1
|
Huang Y, Wang Z. Therapeutic potential of SOX family transcription factors in osteoarthritis. Ann Med 2025; 57:2457520. [PMID: 39887675 PMCID: PMC11789227 DOI: 10.1080/07853890.2025.2457520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND As the worldwide population ages, osteoarthritis has significantly increased. This musculoskeletal condition has become a pressing global health issue and thus, prevention and treatment of osteoarthritis have become the primary focus of domestic and international research. Scholarly investigations of the molecular mechanisms that are related to the occurrence and development of osteoarthritis have shed light on the pathological causes of this condition to a certain extent, providing a foundation for its prevention and treatment. However, further research is necessary to fully understand the critical role of the transcription factor SOX9 in chondrocyte differentiation and the development of osteoarthritis. As a result, there has been widespread interest in SOX transcription factors. While SOX9 has been utilized as a biomarker to indicate the occurrence and prognosis of osteoarthritis, investigations into other members of the SOX family and the development of targeted treatments around SOX9 are still required. PURPOSE This article considers the impact of the SOX protein on the development and inhibition of osteoarthritis and highlights the need for therapeutic approaches targeting SOX9, as supported by existing research. RESULTS SOX9 can contribute to the process of osteoarthritis through acetylation and ubiquitination modifications. The regulation of the WNT signalling pathway, Nrf2/ARE signalling pathway, NF-κB signalling pathway and SOX9 is implicated in the emergence of osteoarthritis. Non-coding RNA may play a role in the onset and progression of osteoarthritis by modulating various SOX family members, including SOX2, SOX4, SOX5, SOX6, SOX8, SOX9 and SOX11. CONCLUSION SOX9 has the capability of mitigating the onset and progression of osteoarthritis through means such as medication therapy, stem cell therapy, recombinant adeno-associated virus (rAAV) vector therapy, physical therapy and other approaches.
Collapse
Affiliation(s)
- Yue Huang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Zhuo Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
2
|
Hao W, Chang M, Shi D, Yun C, Li J, Guo H, Lin X. Therapeutic targets in aging-related osteoarthritis: A focus on the extracellular matrix homeostasis. Life Sci 2025; 368:123487. [PMID: 39978589 DOI: 10.1016/j.lfs.2025.123487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/21/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
Osteoarthritis (OA) represents a globally prevalent degenerative bone diseases and is the primary contributors to pain and disability among middle-aged and elderly people, thereby imposing significant social and economic burdens. When articular cartilage is in the aging environment, epigenetic modifications, DNA damage and mitochondrial dysfunction lead to cell senescence. Chondrocyte senescence has been identified as a pivotal event in this metabolic dysregulation of the extracellular matrix (ECM). It can affect the composition and structure of ECM, and the mechanical and biological signals transmitted by ECM to senescent chondrocytes affect their physiology and pathology. Over the past few decades, the role of ECM in aging-related OA has received increasing attention. In this review, we summarize the changes of cartilage's major ECM (type II collagen and aggrecan) and the interaction between aging and ECM in OA, and explore therapeutic strategies targeting cartilagae ECM, such as noncoding RNAs, small-molecule drugs, and mesenchymal stem cell (MSC)-derived extracellular vesicles for OA. The aim of this study was to elucidate the potential benefits of ECM-based therapies as novel strategies for the management of OA diseases.
Collapse
Affiliation(s)
- Wan Hao
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Minnan Chang
- Department of Clinical Medicine, Xin Jiang Medical University, Xin Jiang 830011, China
| | - Di Shi
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chenxi Yun
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jun Li
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haitao Guo
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Xiao Lin
- Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen City 518063, China.
| |
Collapse
|
3
|
Niu L, Swingler TE, Suelzu C, Ersek A, Orriss IR, Barter MJ, Hayman DJ, Young DA, Horwood N, Clark IM. The microRNA-455 null mouse shows dysregulated bone turnover. JBMR Plus 2025; 9:ziaf007. [PMID: 39963339 PMCID: PMC11831985 DOI: 10.1093/jbmrpl/ziaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/18/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
A wide range of specific microRNAs have been shown to have either positive or negative effects on osteoblast differentiation and function, with consequent changes in postnatal bone mass. A number of specific targets have been identified. We previously used CrispR-Cas9 to make a miR-455 null mouse, characterizing a behavioral phenotype with age. The current study identifies a bone phenotype, starting in younger animals. At 3 weeks of age, the miR-455 null mice (both male and female) display increased length of both long bones and vertebrae and, while this difference diminishes across 1 year, it remains significant. Increased bone formation in vivo is mirrored by an increase in osteogenesis from bone marrow-derived stem cells in vitro. This is accompanied by a decrease in osteoclastogenesis and osteoclast function. MicroCT analyses show increased trabecular bone and less porosity/decreased separation in the miR-455 null mouse, suggesting a more dense and stronger bone at 3 weeks of age; these differences normalize by 1 year. Gain-of-function and loss-of-function datasets show that FGF18 expression is regulated by miR-455 and FGF18 was validated as a direct target of miR-455. The regulation of FGF18 by miR-455 is a likely mediator of its effect on bone.
Collapse
Affiliation(s)
- Lingzi Niu
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Tracey E Swingler
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | - Caterina Suelzu
- Norwich Medical School, University of East Anglia, Norwich, NR4 7UQ, United Kingdom
| | - Adel Ersek
- Norwich Medical School, University of East Anglia, Norwich, NR4 7UQ, United Kingdom
| | - Isabel R Orriss
- Comparative Biomedical Sciences, Royal Veterinary College, London, NW1 0TU, United Kingdom
| | - Matthew J Barter
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom
| | - Dan J Hayman
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom
| | - David A Young
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, United Kingdom
| | - Nicole Horwood
- Norwich Medical School, University of East Anglia, Norwich, NR4 7UQ, United Kingdom
| | - Ian M Clark
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| |
Collapse
|
4
|
Zhang T, Wang W, Sun J, Luo L, Li Y, Xu Z, Xu W. MiR-455-5p Mitigates Interleukin-1 β-induced Chondrocyte Damage Linked to Osteoarthritis by Targeting TNFAIP8. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2025; 68:100-108. [PMID: 40170451 DOI: 10.4103/ejpi.ejpi-d-24-00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/03/2025] [Indexed: 04/03/2025]
Abstract
ABSTRACT MicroRNAs have been extensively implicated in osteoarthritis (OA) progression. Our study aims to investigate the impact of miR-455-5p on OA progression and related molecular mechanisms. Cartilage tissues were collected from patients with OA and femoral neck fractures. An in vitro OA model was established by inducing injury in human chondrocytes (CHON-001) with interleukin (IL)-1 β. Cell viability and apoptosis were measured by cell counting kit-8 and flow cytometry assays, respectively. An enzyme-linked immunosorbent assay was performed to measure the concentrations of inflammation factors, and oxidative stress was evaluated by detecting superoxide dismutase activity and malondialdehyde levels. TargetScan was used to predict the binding sites between miR-455-5p and tumor necrosis factor (TNF)-α-induced protein 8 (TNFAIP8), which were then confirmed by dual-luciferase reporter assays. Quantitative real-time polymerase chain reaction and western blot analysis were employed to measure the related molecular markers. Our initial observations showed that the expression of miR-455-5p was downregulated in OA cartilage and IL-1 β-treated CHON-001 cells compared to normal cartilage tissues and untreated cells. Overexpression of miR-455-5p significantly protected CHON-001 cells from IL-1 β-induced injury by recovering cell viability, and inhibiting inflammation, apoptosis, and oxidative stress. TNFAIP8 was targeted by miR-455-5p and negatively regulated by miR-455-5p. TNFAIP8 knockdown imitated, while overexpression reversed the effects mediated by miR-455-5p in IL-1 β-induced chondrocyte injury, as further confirmed by the protein levels of iNOS, cleaved caspase-3, NQO1, Col2a1, and MMP13. Collectively, these results suggest that miR-455-5p may serve as a new therapeutic target for OA by targeting TNFAIP8 to alleviate IL-1 β-induced chondrocyte injury.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Immunology, Basic and Forensic Medicine of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| | - Wei Wang
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| | - Jinlei Sun
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| | - Long Luo
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| | - Yuan Li
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| | - Zhixiong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| | - Wensheng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia Autonomous Region, China
| |
Collapse
|
5
|
Dong DL, Jin GZ. Targeting Chondrocyte Hypertrophy as Strategies for the Treatment of Osteoarthritis. Bioengineering (Basel) 2025; 12:77. [PMID: 39851351 PMCID: PMC11760869 DOI: 10.3390/bioengineering12010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by pain and functional impairment, which severely impacts the quality of life of middle-aged and elderly individuals. During normal bone development, chondrocyte hypertrophy is a natural physiological process. However, in the progression of OA, chondrocyte hypertrophy becomes one of its key pathological features. Although there is no definitive evidence to date confirming that chondrocyte hypertrophy is the direct cause of OA, substantial experimental data indicate that it plays an important role in the disease's pathogenesis. In this review, we first explore the mechanisms underlying chondrocyte hypertrophy in OA and offer new insights. We then propose strategies for inhibiting chondrocyte hypertrophy from the perspectives of targeting signaling pathways and tissue engineering, ultimately envisioning the future prospects of OA treatment.
Collapse
Affiliation(s)
- Da-Long Dong
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Guang-Zhen Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea;
| |
Collapse
|
6
|
Zhao J, Xia Y, He J. The role of MiR-143-3p in swimming exercise protection against osteoarthritis in mice. Exp Gerontol 2024; 198:112632. [PMID: 39536879 DOI: 10.1016/j.exger.2024.112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE This study aimed to investigate the effects of swimming exercise on cartilage, inflammatory markers, subchondral bone structure, and stride length in mice with knee osteoarthritis induced by anterior cruciate ligament (ACL) transection, and to explore the role of miR-143-3p in these effects. METHODS Thirty-six 3-month-old male C57BL/6 mice were randomly divided into three groups: control, exercise (swimming 30 min daily for one month), and exercise + miR-143-3p mimics (swimming exercise plus intra-articular injection of miR-143-3p mimics lentivirus once every two weeks for four weeks). Experimental groups underwent ACL transection to induce osteoarthritis. Interventions began two weeks post-modeling. Post-intervention, stride length analysis, histological analysis (including assessment of cartilage morphology and chondrocyte number), and micro-CT scanning (to assess subchondral bone structure) were performed. Inflammatory markers were measured in cartilage. RESULTS Swimming exercise partially alleviated joint inflammation (as evidenced by reduced levels of IL-1β), protected cartilage (maintaining chondrocyte number and extracellular matrix homeostasis, as demonstrated by improved cartilage morphology), and enhanced subchondral bone structure. However, miR-143-3p supplementation partially inhibited these beneficial effects of swimming exercise. Both exercise groups showed gait impairment (reduced stride length) compared to controls, with no significant difference between the two exercise groups. CONCLUSION Swimming exercise can mitigate osteoarthritis progression by protecting cartilage, improving subchondral bone structure, and reducing inflammation. However, miR-143-3p partially counteracts these protective effects.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China.
| | - Jinwen He
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Li J, Liu X, Cai C, Zhang L, An Z, Guo Y, Zhang Y, Li W, Sun G, Li G, Kang X, Han R. Plasma exosome-derived miR-455-5p targets RPS6KB1 to regulate cartilage homeostasis in valgus-varus deformity (Gallus gallus). Poult Sci 2024; 103:104169. [PMID: 39244785 PMCID: PMC11407033 DOI: 10.1016/j.psj.2024.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024] Open
Abstract
Valgus-varus deformity (VVD) is a common long bone deformity in broilers. Imbalance in cartilage homeostasis is the main feature of leg disease. Exosomes act as an important intercellular communication vector that regulates chondrogenesis by encapsulating specific nucleic acids and proteins. However, the exact mechanism of how plasma exosomal miRNAs regulate cartilage homeostasis in VVD broilers remains unclear. This study first demonstrated the structural disorder, growth retardation, and reduced proliferative capacity of VVD cartilage in vitro and in vivo. Subsequently, VVD and Normal broiler plasma exosomes were collected for miRNA sequencing. Cartilage-specific miR-455-5p was extraordinarily emphasized by performing bioinformatics analysis on differential miRNA target genes and further validated by tissue expression profiling. PKH67 fluorescently labeled plasma exosomes were shown to be taken up by chondrocytes, deliver miR-455-5p, inhibit chondrocyte proliferation, and disrupt their homeostasis, and these effects could be inhibited by the miR-inhibitors. Mechanistically, MiR-455-5p targets Ribosomal Protein S6 Kinase B1 (RPS6KB1) to inhibit RPS6 phosphorylation and reduce the synthesis of key proteins for cartilage proliferation, which in turn inhibits cartilage proliferation and disrupts its homeostasis. In conclusion, the present study identified abnormalities in VVD cartilage tissue and clarified the specific mechanism by which plasma exosome-derived miR-455-5p regulates cartilage homeostasis.
Collapse
Affiliation(s)
- Jianzeng Li
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinxin Liu
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Chunxia Cai
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lujie Zhang
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhiyuan An
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wenting Li
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Guirong Sun
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Guoxi Li
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangtao Kang
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruili Han
- The Shennong Laboratory, Henan Agricultural University, Zhengzhou, 450002, China; College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
8
|
Auroux M, Millet M, Merle B, Fontanges E, Duvert F, Gineyts E, Rousseau JC, Borel O, Mercier-Guery A, Lespessailles E, Chapurlat R. Evaluation of circulating microRNA signature in patients with erosive hand osteoarthritis: The HOAmiR study. Osteoarthritis Cartilage 2024; 32:1452-1462. [PMID: 38986835 DOI: 10.1016/j.joca.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVES To identify circulating micro-RNAs differentially expressed in patients with erosive hand osteoarthritis (HOA) compared to patients with non-erosive HOA and patients without HOA. METHODS In the screening phase, 768 well-characterized micro-RNAs using Taqman low-density array cards were measured in 30 sera from 10 patients with erosive HOA, 10 patients with non-erosive HOA, and 10 controls without HOA, matched for age and body mass index (BMI). In a second step, we validated the micro-RNAs identified at the screening phase (adjusted p value < 0.05 after false discovery rate correction using Benjamini-Hochberg method and literature review) in larger samples (60 patients with erosive HOA and 60 patients without HOA matched for age and BMI). RESULTS In the screening phase, we identified 21 down-regulated and 4 up-regulated micro-RNAs of interest between erosive HOA and control groups. Among these, 9 micro-RNAs (miR-373-3p, miR-558, miR-607, miR-653-5p, miR-137 and miR448 were down-regulated, and miR-142-3p, miR-144-3p and miR-34a-5p were up-regulated) were previously described in chondrocytes homeostasis or OA. We found only one significantly down-regulated micro-RNA between erosive and non-erosive HOA. In the validation phase, we showed replication of a single micro-RNA the significant downregulation of miR-196-5p, that had been previously identified in the screening phase among patients with erosive HOA compared to those without HOA. After reviewing the literature and the miRNA-gene interaction prediction model, we found that this microRNA could interact with bone homeostasis and HOXC8, which could explain its role in osteoarthritis. CONCLUSIONS We found that miR-196-5p was down-regulated in patients with erosive HOA and some of its targets could explain a role in OA.
Collapse
Affiliation(s)
- Maxime Auroux
- Service de Rhumatologie, Hôpital Edouard Herriot, Hospices Civils de Lyon, Université Claude-Bernard Lyon 1, Lyon, France; INSERM U1033, Hopital Edouard Herriot, Lyon, France.
| | | | | | - Elisabeth Fontanges
- Service de Rhumatologie, Hôpital Edouard Herriot, Hospices Civils de Lyon, Université Claude-Bernard Lyon 1, Lyon, France
| | | | | | | | | | - Alexandre Mercier-Guery
- Service de Rhumatologie, Hôpital Edouard Herriot, Hospices Civils de Lyon, Université Claude-Bernard Lyon 1, Lyon, France; INSERM U1033, Hopital Edouard Herriot, Lyon, France
| | | | - Roland Chapurlat
- Service de Rhumatologie, Hôpital Edouard Herriot, Hospices Civils de Lyon, Université Claude-Bernard Lyon 1, Lyon, France; INSERM U1033, Hopital Edouard Herriot, Lyon, France
| |
Collapse
|
9
|
Patel K, Barter M, Soul J, Clark P, Proctor C, Clark I, Young D, Shanley DP. Systems analysis of miR-199a/b-5p and multiple miR-199a/b-5p targets during chondrogenesis. eLife 2024; 12:RP89701. [PMID: 39401064 PMCID: PMC11473111 DOI: 10.7554/elife.89701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Changes in chondrocyte gene expression can contribute to the development of osteoarthritis (OA), and so recognition of the regulative processes during chondrogenesis can lead to a better understanding of OA. microRNAs (miRNAs) are key regulators of gene expression in chondrocytes/OA, and we have used a combined experimental, bioinformatic, and systems biology approach to explore the multiple miRNA-mRNA interactions that regulate chondrogenesis. A longitudinal chondrogenesis bioinformatic analysis identified paralogues miR-199a-5p and miR-199b-5p as pro-chondrogenic regulators. Experimental work in human cells demonstrated alteration of miR-199a-5p or miR-199b-5p expression led to significant inverse modulation of key chondrogenic genes and extracellular matrix production. miR-199a/b-5p targets FZD6, ITGA3 and CAV1 were identified by inhibition experiments and verified as direct targets by luciferase assay. The experimental work was used to generate and parameterise a multi-miRNA 14-day chondrogenesis kinetic model to be used as a repository for the experimental work and as a resource for further investigation of this system. This is the first multi-miRNA model of a chondrogenesis-based system, and highlights the complex relationships between regulatory miRNAs, and their target mRNAs.
Collapse
Affiliation(s)
- Krutik Patel
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle UniversityNewcastle-upon-TyneUnited Kingdom
| | - Matt Barter
- Regenerative Medicine, Stem Cells, Transplantation, Biosciences Institute, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Jamie Soul
- Regenerative Medicine, Stem Cells, Transplantation, Biosciences Institute, Newcastle UniversityNewcastle upon TyneUnited Kingdom
- Computational Biology Facility, Faculty of Health and Life Sciences, University of LiverpoolLiverpoolUnited Kingdom
| | - Peter Clark
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle UniversityNewcastle-upon-TyneUnited Kingdom
| | - Carole Proctor
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle UniversityNewcastle-upon-TyneUnited Kingdom
| | - Ian Clark
- School of Biological Sciences, University of East AngliaNorwichUnited Kingdom
| | - David Young
- Regenerative Medicine, Stem Cells, Transplantation, Biosciences Institute, Newcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Daryl P Shanley
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle UniversityNewcastle-upon-TyneUnited Kingdom
| |
Collapse
|
10
|
Fu L, Wu J, Li P, Zheng Y, Zhang Z, Yuan X, Ding Z, Ning C, Sui X, Liu S, Shi S, Guo Q, Lin Y. A novel mesenchymal stem cell-targeting dual-miRNA delivery system based on aptamer-functionalized tetrahedral framework nucleic acids: Application to endogenous regeneration of articular cartilage. Bioact Mater 2024; 40:634-648. [PMID: 39253616 PMCID: PMC11381621 DOI: 10.1016/j.bioactmat.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Articular cartilage injury (ACI) remains one of the key challenges in regenerative medicine, as current treatment strategies do not result in ideal regeneration of hyaline-like cartilage. Enhancing endogenous repair via microRNAs (miRNAs) shows promise as a regenerative therapy. miRNA-140 and miRNA-455 are two key and promising candidates for regulating the chondrogenic differentiation of mesenchymal stem cells (MSCs). In this study, we innovatively synthesized a multifunctional tetrahedral framework in which a nucleic acid (tFNA)-based targeting miRNA codelivery system, named A-T-M, was used. With tFNAs as vehicles, miR-140 and miR-455 were connected to and modified on tFNAs, while Apt19S (a DNA aptamer targeting MSCs) was directly integrated into the nanocomplex. The relevant results showed that A-T-M efficiently delivered miR-140 and miR-455 into MSCs and subsequently regulated MSC chondrogenic differentiation through corresponding mechanisms. Interestingly, a synergistic effect between miR-140 and miR-455 was revealed. Furthermore, A-T-M successfully enhanced the endogenous repair capacity of articular cartilage in vivo and effectively inhibited hypertrophic chondrocyte formation. A-T-M provides a new perspective and strategy for the regeneration of articular cartilage, showing strong clinical application value in the future treatment of ACI.
Collapse
Affiliation(s)
- Liwei Fu
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Jiang Wu
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Pinxue Li
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
| | - Yazhe Zheng
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Zhichao Zhang
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Xun Yuan
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Zhengang Ding
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Chao Ning
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Xiang Sui
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Shuyun Liu
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Quanyi Guo
- School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
- Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing, People's Republic of China
- Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, People's Republic of China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|
11
|
Fu L, Wu J, Shi S, Zhang Z, Zheng Y, Li P, Yuan X, Ding Z, Ning C, Sui X, Liu S, Guo Q, Lin Y. A tetrahedral framework nucleic acids-based gene therapeutic nanococktail alleviates cartilage damage and protects against osteoarthritis progression. CHEMICAL ENGINEERING JOURNAL 2024; 498:155189. [DOI: 10.1016/j.cej.2024.155189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Gao Y, Wang J, Dai W, Li S, Liu Q, Zhao X, Fu W, Xiao Y, Guo L, Fan Y, Zhang X. Collagen-based hydrogels induce hyaline cartilage regeneration by immunomodulation and homeostasis maintenance. Acta Biomater 2024; 186:108-124. [PMID: 39067644 DOI: 10.1016/j.actbio.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Type I collagen (Col I) and hyaluronic acid (HA), derived from the extracellular matrix (ECM), have found widespread application in cartilage tissue engineering. Nevertheless, the potential of cell-free collagen-based scaffolds to induce in situ hyaline cartilage regeneration and the related mechanisms remain undisclosed. Here, we chose Col I and HA to construct Col I hydrogel and Col I-HA composite hydrogel with similar mechanical properties, denoted as Col and ColHA, respectively. Their potential to induce cartilage regeneration was investigated. The results revealed that collagen-based hydrogels could regenerate hyaline cartilage without any additional cells or growth factors. Notably, ColHA hydrogel stood out in this regard. It elicited a moderate activation, recruitment, and reprogramming of macrophages, thus efficiently mitigating local inflammation. Additionally, ColHA hydrogel enhanced stem cell recruitment, facilitated their chondrogenic differentiation, and inhibited chondrocyte fibrosis, hypertrophy, and catabolism, thereby preserving cartilage homeostasis. This study augments our comprehension of cartilage tissue induction theory by enriching immune-related mechanisms, offering innovative prospects for the design of cartilage defect repair scaffolds. STATEMENT OF SIGNIFICANCE: The limited self-regeneration ability and post-injury inflammation pose significant challenges to articular cartilage repair. Type I collagen (Col I) and hyaluronic acid (HA) are extensively used in cartilage tissue engineering. However, their specific roles in cartilage regeneration remain poorly understood. This study aimed to elucidate the functions of Col I and Col I-HA composite hydrogels (ColHA) in orchestrating inflammatory responses and promoting cartilage regeneration. ColHA effectively activated and recruited macrophages, reprogramming them from an M1 to an M2 phenotype, thus alleviating local inflammation. Additionally, ColHA facilitated stem cell homing, induced chondrogenesis, and concurrently inhibited fibrosis, hypertrophy, and catabolism, collectively contributing to the maintenance of cartilage homeostasis. These findings underscore the clinical potential of ColHA for repairing cartilage defects.
Collapse
Affiliation(s)
- Yongli Gao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Jing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Wenling Dai
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Shikui Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Qingli Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Xingchen Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Weili Fu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Likun Guo
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China; School of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, China
| |
Collapse
|
13
|
Arai Y, Cha R, Nakagawa S, Inoue A, Nakamura K, Takahashi K. Cartilage Homeostasis under Physioxia. Int J Mol Sci 2024; 25:9398. [PMID: 39273346 PMCID: PMC11395513 DOI: 10.3390/ijms25179398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Articular cartilage receives nutrients and oxygen from the synovial fluid to maintain homeostasis. However, compared to tissues with abundant blood flow, articular cartilage is exposed to a hypoxic environment (i.e., physioxia) and has an enhanced hypoxic stress response. Hypoxia-inducible factors (HIFs) play a pivotal role in this physioxic environment. In normoxic conditions, HIFs are downregulated, whereas in physioxic conditions, they are upregulated. The HIF-α family comprises three members: HIF-1α, HIF-2α, and HIF-3α. Each member has a distinct function in articular cartilage. In osteoarthritis, which is primarily caused by degeneration of articular cartilage, HIF-1α is upregulated in chondrocytes and is believed to protect articular cartilage by acting anabolically on it. Conversely, in contrast to HIF-1α, HIF-2α exerts a catabolic influence on articular cartilage. It may therefore be possible to develop a new treatment for OA by controlling the expression of HIF-1α and HIF-2α with drugs or by altering the oxygen environment in the joints.
Collapse
Affiliation(s)
- Yuji Arai
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Ryota Cha
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shuji Nakagawa
- Department of Sports and Para-Sports Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Atsuo Inoue
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kei Nakamura
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kenji Takahashi
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
14
|
Feng T, Zhang Q, Li SH, Ping YL, Tian MQ, Zhou SH, Wang X, Wang JM, Liang FR, Yu SG, Wu QF. Inhibition of miR-199b-5p reduces pathological alterations in osteoarthritis by potentially targeting Fzd6 and Gcnt2. eLife 2024; 12:RP92645. [PMID: 38770735 PMCID: PMC11108644 DOI: 10.7554/elife.92645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative disease with a high prevalence in the elderly population, but our understanding of its mechanisms remains incomplete. Analysis of serum exosomal small RNA sequencing data from clinical patients and gene expression data from OA patient serum and cartilage obtained from the GEO database revealed a common dysregulated miRNA, miR-199b-5p. In vitro cell experiments demonstrated that miR-199b-5p inhibits chondrocyte vitality and promotes extracellular matrix degradation. Conversely, inhibition of miR-199b-5p under inflammatory conditions exhibited protective effects against damage. Local viral injection of miR-199b-5p into mice induced a decrease in pain threshold and OA-like changes. In an OA model, inhibition of miR-199b-5p alleviated the pathological progression of OA. Furthermore, bioinformatics analysis and experimental validation identified Gcnt2 and Fzd6 as potential target genes of MiR-199b-5p. Thus, these results indicated that MiR-199b-5p/Gcnt2 and Fzd6 axis might be a novel therapeutic target for the treatment of OA.
Collapse
Affiliation(s)
- Tong Feng
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Qi Zhang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese MedicineChengduChina
- Chongqing Hospital of Traditional Chinese MedicineChongqingChina
| | - Si-Hui Li
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Yan-ling Ping
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Mu-qiu Tian
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Shuan-hu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical SchoolBostonUnited States
- Harvard Stem Cell Institute, Harvard UniversityCambridgeUnited States
| | - Xin Wang
- Departments of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Jun-Meng Wang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Fan-Rang Liang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Shu-Guang Yu
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese MedicineChengduChina
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of EducationChengduChina
| | - Qiao-Feng Wu
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese MedicineChengduChina
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of EducationChengduChina
| |
Collapse
|
15
|
Yao Q, He T, Liao JY, Liao R, Wu X, Lin L, Xiao G. Noncoding RNAs in skeletal development and disorders. Biol Res 2024; 57:16. [PMID: 38644509 PMCID: PMC11034114 DOI: 10.1186/s40659-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Protein-encoding genes only constitute less than 2% of total human genomic sequences, and 98% of genetic information was previously referred to as "junk DNA". Meanwhile, non-coding RNAs (ncRNAs) consist of approximately 60% of the transcriptional output of human cells. Thousands of ncRNAs have been identified in recent decades, and their essential roles in the regulation of gene expression in diverse cellular pathways associated with fundamental cell processes, including proliferation, differentiation, apoptosis, and metabolism, have been extensively investigated. Furthermore, the gene regulation networks they form modulate gene expression in normal development and under pathological conditions. In this review, we integrate current information about the classification, biogenesis, and function of ncRNAs and how these ncRNAs support skeletal development through their regulation of critical genes and signaling pathways in vivo. We also summarize the updated knowledge of ncRNAs involved in common skeletal diseases and disorders, including but not limited to osteoporosis, osteoarthritis, rheumatoid arthritis, scoliosis, and intervertebral disc degeneration, by highlighting their roles established from in vivo, in vitro, and ex vivo studies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Rongdong Liao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lijun Lin
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
16
|
Jiang D, Cheng S, Kang P, Li T, Li X, Xiao J, Ren L. microRNA-105-5p protects against chondrocyte injury, extracellular matrix degradation, and osteoarthritis progression by targeting SPARCL1. Histol Histopathol 2024; 39:483-496. [PMID: 37534667 DOI: 10.14670/hh-18-654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
OBJECTIVE Both microRNA (miR)-105-5p and SPARCL1 were discovered to be differentially expressed in osteoarthritis (OA), but their roles and exact mechanisms have not been entirely elaborated. This paper sets out to probe the impact of miR-105-5p/SPARCL1 on chondrocyte injury, extracellular matrix degradation, and osteoarthritis progression. METHODS C28/I2 cells were stimulated with IL-1β to construct an in vitro OA model. C28/I2 cells were transfected with sh-SPARCL1, oe-SPARCL1, or miR-105-5p mimic before IL-1β induction. CCK-8 assay, flow cytometry, and ELISA were adopted to assess cell viability, apoptosis, and inflammatory factor expression, respectively. The binding relationship of miR-105-5p to SPARCL1 was assessed using dual-luciferase reporter assay. After an OA rat model was established, rats underwent intra-articular injection with ago-miR-105-5p. TUNEL was applied to determine cell apoptosis in vivo. mRNA and protein levels were measured by qRT-PCR and western blot, respectively, in vitro and in vivo. RESULTS IL-1β treatment diminished miR-105-5p expression and augmented SPARCL1 expression in C28/I2 cells. miR-105-5p decreased SPARCL1 expression by targeting SPARCL1. miR-105-5p overexpression or SPARCL1 silencing prominently reversed the decrease in viability and the promotion of inflammatory factor production, cartilage matrix degradation, and apoptosis in IL-1β-stimulated C28/I2 cells. Furthermore, upregulation of SPARCL1 nullified the influence of miR-105-5p overexpression on viability, apoptosis, inflammation, and cartilage matrix degradation in IL-1β-stimulated C28/I2 cells. miR-105-5p overexpression ameliorated knee cartilage tissue injury in OA rats. CONCLUSION Conclusively, miR-105-5p exerted suppressive effects on chondrocyte injury, extracellular matrix degradation, and OA progression by targeting SPARCL1.
Collapse
Affiliation(s)
- Dong Jiang
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, Hunan, PR China
| | - Shigao Cheng
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, Hunan, PR China
| | - Pengcheng Kang
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, Hunan, PR China
| | - Tengfei Li
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, Hunan, PR China
| | - Xun Li
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, Hunan, PR China
| | - Jiongzhe Xiao
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, Hunan, PR China
| | - Lian Ren
- Department of Orthopedic Surgery, Loudi Central Hospital, Loudi, Hunan, PR China.
| |
Collapse
|
17
|
黄 秋, 周 建, 王 子, 杨 堃, 陈 政. [MiR-26-3p regulates proliferation, migration, invasion and apoptosis of glioma cells by targeting CREB1]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:578-584. [PMID: 38597450 PMCID: PMC11006701 DOI: 10.12122/j.issn.1673-4254.2024.03.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To investigate the regulatory role of miR-26b-3p in proliferation, migration and invasion of glioma. METHODS The expressions of miR-26b-3p and cAMP-responsive element binding protein 1 (CREB1) in gliomas of different pathological grades were detected with RT-qPCR and Western blotting. Bioinformatic methods were used to analyze the target sequence of miRNA-26b-3p binding to CREB1, and dual luciferase gene reporter experiment was performed to explore the mechanism for targeted regulation of CREB1 by miR-26b-3p. Glioma U251 cells were treated with miR-26b-3p mimic or inhibitor, and the changes in CREB1 expression and cell proliferation, migration, invasion and apoptosis were determined with Western blotting, CCK-8 assay, wound healing assay, Transwell assay, and flow cytometry. RESULTS The expression of miR-26b-3p decreased while CREB1 expression increased significantly as the pathological grade of gliomas increased (P < 0.05). Dual luciferase gene reporter experiment confirmed that CREB1 was a downstream target of miR-26b-3p. Inhibition of miR-26b-3p significantly upregulated the expression of CERB1, suppressed apoptosis and promoted proliferation and invasion of glioma cells, and overexpression of miR-26b-3p produced the opposite effects (P < 0.05). CONCLUSION MiR-26b-3p regulates CREB1 expression to modulate apoptosis, proliferation, migration and invasion of glioma cells, thereby participating in tumorigenesis and progression of glioma.
Collapse
Affiliation(s)
- 秋虎 黄
- />海南医学院第一附属医院神经外科,海南 海口 570102Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - 建 周
- />海南医学院第一附属医院神经外科,海南 海口 570102Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - 子珍 王
- />海南医学院第一附属医院神经外科,海南 海口 570102Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - 堃 杨
- />海南医学院第一附属医院神经外科,海南 海口 570102Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - 政纲 陈
- />海南医学院第一附属医院神经外科,海南 海口 570102Department of Neurosurgery, First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| |
Collapse
|
18
|
Du S, Zhou X, Zheng B. Beyond Traditional Medicine: EVs-Loaded Hydrogels as a Game Changer in Disease Therapeutics. Gels 2024; 10:162. [PMID: 38534580 DOI: 10.3390/gels10030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/28/2024] Open
Abstract
Extracellular vesicles (EVs), especially exosomes, have shown great therapeutic potential in the treatment of diseases, as they can target cells or tissues. However, the therapeutic effect of EVs is limited due to the susceptibility of EVs to immune system clearance during transport in vivo. Hydrogels have become an ideal delivery platform for EVs due to their good biocompatibility and porous structure. This article reviews the preparation and application of EVs-loaded hydrogels as a cell-free therapy strategy in the treatment of diseases. The article also discusses the challenges and future outlook of EVs-loaded hydrogels.
Collapse
Affiliation(s)
- Shutong Du
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaohu Zhou
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Bo Zheng
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
19
|
An X, Wang R, Lv Z, Wu W, Sun Z, Wu R, Yan W, Jiang Q, Xu X. WTAP-mediated m 6A modification of FRZB triggers the inflammatory response via the Wnt signaling pathway in osteoarthritis. Exp Mol Med 2024; 56:156-167. [PMID: 38172596 PMCID: PMC10834961 DOI: 10.1038/s12276-023-01135-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 01/05/2024] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis. However, the exact pathogenesis remains unclear. Emerging evidence shows that N6-methyladenosine (m6A) modification may have an important role in OA pathogenesis. This study aimed to investigate the role of m6A writers and the underlying mechanisms in osteoarthritic cartilage. Among m6A methyltransferases, Wilms tumor 1-associated protein (WTAP) expression most significantly differed in clinical osteoarthritic cartilage. WTAP regulated extracellular matrix (ECM) degradation, inflammation and antioxidation in human chondrocytes. Mechanistically, the m6A modification and relative downstream targets in osteoarthritic cartilage were assessed by methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing, which indicated that the expression of frizzled-related protein (FRZB), a secreted Wnt antagonist, was abnormally decreased and accompanied by high m6A modification in osteoarthritic cartilage. In vitro dysregulated WTAP had positive effects on β-catenin expression by targeting FRZB, which finally contributed to the cartilage injury phenotype in chondrocytes. Intra-articular injection of adeno-associated virus-WTAP alleviated OA progression in a mouse model, while this protective effect could be reversed by the application of a Wnt/β-catenin activator. In summary, this study revealed that WTAP-dependent RNA m6A modification contributed to Wnt/β-catenin pathway activation and OA progression through post-transcriptional regulation of FRZB mRNA, thus providing a potentially effective therapeutic strategy for OA treatment.
Collapse
Affiliation(s)
- Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China
| | - Rongliang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China
| | - Zhongyang Lv
- Department of Orthopedic, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, P.R. China
| | - Wenshu Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China
| | - Ziying Sun
- Department of Orthopedic, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, P.R. China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China
| | - Wenjin Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China.
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China.
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China.
| | - Xingquan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, P.R. China.
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing, P.R. China.
| |
Collapse
|
20
|
Li Z, Zhao W, Wang M, Hussain MZ, Mahjabeen I. Role of microRNAs deregulation in initiation of rheumatoid arthritis: A retrospective observational study. Medicine (Baltimore) 2024; 103:e36595. [PMID: 38241560 PMCID: PMC10798721 DOI: 10.1097/md.0000000000036595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024] Open
Abstract
Rheumatoid arthritis (RA) is a joint disorder and is considered an important public health concern nowadays. So, identifying novel biomarkers and treatment modalities is urgently needed to improve the health standard of RA patients. Factors involved in RA pathogenesis are genetic/epigenetic modification, environment, and lifestyle. In the case of epigenetic modification, the expression deregulation of microRNAs and the role of histone deacetylase (HDAC) in RA is an important aspect that needs to be addressed. The present study is designed to evaluate the expression pattern of microRNAs related to the HDAC family. Five microRNAs, miR-92a-3p, miR-455-3p, miR-222, miR-140, and miR-146a related to the HDAC family were selected for the present study. Real-time polymerase chain reaction was used to estimate the level of expression of the above-mentioned microRNAs in 150 patients of RA versus 150 controls. Oxidative stress level and histone deacetylation status were measured using the enzyme-linked immunosorbent assay. Statistical analysis showed significant downregulation (P < .0001) of selected microRNAs in RA patients versus controls. Significantly raised level of HDAC (P < .0001) and 8-hydroxy-2'-deoxyguanosine (P < .0001) was observed in patients versus controls. A good diagnostic potential of selected microRNAs in RA was shown by the receiver operating curve analysis. The current study showed a significant role of deregulated expression of the above-mentioned microRNAs in RA initiation and can act as an excellent diagnostic marker for this disease.
Collapse
Affiliation(s)
- Zengxin Li
- Department of Bone Surgery, Department of Orthopaedic Surgery Ⅱ, Affiliated Hospital of Beihua University, Jilin, China
| | - Wen Zhao
- Department of Orthopaedics, The first Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province, China
| | - Mengchang Wang
- Department of Rehabilitation Medicine, Traditional Chinese Medical Hospital of HuZhou, Huzhou, Zhejiang, China
| | | | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
21
|
Zhang X, Wang X, Yu F, Wang C, Peng J, Wang C, Chen X. PiRNA hsa_piR_019949 promotes chondrocyte anabolic metabolism by inhibiting the expression of lncRNA NEAT1. J Orthop Surg Res 2024; 19:31. [PMID: 38178210 PMCID: PMC10768105 DOI: 10.1186/s13018-023-04511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Osteoarthritis is a prevalent degenerative joint condition typically found in individuals who are aged 50 years or older. In this study, the focus is on PIWI-interacting RNA (piRNA), which belongs to a category of small non-coding RNAs. These piRNAs play a role in the regulation of gene expression and the preservation of genomic stability. The main objective of this research is to examine the expression of a specific piRNA called hsa_piR_019949 in individuals with osteoarthritis, to understand its impact on chondrocyte metabolism within this condition. METHODS We analyzed piRNA expression in osteoarthritis cartilage using the GEO database. To understand the impact of inflammatory factors on piRNA expression in chondrocytes, we conducted RT-qPCR experiments. We also investigated the effect of piRNA hsa_piR_019949 on chondrocyte proliferation using CCK-8 and clone formation assays. Furthermore, we assessed the influence of piRNA hsa_piR_019949 on chondrocyte apoptosis by conducting flow cytometry analysis. Additionally, we examined the differences in cartilage matrix composition through safranine O staining and explored the downstream regulatory mechanisms of piRNA using transcriptome sequencing. Lentiviral transfection of NEAT1 and NLRP3 was performed to regulate the metabolism of chondrocytes. RESULTS Using RNA sequencing technology, we compared the gene expression profiles of 5 patients with osteoarthritis to 3 normal controls. We found a gene called hsa_piR_019949 that showed differential expression between the two groups. Specifically, hsa_piR_019949 was downregulated in chondrocytes when stimulated by IL-1β, an inflammatory molecule. In further investigations, we discovered that overexpression of hsa_piR_019949 in vitro led to increased proliferation and synthesis of the extracellular matrix in chondrocytes, which are cells responsible for cartilage formation. Conversely, suppressing hsa_piR_019949 expression resulted in increased apoptosis (cell death) and degradation of the extracellular matrix in chondrocytes. Additionally, we found that the NOD-like receptor signaling pathway is linked to the low expression of hsa_piR_019949 in a specific chondrocyte cell line called C28/I2. Furthermore, we observed that hsa_piR_019949 can inhibit the expression of a long non-coding RNA called NEAT1 in chondrocytes. We hypothesize that NEAT1 may serve as a downstream target gene regulated by hsa_piR_019949, potentially influencing chondrocyte metabolism and function in the context of osteoarthritis. CONCLUSIONS PiRNA hsa_piR_019949 has shown potential in promoting the proliferation of chondrocytes and facilitating the synthesis of extracellular matrix in individuals with osteoarthritis. This is achieved by inhibiting the expression of a long non-coding RNA called NEAT1. The implication is that by using hsa_piR_019949 mimics, which are synthetic versions of the piRNA, as a therapeutic approach, it may be possible to effectively treat osteoarthritis.
Collapse
Affiliation(s)
- Xinhai Zhang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xuyi Wang
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Fengbin Yu
- Department of Orthopaedics, The 72, Group Army Hospital of PLA, Huzhou, 313000, Zhejiang, China
| | - Chenglong Wang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Jianping Peng
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| | - Xiaodong Chen
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China.
| |
Collapse
|
22
|
Chen J, Liu Z, Sun H, Liu M, Wang J, Zheng C, Cao X. MiR-203a-3p attenuates apoptosis and pyroptosis of chondrocytes by regulating the MYD88/NF-κB pathway to alleviate osteoarthritis progression. Aging (Albany NY) 2023; 15:14457-14472. [PMID: 38095638 PMCID: PMC10756106 DOI: 10.18632/aging.205373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease that imposes a significant socioeconomic burden worldwide. Our previous studies revealed a down-regulation of miR-203a-3p in the knee tissues of OA patients. However, the underlying mechanism through which miR-203a-3p mediates the pathological process of OA remains unknown. Thus, we aimed to determine the effects of miR-203a-3p in the progression of OA. METHODS Rat primary chondrocytes were stimulated with 10 μg/mL lipopolysaccharide (LPS) for 24 hours, followed by transfection with 50 nM miR-203a-3p mimic, inhibitor, and siRNA for MYD88 or consistent negative controls for 48 hours. To evaluate the effects of miR-203a-3p on cartilage matrix degradation, oxidative stress, apoptosis, and pyroptosis in chondrocytes, various techniques such as immunofluorescence staining, biochemical analysis, Western blotting, and the TUNEL staining were utilized. In the rat OA model, all rats were randomly divided into four groups: Sham, OA, OA+Agomir negative control (NC), and OA+Agomir. They received intra-articular injections of 25 nmol miR-203a-3p agomir, agomir NC, or normal saline twice a week for the duration of 8 weeks after OA induction. Immunofluorescence staining was performed to evaluate the effects of miR-203a-3p on cartilage matrix degradation in rats. RESULTS MiR-203a-3p was down-regulated in LPS-treated rat chondrocytes and OA cartilage, and directly targeted MYD88. Moreover, miR-203a-3p significantly inhibited LPS-induced cartilage matrix degradation, oxidative stress, apoptosis, and pyroptosis of chondrocytes via targeting MYD88. Mechanistically, miR-203a-3p exerted protective effects via the inhibition of the MYD88/NF-κB pathway. In the rat OA model, intra-articular injections of miR-203a-3p agomir also significantly inhibited cartilage matrix degradation, thereby alleviating OA progression. Furthermore, the miR-203a-3p agomir-treated arthritic rat dramatically exhibited better articular tissue morphology and lower OARSI scores. CONCLUSIONS MiR-203a-3p plays a role in alleviating the progression of OA by regulating the MYD88/NF-κB pathway, thereby inhibiting cartilage matrix degradation, oxidative stress, apoptosis, and pyroptosis of chondrocytes. It highlights the potential significance of miR-203a-3p as an important regulator of OA.
Collapse
Affiliation(s)
- Jiayi Chen
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528401, Guangdong, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Zhutong Liu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - He Sun
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Mange Liu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong China
| | - Jiangliang Wang
- Liuyang Hospital of Traditional Chinese Medicine, Liuyang 410300, Hunan, China
| | - Chenxiao Zheng
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528401, Guangdong, China
| | - Xuewei Cao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, Guangdong China
| |
Collapse
|
23
|
Wang P, Zhu P, Zhang S, Yuan W, Liu Z. Icariin activates far upstream element binding protein 1 to regulate hypoxia-inducible factor-1α and hypoxia-inducible factor-2α signaling and benefits chondrocytes. PeerJ 2023; 11:e15917. [PMID: 37637163 PMCID: PMC10452614 DOI: 10.7717/peerj.15917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Icariin (ICA) is a typical flavonoid glycoside derived from epimedium plants. It has both anabolic and anti-catabolic effects to improve bone mineral density and reduce bone microstructural degradation. However, the effect and underlying mechanism of ICA on the proliferation and metabolism of chondrocyte and synthesis of extracellular matrix are still unclear. This study aimed to investigate the role and regulation of far upstream element binding protein 1 (FUBP1) in chondrocytes treated with ICA to maintain homeostasis and suppress inflammatory responses. In the study, the effect of ICA on chondrocytes with overexpressed or silenced FUBP1 was detected by the MTS and single-cell cloning methods. The expression of hypoxia-inducible factor-1/2α (HIF-1/2α), FUBP1, matrix metalloproteinase (MMP)9, SRY-box transcription factor 9 (SOX9), and type II collagen (Col2α) in ATDC5 cells, a mouse chondrogenic cell line, treated with ICA was evaluated by immunoblotting. Western blotting revealed 1 µM ICA to have the most significant effect on chondrocytes. Alcian blue staining and colony formation assays showed that the promoting effect of ICA was insignificant in FUBP1-knockdown cells (P > 0.05) but significantly enhanced in FUBP1-overexpressed cells (P < 0.05). Western blot results from FUBP1-knockdown cells treated with or without ICA showed no significant difference in the expression of FUBP1, HIF-1/2α, MMP9, SOX9, and Col2α proteins, whereas the same proteins showed increased expression in FUBP1-overexpressed chondrocytes; moreover, HIF-2α and MMP9 expression was significantly inhibited in FUBP1-knockdown chondrocytes (P < 0.05). In conclusion, as a bioactive monomer of traditional Chinese medicine, ICA is beneficial to chondrocytes.
Collapse
Affiliation(s)
- Pengzhen Wang
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Pingping Zhu
- Department of Neurology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shaoheng Zhang
- Department of Cardiology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Wei Yuan
- Department of Hepatobiliary Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong
| | - Zhihe Liu
- Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
24
|
He L, Xu Z, Niu X, Li R, Wang F, You Y, Gao J, Zhao L, Shah KM, Fan J, Liu M, Luo J. GPRC5B protects osteoarthritis by regulation of autophagy signaling. Acta Pharm Sin B 2023; 13:2976-2989. [PMID: 37521864 PMCID: PMC10372909 DOI: 10.1016/j.apsb.2023.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 03/14/2023] [Indexed: 08/01/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common chronic diseases in the world. However, current treatment modalities mainly relieve pain and inhibit cartilage degradation, but do not promote cartilage regeneration. In this study, we show that G protein-coupled receptor class C group 5 member B (GPRC5B), an orphan G-protein-couple receptor, not only inhibits cartilage degradation, but also increases cartilage regeneration and thereby is protective against OA. We observed that Gprc5b deficient chondrocytes had an upregulation of cartilage catabolic gene expression, along with downregulation of anabolic genes in vitro. Furthermore, mice deficient in Gprc5b displayed a more severe OA phenotype in the destabilization of the medial meniscus (DMM) induced OA mouse model, with upregulation of cartilage catabolic factors and downregulation of anabolic factors, consistent with our in vitro findings. Overexpression of Gprc5b by lentiviral vectors alleviated the cartilage degeneration in DMM-induced OA mouse model by inhibiting cartilage degradation and promoting regeneration. We also assessed the molecular mechanisms downstream of Gprc5b that may mediate these observed effects and identify the role of protein kinase B (AKT)-mammalian target of rapamycin (mTOR)-autophagy signaling pathway. Thus, we demonstrate an integral role of GPRC5B in OA pathogenesis, and activation of GPRC5B has the potential in preventing the progression of OA.
Collapse
Affiliation(s)
- Liang He
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| | - Ziwei Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Niu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Rong Li
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| | - Fanhua Wang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| | - Yu You
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jingduo Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Zhao
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| | - Karan M. Shah
- Department of Oncology and Metabolism, the Medical School, the University of Sheffield, Sheffield S10 2TN, UK
| | - Jian Fan
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Luo
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University School of Medicine, Shanghai 201613, China
| |
Collapse
|
25
|
Chen H, Ye T, Hu F, Chen K, Li B, Qiu M, Chen Z, Sun Y, Ye W, Wang H, Ni D, Guo L. Urchin-like ceria nanoparticles for enhanced gene therapy of osteoarthritis. SCIENCE ADVANCES 2023; 9:eadf0988. [PMID: 37315130 PMCID: PMC10266732 DOI: 10.1126/sciadv.adf0988] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease in the world. Gene therapy based on delivering microRNAs (miRNAs) into cells has potential for the treatment of OA. However, the effects of miRNAs are limited by the poor cellular uptake and stability. Here, we first identify a type of microRNA-224-5p (miR-224-5p) from clinical samples of patients with OA that can protect articular cartilage from degeneration and further synthesize urchin-like ceria nanoparticles (NPs) that can load miR-224-5p for enhanced gene therapy of OA. Compared with traditional sphere ceria NPs, the thorns of urchin-like ceria NPs can efficiently promote the transfection of miR-224-5p. In addition, urchin-like ceria NPs have excellent performance of scavenging reactive oxygen species (ROS), which can regulate the microenvironment of OA to further improve the gene treatment of OA. The combination of urchin-like ceria NPs and miR-224-5p not only exhibits favorable curative effect for OA but also provides a promising paradigm for translational medicine.
Collapse
Affiliation(s)
- Haoyi Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tianwen Ye
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Fangqiong Hu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kaizhe Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Minglong Qiu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhijie Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yao Sun
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenkai Ye
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Guo
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
26
|
Chen H, Chen F, Hu F, Li Y, Zhang M, Zhou Q, Ding T, Tulufu N, Ye T, Wang F, Guo L. MicroRNA-224-5p nanoparticles balance homeostasis via inhibiting cartilage degeneration and synovial inflammation for synergistic alleviation of osteoarthritis. Acta Biomater 2023:S1742-7061(23)00336-7. [PMID: 37330028 DOI: 10.1016/j.actbio.2023.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/18/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
MicroRNAs play a crucial role in regulating cartilage extracellular matrix (ECM) metabolism and are being explored as potential therapeutic targets for osteoarthritis (OA). The present study indicated that microRNA-224-5p (miR-224-5p) could balance the homeostasis of OA via regulating cartilage degradation and synovium inflammatory simultaneously. Multifunctional polyamidoamine dendrimer with amino acids used as efficient vector to deliver miR-224-5p. The vector could condense miR-224-5p into transfected nanoparticles, which showed higher cellular uptake and transfection efficiency compared to lipofectamine 3000, and also protected miR-224-5p from RNase degradation. After treatment with the nanoparticles, the chondrocytes showed an increase in autophagy rate and ECM anabolic components, as evidenced by the upregulation of autophagy-related proteins and OA-related anabolic mediators. This led to a corresponding inhibition of cell apoptosis and ECM catabolic proteases, ultimately resulting in the alleviation of ECM degradation. In addition, miR-224-5p also inhibited human umbilical vein endothelial cells angiogenesis and fibroblast-like synoviocytes inflammatory hyperplasia. Integrating the above synergistic effects of miR-224-5p in regulating homeostasis, intra-articular injection of nanoparticles performed outstanding therapeutic effect by reducing articular space width narrowing, osteophyte formation, subchondral bone sclerosis and inhibiting synovial hypertrophy and proliferation in the established mouse OA model. The present study provides a new therapy target and an efficient intra-articular delivery method for improving OA therapy. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) is the most prevalent joint disease worldwide. Gene therapy, which involves delivering microRNAs, has the potential to treat OA. In this study, we demonstrated that miR-224-5p can simultaneously regulate cartilage degradation and synovium inflammation, thereby restoring homeostasis in OA gene therapy. Moreover, compared to traditional transfection reagents such as lipofectamine 3000, G5-AHP showed better efficacy in both microRNA transfection and protection against degradation due to its specific surface structure. In summary, G5-AHP/miR-224-5p was developed to meet the clinical needs of OA patients and the high requirement of gene transfection efficiency, providing a promising paradigm for the future application and development of gene therapy.
Collapse
Affiliation(s)
- Haoyi Chen
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, department of orthopedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.
| | - Fangjing Chen
- Department of Orthopedic Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | - Fangqiong Hu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, department of orthopedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Yifan Li
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, department of orthopedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Meixing Zhang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, department of orthopedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Qi Zhou
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, department of orthopedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Tao Ding
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, department of orthopedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Nijiati Tulufu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, department of orthopedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Tianwen Ye
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China..
| | - Fei Wang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, department of orthopedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.
| | - Lei Guo
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Orthopaedics and Traumatology, department of orthopedics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, China.
| |
Collapse
|
27
|
Zdziechowski A, Gluba-Sagr A, Rysz J, Woldańska-Okońska M. Why Does Rehabilitation Not (Always) Work in Osteoarthritis? Does Rehabilitation Need Molecular Biology? Int J Mol Sci 2023; 24:ijms24098109. [PMID: 37175818 PMCID: PMC10179350 DOI: 10.3390/ijms24098109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Osteoarthritis (OA) is a common disease among the human population worldwide. OA causes functional impairment, leads to disability and poses serious socioeconomic burden. The rehabilitation offers a function-oriented method to reduce the disability using diverse interventions (kinesiotherapy, physical therapy, occupational therapy, education, and pharmacotherapy). OA as a widespread disease among elderly patients is often treated by rehabilitation specialists and physiotherapists, however the results of rehabilitation are sometimes unsatisfactory. The understanding of molecular mechanisms activated by rehabilitation may enable the development of more effective rehabilitation procedures. Molecular biology methods may prove crucial in rehabilitation as the majority of rehabilitation procedures cannot be estimated in double-blinded placebo-controlled trials commonly used in pharmacotherapy. This article attempts to present and estimate the role of molecular biology in the development of modern rehabilitation. The role of clinicians in adequate molecular biology experimental design is also described.
Collapse
Affiliation(s)
- Adam Zdziechowski
- Department of Internal Diseases, Rehabilitation and Physical Medicine, Medical University, 90-700 Łódź, Poland
| | - Anna Gluba-Sagr
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Łódź, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 90-549 Łódź, Poland
| | - Marta Woldańska-Okońska
- Department of Internal Diseases, Rehabilitation and Physical Medicine, Medical University, 90-700 Łódź, Poland
| |
Collapse
|
28
|
Han J, Luo Z, Wang Y, Liang Y. LncRNA ZFAS1 protects chondrocytes from IL-1β-induced apoptosis and extracellular matrix degradation via regulating miR-7-5p/FLRT2 axis. J Orthop Surg Res 2023; 18:320. [PMID: 37098630 PMCID: PMC10131303 DOI: 10.1186/s13018-023-03802-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/14/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Increasing evidence suggested that long non-coding RNAs (lncRNAs) played vital roles in osteoarthritis (OA) progression. In this study, we aimed to reveal the protective roles of lncRNA ZFAS1 in osteoarthritis (OA) and further investigated its underlying mechanism. METHODS The chondrocytes were stimulated by IL-1β to establish an in vitro OA model. Then, the expression of ZFAS1, miR-7-5p, and FLRT2 in chondrocytes was determined by qRT-PCR. Gain- and loss-of-function assays of ZFAS1, miR-7-5p and FLRT2 were conducted. CCK-8 assay and flow cytometry analysis were performed to detect cell viability and apoptosis rate. The expression levels of cartilage-related proteins, including MMP13, ADAMTS5, Collagen II, and Aggrecan, were measured by western blot analysis. The interaction between ZFAS1 and miR-7-5p, as well as miR-7-5p and FLRT2, was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation assay. RESULTS The expression of ZFAS1 and FLRT2 was down-regulated, while the expression of miR-7-5p was up-regulated in chondrocytes exposed to IL-1β. ZFAS1 overexpression promoted cell viability and suppressed apoptosis in IL-1β-treated chondrocytes. Besides, ZFAS1 overexpression suppressed the expression of MMP13 and ADAMTS5, but promoted the expression of Collagen II and Aggrecan to suppress ECM degradation. The mechanistic study showed that ZFAS1 sponged miR-7-5p to regulate FLRT2 expression. Furthermore, the overexpression of miR-7-5p could neutralize the effect of ZFAS1 in IL-1β-treated chondrocytes, and suppression of FLRT2 counteracted the miR-7-5p down-regulation role in IL-1β-treated chondrocytes. CONCLUSIONS ZFAS1 could promote cell viability of IL-1β-treated chondrocytes via regulating miR-7-5p/FLRT2 axis. Trial registration Not applicable.
Collapse
Affiliation(s)
- Jicheng Han
- Department of Orthopedics, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Zongjian Luo
- Department of Orthopedics, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yifei Wang
- Department of Pathology, Jilin Cancer Hospital, Changchun, 130012, China
| | - Yantao Liang
- Surgery of Bone and Soft Tissue Tumors, Jilin Cancer Hospital, 1018 Huguang Road, Chaoyang District, Changchun, 130012, China.
| |
Collapse
|
29
|
Balaskas P, Goljanek-Whysall K, Clegg PD, Fang Y, Cremers A, Smagul A, Welting TJM, Peffers MJ. MicroRNA Signatures in Cartilage Ageing and Osteoarthritis. Biomedicines 2023; 11:1189. [PMID: 37189806 PMCID: PMC10136140 DOI: 10.3390/biomedicines11041189] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Osteoarthritis is the most common degenerative joint disorder. MicroRNAs are gene expression regulators that act post-transcriptionally to control tissue homeostasis. Microarray analysis was undertaken in osteoarthritic intact, lesioned and young intact cartilage. Principal component analysis showed that young intact cartilage samples were clustered together; osteoarthritic samples had a wider distribution; and osteoarthritic intact samples were separated into two subgroups, osteoarthritic-Intact-1 and osteoarthritic-Intact-2. We identified 318 differentially expressed microRNAs between young intact and osteoarthritic lesioned cartilage, 477 between young intact and osteoarthritic-Intact-1 cartilage and 332 between young intact and osteoarthritic-Intact-2 cartilage samples. For a selected list of differentially expressed microRNAs, results were verified in additional cartilage samples using qPCR. Of the validated DE microRNAs, four-miR-107, miR-143-3p, miR-361-5p and miR-379-5p-were selected for further experiments in human primary chondrocytes treated with IL-1β. Expression of these microRNAs decreased in human primary chondrocytes treated with IL-1β. For miR-107 and miR-143-3p, gain- and loss-of-function approaches were undertaken and associated target genes and molecular pathways were investigated using qPCR and mass spectrometry proteomics. Analyses showed that WNT4 and IHH, predicted targets of miR-107, had increased expression in osteoarthritic cartilage compared to young intact cartilage and in primary chondrocytes treated with miR-107 inhibitor, and decreased expression in primary chondrocytes treated with miR-107 mimic, suggesting a role of miR-107 in chondrocyte survival and proliferation. In addition, we identified an association between miR-143-3p and EIF2 signalling and cell survival. Our work supports the role of miR-107 and miR-143-3p in important chondrocyte mechanisms regulating proliferation, hypertrophy and protein translation.
Collapse
Affiliation(s)
- Panagiotis Balaskas
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Katarzyna Goljanek-Whysall
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
- Department of Physiology, College of Medicine, Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Peter D. Clegg
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Yongxiang Fang
- Centre for Genomic Research, Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Andy Cremers
- Department of Orthopaedic Surgery, Medical Centre, Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Aibek Smagul
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Tim J. M. Welting
- Department of Orthopaedic Surgery, Medical Centre, Maastricht University, 6202 AZ Maastricht, The Netherlands
| | - Mandy J. Peffers
- Institute of Life Course and Medical Sciences, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
30
|
Zhao J, Li C, Qin T, Jin Y, He R, Sun Y, Liu Z, Wu T, Duan C, Cao Y, Hu J. Mechanical overloading-induced miR-325-3p reduction promoted chondrocyte senescence and exacerbated facet joint degeneration. Arthritis Res Ther 2023; 25:54. [PMID: 37016437 PMCID: PMC10071751 DOI: 10.1186/s13075-023-03037-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/27/2023] [Indexed: 04/06/2023] Open
Abstract
OBJECTIVE Lumbar facet joint (LFJ) degeneration is one of the main causes of low back pain (LBP). Mechanical stress leads to the exacerbation of LFJ degeneration, but the underlying mechanism remains unknown. This study was intended to investigate the mechanism of LFJ degeneration induced by mechanical stress. METHODS Here, mice primary chondrocytes were used to screen for key microRNAs induced by mechanical overloading. SA-β-gal staining, qRT-PCR, western blot, and histochemical staining were applied to detect chondrocyte senescence in vitro and in vivo. We also used a dual-luciferase report assay to examine the targeting relationship of miRNA-325-3p (miR-325-3p) and Trp53. By using NSC-207895, a p53 activator, we investigated whether miR-325-3p down-regulated trp53 expression to reduce chondrocyte senescence. A mice bipedal standing model was performed to induce LFJ osteoarthritis. Adeno-associated virus (AAV) was intraarticularly injected to evaluate the effect of miR-325-3p on facet joint degeneration. RESULTS We observed chondrocyte senescence both in human LFJ osteoarthritis tissues and mice LFJ after bipedally standing for 10 weeks. Mechanical overloading could promote chondrocyte senescence and senescence-associated secretory phenotype (SASP) expression. MicroRNA-array analysis identified that miR-325-3p was obviously decreased after mechanical overloading, which was further validated by fluorescence in situ hybridization (FISH) in vivo. Dual-luciferase report assay showed that miR-325-3p directly targeted Trp53 to down-regulated its expression. MiR-325-3p rescued chondrocyte senescence in vitro, however, NSC-207895 reduced this effect by activating the p53/p21 pathway. Intraarticular injection of AAV expressing miR-325-3p decreased chondrocyte senescence and alleviated LFJ degeneration in vivo. CONCLUSION Our findings suggested that mechanical overloading could reduce the expression of miR-325-3p, which in turn activated the p53/p21 pathway to promote chondrocyte senescence and deteriorated LFJ degeneration, which may provide a promising therapeutic strategy for LFJ degeneration.
Collapse
Affiliation(s)
- Jinyun Zhao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008 China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
| | - Chengjun Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008 China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
| | - Tian Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008 China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
| | - Yuxin Jin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008 China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
| | - Rundong He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008 China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
| | - Yi Sun
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008 China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
| | - Zhide Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008 China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008 China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008 China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008 China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Road 87, Changsha, 410008 China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, 410008 China
| |
Collapse
|
31
|
Sanada Y, Ikuta Y, Ding C, Yimiti D, Kato Y, Nakasa T, Mizuno S, Takahashi S, Huang W, Lotz MK, Adachi N, Miyaki S. miR-26a deficiency is associated with bone loss and reduced muscle strength but does not affect severity of cartilage damage in osteoarthritis. Mech Ageing Dev 2023; 212:111806. [PMID: 37003368 DOI: 10.1016/j.mad.2023.111806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Osteoarthritis (OA) is the most common age-related joint disease. However, the role of many microRNAs (miRNA) in skeletal development and OA pathogenesis has not been sufficiently elucidated using genetically modified mice with gain- and loss-of-function models. We generated Cartilage-specific miR-26a overexpressing (Col2a1-Cre;miR-26a Tgfl/fl: Cart-miR-26a Tg) mice and global miR-26a knockout (miR-26a KO) mice. The purpose of the present study was to determine the role of miR-26a in OA pathogenesis using aging and surgically induced models. Skeletal development of Cart-miR-26a Tg and miR-26a KO mice was grossly normal. Knee joints were evaluated by histological grading systems. In surgically-induced OA and aging models (12 and 18 months of age), Cart-miR-26a Tg mice and miR-26a KO mice exhibited OA-like changes such as proteoglycan loss and cartilage fibrillation with no significant differences in OARSI score (damage of articular cartilage) compared with control mice. However, miR-26a KO mice reduced muscle strength and bone mineral density at 12 months of age. These findings indicated that miR-26a modulates bone loss and muscle strength but has no essential role in aging-related or post-traumatic OA.
Collapse
Affiliation(s)
- Yohei Sanada
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan, 734-8552; Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Yasunari Ikuta
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan, 305-8566
| | - Tomoyuki Nakasa
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan, 734-8552; Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan, 305-8575
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan, 305-8575
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA, 91010
| | - Martin K Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA, 92037
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552
| | - Shigeru Miyaki
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan, 734-8552; Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan, 734-8552.
| |
Collapse
|
32
|
Kim M, Rubab A, Chan WC, Chan D. Osteoarthritis year in review: genetics, genomics and epigenetics. Osteoarthritis Cartilage 2023:S1063-4584(23)00725-2. [PMID: 36924918 DOI: 10.1016/j.joca.2023.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
This "year in review" provides a summary of the research findings on the topic of genetics, genomics and epigenetics for osteoarthritis (OA) between Mar 2021-Apr 2022. A search routine of the literature in PubMed for the keyword, osteoarthritis, together with topics on genetics, genomics, epigenetics, polymorphism, DNA methylation, noncoding RNA, lncRNA, proteomics, and single cell RNA sequencing, returned key research articles and relevant reviews. Following filtering of duplicates across search routines, 695 unique research articles and 112 reviews were identified. We manually curated these articles and selected 90 as references for this review. However, we were unable to refer to all these articles, and only used selected articles to highlight key outcomes and trends. The trend in genetics is on the meta-analysis of existing cohorts with comparable genetic and phenotype characterisation of OA; in particular, clear definition of endophenotypes to enhance the genetic power. Further, many researchers are realizing the power of big data and multi-omics approaches to gain molecular insights for OA, and this has opened innovative approaches to include transcriptomics and epigenetics data as quantitative trait loci (QTLs). Given that most of the genetic loci for OA are not located within coding regions of genes, implying the impact is likely to be on gene regulation, epigenetics is a hot topic, and there is a surge in studies relating to the role of miRNA and long non-coding RNA on cartilage biology and pathology. The findings are exciting and new insights are provided in this review to summarize a year of research and the road map to capture all new innovations to achieve the desired goal in OA prevention and treatment.
Collapse
Affiliation(s)
- Minyeong Kim
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Aqsa Rubab
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wilson Cw Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
33
|
Núñez-Carro C, Blanco-Blanco M, Villagrán-Andrade KM, Blanco FJ, de Andrés MC. Epigenetics as a Therapeutic Target in Osteoarthritis. Pharmaceuticals (Basel) 2023; 16:156. [PMID: 37259307 PMCID: PMC9964205 DOI: 10.3390/ph16020156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 08/15/2023] Open
Abstract
Osteoarthritis (OA) is a heterogenous, complex disease affecting the integrity of diarthrodial joints that, despite its high prevalence worldwide, lacks effective treatment. In recent years it has been discovered that epigenetics may play an important role in OA. Our objective is to review the current knowledge of the three classical epigenetic mechanisms-DNA methylation, histone post-translational modifications (PTMs), and non-coding RNA (ncRNA) modifications, including microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs)-in relation to the pathogenesis of OA and focusing on articular cartilage. The search for updated literature was carried out in the PubMed database. Evidence shows that dysregulation of numerous essential cartilage molecules is caused by aberrant epigenetic regulatory mechanisms, and it contributes to the development and progression of OA. This offers the opportunity to consider new candidates as therapeutic targets with the potential to attenuate OA or to be used as novel biomarkers of the disease.
Collapse
Affiliation(s)
- Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Margarita Blanco-Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C. de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
34
|
Liu L, Yu F, Chen L, Xia L, Wu C, Fang B. Lithium-Containing Biomaterials Stimulate Cartilage Repair through Bone Marrow Stromal Cells-Derived Exosomal miR-455-3p and Histone H3 Acetylation. Adv Healthc Mater 2023; 12:e2202390. [PMID: 36623538 DOI: 10.1002/adhm.202202390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/24/2022] [Indexed: 01/11/2023]
Abstract
The repair of damaged cartilage still remains a great challenge in clinic. It is demonstrated that bone marrow stromal cells (BMSCs)-chondrocytes communication is of great significance for cartilage repair. Moreover, BMSCs have been confirmed to enhance biological function of chondrocytes via exosome-mediated paracrine pathway. Lithium-containing scaffolds have been reported to effectively promote cartilage regeneration; however, whether lithium-containing biomaterial could facilitate cartilage regeneration through regulating BMSCs-derived exosomes has not been illustrated. In the study, the model lithium-substituted bioglass ceramic (Li-BGC) is selected and regulatory effects of BMSCs-derived exosomes after Li-BGC treatment (Li-BGC-Exo) are systemically evaluated. The data reveal that Li-BGC-Exo notably promotes chondrogenesis, which attributes to the upregulated exosomal miR-455-3p transfer, consequently leads to suppression of histone deacetylase 2 (HDAC2) and enhanced histone H3 acetylation in chondrocytes. Notably, BMSCs-derived exosomes after LiCl treatment (LiCl-Exo) exhibits the similar regulatory effect with Li-BGC-Exo, indicating that the pro-chondrogenesis capability of them is mainly owing to the lithium ions. Furthermore, the in vivo study proves that LiCl-Exo remarkably facilitates cartilage regeneration. The research may provide novel possibility for the intrinsic mechanism of chondrogenesis trigged by lithium-containing biomaterials, and suggests that application of lithium-containing scaffolds may be a promising strategy for cartilage regeneration.
Collapse
Affiliation(s)
- Lu Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Fei Yu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Lunguo Xia
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Collage of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
35
|
Fujiwara Y, Ding C, Sanada Y, Yimiti D, Ishikawa M, Nakasa T, Kamei N, Imaizumi K, Lotz MK, Akimoto T, Miyaki S, Adachi N. miR-23a/b clusters are not essential for the pathogenesis of osteoarthritis in mouse aging and post-traumatic models. Front Cell Dev Biol 2023; 10:1043259. [PMID: 36684425 PMCID: PMC9846268 DOI: 10.3389/fcell.2022.1043259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Osteoarthritis (OA), the most prevalent aging-related joint disease, is characterized by insufficient extracellular matrix synthesis and articular cartilage degradation and is caused by various risk factors including aging and traumatic injury. Most microRNAs (miRNAs) have been associated with pathogenesis of osteoarthritis (OA) using in vitro models. However, the role of many miRNAs in skeletal development and OA pathogenesis is uncharacterized in vivo using genetically modified mice. Here, we focused on miR-23-27-24 clusters. There are two paralogous miR-23-27-24 clusters: miR-23a-27a-24-2 (miR-23a cluster) and miR-23b-27b-24-1 (miR-23b cluster). Each miR-23a/b, miR-24, and miR-27a/b is thought to function coordinately and complementary to each other, and the role of each miR-23a/b, miR-24, and miR-27a/b in OA pathogenesis is still controversial. MiR-23a/b clusters are highly expressed in chondrocytes and the present study examined their role in OA. We analyzed miRNA expression in chondrocytes and investigated cartilage-specific miR-23a/b clusters knockout (Col2a1-Cre; miR-23a/bflox/flox: Cart-miR-23clus KO) mice and global miR-23a/b clusters knockout (CAG-Cre; miR-23a/bflox/flox: Glob-miR-23clus KO) mice. Knees of Cart- and Glob-miR-23a/b clusters KO mice were evaluated by histological grading systems for knee joint tissues using aging model (12 and/or 18 month-old) and surgically-induced OA model. miR-23a/b clusters were among the most highly expressed miRNAs in chondrocytes. Skeletal development of Cart- and Glob-miR-23clus KO mice was grossly normal although Glob-miR-23clus KO had reduced body weight, adipose tissue and bone density. In the aging model and surgically-induced OA model, Cart- and Glob-miR-23clus KO mice exhibited mild OA-like changes such as proteoglycan loss and cartilage fibrillation. However, the histological scores were not significantly different in terms of the severity of OA in Cart- and Glob-miR-23clus KO mice compared with control mice. Together, miR-23a/b clusters, composed of miR-23a/b, miR-24, miR-27a/b do not significantly contribute to OA pathogenesis.
Collapse
Affiliation(s)
- Yusuke Fujiwara
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chenyang Ding
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sanada
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masakazu Ishikawa
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Department of Artificial Joints and Biomaterials, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Nakasa
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Martin K. Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, United States
| | | | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan,*Correspondence: Shigeru Miyaki,
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
36
|
Guo X, Xi L, Yu M, Fan Z, Wang W, Ju A, Liang Z, Zhou G, Ren W. Regeneration of articular cartilage defects: Therapeutic strategies and perspectives. J Tissue Eng 2023; 14:20417314231164765. [PMID: 37025158 PMCID: PMC10071204 DOI: 10.1177/20417314231164765] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Articular cartilage (AC), a bone-to-bone protective device made of up to 80% water and populated by only one cell type (i.e. chondrocyte), has limited capacity for regeneration and self-repair after being damaged because of its low cell density, alymphatic and avascular nature. Resulting repair of cartilage defects, such as osteoarthritis (OA), is highly challenging in clinical treatment. Fortunately, the development of tissue engineering provides a promising method for growing cells in cartilage regeneration and repair by using hydrogels or the porous scaffolds. In this paper, we review the therapeutic strategies for AC defects, including current treatment methods, engineering/regenerative strategies, recent advances in biomaterials, and present emphasize on the perspectives of gene regulation and therapy of noncoding RNAs (ncRNAs), such as circular RNA (circRNA) and microRNA (miRNA).
Collapse
Affiliation(s)
- Xueqiang Guo
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Lingling Xi
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Mengyuan Yu
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Zhenlin Fan
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Weiyun Wang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Andong Ju
- Abdominal Surgical Oncology, Xinxiang
Central Hospital, Institute of the Fourth Affiliated Hospital of Xinxiang Medical
University, Xinxiang, China
| | - Zhuo Liang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Guangdong Zhou
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
- Guangdong Zhou, Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639
Shanghai Manufacturing Bureau Road, Shanghai 200011, China.
| | - Wenjie Ren
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Wenjie Ren, Institute of Regenerative
Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical
University, 601 Jinsui Avenue, Hongqi District, Xinxiang 453003, Henan, China.
| |
Collapse
|
37
|
Abstract
Osteoarthritis (OA) is a common disabling disease which has a high incidence rate in the elderly. Studies have found that many factors are involved in the pathogenesis of OA. Hypoxia-inducible factors (HIFs) are core regulators that induce hypoxia genes, repair the cellular oxygen environment, and play an important role in the treatment of OA. For example, HIF-1α can maintain the stability of the articular cartilage matrix, HIF-2α is able to cause chondrocyte apoptosis and intensify in-flammatory response, and HIF-3α may be the target gene of HIF-1α and HIF-2α, thereby playing a negative regulatory role. This review examines the mechanism of HIFs in cartilage extracellular matrix degradation, apoptosis, inflammatory reaction, autophagy and then further expounds on the roles of HIFs in OA, consequently providing theoretical support for the pathogenesis of OA and a new target for OA treatment.
Collapse
|
38
|
Gu J, Rao W, Huo S, Fan T, Qiu M, Zhu H, Chen D, Sheng X. MicroRNAs and long non-coding RNAs in cartilage homeostasis and osteoarthritis. Front Cell Dev Biol 2022; 10:1092776. [PMID: 36582467 PMCID: PMC9793335 DOI: 10.3389/fcell.2022.1092776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
During the last decade, osteoarthritis (OA) has become one of the most prevalent musculoskeletal diseases worldwide. OA is characterized by progressive loss of articular cartilage, abnormal remodeling of subchondral bone, hyperplasia of synovial cells, and growth of osteophytes, which lead to chronic pain and disability. The pathological mechanisms underlying OA initiation and progression are still poorly understood. Non-coding RNAs (ncRNAs) constitute a large portion of the transcriptome that do not encode proteins but function in numerous biological processes. Cumulating evidence has revealed a strong association between the changes in expression levels of ncRNA and the disease progression of OA. Moreover, loss- and gain-of-function studies utilizing transgenic animal models have demonstrated that ncRNAs exert vital functions in regulating cartilage homeostasis, degeneration, and regeneration, and changes in ncRNA expression can promote or decelerate the progression of OA through distinct molecular mechanisms. Recent studies highlighted the potential of ncRNAs to serve as diagnostic biomarkers, prognostic indicators, and therapeutic targets for OA. MiRNAs and lncRNAs are two major classes of ncRNAs that have been the most widely studied in cartilage tissues. In this review, we focused on miRNAs and lncRNAs and provided a comprehensive understanding of their functional roles as well as molecular mechanisms in cartilage homeostasis and OA pathogenesis.
Collapse
Affiliation(s)
- Jingliang Gu
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wu Rao
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaochuan Huo
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Tianyou Fan
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Minlei Qiu
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haixia Zhu
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deta Chen
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoping Sheng
- Department of Orthopedics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Hu H, Zhang H, Bu Z, Liu Z, Lv F, Pan M, Huang X, Cheng L. Small Extracellular Vesicles Released from Bioglass/Hydrogel Scaffold Promote Vascularized Bone Regeneration by Transferring miR-23a-3p. Int J Nanomedicine 2022; 17:6201-6220. [PMID: 36531118 PMCID: PMC9749034 DOI: 10.2147/ijn.s389471] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/23/2022] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND The treatment of critical-size bone defect is a great difficulty in orthopedics. Osteogenesis and angiogenesis are critical issue during the process of bone repair and remodeling. Mesenchymal stem cells (MSCs)-derived exosomes have the same therapeutic effect to MSCs-based therapies. The effect of human umbilical cord MSCs-derived sEVs (hUC-MSCs-sEVs) on vascularized bone regeneration and the potential mechanism remains to be investigated. Herein, we aimed to explore the therapeutic effect and the mechanism of hUC-MSCs-sEVs on critical-size bone defect. METHODS To investigate the potential osteogenesis and angiogenesis effects of sEVs in vitro, we extracted sEVs from hUC-MSCs, and then sEVs were co-incubated with BMSCs and HUVECs. We next investigated the effect and potential mechanism of sEVs on the effects of osteogenesis and angiogenesis. We fabricated 3D-printed bioglass scaffold with Gelma/nanoclay hydrogel coatings to load sEVs (BG-gel-sEVs) to ensure in vivo sustained efficacy of sEVs. Finally, the skull defect model was used to evaluate the capacity of vascularized bone regeneration of the composited scaffolds. RESULTS hUC-MSCs-sEVs facilitated calcium deposition and the endothelial network formation, inducing osteogenic differentiation and angiogenesis by delivering miR-23a-3p to activate PTEN/AKT signaling pathway. Additionally, the BG-gel-sEVs composited scaffold achieved vascularized bone regeneration in vivo. CONCLUSION This finding illuminated that hUC-MSCs-sEVs promoted osteogenesis and angiogenesis by delivering miR-23a-3p to activate PTEN/AKT signaling pathway, achieving vascularized bone regeneration.
Collapse
Affiliation(s)
- Hongxing Hu
- Department of Orthopedics Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Hang Zhang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Ziheng Bu
- Department of Orthopedics Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People’s Republic of China
| | - Zhongtang Liu
- Department of Orthopedics Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People’s Republic of China
| | - Fang Lv
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Science and School of Life Science, East China Normal University, Shanghai, People’s Republic of China
- Department of orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, People’s Republic of China
| | - Mingmang Pan
- Department of orthopedics, Shanghai Fengxian District Central Hospital, Shanghai, People’s Republic of China
| | - Xuan Huang
- Department of Orthopedics Changhai Hospital Affiliated to the Second Military Medical University, Shanghai, People’s Republic of China
| | - Liming Cheng
- Department of Orthopedics Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
40
|
Han S. Osteoarthritis year in review 2022: biology. Osteoarthritis Cartilage 2022; 30:1575-1582. [PMID: 36150676 DOI: 10.1016/j.joca.2022.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 02/02/2023]
Abstract
The field of osteoarthritis (OA) biology is rapidly evolving and brilliant progress has been made this year as well. Landmark studies of OA biology published in 2021 and early 2022 were selected through PubMed search by personal opinion. These papers were classified by their molecular mechanisms, and it was largely divided into the intracellular signaling mechanisms and the inter-compartment interaction in chondrocyte homeostasis and OA progression. The intracellular signaling mechanisms involving OA progression included (1) Piezo1/transient receptor potential channels of the vanilloid subtype (TRPV) 4-mediated calcium signaling, (2) mechanical load-F-box and WD repeat domain containing 7 (FBXW7) in chondrocyte senescence, (3) mechanical loading-primary cilia-hedgehog signaling, (4) low grade inflammation by toll-like receptor (TLR)-CD14-lipopolysaccharide-binding protein (LBP) complex and inhibitor of NF-κB kinase (IKK) β-nuclear factor kappa B (NF-κB) signaling, (5) selenium pathway and reactive oxygen species (ROS) production, (6) G protein-coupled receptor (GPCR) and cyclic adenosine monophosphate (cAMP) signaling, (7) peroxisome proliferator-activated receptor α (PPARα)-acyl-CoA thioesterase 12 (ACOT12)-mediated de novo lipogenesis and (8) hypoxia-disruptor of telomeric silencing 1-like (DOT1L)-H3-lysine 79 (H3K79) methylation pathway. The studies on inter-compartment or intercellular interaction in OA progression included the following subjects; (1) the anabolic role of lubricin, glycoprotein from superficial zone cells, (2) osteoclast-chondrocyte interaction via exosomal miRNA and sphingosine 1-phosphate (S1P), (3) senescent fibroblast-like synoviocyte and chondrocyte interaction, (4) synovial macrophage and chondrocyte interaction through Flightless I, (5) αV integrin-mediated transforming growth factor beta (TGFβ) activation by mechanical loading, and (6) osteocytic TGFβ in subchondral bone thickening. Despite the disastrous Covid-19 pandemic, many outstanding studies have expanded the boundary of OA biology. They provide both critical insight into the pathophysiology as well as clues for the treatment of OA.
Collapse
Affiliation(s)
- S Han
- Laboratory for for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea; Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
41
|
Tang H, Zhu W, Cao L, Zhang J, Li J, Ma D, Guo C. miR-210-3p protects against osteoarthritis through inhibiting subchondral angiogenesis by targeting the expression of TGFBR1 and ID4. Front Immunol 2022; 13:982278. [PMID: 36263050 PMCID: PMC9575949 DOI: 10.3389/fimmu.2022.982278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive subchondral angiogenesis is a key pathological feature of osteoarthritis (OA), as it alters the balance of subchondral bone remodeling and causes progressive cartilage degradation. We previously found that miR-210-3p correlates negatively with angiogenesis, though the specific mechanism of miR-210-3p-related angiogenesis in subchondral bone during OA progression remains unclear. This study was conducted to identify the miR-210-3p-modulating subchondral angiogenesis mechanism in OA and investigate its therapeutic effect. We found that miR-210-3p expression correlated negatively with subchondral endomucin positive (Emcn+) vasculature in the knee joints of OA mice. miR-210-3p overexpression regulated the angiogenic ability of endothelial cells (ECs) under hypoxic conditions in vitro. Mechanistically, miR-210-3p inhibited ECs angiogenesis by suppressing transforming growth factor beta receptor 1 (TGFBR1) mRNA translation and degrading DNA-binding inhibitor 4 (ID4) mRNA. In addition, TGFBR1 downregulated the expression of ID4. Reduced ID4 levels led to a negative feedback regulation of TGFBR1, enhancing the inhibitory effect of miR-210-3p on angiogenesis. In OA mice, miR-210-3p overexpression in ECs via adeno-associated virus (AAV) alleviated cartilage degradation, suppressed the type 17 immune response and relieved symptoms by attenuating subchondral Emcn+ vasculature and subchondral bone remodeling. In conclusion, we identified a miR-210-3p/TGFBR1/ID4 axis in subchondral ECs that modulates OA progression via subchondral angiogenesis, representing a potential OA therapy target.
Collapse
Affiliation(s)
- Han Tang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenrun Zhu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Cao
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jin Zhang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Juncheng Li
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- *Correspondence: Changan Guo, ; Duan Ma,
| | - Changan Guo
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Changan Guo, ; Duan Ma,
| |
Collapse
|
42
|
Sun Y, Zhao J, Wu Q, Zhang Y, You Y, Jiang W, Dai K. Chondrogenic primed extracellular vesicles activate miR-455/SOX11/FOXO axis for cartilage regeneration and osteoarthritis treatment. NPJ Regen Med 2022; 7:53. [PMID: 36114225 PMCID: PMC9481593 DOI: 10.1038/s41536-022-00250-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractOsteoarthritis (OA) is the leading cause of disability worldwide. Considerable progress has been made using stem-cell-derived therapy. Increasing evidence has demonstrated that the therapeutic effects of BMSCs in chondrogenesis could be attributed to the secreted small extracellular vesicles (sEVs). Herein, we investigated the feasibility of applying engineered EVs with chondrogenic priming as a biomimetic tool in chondrogenesis. We demonstrated that EVs derived from TGFβ3-preconditioned BMSCs presented enriched specific miRNAs that could be transferred to native BMSCs to promote chondrogenesis. In addition, We found that EVs derived from TGFβ3-preconditioned BMSCs rich in miR-455 promoted OA alleviation and cartilage regeneration by activating the SOX11/FOXO signaling pathway. Moreover, the designed T3-EV hydrogel showed great potential in cartilage defect treatment. Our findings provide new means to apply biosafe engineered EVs from chondrogenic primed-BMSCs for cartilage repair and OA treatment, expanding the understanding of chondrogenesis and OA development modulated by EV-miRNAs in vivo.
Collapse
|
43
|
Yi Q, Deng Z, Yue J, He J, Xiong J, Sun W, Sun W. RNA binding proteins in osteoarthritis. Front Cell Dev Biol 2022; 10:954376. [PMID: 36003144 PMCID: PMC9393224 DOI: 10.3389/fcell.2022.954376] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative joint disease worldwide. The pathological features of OA are the erosion of articular cartilage, subchondral bone sclerosis, synovitis, and metabolic disorder. Its progression is characterized by aberrant expression of genes involved in inflammation, proliferation, and metabolism of chondrocytes. Effective therapeutic strategies are limited, as mechanisms underlying OA pathophysiology remain unclear. Significant research efforts are ongoing to elucidate the complex molecular mechanisms underlying OA focused on gene transcription. However, posttranscriptional alterations also play significant function in inflammation and metabolic changes related diseases. RNA binding proteins (RBPs) have been recognized as important regulators in posttranscriptional regulation. RBPs regulate RNA subcellular localization, stability, and translational efficiency by binding to their target mRNAs, thereby controlling their protein expression. However, their role in OA is less clear. Identifying RBPs in OA is of great importance to better understand OA pathophysiology and to figure out potential targets for OA treatment. Hence, in this manuscript, we summarize the recent knowledge on the role of dysregulated RBPs in OA and hope it will provide new insight for OA study and targeted treatment.
Collapse
Affiliation(s)
- Qian Yi
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiaji Yue
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Jinglong He
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Jianyi Xiong
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Wei Sun
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- *Correspondence: Wei Sun, ; Weichao Sun,
| | - Weichao Sun
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- The Central Laboratory, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- *Correspondence: Wei Sun, ; Weichao Sun,
| |
Collapse
|
44
|
Fujii Y, Liu L, Yagasaki L, Inotsume M, Chiba T, Asahara H. Cartilage Homeostasis and Osteoarthritis. Int J Mol Sci 2022; 23:6316. [PMID: 35682994 PMCID: PMC9181530 DOI: 10.3390/ijms23116316] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023] Open
Abstract
Healthy limb joints are important for maintaining health and attaining longevity. Endochondral ossification (the replacement of cartilage with bone, occurring during skeletal development) is essential for bone formation, especially in long-axis bones. In contrast to endochondral ossification, chondrocyte populations in articular cartilage persist and maintain joint tissue into adulthood. Articular cartilage, a connective tissue consisting of chondrocytes and their surrounding extracellular matrices, plays an essential role in the mechanical cushioning of joints in postnatal locomotion. Osteoarthritis (OA) pathology relates to disruptions in the balance between anabolic and catabolic signals, that is, the loss of chondrocyte homeostasis due to aging or overuse of cartilages. The onset of OA increases with age, shortening a person's healthy life expectancy. Although many people with OA experience pain, the mainstay of treatment is symptomatic therapy, and no fundamental treatment has yet been established. To establish regenerative or preventative therapies for cartilage diseases, further understanding of the mechanisms of cartilage development, morphosis, and homeostasis is required. In this review, we describe the general development of cartilage and OA pathology, followed by a discussion on anabolic and catabolic signals in cartilage homeostasis, mainly microRNAs.
Collapse
Affiliation(s)
- Yuta Fujii
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Lin Liu
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Lisa Yagasaki
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
- Department of Periodontology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-851, Japan
| | - Maiko Inotsume
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Tomoki Chiba
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
| | - Hiroshi Asahara
- Department of Systems Biomedicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8501, Japan; (Y.F.); (L.L.); (L.Y.); (M.I.); (T.C.)
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
45
|
Mohd Yunus MH, Lee Y, Nordin A, Chua KH, Bt Hj Idrus R. Remodeling Osteoarthritic Articular Cartilage under Hypoxic Conditions. Int J Mol Sci 2022; 23:ijms23105356. [PMID: 35628163 PMCID: PMC9141680 DOI: 10.3390/ijms23105356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is one of the leading joint diseases induced by abnormalities or inflammation in the synovial membrane and articular cartilage, causing severe pain and disability. Along with the cartilage malfunction, imbalanced oxygen uptake occurs, changing chondrocytes into type I collagen- and type X collagen-producing dedifferentiated cells, contributing to OA progression. However, mounting evidence suggests treating OA by inducing a hypoxic environment in the articular cartilage, targeting the inhibition of several OA-related pathways to bring chondrocytes into a normal state. This review discusses the implications of OA-diseased articular cartilage on chondrocyte phenotypes and turnover and debates the hypoxic mechanism of action. Furthermore, this review highlights the new understanding of OA, provided by tissue engineering and a regenerative medicine experimental design, modeling the disease into diverse 2D and 3D structures and investigating hypoxia and hypoxia-inducing biomolecules and potential cell therapies. This review also reports the mechanism of hypoxic regulation and highlights the importance of activating and stabilizing the hypoxia-inducible factor and related molecules to protect chondrocytes from mitochondrial dysfunction and apoptosis occurring under the influence of OA.
Collapse
Affiliation(s)
- Mohd Heikal Mohd Yunus
- Department of Physiology, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (K.H.C.); (R.B.H.I.)
- Correspondence: ; Tel.: +603-9145-8624
| | - Yemin Lee
- MedCentral Consulting, Jalan 27/117A, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (A.N.)
| | - Abid Nordin
- MedCentral Consulting, Jalan 27/117A, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (Y.L.); (A.N.)
| | - Kien Hui Chua
- Department of Physiology, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (K.H.C.); (R.B.H.I.)
| | - Ruszymah Bt Hj Idrus
- Department of Physiology, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (K.H.C.); (R.B.H.I.)
| |
Collapse
|
46
|
Yuan Z, Liu S, Song W, Liu Y, Bi G, Xie R, Ren L. Galactose Enhances Chondrogenic Differentiation of ATDC5 and Cartilage Matrix Formation by Chondrocytes. Front Mol Biosci 2022; 9:850778. [PMID: 35615738 PMCID: PMC9124793 DOI: 10.3389/fmolb.2022.850778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022] Open
Abstract
Galactose, an important carbohydrate nutrient, is involved in several types of cellular metabolism, participating in physiological activities such as glycosaminoglycan (GAG) synthesis, glycosylation, and intercellular recognition. The regulatory effects of galactose on osteoarthritis have attracted increased attention. In this study, in vitro cell models of ATDC5 and chondrocytes were prepared and cultured with different concentrations of galactose to evaluate its capacity on chondrogenesis and cartilage matrix formation. The cell proliferation assay demonstrated that galactose was nontoxic to both ATDC5 cells and chondrocytes. RT-PCR and immunofluorescence staining indicated that the gene expressions of cartilage matrix type II collagen and aggrecan were significantly upregulated with increasing galactose concentration and the expression and accumulation of the extracellular matrix (ECM) protein. Overall, these results indicated that a galactose concentration below 8 mM exhibited the best effect on promoting chondrogenesis, which entitles galactose as having considerable potential for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Zhongrun Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Ying Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Gangyuan Bi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Renjian Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
- Jiangxi Key Laboratory of Medical Tissue Engineering Materials and Biofabrication, Gannan Medical University, Ganzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Sa Liu, ; Renjian Xie, ; Li Ren,
| |
Collapse
|
47
|
Jiang J, Zhan X, Qu H, Liang T, Li H, Chen L, Huang S, Sun X, Jiang W, Chen J, Chen T, Yao Y, Wu S, Zhu J, Liu C. Upregulated of ANXA3, SORL1, and Neutrophils May Be Key Factors in the Progressionof Ankylosing Spondylitis. Front Immunol 2022; 13:861459. [PMID: 35464477 PMCID: PMC9019158 DOI: 10.3389/fimmu.2022.861459] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction The specific pathogenesis of ankylosing spondylitis (AS) remains unclear, and our study aimed to investigate the possible pathogenesis of AS. Materials and Methods Two datasets were downloaded from the GEO database to perform differentially expressed gene analysis, GO enrichment analysis, KEGG pathway analysis, DO enrichment analysis, GSEA analysis of differentially expressed genes, and construction of diagnostic genes using SVM and WGCNA along with Hypoxia-related genes. Also, drug sensitivity analysis was performed on diagnostic genes. To identify the differentially expressed immune genes in the AS and control groups, we analyzed the composition of immune cells between them. Then, we examined differentially expressed genes in three AS interspinous ligament specimens and three Degenerative lumbar spine specimens using high-throughput sequencing while the immune cells were examined using the neutrophil count data from routine blood tests of 1770 HLA-B27-positive samples and 7939 HLA-B27-negative samples. To assess the relationship between ANXA3 and SORL1 and disease activity, we took the neutrophil counts of the first 50 patients with above-average BASDAI scores and the last 50 patients with below-average BASDAI scores for statistical analysis. We used immunohistochemistry to verify the expression of ANXA3 and SORL1 in AS and in controls. Results ANXA3 and SORL1 were identified as new diagnostic genes for AS. These two genes showed a significant differential expression between AS and controls, along with showing a significant positive correlation with the neutrophil count. The results of high-throughput sequencing verified that these two gene deletions were indeed differentially expressed in AS versus controls. Data from a total of 9707 routine blood tests showed that the neutrophil count was significantly higher in AS patients than in controls (p < 0.001). Patients with AS with a high BASDAI score had a much higher neutrophil count than those with a low score, and the difference was statistically significant (p < 0.001). The results of immunohistochemistry showed that the expression of ANXA3 and SORL1 in AS was significantly higher than that in the control group. Conclusion Upregulated of ANXA3, SORL1, and neutrophils may be a key factor in the progression of Ankylosing spondylitis.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinli Zhan
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haishun Qu
- Department of Traditional Chinese Medicine, The People's Hospital of Guangxi Zhuang Autonmous Region, Nanning, China
| | - Tuo Liang
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hao Li
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liyi Chen
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shengsheng Huang
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xuhua Sun
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenyong Jiang
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiarui Chen
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyou Chen
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuanlin Yao
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaofeng Wu
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jichong Zhu
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chong Liu
- Department of Spinal Orthopedic Surgery, The First Clinical Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
48
|
Sirše M. Effect of Dietary Polyphenols on Osteoarthritis-Molecular Mechanisms. Life (Basel) 2022; 12:436. [PMID: 35330187 PMCID: PMC8955436 DOI: 10.3390/life12030436] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis is a common crippling and degenerative disease resulting in irreversible functional changes due to damage of the cartilage and other tissues of the joint. With limited safe and effective pharmaceutical treatments, the demand and use for alternative therapeutic approaches with symptomatic relief for OA patients have increased. Clinical, pre-clinical, and in vitro studies have demonstrated that polyphenols can exert pain-relieving symptoms coupled with increased functional capacity in OA models. This review will highlight studies carried out in the last five years to define the efficacies and underlying mechanisms in polyphenols such as quercetin, resveratrol, curcumin, epigallocatechin-3-gallate, rosmarinic acid, genistein, ginger, berries, silver fir, pine bark, and Boswellia. Most of these studies indicate that polyphenols exhibit their beneficial roles through regulating changes at the biochemical and molecular levels, inducing or inhibiting various signaling pathways related to inflammation and oxidative stress. Polyphenols have also been implicated in modulating microRNA at the posttranscriptional level to counteract OA pathogenesis.
Collapse
Affiliation(s)
- Mateja Sirše
- Department of Orthopaedics, University Medical Centre Maribor, Ljubljanska Street 5, 2000 Maribor, Slovenia
| |
Collapse
|
49
|
Establishment and Comprehensive Analysis of Underlying microRNA-mRNA Interactive Networks in Ovarian Cancer. JOURNAL OF ONCOLOGY 2022; 2022:5120342. [PMID: 35310909 PMCID: PMC8930263 DOI: 10.1155/2022/5120342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/15/2022] [Indexed: 01/09/2023]
Abstract
Background The rate of ovarian cancer (OC) is one of the highest in women's reproductive systems. An improperly expressed microRNA (miRNA) has been discovered to have a vital role in the pathophysiology of OC. However, more research into OC's miRNA-message RNA (mRNA) gene interaction network is required. Methods Firstly, the microarray data sets GSE25405 and GSE119055 from the GEO (Gene Expression Omnibus) database were downloaded and then analyzed with the GEO2R tool aiming at identifying DEMs (differential expressed miRNAs) between ovarian malignant tissue and ovarian normal tissue. The whole consistently changed miRNAs were then screened out to be candidate DEMs. For estimating underlying upstream transcription factors, FunRich was employed. miRNet was utilized to determine putative DEMs' downstream target genes. The R program was then used to do the GO annotation as well as the analysis of KEGG pathway enrichment for target genes. The PPI (protein-protein interaction), as well as the DEM-hub gene networks, were created by the Cytoscape software and STRING database. Finally, we chose the GSE74448 dataset to test the precision of hub gene expressions. Results We have screened out six (five upregulated and one downregulated) DEMs. The majority of upregulated and downregulated DEMs are likely regulated by SP1 (specificity protein 1). SP4 (s protein 4), POU2F1 (POU class 2 homeobox 1), MEF2A (myocyte-specific enhancer factor 2A), ARID3A (AT-rich interaction domain 3A), and EGR1 (early growth response 1) can regulate upregulated and downregulated DEMs. We have found 807 target genes (656 upregulated and 151 downregulated DEM), being generally enriched in focal adhesion and proteoglycans in cancer, gastric cancer, hepatocellular carcinoma, as well as breast cancer. The majority of hub genes are projected to be controlled by hsa-miR-429, hsa-miR-140-5p, hsa-miR-199a-5p, and hsa-miR-199a-3p after the DEM-hub gene network was built. VEGFA (vascular endothelial growth factor A), EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit), and HIF1A (hypoxia inducible factor 1 subunit alpha) expressions are consistent with the GSE74448 dataset in the first 18 hub genes. Conclusion We have built an underlying miRNA-mRNA interacting network in OC, giving us unparalleled insight into the disease's diagnosis and treatment.
Collapse
|
50
|
Zhao L, Chen X, Shao X, Wang Z, Du Y, Zhu C, Du W, Tang D, Ji S. Prenylated phenolic compounds from licorice ( Glycyrrhiza uralensis) and their anti-inflammatory activity against osteoarthritis. Food Funct 2022; 13:795-805. [PMID: 34984422 DOI: 10.1039/d1fo03659a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Osteoarthritis is a significant driver of disability in the elderly with increasing prevalence, and inflammation plays a vital role on its etiology. Licorice is commonly used as a traditional Chinese medicine or food additive, and its prenylated phenolic compounds were recently reported to be able to inhibit osteoarthritis with anti-inflammatory activity. In order to explore more anti-osteoarthritic prenylated phenolic compounds from licorice, we isolated ten compounds (1-10), with three new ones (1-3), from the ethyl acetate extract of Glycyrrhiza uralensis. Compound 2 (glycyuralin R) was a racemic 3-phenoxy-chromanone, and we achieved its chiral separation for the first time. Compounds 1, 2, 7 and 8 showed significant NO inhibitory ability in IL-1β-stimulated mouse primary chondrocytes, and we further confirmed the anti-inflammatory activity of 1 (glycyuralin Q) by evaluating its effect on osteoarthritis-related iNOS, COX-2, TNF-α, IL-6, MMP3, MMP13 and NF-κB based on various experimental methods. These results clarified the potential of several prenylated phenolic compounds, especially 1 in licorice, as the lead compounds for osteoarthritis.
Collapse
Affiliation(s)
- Lu Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Xiaofei Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Xian Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Ziyu Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Cuicui Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Wei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Daoquan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|