and mechanical testing were used to evaluate bone density and strength. CTSK activity and expression were assessed by immunohistochemistry and western blotting. Cell thermal shift assays, isothermal titration calorimetry, CTSK site-specific degradation assays, molecular docking and dynamic simulation were performed to study SG's binding affinity and inhibitory effects. Biosafety, including body weight, uterine histomorphometry, and toxicity of the heart and lung, was also assessed. RESULTS SG improved bone mineral density, microarchitecture, and strength, primarily by inhibiting bone resorption. It inhibited CTSK's enzymatic activity with a strong binding affinity (KD: 8.49 μM) and effectively inhibited osteoclast function. CTSK site-specific assays showed SG inhibited CTSK-mediated degradation of type I collagen. Unlike odanacatib, SG did not affect gelatin or TGF-β1 degradation in fibroblasts. Biosafety assessments revealed no adverse effects. CONCLUSION SG acts as an ectosteric CTSK inhibitor, offering a safer alternative for postmenopausal osteoporosis treatment by selectively inhibiting bone resorption without the side effects associated with active-site inhibitors.
Collapse
Affiliation(s)
- Xueling Hu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine/ Jinan University, Guangzhou 510632, China
| | - Chunxia Liu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Ziling Tang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine/ Jinan University, Guangzhou 510632, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ailing Fang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine/ Jinan University, Guangzhou 510632, China
| | - Ling Li
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China
| | - Xiangbo Meng
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China
| | - Xiyang Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yanzhi Liu
- Shenzhen Osteomore Biotechnology Co., Ltd., Shenzhen 518118, China
| | - Xinluan Wang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518057, China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Jian Zou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Zuocheng Qiu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine/ Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Lin S, Song D, Wang S, Song Z, Xing F, Hong Z, Luo J, Song Q, Fang Z, Chen XC, Lu YJ, Jin F. NuanXin Formula inhibits bone resorption to combat osteoporosis by attenuating osteoclast oxidative phosphorylation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 350:119998. [PMID: 40398705 DOI: 10.1016/j.jep.2025.119998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/13/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Osteoporosis is a chronic metabolic bone disorder characterized by excessive bone resorption. The NuanXin Formula (NX) is a classical traditional Chinese medicine formula that can warm and tonify kidney Yang, as well as replenish Qi and blood, which are essential for maintaining bone health and regulating bone metabolism. Nevertheless, the functions and mechanisms of NX in osteoporosis therapy remain unclear. AIM OF THE STUDY This study aims to evaluate the effects and mechanisms of NX on osteoclastogenesis and to investigate its potential in combating osteoporosis. MATERIALS AND METHODS The inhibitory effects of NX on RANKL-induced osteoclastogenesis were evaluated using Western blotting, quantitative PCR (Q-PCR), TRAP staining, and pit-formation assays. Bone mass and structure were assessed through micro-CT, biomechanical testing, TRAP staining, IHC staining, and H&E staining. The mechanism of action of NX on osteoclasts was investigated using RNA sequencing, ROS staining, ATP measurement, and mitochondrial membrane potential assays. RESULTS The in vitro findings demonstrated that NX treatment significantly inhibited osteoclast differentiation and bone resorption activity. Q-PCR and WB analyses indicated that NX substantially downregulates the expression levels of key osteoclast markers, including Nfatc1, Ctsk, Mmp9, and Trap. In vivo experiments revealed that intragastric administration of NX effectively suppressed bone loss and bone resorption, while enhancing the biomechanical properties of bone in ovariectomized (OVX) mice. Mechanistically, NX inhibits oxidative phosphorylation (OXPHOS), decreases mitochondrial membrane potential, and reduces ATP production and reactive oxygen species generation, thereby impeding osteoclast differentiation and activity. CONCLUSION NX mitigates osteoporosis by modulating OXPHOS to inhibit osteoclast differentiation and activity, thus offering a potential therapeutic approach for osteoporosis management. However, the study has limitations that require further investigation. NX did not show a clear dose-dependent effect in animal tests, suggesting a need for improved dosing designs. Although we emphasize NX's therapeutic potential, more research is necessary to clarify its mechanism. Variability in plant materials and ingredient ratios might influence NX's pharmacological effects, with specific bioactive components potentially playing a major role. Future research should integrate network pharmacology with experimental validation for a more thorough understanding.
Collapse
Affiliation(s)
- Shuojia Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Delong Song
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shimin Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zilong Song
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Feifei Xing
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhexin Hong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Junren Luo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qizhou Song
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhiyuan Fang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiu-Cai Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Fujun Jin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Duan Y, Zhao LJ, Lu YT, Li J, Li SX. Crosstalk between kidney and bones: New perspective for modulating osteoporosis. Ageing Res Rev 2025; 109:102776. [PMID: 40389172 DOI: 10.1016/j.arr.2025.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 05/09/2025] [Accepted: 05/16/2025] [Indexed: 05/21/2025]
Abstract
Growing evidence indicates an interesting interplay between kidney and bone. The pathophysiological condition of the skeletal system is intricately associated with the normal functioning of the kidneys. This relationship is modulated by various factors, including calcium and phosphate, 1-α-hydroxylase, erythropoietin (EPO), klotho, fibroblast growth factor 23 (FGF23), bone morphogenetic protein-7 (BMP-7), and extracellular vesicles (EVs). These interactions are notably evident in conditions such as chronic kidney disease with bone mineral density (CKD-BMD), renal osteodystrophy (ROD), and osteoporosis (OP). Furthermore, innovative methodologies such as cell co-culture, organ-on-a-chip, single-cell sequencing, and spatial transcriptomics are highlighted as instrumental in advancing the study of inter-organ interactions. This review, grounded in the pathogenesis, diagnostic and therapeutic modalities, and pharmacological treatments of OP, synthesizes evidence from molecular biology to clinical perspectives. It aims to establish a foundation for the development of more complex and physiologically relevant in vitro models and to propose potential therapeutic strategies.
Collapse
Affiliation(s)
- Yan Duan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, Hunan 410208, PR China
| | - Li-Juan Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, Hunan 410208, PR China; College of Biology and Food Engineering, Huai Hua University, Huaihua 418000, PR China
| | - Yu-Ting Lu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, Hunan 410208, PR China; Department of Medicine, Guangxi University of Science and Technology, Liuzhou 545005, PR China
| | - Juan Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, Hunan 410208, PR China.
| | - Shun-Xiang Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Engineering Technology Research Center for Bioactive Substance Discovery of Chinese Medicine, Changsha, Hunan 410208, PR China; Hunan Province Sino-US International Joint Research Center for Therapeutic Drugs of Senile Degenerative Diseases, Changsha, Hunan 410208, PR China.
| |
Collapse
|
5
|
Niasse‐Sy Z, Zhao B, Lenardič A, Luong HTT, Bar‐Nur O, Auwerx J, Wohlwend M. Delivery of A Chemically Modified Noncoding RNA Domain Improves Dystrophic Myotube Function. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410908. [PMID: 39960339 PMCID: PMC12120708 DOI: 10.1002/advs.202410908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/28/2025] [Indexed: 05/31/2025]
Abstract
Fast twitch muscle fibers are prone to degradation in skeletal muscle pathologies, such as sarcopenia and muscular dystrophies. We previously showed that the exercise-induced long noncoding RNA CYTOR promotes fast-twitch myogenesis. Here, we identify an independent functional element within human CYTOR, and optimize its RNA delivery. In human primary myoblasts exogenous CYTOR exon 2 recapitulates the effect of full-length CYTOR by boosting fast-twitch myogenic differentiation. Furthermore, chemically modified CYTOR exon 2 RNAΨU (N1-me-PseudoU, 7-methyl guanosine 5'Cap, polyA) enhances RNA stability and reduces immunogenicity to CYTORexon2 RNA. Viral- or chemically optimized RNA-mediated CYTORexon2 administration drives commitment toward myogenic maturation in Duchenne muscular dystrophy-derived primary myoblasts, myogenic progenitor cells, and mouse embryonic stem cells. Furthermore, CYTORexon2, m1ΨU improves key disease characteristics in dystrophic myotubes, including calcium handling and mitochondrial bioenergetics. In summary, we identify CYTOR exon 2 as the functional domain of CYTOR that can be delivered in a disease context using chemical modifications. This is of particular importance given the susceptibility of fast muscle fibers in different muscle pathologies such as aging and dystrophies, and the oncogenic effect of CYTOR exon 1. This study, therefore, highlights the potential of identifying functional domains in noncoding RNAs. Delivery, or targeting of RNA domains might constitute next-generation RNA therapeutics.
Collapse
Affiliation(s)
- Zeinabou Niasse‐Sy
- Laboratory of Integrative Systems PhysiologyÉcole polytechnique fédérale de Lausanne (EPFL)Lausanne1015Switzerland
- Université LyonFaculté de Médecine et de Maïeutique Lyon‐Sud Charles MerieuxOullins69007France
- Hospices Civils de LyonGroupement Hospitalier SudService de GériatrieLyon69002France
| | - Bo Zhao
- Massachusetts Institute of Technology (MIT)Cambridge02139USA
| | - Ajda Lenardič
- Laboratory of Regenerative and Muscle BiologyInstitute of Human Movement Sciences and SportDepartment of Health Sciences and TechnologyETH ZurichSchwerzenbach8603Switzerland
| | - Huyen Thuc Tran Luong
- Laboratory of Integrative Systems PhysiologyÉcole polytechnique fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Ori Bar‐Nur
- Laboratory of Regenerative and Muscle BiologyInstitute of Human Movement Sciences and SportDepartment of Health Sciences and TechnologyETH ZurichSchwerzenbach8603Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems PhysiologyÉcole polytechnique fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Martin Wohlwend
- Massachusetts Institute of Technology (MIT)Cambridge02139USA
| |
Collapse
|
6
|
Wang J, Li S, Li Q, Yan Q, Wang Y, Zeng X, Yang F, Jiang S, Zhang M, Pi Y, Tahir R, Wei L. Alda-1 mediates cell senescence and counteracts bone loss in weightlessness through regulating mitophagy. Life Sci 2025; 366-367:123482. [PMID: 39983821 DOI: 10.1016/j.lfs.2025.123482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/17/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
AIMS Astronauts experience weightlessness-induced bone loss (WIBL) due to an imbalanced bone remodeling process involving bone mesenchymal stem cells (BMSCs), osteoblasts, and osteoclasts. Senescence is an important factor contributes to WIBL. In the current study, the effects of Alda-1 on senescence and WIBL were evaluated. MATERIALS AND METHODS We used the 2D-Rotating Wall Vessel bioreactor and hindlimb suspension rats, the classic cellular and animal models simulating microgravity (SMG). Aging, osteogenic differentiation, osteoclastic differentiation, and lipogenic differentiation were evaluated in the cell and animal models. Differentially expressed proteins in the femurs of rats were further analyzed using bioinformatics analysis. In addition, mitochondrial membrane potential, reactive oxygen species (ROS) production, and mitophagy markers were identified to estimate mitochondrial activity. KEY FINDINGS It was revealed that SMG accelerated senescence including osteoblasts, BMSCs, and inhibited senescence of RAW264.7 cells. SMG suppressed osteogenesis while promoting osteoclastogenesis and adipogenesis during cell senescence and bone loss. Aldehyde dehydrogenase-2 (ALDH2) was negatively related to WIBL. It was mainly enriched in mitochondria and involved in oxidative stress pathways. Finally, it was proved that Alda-1 significantly promoted ALDH2 levels. Alda-1 exhibited a robust protective response against senescence and WIBL by eliminating ROS accumulation, restoring mitophagy, and protecting cells and bone from apoptosis. SIGNIFICANCE Our study indicate that Alda-1 exerts a protective effect against SMG-induced skeletal aging and bone loss through mitophagy. It provides a theoretical basis for advancing therapeutic options against WIBL in space.
Collapse
Affiliation(s)
- Jinpeng Wang
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Sen Li
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Qiao Li
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Qiuxin Yan
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Yunhao Wang
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Xiangyin Zeng
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Fan Yang
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Siyu Jiang
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China
| | - Manrui Zhang
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Yaning Pi
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Raza Tahir
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China
| | - Lijun Wei
- School of Life Science and Technology, Faculty of Life Science and Medicine, Harbin Institute of Technology, No. 2 Yi Kuang Street, Harbin 150001, China; State Key Laboratory of Space Medicine Fundamentals and Application, Chinese Astronaut Research and Training Center, Beijing, China.
| |
Collapse
|
7
|
Xu H, Luo Y, An Y, Wu X. The mechanism of action of indole-3-propionic acid on bone metabolism. Food Funct 2025; 16:406-421. [PMID: 39764708 DOI: 10.1039/d4fo03783a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity. Additionally, IPA provides indirect protection to bone health by regulating host immune responses and inflammation via activation of receptors such as the Aryl hydrocarbon Receptor (AhR) and the Pregnane X Receptor (PXR). This review summarizes the roles and signaling pathways of IPA in bone metabolism and its impact on various bone metabolic disorders. Furthermore, we discuss the therapeutic potential and limitations of IPA in treating bone metabolic diseases, aiming to offer novel strategies for clinical management.
Collapse
Affiliation(s)
- Huimin Xu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi An
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Xi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Shivaprasad KM, Dikshit HK, Mishra GP, Sinha SK, Aski M, Kohli M, Mishra DC, Singh AK, Gupta S, Singh A, Tripathi K, Kumar RR, Kumar A, Jha GK, Kumar S, Varshney RK. Delineation of loci governing an extra-earliness trait in lentil (Lens culinaris Medik.) using the QTL-Seq approach. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2932-2949. [PMID: 38923713 PMCID: PMC11536446 DOI: 10.1111/pbi.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/18/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Developing early maturing lentil has the potential to minimize yield losses, mainly during terminal drought. Whole-genome resequencing (WGRS) based QTL-seq identified the loci governing earliness in lentil. The genetic analysis for maturity duration provided a good fit to 3:1 segregation (F2), indicating earliness as a recessive trait. WGRS of Globe Mutant (late parent), late-flowering, and early-flowering bulks (from RILs) has generated 1124.57, 1052.24 million raw and clean reads, respectively. The QTL-Seq identified three QTLs (LcqDTF3.1, LcqDTF3.2, and LcqDTF3.3) on chromosome 3 having 246244 SNPs and 15577 insertions/deletions (InDels) and 13 flowering pathway genes. Of these, 11 exhibited sequence variations between bulks and validation (qPCR) revealed a significant difference in the expression of nine candidate genes (LcGA20oxG, LcFRI, LcLFY, LcSPL13a, Lcu.2RBY.3g060720, Lcu.2RBY.3g062540, Lcu.2RBY.3g062760, LcELF3a, and LcEMF1). Interestingly, the LcELF3a gene showed significantly higher expression in late-flowering genotype and exhibited substantial involvement in promoting lateness. Subsequently, an InDel marker (I-SP-383.9; LcELF3a gene) developed from LcqDTF3.2 QTL region showed 82.35% PVE (phenotypic variation explained) for earliness. The cloning, sequencing, and comparative analysis of the LcELF3a gene from both parents revealed 23 SNPs and InDels. Interestingly, a 52 bp deletion was recorded in the LcELF3a gene of L4775, predicted to cause premature termination of protein synthesis after 4 missense amino acids beyond the 351st amino acid due to the frameshift during translation. The identified InDel marker holds significant potential for breeding early maturing lentil varieties.
Collapse
Affiliation(s)
- Kumbarahally Murthigowda Shivaprasad
- Division of GeneticsIndian Agricultural Research InstituteNew DelhiIndia
- Indian Council of Forestry Research and Education (ICFRE)‐Institute of Forest BiodiversityHyderabadIndia
| | - Harsh K. Dikshit
- Division of GeneticsIndian Agricultural Research InstituteNew DelhiIndia
| | | | - Subodh Kumar Sinha
- Indian Council of Agricultural Research (ICAR)‐National Institute for Plant BiotechnologyNew DelhiIndia
| | - Muraleedhar Aski
- Division of GeneticsIndian Agricultural Research InstituteNew DelhiIndia
| | - Manju Kohli
- Division of GeneticsIndian Agricultural Research InstituteNew DelhiIndia
| | | | - Amit Kumar Singh
- Division of Genomic Resources, National Bureau of Plant Genetic ResourcesNew DelhiIndia
| | - Soma Gupta
- Division of GeneticsIndian Agricultural Research InstituteNew DelhiIndia
| | - Akanksha Singh
- South Asia and China Program, International Center for Agricultural Research in the Dry Areas, National Agriculture Science ComplexNew DelhiIndia
| | - Kuldeep Tripathi
- Germplasm Evaluation Division, National Bureau of Plant Genetic ResourcesNew DelhiIndia
| | | | - Atul Kumar
- Division of Seed Science and TechnologyIndian Agricultural Research InstituteNew DelhiIndia
| | | | - Shiv Kumar
- South Asia and China Program, International Center for Agricultural Research in the Dry Areas, National Agriculture Science ComplexNew DelhiIndia
| | - Rajeev K. Varshney
- Centre for Crop & Food Innovation, State Agricultural Biotechnology CentreFood Futures Institute, Murdoch UniversityMurdochWAAustralia
| |
Collapse
|
9
|
Coan M, Haefliger S, Ounzain S, Johnson R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat Rev Genet 2024; 25:578-595. [PMID: 38424237 DOI: 10.1038/s41576-024-00693-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
RNA therapeutics (RNATx) aim to treat diseases, including cancer, by targeting or employing RNA molecules for therapeutic purposes. Amongst the most promising targets are long non-coding RNAs (lncRNAs), which regulate oncogenic molecular networks in a cell type-restricted manner. lncRNAs are distinct from protein-coding genes in important ways that increase their therapeutic potential yet also present hurdles to conventional clinical development. Advances in genome editing, oligonucleotide chemistry, multi-omics and RNA engineering are paving the way for efficient and cost-effective lncRNA-focused drug discovery pipelines. In this Review, we present the emerging field of lncRNA therapeutics for oncology, with emphasis on the unique strengths and challenges of lncRNAs within the broader RNATx framework. We outline the necessary steps for lncRNA therapeutics to deliver effective, durable, tolerable and personalized treatments for cancer.
Collapse
Affiliation(s)
- Michela Coan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland.
| |
Collapse
|
10
|
Pang Y, Zheng K, Min Q, Wang Y, Xue X, Li W, Zhao H, Qiao F, Han S. Long Noncoding RNAs in Response to Hyperosmolarity Stress, but Not Salt Stress, Were Mainly Enriched in the Rice Roots. Int J Mol Sci 2024; 25:6226. [PMID: 38892412 PMCID: PMC11172603 DOI: 10.3390/ijms25116226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Due to their immobility and possession of underground parts, plants have evolved various mechanisms to endure and adapt to abiotic stresses such as extreme temperatures, drought, and salinity. However, the contribution of long noncoding RNAs (lncRNAs) to different abiotic stresses and distinct rice seedling parts remains largely uncharacterized beyond the protein-coding gene (PCG) layer. Using transcriptomics and bioinformatics methods, we systematically identified lncRNAs and characterized their expression patterns in the roots and shoots of wild type (WT) and ososca1.1 (reduced hyperosmolality-induced [Ca2+]i increase in rice) seedlings under hyperosmolarity and salt stresses. Here, 2937 candidate lncRNAs were identified in rice seedlings, with intergenic lncRNAs representing the largest category. Although the detectable sequence conservation of lncRNAs was low, we observed that lncRNAs had more orthologs within the Oryza. By comparing WT and ososca1.1, the transcription level of OsOSCA1.1-related lncRNAs in roots was greatly enhanced in the face of hyperosmolality stress. Regarding regulation mode, the co-expression network revealed connections between trans-regulated lncRNAs and their target PCGs related to OsOSCA1.1 and its mediation of hyperosmolality stress sensing. Interestingly, compared to PCGs, the expression of lncRNAs in roots was more sensitive to hyperosmolarity stress than to salt stress. Furthermore, OsOSCA1.1-related hyperosmolarity stress-responsive lncRNAs were enriched in roots, and their potential cis-regulated genes were associated with transcriptional regulation and signaling transduction. Not to be ignored, we identified a motif-conserved and hyperosmolarity stress-activated lncRNA gene (OSlncRNA), speculating on its origin and evolutionary history in Oryza. In summary, we provide a global perspective and a lncRNA resource to understand hyperosmolality stress sensing in rice roots, which helps to decode the complex molecular networks involved in plant sensing and adaptation to stressful environments.
Collapse
Affiliation(s)
- Yanrong Pang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Kaifeng Zheng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Qinyue Min
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Yinxing Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Xiuhua Xue
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Wanjie Li
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
| | - Feng Qiao
- School of Life Sciences, Qinghai Normal University, Xining 810008, China;
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.P.); (K.Z.); (Y.W.); (X.X.); (W.L.); (H.Z.)
- Academy of Plateau Science and Sustainability of the People’s Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining 810008, China
| |
Collapse
|
11
|
Jiang J, Duan M, Wang Z, Lai Y, Zhang C, Duan C. RNA epigenetics in pulmonary diseases: Insights into methylation modification of lncRNAs in lung cancer. Biomed Pharmacother 2024; 175:116704. [PMID: 38749181 DOI: 10.1016/j.biopha.2024.116704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are pivotal controllers of gene expression through epigenetic mechanisms, Methylation, a prominent area of study in epigenetics, significantly impacts cellular processes. Various RNA base methylations, including m6A, m5C, m1A, and 2'-O-methylation, profoundly influence lncRNA folding, interactions, and stability, thereby shaping their functionality. LncRNAs and methylation significantly contribute to tumor development, especially in lung cancer. Their roles encompass cell differentiation, proliferation, the generation of cancer stem cells, and modulation of immune responses. Recent studies have suggested that dysregulation of lncRNA methylation can contribute to lung cancer development. Furthermore, methylation modifications of lncRNAs hold potential for clinical application in lung cancer. Dysregulated lncRNA methylation can promote lung cancer progression and may offer insights into potential biomarker or therapeutic target. This review summarizes the current knowledge of lncRNA methylation in lung cancer and its implications for RNA epigenetics and pulmonary diseases.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Minghao Duan
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 412017, Hunan, People's Republic of China
| | - Zheng Wang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Yuwei Lai
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, People's Republic of China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha 410008, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Changsha 410008, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Han J, Zhu Y, Zhang J, Kapilevich L, Zhang XA. Noncoding RNAs: the crucial role of programmed cell death in osteoporosis. Front Cell Dev Biol 2024; 12:1409662. [PMID: 38799506 PMCID: PMC11116712 DOI: 10.3389/fcell.2024.1409662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoporosis is the most common skeletal disease characterized by an imbalance between bone resorption and bone remodeling. Osteoporosis can lead to bone loss and bone microstructural deterioration. This increases the risk of bone fragility and fracture, severely reducing patients' mobility and quality of life. However, the specific molecular mechanisms involved in the development of osteoporosis remain unclear. Increasing evidence suggests that multiple noncoding RNAs show differential expression in the osteoporosis state. Meanwhile, noncoding RNAs have been associated with an increased risk of osteoporosis and fracture. Noncoding RNAs are an important class of factors at the level of gene regulation and are mainly involved in cell proliferation, cell differentiation, and cell death. Programmed cell death is a genetically-regulated form of cell death involved in regulating the homeostasis of the internal environment. Noncoding RNA plays an important role in the programmed cell death process. The exploration of the noncoding RNA-programmed cell death axis has become an interesting area of research and has been shown to play a role in many diseases such as osteoporosis. In this review, we summarize the latest findings on the mechanism of noncoding RNA-mediated programmed cell death on bone homeostasis imbalance leading to osteoporosis. And we provide a deeper understanding of the role played by the noncoding RNA-programmed cell death axis at the gene regulatory level of osteoporosis. We hope to provide a unique opportunity to develop novel diagnostic and therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk Stаte University, Tomsk, Russia
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
13
|
Yao Q, He T, Liao JY, Liao R, Wu X, Lin L, Xiao G. Noncoding RNAs in skeletal development and disorders. Biol Res 2024; 57:16. [PMID: 38644509 PMCID: PMC11034114 DOI: 10.1186/s40659-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Protein-encoding genes only constitute less than 2% of total human genomic sequences, and 98% of genetic information was previously referred to as "junk DNA". Meanwhile, non-coding RNAs (ncRNAs) consist of approximately 60% of the transcriptional output of human cells. Thousands of ncRNAs have been identified in recent decades, and their essential roles in the regulation of gene expression in diverse cellular pathways associated with fundamental cell processes, including proliferation, differentiation, apoptosis, and metabolism, have been extensively investigated. Furthermore, the gene regulation networks they form modulate gene expression in normal development and under pathological conditions. In this review, we integrate current information about the classification, biogenesis, and function of ncRNAs and how these ncRNAs support skeletal development through their regulation of critical genes and signaling pathways in vivo. We also summarize the updated knowledge of ncRNAs involved in common skeletal diseases and disorders, including but not limited to osteoporosis, osteoarthritis, rheumatoid arthritis, scoliosis, and intervertebral disc degeneration, by highlighting their roles established from in vivo, in vitro, and ex vivo studies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Rongdong Liao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lijun Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Yu X, Bu C, Yang X, Jiang W, He X, Sun R, Guo H, Shang L, Ou C. Exosomal non-coding RNAs in colorectal cancer metastasis. Clin Chim Acta 2024; 556:117849. [PMID: 38417779 DOI: 10.1016/j.cca.2024.117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Colorectal cancer (CRC) is a type of gastrointestinal cancer with high morbidity and mortality rates, and is often accompanied by distant metastases. Metastasis is a major cause of shortened survival time and poor treatment outcomes for patients with CRC. However, the molecular mechanisms underlying the metastasis of CRC remain unclear. Exosomes are a class of small extracellular vesicles that originate from almost all human cells and can transmit biological information (e.g., nucleic acids, lipids, proteins, and metabolites) from secretory cells to target recipient cells. Recent studies have revealed that non-coding RNAs (ncRNAs) can be released by exosomes into the tumour microenvironment or specific tissues, and play a pivotal role in tumorigenesis by regulating a series of key molecules or signalling pathways, particularly those involved in tumour metastasis. Exosomal ncRNAs have potential as novel therapeutic targets for CRC metastasis, and can also be used as liquid biopsy biomarkers because of their specificity and sensitivity. Therefore, further investigations into the biological function and clinical value of exosomal ncRNAs will be of great value for the prevention, early diagnosis, and treatment of CRC metastasis.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chiwen Bu
- Department of General Surgery, People's Hospital of Guanyun County, Lianyungang 222200, Jiangsu, China
| | - Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Wenying Jiang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ru Sun
- Department of Blood Transfusion, Affiliated Hospital of North Sichuan Medical College, Xichang 637000, Sichuan, China
| | - Hongbin Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Li Shang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
15
|
Zhang Z, Meng Y, Lin T, Zhang Z, Tao Z, Yin H, Yang F, Zhou X. Dancr-BRG1 regulates Nfatc1 transcription and Pgc1β-dependent metabolic shifts in osteoclastogenesis. Proc Natl Acad Sci U S A 2024; 121:e2313656121. [PMID: 38252822 PMCID: PMC10835043 DOI: 10.1073/pnas.2313656121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Long non-coding RNA (lncRNA) serves as a vital regulator of bone metabolism, but its role in pathologically overactive osteoclast differentiation remains elusive. Here, we identify lncRNA Dancr (Differentiation Antagonizing Non-protein Coding RNA) as a critical suppressor of osteoclastogenesis and bone resorption, which is down-regulated in response to estrogen deficiency. Global or osteoclast-specific Dancr Knockout mice display significant trabecular bone deterioration and enhanced osteoclast activity, but minimal alteration of bone formation. Moreover, the bone-targeted delivery of Dancr by Adeno-associated viral remarkably attenuates ovariectomy-induced osteopenia in mice. Mechanistically, Dancr establishes a direct interaction with Brahma-related gene 1 to prevent its binding and preserve H3K27me3 enrichment at the nuclear factor of activated T cells 1 and proliferator-activated receptor gamma coactivator 1-beta promoters, thereby maintaining appropriate expression of osteoclastic genes and metabolic programs during osteoclastogenesis. These results demonstrate that Dancr is a key molecule maintaining proper osteoclast differentiation and bone homeostasis under physiological conditions, and Dancr overexpression constitutes a potential strategy for treating osteoporosis.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
- Department of Orthopedic rehabilitation, Qingdao Special Servicemen Recuperation Center of People's Liberation Army Navy, Qingdao266000, China
| | - Yichen Meng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
| | - Tao Lin
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
| | - Zhanrong Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
| | - Zhengbo Tao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
| | - Haozan Yin
- Department of Medical Genetics, Second Military Medical University (Naval Medical University), Shanghai200433, China
| | - Fu Yang
- Department of Medical Genetics, Second Military Medical University (Naval Medical University), Shanghai200433, China
- Key Laboratory of Biological Defense, Ministry of Education, Shanghai200433, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai200003, China
- Translational research center of orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai201600, China
| |
Collapse
|
16
|
Zhang J, Zhang L, Yao G, Zhao H, Qiao P, Wu S. lncRNA-Gm5532 regulates osteoclast differentiation through the miR-125a-3p/TRAF6 axis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:54-61. [PMID: 38098360 PMCID: PMC10875346 DOI: 10.3724/abbs.2023245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/27/2023] [Indexed: 01/26/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are important regulators of bone metabolism. In this study, lncRNA microarray analysis was used to identify differentially expressed lncRNAs in differentiated osteoclasts. lncRNA-Gm5532 is highly expressed during osteoclast differentiation. lncRNA-Gm5532 knockdown impairs osteoclast formation and bone resorption. Mechanistic experiments show that lncRNA-Gm5532 functions as a competing endogenous RNA (ceRNA) and acts as a sponge for miR-125a-3p, which promotes TNF receptor-associated factor 6 (TRAF6) expression. miR-125a-3p mimics suppress osteoclast differentiation and TAK1/NF-κB/MAPK signaling. The miR-125a-3p inhibitor reverses the negative effects of siGm5532 on osteoclast differentiation. In summary, our study reveals that lncRNA-Gm5532 functions as an activator in osteoclast differentiation by targeting the miR-125a-3p/TRAF6 axis, making it a novel biomarker and potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Jian Zhang
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| | - Lingyan Zhang
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| | - Gang Yao
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| | - Hai Zhao
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| | - Penghai Qiao
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| | - Shuguang Wu
- />Institute of Laboratory Animal ScienceGuizhou University of Traditional Chinese MedicineGuiyang550021China
| |
Collapse
|
17
|
Liu B, Zhong Y, Huang D, Yang L, Wang P, Yang L, Zhang F, Li X, Liang M, Huang K, Du M. LncRNA Nron deficiency protects mice from diet-induced adiposity and hepatic steatosis. Metabolism 2023; 148:155609. [PMID: 37277059 DOI: 10.1016/j.metabol.2023.155609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Obesity, as a worldwide healthcare problem, has attracted more and more attention. Here we identify a long non-coding RNA NRON, which is highly conserved across species, as an important regulator of glucose/lipid metabolism and whole-body energy expenditure. Depletion of Nron leads to metabolic benefits in DIO (diet-induced obesity) mice, including reduced body weight and fat mass, improved insulin sensitivity and serum lipid parameters, attenuated hepatic steatosis and enhanced adipose function. Mechanistically, Nron deletion improves hepatic lipid homeostasis via PER2/Rev-Erbα/FGF21 axis coupled with AMPK activation, and enhances adipose function via activating the process of triacylglycerol hydrolysis and fatty acid re-esterification (TAG/FA cycling) and coupled metabolic network. These interactive and integrative effects cooperatively account for a healthier metabolic phenotype in NKO (Nron knockout) mice. Genetic or pharmacological inhibition of Nron may have potential for future therapy of obesity.
Collapse
Affiliation(s)
- Bing Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Zhong
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liuye Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengchao Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxiao Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoguang Li
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China.
| | - Meng Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China; Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Luo L, Cao H, Zhou L, Zhang G, Wu L. Anti-resorption role of low-intensity pulsed ultrasound (LIPUS) during large-scale bone reconstruction using porous titanium alloy scaffolds through inhibiting osteoclast differentiation. BIOMATERIALS ADVANCES 2023; 154:213634. [PMID: 37783002 DOI: 10.1016/j.bioadv.2023.213634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Ti6Al4V biomaterials combine with low-intensity pulsed ultrasound (LIPUS) has been reported with great bone regeneration capacity. It is important to better understand how LIPUS benefits bone microenvironment to seek for target of therapeutic medicine. Osteoclast differentiation plays a crucial role in bone resorption. Recent advances in molecular biology have revealed that N6-methyladenosine (m6A) RNA modifications can modulate biological processes, but their role in bone biology, particularly in osteoclast differentiation, remains unclear. We aim to understand how LIPUS regulates bone microenvironment especially osteoclast formation during bone regeneration to provide new therapeutic options for preventing and delaying bone resorption, thus with better bone regeneration efficiency. RESULTS 1. LIPUS promoted bone ingrowth and bone maturity while inhibiting osteoclast formation within Ti6Al4V scaffolds in large-scale bone defect model. 2. LIPUS was found to inhibit osteoclast differentiation by decreasing the overall expression of osteoclast markers in vitro. 3. LIPUS decreases RNA m6A-modification level through upregulating FTO expression during osteoclast differentiation during. 4. Inhibiting FTO expression and function leads to less inhibition during osteoclast differentiation. CONCLUSION LIPUS suppresses osteoclast differentiation during bone regeneration through reducing m6A modification of osteoclastic RNAs by up regulating FTO expression.
Collapse
Affiliation(s)
- Lin Luo
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Hongjuan Cao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Liang Zhou
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China
| | - Guangdao Zhang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China.
| | - Lin Wu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110001, China.
| |
Collapse
|
19
|
Dong Y, Chen Y, Ma G, Cao H. The role of E3 ubiquitin ligases in bone homeostasis and related diseases. Acta Pharm Sin B 2023; 13:3963-3987. [PMID: 37799379 PMCID: PMC10547920 DOI: 10.1016/j.apsb.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 10/07/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) dedicates to degrade intracellular proteins to modulate demic homeostasis and functions of organisms. These enzymatic cascades mark and modifies target proteins diversly through covalently binding ubiquitin molecules. In the UPS, E3 ubiquitin ligases are the crucial constituents by the advantage of recognizing and presenting proteins to proteasomes for proteolysis. As the major regulators of protein homeostasis, E3 ligases are indispensable to proper cell manners in diverse systems, and they are well described in physiological bone growth and bone metabolism. Pathologically, classic bone-related diseases such as metabolic bone diseases, arthritis, bone neoplasms and bone metastasis of the tumor, etc., were also depicted in a UPS-dependent manner. Therefore, skeletal system is versatilely regulated by UPS and it is worthy to summarize the underlying mechanism. Furthermore, based on the current status of treatment, normal or pathological osteogenesis and tumorigenesis elaborated in this review highlight the clinical significance of UPS research. As a strategy possibly remedies the limitations of UPS treatment, emerging PROTAC was described comprehensively to illustrate its potential in clinical application. Altogether, the purpose of this review aims to provide more evidence for exploiting novel therapeutic strategies based on UPS for bone associated diseases.
Collapse
Affiliation(s)
| | | | - Guixing Ma
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Shenzhen 518055, China
| |
Collapse
|
20
|
Wang K, George-Jones NA, Chen L, Hunter JB, Wang J. Joint Vestibular Schwannoma Enlargement Prediction and Segmentation Using a Deep Multi-task Model. Laryngoscope 2023; 133:2754-2760. [PMID: 36495306 PMCID: PMC10256836 DOI: 10.1002/lary.30516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To develop a deep-learning-based multi-task (DMT) model for joint tumor enlargement prediction (TEP) and automatic tumor segmentation (TS) for vestibular schwannoma (VS) patients using their initial diagnostic contrast-enhanced T1-weighted (ceT1) magnetic resonance images (MRIs). METHODS Initial ceT1 MRIs for VS patients meeting the inclusion/exclusion criteria of this study were retrospectively collected. VSs on the initial MRIs and their first follow-up scans were manually contoured. Tumor volume and enlargement ratio were measured based on expert contours. A DMT model was constructed for jointly TS and TEP. The manually segmented VS volume on the initial scan and the tumor enlargement label (≥20% volumetric growth) were used as the ground truth for training and evaluating the TS and TEP modules, respectively. RESULTS We performed 5-fold cross-validation with the eligible patients (n = 103). Median segmentation dice coefficient, prediction sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC) were measured and achieved the following values: 84.20%, 0.68, 0.78, 0.72, and 0.77, respectively. The segmentation result is significantly better than the separate TS network (dice coefficient of 83.13%, p = 0.03) and marginally lower than the state-of-the-art segmentation model nnU-Net (dice coefficient of 86.45%, p = 0.16). The TEP performance is significantly better than the single-task prediction model (AUC = 0.60, p = 0.01) and marginally better than a radiomics-based prediction model (AUC = 0.70, p = 0.17). CONCLUSION The proposed DMT model is of higher learning efficiency and achieves promising performance on TEP and TS. The proposed technology has the potential to improve VS patient management. LEVEL OF EVIDENCE NA Laryngoscope, 133:2754-2760, 2023.
Collapse
Affiliation(s)
- Kai Wang
- The Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicholas A George-Jones
- The Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- The Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Liyuan Chen
- The Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jacob B Hunter
- The Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jing Wang
- The Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
21
|
Zhang L, Sheng M, Cao H, Zhang L, Shao W. Decoding the role of long non-coding RNAs in periodontitis: A comprehensive review. Biomed Pharmacother 2023; 166:115357. [PMID: 37619483 DOI: 10.1016/j.biopha.2023.115357] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Periodontitis is an inflammatory disease characterized by the pathological loss of alveolar bone and the adjacent periodontal ligament. It is considered a disease that imposes a substantial health burden, with an incidence rate of 20-50%. The etiology of periodontitis is multifactorial, with genetic factors accounting for approximately half of severe cases. Studies have revealed that long non-coding RNAs (lncRNAs) play a pivotal role in periodontitis pathogenesis. Accumulating evidence suggests that lncRNAs have distinct regulatory mechanisms, enabling them to control numerous vital processes in periodontal cells, including osteogenic differentiation, inflammation, proliferation, apoptosis, and autophagy. In this review, we summarize the diverse roles of lncRNAs in the pathogenesis of periodontitis, shedding light on the underlying mechanisms of disease development. By highlighting the potential of lncRNAs as biomarkers and therapeutic targets, this review offers a new perspective on the diagnosis and treatment of periodontitis, paving the way for further investigation into the field of lncRNA-based therapeutics.
Collapse
Affiliation(s)
- Lizhi Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China; First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Mengfei Sheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China
| | - Huake Cao
- First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Lei Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
| | - Wei Shao
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China; Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, China.
| |
Collapse
|
22
|
Guo Q, Li Y, Zhang Y, Shen L, Lin H, Chen J, Song E, Luo M. LncRNA NRON promotes tumorigenesis by enhancing MDM2 activity toward tumor suppressor substrates. EMBO J 2023; 42:e112414. [PMID: 37382239 PMCID: PMC10425849 DOI: 10.15252/embj.2022112414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
The E3 ligase MDM2 promotes tumor growth and progression by inducing ubiquitin-mediated degradation of P53 and other tumor-suppressing proteins. Here, we identified an MDM2-interacting lncRNA NRON, which promotes tumor formation by suppressing both P53-dependent and independent pathways. NRON binds to MDM2 and MDMX (MDM4) via two different stem-loops, respectively, and induces their heterogenous dimerization, thereby enhancing the E3 ligase activity of MDM2 toward its tumor-suppressing substrates, including P53, RB1, and NFAT1. NRON knockdown dramatically inhibits tumor cell growth in vitro and in vivo. More importantly, NRON overexpression promotes oncogenic transformation by inducing anchorage-independent growth in vitro and facilitating tumor formation in immunocompromised mice. Clinically, NRON expression is significantly associated with poor clinical outcome in breast cancer patients. Together, our data uncover a pivotal role of lncRNA that induces malignant transformation of epithelial cells by inhibiting multiple tumor suppressor proteins.
Collapse
Affiliation(s)
- Qiannan Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Department of Thyroid Surgery, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Yihui Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Medical Research CenterNanhai Translational Innovation Center of Precision Immunology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Yunmei Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Breast Tumor Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Liping Shen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Breast Tumor Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Huayue Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Breast Tumor Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Breast Tumor Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Breast Tumor Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Man‐Li Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
- Medical Research CenterNanhai Translational Innovation Center of Precision Immunology, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
23
|
Liu X, Li F, Dong Z, Gu C, Mao D, Chen J, Luo L, Huang Y, Xiao J, Li Z, Liu Z, Yang Y. Metal-polyDNA nanoparticles reconstruct osteoporotic microenvironment for enhanced osteoporosis treatment. SCIENCE ADVANCES 2023; 9:eadf3329. [PMID: 37531423 PMCID: PMC10396296 DOI: 10.1126/sciadv.adf3329] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
Current clinical approaches to osteoporosis primarily target osteoclast biology, overlooking the synergistic role of bone cells, immune cells, cytokines, and inorganic components in creating an abnormal osteoporotic microenvironment. Here, metal-polyDNA nanoparticles (Ca-polyCpG MDNs) composed of Ca2+ and ultralong single-stranded CpG sequences were developed to reconstruct the osteoporotic microenvironment and suppress osteoporosis. Ca-polyCpG MDNs can neutralize osteoclast-secreted hydrogen ions, provide calcium repletion, promote remineralization, and repair bone defects. Besides, the immune-adjuvant polyCpG in MDNs could induce the secretion of osteoclastogenesis inhibitor interleukin-12 and reduce the expression of osteoclast function effector protein to inhibit osteoclast differentiation, further reducing osteoclast-mediated bone resorption. PPi4- generated during the rolling circle amplification reaction acts as bisphosphonate analog and enhances bone targeting of Ca-polyCpG MDNs. In ovariectomized mouse and rabbit models, Ca-polyCpG MDNs prevented bone resorption and promoted bone repair by restoring the osteoporotic microenvironment, providing valuable insights into osteoporosis therapy.
Collapse
Affiliation(s)
- Xueliang Liu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Li
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Ziliang Dong
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chao Gu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dongsheng Mao
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingqi Chen
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Luo
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuting Huang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Xiao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Zhanchun Li
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhuang Liu
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
24
|
Basu U, Parida SK. Restructuring plant types for developing tailor-made crops. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1106-1122. [PMID: 34260135 PMCID: PMC10214764 DOI: 10.1111/pbi.13666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 05/27/2023]
Abstract
Plants have adapted to different environmental niches by fine-tuning the developmental factors working together to regulate traits. Variations in the developmental factors result in a wide range of quantitative variations in these traits that helped plants survive better. The major developmental pathways affecting plant architecture are also under the control of such pathways. Most notable are the CLAVATA-WUSCHEL pathway regulating shoot apical meristem fate, GID1-DELLA module influencing plant height and tillering, LAZY1-TAC1 module controlling branch/tiller angle and the TFL1-FT determining the floral fate in plants. Allelic variants of these key regulators selected during domestication shaped the crops the way we know them today. There is immense yield potential in the 'ideal plant architecture' of a crop. With the available genome-editing techniques, possibilities are not restricted to naturally occurring variations. Using a transient reprogramming system, one can screen the effect of several developmental gene expressions in novel ecosystems to identify the best targets. We can use the plant's fine-tuning mechanism for customizing crops to specific environments. The process of crop domestication can be accelerated with a proper understanding of these developmental pathways. It is time to step forward towards the next-generation molecular breeding for restructuring plant types in crops ensuring yield stability.
Collapse
Affiliation(s)
- Udita Basu
- Genomics‐Assisted Breeding and Crop Improvement LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
| | - Swarup K. Parida
- Genomics‐Assisted Breeding and Crop Improvement LaboratoryNational Institute of Plant Genome Research (NIPGR)New DelhiIndia
| |
Collapse
|
25
|
Zhang G, Liu Z, Li Z, Zhang B, Yao P, Qiao Y. Therapeutic approach of natural products that treat osteoporosis by targeting epigenetic modulation. Front Genet 2023; 14:1182363. [PMID: 37287533 PMCID: PMC10242146 DOI: 10.3389/fgene.2023.1182363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023] Open
Abstract
Osteoporosis (OP) is a metabolic disease that affects bone, resulting in a progressive decrease in bone mass, quality, and micro-architectural degeneration. Natural products have become popular for managing OP in recent years due to their minimal adverse side effects and suitability for prolonged use compared to chemically synthesized products. These natural products are known to modulate multiple OP-related gene expressions, making epigenetics an important tool for optimal therapeutic development. In this study, we investigated the role of epigenetics in OP and reviewed existing research on using natural products for OP management. Our analysis identified around twenty natural products involved in epigenetics-based OP modulation, and we discussed potential mechanisms. These findings highlight the clinical significance of natural products and their potential as novel anti-OP therapeutics.
Collapse
Affiliation(s)
- Guokai Zhang
- Binzhou Hospital of Traditional Chinese Medicine, Binzhou, China
| | - Zhenying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihan Li
- The First Affiliated Hospital of Shandong First Medical University Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Bing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pengyu Yao
- Shandong Laboratory of Engineering Technology Suzhou Biomedical Engineering and Technology Chinese Academy of Sciences, Jinan, China
- Jinan Guoke Medical Engineering and Technology Development Company, Jinan, China
| | - Yun Qiao
- Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
26
|
Zhang C, Li H, Li J, Hu J, Yang K, Tao L. Oxidative stress: A common pathological state in a high-risk population for osteoporosis. Biomed Pharmacother 2023; 163:114834. [PMID: 37163779 DOI: 10.1016/j.biopha.2023.114834] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023] Open
Abstract
Osteoporosis is becoming a major concern in the field of public health. The process of bone loss is insidious and does not directly induce obvious symptoms. Complications indicate an irreversible decrease in bone mass. The high-risk populations of osteoporosis, including postmenopausal women, elderly men, diabetic patients and obese individuals need regular bone mineral density testing and appropriate preventive treatment. However, the primary changes in these populations are different, increasing the difficulty of effective treatment of osteoporosis. Determining the core pathogenesis of osteoporosis helps improve the efficiency and efficacy of treatment among these populations. Oxidative stress is a common pathological state secondary to estrogen deficiency, aging, hyperglycemia and hyperlipemia. In this review, we divided oxidative stress into the direct effect of reactive oxygen species (ROS) and the reduction of antioxidant enzyme activity to discuss their roles in the development of osteoporosis. ROS initiated mitochondrial apoptotic signaling and suppressed osteogenic marker expression to weaken osteogenesis. MAPK and NF-κB signaling pathways mediated the positive effect of ROS on osteoclast differentiation. Antioxidant enzymes not only eliminate the negative effects of ROS, but also directly participate in the regulation of bone metabolism. Additionally, we also described the roles of proinflammatory factors and HIF-1α under the pathophysiological changes of inflammation and hypoxia, which provided a supplement of oxidative stress-induced osteoporosis. In conclusion, our review showed that oxidative stress was a common pathological state in a high-risk population for osteoporosis. Targeted oxidative stress treatment would greatly optimize the therapeutic schedule of various osteoporosis treatments.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Hao Li
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Jie Li
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Jiajin Hu
- Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| |
Collapse
|
27
|
Zhang W, Liu Y, Luo Y, Shu X, Pu C, Zhang B, Feng P, Xiong A, Kong Q. New insights into the role of long non-coding RNAs in osteoporosis. Eur J Pharmacol 2023; 950:175753. [PMID: 37119958 DOI: 10.1016/j.ejphar.2023.175753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Osteoporosis is a common disease in elderly individuals, and osteoporosis can easily lead to bone and hip fractures that seriously endanger the health of elderly individuals. At present, the treatment of osteoporosis is mainly anti-osteoporosis drugs, but there are side effects associated with anti-osteoporosis drugs. Therefore, it is very important to develop early diagnostic indicators and new therapeutic drugs for the prevention and treatment of osteoporosis. Long noncoding RNAs (lncRNAs), noncoding RNAs longer than 200 nucleotides, can be used as diagnostic markers for osteoporosis, and lncRNAs play an important role in the progression of osteoporosis. Many studies have shown that lncRNAs can be the target of osteoporosis. Therefore, herein, the role of lncRNAs in osteoporosis is summarized, aiming to provide some information for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuheng Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuanrui Luo
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiang Shu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Congmin Pu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pin Feng
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ao Xiong
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Qingquan Kong
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Hou J, Liu D, Zhao J, Qin S, Chen S, Zhou Z. Long non-coding RNAs in osteoporosis: from mechanisms of action to therapeutic potential. Hum Cell 2023; 36:950-962. [PMID: 36881335 DOI: 10.1007/s13577-023-00888-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023]
Abstract
Osteoporosis is a clinical disease characterized by decreased bone density due to a disrupted balance between bone formation and resorption, which increases fracture risk and negatively affects the quality of life of a patient. LncRNAs are RNA molecules over 200 nucleotides in length with non-coding potential. Many studies have demonstrated that numerous biological processes involved in bone metabolism are affected. However, the complex mechanisms of action of lncRNAs and their clinical applications in osteoporosis have not yet been fully elucidated. LncRNAs, as epigenetic regulators, are widely involved in the regulation of gene expression during osteogenic and osteoclast differentiation. LncRNAs affect bone homeostasis and osteoporosis development through different signaling pathways and regulatory networks. Additionally, researchers have found that lncRNAs have great potential for clinical application in the treatment of osteoporosis. In this review, we summarize the research results on lncRNAs for clinical prevention, rehabilitation treatment, drug development, and targeted therapy for osteoporosis. Moreover, we summarize the regulatory modes of various signaling pathways through which lncRNAs affect the development of osteoporosis. Overall, these studies suggest that lncRNAs can be used as novel targeted molecular drugs for the clinical treatment of osteoporosis to improve symptoms.
Collapse
Affiliation(s)
- Jianglin Hou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Jihui Zhao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Sen Qin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Senxiang Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zimo Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| |
Collapse
|
29
|
Behnia M, Bradfute SB. The Host Non-Coding RNA Response to Alphavirus Infection. Viruses 2023; 15:v15020562. [PMID: 36851776 PMCID: PMC9967650 DOI: 10.3390/v15020562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Alphaviruses are important human and animal pathogens that can cause a range of debilitating symptoms and are found worldwide. These include arthralgic diseases caused by Old-World viruses and encephalitis induced by infection with New-World alphaviruses. Non-coding RNAs do not encode for proteins, but can modulate cellular response pathways in a myriad of ways. There are several classes of non-coding RNAs, some more well-studied than others. Much research has focused on the mRNA response to infection against alphaviruses, but analysis of non-coding RNA responses has been more limited until recently. This review covers what is known regarding host cell non-coding RNA responses in alphavirus infections and highlights gaps in the knowledge that future research should address.
Collapse
|
30
|
Lin S, Zhong L, Chen J, Zhao Z, Wang R, Zhu Y, Liu J, Wu Y, Ye C, Jin F, Ren Z. GDF11 inhibits adipogenesis of human adipose-derived stromal cells through ALK5/KLF15/β-catenin/PPARγ cascade. Heliyon 2023; 9:e13088. [PMID: 36755591 PMCID: PMC9900277 DOI: 10.1016/j.heliyon.2023.e13088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/04/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Obesity is a metabolic disease characterized by excessive fat storage, and the adipogenic differentiation of adipose-derived stromal cells (ADSCs) is closely linked to its occurrence. Growth differentiation factor 11 (GDF11), a well-known molecule in the field of anti-aging, also has great potential in regulating stem cell differentiation. In this study, we found that GDF11 inhibited adipogenic differentiation of human ADSCs in vitro by activating the WNT/β-catenin and SMAD2/3 pathways while inhibiting the AKT pathway. Moreover, the transcription factor Kruppel-like factor 15 (KLF15) was discovered to be an important downstream factor for GDF11 in inhibiting adipogenesis via the WNT/β-catenin pathway. Furthermore, AlphaFold2 structure prediction and inhibitor-blocking experiments revealed that ALK5 is a functional receptor of GDF11. Collectively, we demonstrated that GDF11 is a potential target for inhibiting adipogenic differentiation and combating obesity.
Collapse
Affiliation(s)
- Shimin Lin
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Lishan Zhong
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Jingyi Chen
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Zibo Zhao
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Yexuan Zhu
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Junwei Liu
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Cuifang Ye
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Fujun Jin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| |
Collapse
|
31
|
Li B, Wang J, Xu F, Wang Q, Liu Q, Wang G, Miao D, Sun Q. LncRNA RAD51-AS1 Regulates Human Bone Marrow Mesenchymal Stem Cells via Interaction with YBX1 to Ameliorate Osteoporosis. Stem Cell Rev Rep 2023; 19:170-187. [PMID: 35727431 DOI: 10.1007/s12015-022-10408-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 01/29/2023]
Abstract
Long noncoding RNA (lncRNA) is a new key regulatory molecule in the occurrence of osteoporosis, but its research is still in the primary stage. In order to study the role and mechanism of lncRNA in the occurrence of osteoporosis, we reannotated the GSE35956 datasets, compared and analyzed the differential expression profiles of lncRNAs between bone marrow mesenchymal stem cells (hBMSCs) from healthy and osteoporotic patients, and then screened a lncRNA RAD51-AS1 with low expression in hBMSCs from osteoporotic patients, and its role in the occurrence of osteoporosis has not been studied. We confirmed that the expression level of lncRNA RAD51-AS1 in hBMSCs from patients with osteoporosis was significantly lower than those from healthy donors. A nuclear cytoplasmic separation experiment and RNA fluorescence in situ hybridization showed that RAD51-AS1 was mainly located in the nucleus. RAD51-AS1 knockdown significantly inhibited the proliferation and osteogenic differentiation of hBMSCs and significantly increased their apoptosis, while RAD51-AS1 overexpression significantly promoted the proliferation, osteogenic differentiation, and ectopic bone formation of hBMSCs. Mechanistically, we found that RAD51-AS1 banded to YBX1 and then activated the TGF-β signal pathway by binding to Smad7 and Smurf2 mRNA to inhibit their translation and transcription up-regulated PCNA and SIVA1 by binding to their promoter regions. In conclusion, RAD51-AS1 promoted the proliferation and osteogenic differentiation of hBMSCs by binding YBX1, inhibiting the translation of Smad7 and Smurf2, and transcriptionally up-regulated PCNA and SIVA1.
Collapse
Affiliation(s)
- Beichen Li
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Jing Wang
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, 211100, China
| | - Fangrong Xu
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, 211100, China
| | - Qinjue Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Quan Liu
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Guantong Wang
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, 211100, China.
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, 211161, China.
| | - Qiang Sun
- Department of Orthopedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
32
|
β-Caryophyllene Acts as a Ferroptosis Inhibitor to Ameliorate Experimental Colitis. Int J Mol Sci 2022; 23:ijms232416055. [PMID: 36555694 PMCID: PMC9784863 DOI: 10.3390/ijms232416055] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Macrophage infiltration is one of the main pathological features of ulcerative colitis (UC) and ferroptosis is a type of nonapoptotic cell death, connecting oxidative stress and inflammation. However, whether ferroptosis occurs in the colon macrophages of UC mice and whether targeting macrophage ferroptosis is an effective approach for UC treatment remain unclear. The present study revealed that macrophage lipid peroxidation was observed in the colon of UC mice. Subsequently, we screened several main components of essential oil from Artemisia argyi and found that β-caryophyllene (BCP) had a good inhibitory effect on macrophage lipid peroxidation. Additionally, ferroptotic macrophages were found to increase the mRNA expression of tumor necrosis factor alpha (Tnf-α) and prostaglandin-endoperoxide synthase 2 (Ptgs2), while BCP can reverse the effects of inflammation activated by ferroptosis. Further molecular mechanism studies revealed that BCP activated the type 2 cannabinoid receptor (CB2R) to inhibit macrophage ferroptosis and its induced inflammatory response both in vivo and in vitro. Taken together, BCP potentially ameliorated experimental colitis inflammation by inhibiting macrophage ferroptosis. These results revealed that macrophage ferroptosis is a potential therapeutic target for UC and identified a novel mechanism of BCP in ameliorating experimental colitis.
Collapse
|
33
|
Niu Y, Tang S. Circadian clock-mediated nuclear receptors in cancer. J Cell Physiol 2022; 237:4428-4442. [PMID: 36250982 DOI: 10.1002/jcp.30905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Circadian system coordinates the daily periodicity of physiological and biochemical functions to adapt to environmental changes. Circadian disruption has been identified to increase the risk of cancer and promote cancer progression, but the underlying mechanism remains unclear. And further mechanistic understanding of the crosstalk between clock components and cancer is urgent to achieve clinical anticancer benefits from chronochemotherapy. Recent studies discover that several nuclear receptors regulating circadian clock, also play crucial roles in mediating multiple cancer processes. In this review, we aim to summarize the latest developments of clock-related nuclear receptors in cancer biology and dissect mechanistic insights into how nuclear receptors coordinate with circadian clock to regulate tumorigenesis and cancer treatment. A better understanding of circadian clock-related nuclear receptors in cancer could help prevent tumorigenesis and improve anticancer efficacy.
Collapse
Affiliation(s)
- Ya Niu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shuang Tang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
34
|
Chen M, Wang D, Li M, He Y, He T, Chen M, Hu Y, Luo Z, Cai K. Nanocatalytic Biofunctional MOF Coating on Titanium Implants Promotes Osteoporotic Bone Regeneration through Cooperative Pro-osteoblastogenesis MSC Reprogramming. ACS NANO 2022; 16:15397-15412. [PMID: 36106984 DOI: 10.1021/acsnano.2c07200] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An elevated bone microenvironmental reactive oxygen species (ROS) level is a hallmark of osteoporosis that often leads to the dysfunction of bone-related mesenchymal stem cells (MSCs), which would induce MSC senescence and severely undermine their osteoblastic potential. Herein, we report the in situ construction of bone microenvironment-responsive biofunctional metal-organic framework (bio-MOF) coating on the titanium surface through the coordination between p-xylylenebisphosphonate (PXBP) and Ce/Sr ions by a hydrothermal method. Taking advantage of the anchored Ce and Sr ions, the AHT-Ce/SrMOF implants demonstrate on-demand superoxide dismutase and catalase-like catalytic activities to decompose ROS in MSCs and restore their mitochondrial functions. In vitro analysis showed that the AHT-Ce/SrMOF implants substantially activated the AMP-activated protein kinase (AMPK) signaling pathway in MSCs and reduced the ROS levels. Meanwhile, MSCs grown on AHT-Ce/SrMOF implants displayed significantly higher expressions of the mitochondrial fission marker (DRP1), mitochondrial fusion marker (MFN2 and OPA1), and mitophagy marker (PINK1 and LC3) than those of the AHT-CeMOF and AHT-SrMOF groups, which indicated that the bio-MOF could amend mitochondrial function in MSCs to reverse senescence. In vivo evaluations showed that the bio-MOF-coated Ti implants could restore MSC function in the implant site and promote new bone formation, leading to improved osteointegration in osteoporotic rat. This study may improve implant-mediated fracture healing in the clinics.
Collapse
Affiliation(s)
- Maowen Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Dong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - Ye He
- Thomas Lord Department of Mechanical Engineering & Materials Science, Duke University, Durham 27705, North Carolina, United States
| | - Tingting He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Maohua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P.R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, P.R. China
| |
Collapse
|
35
|
Zhang X, Yang Y, Li D, Wu Z, Liu H, Zhao Z, Zhu H, Xie F, Li X. MOF negatively regulates estrogen receptor α signaling via CUL4B-mediated protein degradation in breast cancer. Front Oncol 2022; 12:868866. [PMID: 36212422 PMCID: PMC9539768 DOI: 10.3389/fonc.2022.868866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Estrogen receptor α (ERα) is the dominant tumorigenesis driver in breast cancer (BC), and ERα-positive BC (ERα+ BC) accounts for more than two-thirds of BC cases. MOF (males absent on the first) is a highly conserved histone acetyltransferase that acetylates lysine 16 of histone H4 (H4K16) and several non-histone proteins. Unbalanced expression of MOF has been identified, and high MOF expression predicted a favorable prognosis in BC. However, the association of MOF with ERα and the regulatory mechanisms of MOF in ERα signaling remain elusive. Our study revealed that the expression of MOF is negatively correlated with that of ERα in BC. In ERα+ BC cells, MOF overexpression downregulated the protein abundance of ERα in both cytoplasm and nucleus, thus attenuating ERα-mediated transactivation as well as cellular proliferation and in vivo tumorigenicity of BC cells. MOF promoted ERα protein degradation through CUL4B-mediated ubiquitin–proteasome pathway and induced HSP90 hyperacetylation that led to the loss of chaperone protection of HSP90 to ERα. We also revealed that suppression of MOF restored ERα expression and increased the sensitivity of ERα-negative BC cells to tamoxifen treatment. These results provide a new insight into the tumor-suppressive role of MOF in BC via negatively regulating ERα action, suggesting that MOF might be a potential therapeutic target for BC.
Collapse
Affiliation(s)
- Xu Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yang Yang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Danyang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- Rehabilitation Center, Qilu Hospital, Cheelo College of Medicine, Shandong University, Jinan, China
| | - Zhen Wu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Haoyu Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ziyan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hongying Zhu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Fei Xie
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiangzhi Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- *Correspondence: Xiangzhi Li,
| |
Collapse
|
36
|
Loss of Intraflagellar Transport 140 in Osteoblasts Cripples Bone Fracture Healing. FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
37
|
Jin F, Zhu Y, Liu M, Wang R, Cui Y, Wu Y, Liu G, Wang Y, Wang X, Ren Z. Babam2 negatively regulates osteoclastogenesis by interacting with Hey1 to inhibit Nfatc1 transcription. Int J Biol Sci 2022; 18:4482-4496. [PMID: 35864959 PMCID: PMC9295054 DOI: 10.7150/ijbs.72487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/26/2022] [Indexed: 11/21/2022] Open
Abstract
Osteoclast-mediated excessive bone resorption was highly related to diverse bone diseases including osteoporosis. BRISC and BRCA1-A complex member 2 (Babam2) was an evolutionarily conserved protein that is highly expressed in bone tissues. However, whether Babam2 is involved in osteoclast formation is still unclear. In this study, we identify Babam2 as an essential negative regulator of osteoclast formation. We demonstrate that Babam2 knockdown significantly accelerated osteoclast formation and activity, while Babam2 overexpression blocked osteoclast formation and activity. Moreover, we demonstrate that the bone resorption activity was significantly downregulated in Babam2-transgenic mice as compared with wild-type littermates. Consistently, the bone mass of the Babam2-transgenic mice was increased. Furthermore, we found that Babam2-transgenic mice were protected from LPS-induced bone resorption activation and thus reduced the calvarial bone lesions. Mechanistically, we demonstrate that the inhibitory effects of Babam2 on osteoclast differentiation were dependent on Hey1. As silencing Hey1 largely diminished the effects of Babam2 on osteoclastogenesis. Finally, we show that Babam2 interacts with Hey1 to inhibit Nfatc1 transcription. In sum, our results suggested that Babam2 negatively regulates osteoclastogenesis and bone resorption by interacting with Hey1 to inhibit Nfatc1 transcription. Therefore, targeting Babam2 may be a novel therapeutic approach for osteoclast-related bone diseases.
Collapse
Affiliation(s)
- Fujun Jin
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China.,Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yexuan Zhu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meijing Liu
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi Cui
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaogang Wang
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
38
|
Ross CJ, Ulitsky I. Discovering functional motifs in long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1708. [PMID: 34981665 DOI: 10.1002/wrna.1708] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 12/27/2022]
Abstract
Long noncoding RNAs (lncRNAs) are products of pervasive transcription that closely resemble messenger RNAs on the molecular level, yet function through largely unknown modes of action. The current model is that the function of lncRNAs often relies on specific, typically short, conserved elements, connected by linkers in which specific sequences and/or structures are less important. This notion has fueled the development of both computational and experimental methods focused on the discovery of functional elements within lncRNA genes, based on diverse signals such as evolutionary conservation, predicted structural elements, or the ability to rescue loss-of-function phenotypes. In this review, we outline the main challenges that the different methods need to overcome, describe the recently developed approaches, and discuss their respective limitations. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Caroline Jane Ross
- Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Biological Regulation and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
39
|
lncRNA SNHG15 as a ceRNA modulates Osteoclast Differentiation, Proliferation, and Metastasis by Sponging miR-381-3p/NEK2 Axis. J Immunol Res 2022; 2022:8634820. [PMID: 35733923 PMCID: PMC9206997 DOI: 10.1155/2022/8634820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Background A growing number of studies have shown that long noncoding RNAs play an important role in osteoclast differentiation. However, there are few studies on the roles of lncRNA small nucleolar RNA host gene 15 (SNHG15) in osteoclast differentiation. Methods The expressions of SNHG15, miR-381-3p, and never in mitosis-related kinase 2 (NEK2) mRNA were detected by real-time quantitative polymerase chain reaction (RT-qPCR); Western blot detected NEK2 and osteoclast markers (Cathepsin K, CTSK), matrix metalloproteinase 9 (MMP9), nuclear factor of activated T cell 2 (NFAT2), and tartrate-resistant acid phosphatase (TRAP) protein levels; cell proliferation was detected by Cell Counting Kit-8 (CCK-8), and the formation of osteoclasts was observed by TRAP staining; the F-actin skeleton was stained with tetramethylrhodamine isothiocyanate (TRITC) phalloidin; cell migration rate was detected by Transwell; dual-luciferase reporter gene assay and RNA-binding protein immunoprecipitation (RIP) assay verified the targeting relationship between miR-381-3p, SNHG15, and NEK2. Results The expression of SNHG15 was increased in THP-1 cells stimulated by macrophage colony-stimulating factor (M-CSF)/receptor activator of nuclear factor-kappa B ligand (RANKL). Overexpression of SNHG15 significantly promoted the proliferation, migration, osteoclast differentiation, and expression of osteoclast markers CTSK, MMP9, NFAT2, and TRAP of THP-1 cells induced by M-CSF/RANKL. Knockdown of SNHG15 reversed this effect. Overexpression of SNHG15 downregulated the inhibitory effect of overexpression of miR-381-3p on the proliferation, migration, and differentiation of THP-1 cells induced by M-CSF/RANKL. Knockdown of miR-381-3p reversed the inhibitory effect of knockdown of NEK2 on the proliferation, migration, and differentiation of THP-1 cells induced by M-CSF/RANKL. Conclusion SNHG15 acted as a ceRNA promoted the proliferation, migration, and differentiation of THP-1 cells induced by M-CSF/RANKL through sponging miR-381-3p to promote the expression of NEK2.
Collapse
|
40
|
Tian Y, Sun P, Liu WX, Shan LY, Hu YT, Fan HT, Shen W, Liu YB, Zhou Y, Zhang T. Single-cell RNA sequencing of the Mongolia sheep testis reveals a conserved and divergent transcriptome landscape of mammalian spermatogenesis. FASEB J 2022; 36:e22348. [PMID: 35583907 DOI: 10.1096/fj.202200152r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/09/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is a highly coordinated and complex process, and is pivotal for transmitting genetic information between mammalian generations. In this study, we investigated the conservation, differences, and biological functions of homologous genes during spermatogenesis in Mongolia sheep, humans, cynomolgus monkey, and mice using single-cell RNA sequencing technology. We compared X chromosome meiotic inactivation events in Mongolia sheep, humans, cynomolgus monkey, and mice to uncover the concerted activity of X chromosome genes. Subsequently, we focused on the dynamics of gene expression, key biological functions, and signaling pathways at various stages of spermatogenesis in Mongolia sheep and humans. Additionally, the ligand-receptor networks of Mongolia sheep and humans in testicular somatic and germ cells at different developmental stages were mapped to reveal conserved germ cell-soma communication using single-cell resolution. These datasets provided novel information and insights to unravel the molecular regulatory mechanisms of Mongolia sheep spermatogenesis and highlight conservation in gene expression during spermatogenesis between Mongolia sheep and humans, providing a foundation for the establishment of a large mammalian disease model of male infertility.
Collapse
Affiliation(s)
- Yu Tian
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Peng Sun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China.,Laboratory of Microbiology and Immunology, College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Wen-Xiang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Li-Ying Shan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan-Ting Hu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hai-Tao Fan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong-Bin Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China.,Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Yang Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), College of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
41
|
Yoo YJ, Ko JH, Lee GJ, Kang J, Kim MS, Stanciu SG, Jeong HH, Kim DH, Song YM. Gires-Tournois Immunoassay Platform for Label-Free Bright-Field Imaging and Facile Quantification of Bioparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110003. [PMID: 35338528 DOI: 10.1002/adma.202110003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Bright-field imaging of nanoscale bioparticles is a challenging task for optical microscopy because the light-matter interactions of bioparticles are weak on conventional surfaces due to their low refractive index and small size. Alternatively, advanced imaging techniques, including near-field microscopy and phase microscopy, have enabled visualization and quantification of the bioparticles, but they require assistance of sophisticated/customized systems and post-processing with complex established algorithms. Here, a simple and fast immunoassay device, Gires-Tournois immunoassay platform (GTIP) is presented, which provides unique color dynamics in response to optical environment changes and thus enables the label-free bright-field imaging and facile quantification of bioparticles using conventional optical microscopy. Bioparticles on GTIP slow down the velocity of reflected light, leading to vivid color change according to the local particle density and maximizing chromatic contrast for high spatial distinguishability. The particle distribution and density on the surface of the resonator are readily analyzed through 2D raster-scanning-based chromaticity analysis. GTIP offers multiscale sensing capability for target analytes that possess different refractive indices and sizes.
Collapse
Affiliation(s)
- Young Jin Yoo
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Joo Hwan Ko
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gil Ju Lee
- Department of Electronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Jiwon Kang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Stefan G Stanciu
- Center for Microscopy-Microanalysis and Information Processing, Politehnica University Bucharest, Bucharest, 060042, Romania
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
42
|
Bioactive glass nanoparticles inhibit osteoclast differentiation and osteoporotic bone loss by activating lncRNA NRON expression in the extracellular vesicles derived from bone marrow mesenchymal stem cells. Biomaterials 2022; 283:121438. [DOI: 10.1016/j.biomaterials.2022.121438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022]
|
43
|
Zhan Y, Li A, Cao C, Liu Y. CRISPR signal conductor 2.0 for redirecting cellular information flow. Cell Discov 2022; 8:26. [PMID: 35288535 PMCID: PMC8921274 DOI: 10.1038/s41421-021-00371-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/28/2021] [Indexed: 12/29/2022] Open
Abstract
A key challenge in designing intelligent artificial gene circuits is generating flexible connections between arbitrary components and directly coupling them with endogenous signaling pathways. The CRISPR signal conductor based on conditionally inducible artificial transcriptional regulators can link classic cellular protein signals with targeted gene expression, but there are still problems with multiple signal processing and gene delivery. With the discovery and characterization of new Cas systems and long noncoding RNA (lncRNA) functional motifs, and because of the compatibility of guide RNA with noncoding RNA elements at multiple sites, it is increasingly possible to solve these problems. In this study, we developed CRISPR signal conductor version 2.0 by integrating various lncRNA functional motifs into different parts of the crRNA in the CRISPR-dCasΦ system. This system can directly regulate the expression of target genes by recruiting cellular endogenous transcription factors and efficiently sense a variety of protein signals that are not detected by a classical synthetic system. The new system solved the problems of background leakage and insensitive signaling responses and enabled the construction of logic gates with as many as six input signals, which can be used to specifically target cancer cells. By rewiring endogenous signaling networks, we further demonstrated the effectiveness and biosafety of this system for in vivo cancer gene therapy.
Collapse
Affiliation(s)
- Yonghao Zhan
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.,Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Aolin Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Congcong Cao
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yuchen Liu
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China. .,Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
44
|
Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med 2022; 12:e694. [PMID: 35352511 PMCID: PMC8964935 DOI: 10.1002/ctm2.694] [Citation(s) in RCA: 523] [Impact Index Per Article: 174.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 12/19/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technology has become the state-of-the-art approach for unravelling the heterogeneity and complexity of RNA transcripts within individual cells, as well as revealing the composition of different cell types and functions within highly organized tissues/organs/organisms. Since its first discovery in 2009, studies based on scRNA-seq provide massive information across different fields making exciting new discoveries in better understanding the composition and interaction of cells within humans, model animals and plants. In this review, we provide a concise overview about the scRNA-seq technology, experimental and computational procedures for transforming the biological and molecular processes into computational and statistical data. We also provide an explanation of the key technological steps in implementing the technology. We highlight a few examples on how scRNA-seq can provide unique information for better understanding health and diseases. One important application of the scRNA-seq technology is to build a better and high-resolution catalogue of cells in all living organism, commonly known as atlas, which is key resource to better understand and provide a solution in treating diseases. While great promises have been demonstrated with the technology in all areas, we further highlight a few remaining challenges to be overcome and its great potentials in transforming current protocols in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Dragomirka Jovic
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesQingdaoChina
- BGI‐ShenzhenShenzhenChina
| | - Xue Liang
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesQingdaoChina
- BGI‐ShenzhenShenzhenChina
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Hua Zeng
- Nanjing University of Chinese MedicineNanjingChina
| | - Lin Lin
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| | - Fengping Xu
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesQingdaoChina
- BGI‐ShenzhenShenzhenChina
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative MedicineQingdao‐Europe Advanced Institute for Life SciencesQingdaoChina
- BGI‐ShenzhenShenzhenChina
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| |
Collapse
|
45
|
A mouse model of disuse osteoporosis based on a movable noninvasive 3D-printed unloading device. J Orthop Translat 2022; 33:1-12. [PMID: 35070713 PMCID: PMC8753063 DOI: 10.1016/j.jot.2021.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Objective Disuse osteoporosis is a major type of bone loss disease characterized by regional bone loss and microstructure alterations. The condition is induced by a marked decrease in weight bearing over time, which usually occurs due to limb immobilization, therapeutic bed rest or space flight. To date, the most commonly used mouse model of disuse osteoporosis is constructed using the classical tail suspension method, which causes tail injury, movement inconvenience and mental stress. This study aimed to propose a noninvasive and effective method for the establishment of a mouse model of disuse osteoporosis and compared this method with the tail suspension method. Methods 3D printing technology was applied to construct a movable unloading device. A movable noninvasive 3D-printed unloading device (3D-ULD) was used to unload the hindlimbs of the mice. The bone microstructure and bone volume of unloaded femurs were analysed through micro-CT and H&E staining, and von Kossa staining was performed for the detection of bone mineralization in the femurs. TRAP staining, IHC-CTSK and Q-PCR were performed for evaluation of the bone resorption ability, and double labelling, IHC-DMP1, ALP staining and Q-PCR assays were conducted to assess the osteogenic ability. The mechanical properties of disused bone were detected using the three-point bending test. The body, thymus and spleen weights of the mice were recorded, and the serum corticosterone level of the mice was assayed by enzyme-linked immunosorbent assay (ELISA). Results The micro-CT results showed significant trabecular bone loss, and 3D-ULD induced cortical bone loss in disused femurs as well as a decrease in the bone mineral density in the unloaded mice. TRAP staining and IHC-CTSK staining results indicated increases in the osteoclast number per bone perimeter (Oc.N/B.Pm) and the osteoclast surface per bone surface (Oc.S/BS) in the unloaded mice. The Ctsk, Trap and Mmp9 expression levels were significantly increased in the unloaded mice. Decreases in the ratio of the mineral surface to bone surface (MS/BS), mineral apposition rate (MAR) and bone formation rate per bone surface (BFR/BS) were found in unloaded mice in the 3D-ULD by double labelling. The IHC-DMP1 and ALP staining results showed decreases in the osteoblast number per bone perimeter (Ob.N/B.Pm) and osteoblast surface per bone surface (Ob. S/BS) in the mice unloaded in the 3D-ULD, and these mice also showed decreased Runx2, Alp and Dmp1 expression levels. Three-point bending test results showed that the mechanical properties were attenuated in the disused femurs of the unloaded mice. Less skin rupture and rare alterations in the thymus and spleen weights were found in the unloaded mice in the 3D-ULD. The ELISA results indicated the serum corticosterone level of the mice unloaded in the 3D-ULD was significantly lower than that of mice suspended by their tail. Conclusion This new disuse osteoporosis mouse model based on 3D-ULD could induce effective disuse bone loss with significantly alleviated side effects. Translational potential of this article This study proposes a new disuse osteoporosis mouse model based on 3D-ULD that can be used to better understand disuse bone loss in the future.
Collapse
|
46
|
The potential of long noncoding RNA therapies. Trends Pharmacol Sci 2022; 43:269-280. [DOI: 10.1016/j.tips.2022.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
|
47
|
Yang Z, Feng L, Wang H, Li Y, Lo JHT, Zhang X, Lu X, Wang Y, Lin S, Tortorella MD, Li G. DANCR Mediates the Rescuing Effects of Sesamin on Postmenopausal Osteoporosis Treatment via Orchestrating Osteogenesis and Osteoclastogenesis. Nutrients 2021; 13:4455. [PMID: 34960006 PMCID: PMC8704418 DOI: 10.3390/nu13124455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 02/03/2023] Open
Abstract
As one of the leading causes of bone fracture in postmenopausal women and in older men, osteoporosis worldwide is attracting more attention in recent decades. Osteoporosis is a common disease mainly resulting from an imbalance of bone formation and bone resorption. Pharmaceutically active compounds that both activate osteogenesis, while repressing osteoclastogenesis hold the potential of being therapeutic medications for osteoporosis treatment. In the present study, sesamin, a bioactive ingredient derived from the seed of Sesamum Indicum, was screened out from a bioactive compound library and shown to exhibit dual-regulating functions on these two processes. Sesamin was demonstrated to promote osteogenesis by upregulating Wnt/β-catenin, while repressing osteoclastogenesis via downregulating NF-κB signaling . Furthermore, DANCR was found to be the key regulator in sesamin-mediated bone formation and resorption . In an ovariectomy (OVX)-induced osteoporotic mouse model, sesamin could rescue OVX-induced bone loss and impairment. The increased serum level of DANCR caused by OVX was also downregulated upon sesamin treatment. In conclusion, our results demonstrate that sesamin plays a dual-functional role in both osteogenesis activation and osteoclastogenesis de-activation in a DANCR-dependent manner, suggesting that it may be a possible medication candidate for osteoporotic patients with elevated DNACR expression levels.
Collapse
Affiliation(s)
- Zhengmeng Yang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Lu Feng
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China; (L.F.); (Y.W.)
| | - Haixing Wang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Yucong Li
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Jessica Hiu Tung Lo
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Xiaoting Zhang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Xuan Lu
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Yaofeng Wang
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China; (L.F.); (Y.W.)
| | - Sien Lin
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| | - Micky D. Tortorella
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China; (L.F.); (Y.W.)
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hospital, Hong Kong, China; (Z.Y.); (H.W.); (Y.L.); (J.H.T.L.); (X.Z.); (X.L.); (S.L.)
| |
Collapse
|
48
|
Wohlwend M, Laurila PP, Williams K, Romani M, Lima T, Pattawaran P, Benegiamo G, Salonen M, Schneider BL, Lahti J, Eriksson JG, Barrès R, Wisløff U, Moreira JBN, Auwerx J. The exercise-induced long noncoding RNA CYTOR promotes fast-twitch myogenesis in aging. Sci Transl Med 2021; 13:eabc7367. [PMID: 34878822 DOI: 10.1126/scitranslmed.abc7367] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Martin Wohlwend
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway.,Clinic of Cardiology, St. Olavs Hospital, Torgarden, NO-3250 Trondheim, Norway
| | - Pirkka-Pekka Laurila
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kristine Williams
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Mario Romani
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tanes Lima
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Pattamaprapanont Pattawaran
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Giorgia Benegiamo
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Minna Salonen
- Chronic Disease Prevention Unit, National Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - Bernard L Schneider
- Bertarelli Foundation Gene Therapy Platform, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1202 Geneva, Switzerland
| | - Jari Lahti
- Turku Institute for Advanced Studies, University of Turku, FI-20014 Turku, Finland.,Department of Psychology and Logopedics, University of Helsinki, FI-00014 Helsinki, Finland
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, FI-00014 Helsinki, Finland.,Folkhälsan Research Center, University of Helsinki, FI-00014 Helsinki, Finland.,Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, SG-119228 Singapore, Singapore.,Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research, SG-117609 Singapore, Singapore
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - José B N Moreira
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
49
|
Xu Y, Yu X, Zhang M, Zheng Q, Sun Z, He Y, Guo W. Promising Advances in LINC01116 Related to Cancer. Front Cell Dev Biol 2021; 9:736927. [PMID: 34722518 PMCID: PMC8553226 DOI: 10.3389/fcell.2021.736927] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/24/2021] [Indexed: 01/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNAs with a length of no less than 200 nucleotides that are not translated into proteins. Accumulating evidence indicates that lncRNAs are pivotal regulators of biological processes in several diseases, particularly in several malignant tumors. Long intergenic non-protein coding RNA 1116 (LINC01116) is a lncRNA, whose aberrant expression is correlated with a variety of cancers, including lung cancer, gastric cancer, colorectal cancer, glioma, and osteosarcoma. LINC01116 plays a crucial role in facilitating cell proliferation, invasion, migration, and apoptosis. In addition, numerous studies have recently suggested that LINC01116 has emerged as a novel biomarker for prognosis and therapy in malignant tumors. Consequently, we summarize the clinical significance of LINC01116 associated with biological processes in various tumors and provide a hopeful orientation to guide clinical treatment of various cancers in future studies.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
50
|
Affiliation(s)
- Rotem Ben-Tov Perry
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.,Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel. .,Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|