1
|
Romet-Lemonne G, Leduc C, Jégou A, Wioland H. Mechanics of Single Cytoskeletal Filaments. Annu Rev Biophys 2025; 54:303-327. [PMID: 39929532 DOI: 10.1146/annurev-biophys-030722-120914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
The cytoskeleton comprises networks of different biopolymers, which serve various cellular functions. To accomplish these tasks, their mechanical properties are of particular importance. Understanding them requires detailed knowledge of the mechanical properties of the individual filaments that make up these networks, in particular, microtubules, actin filaments, and intermediate filaments. Far from being homogeneous beams, cytoskeletal filaments have complex mechanical properties, which are directly related to the specific structural arrangement of their subunits. They are also versatile, as the filaments' mechanics and biochemistry are tightly coupled, and their properties can vary with the cellular context. In this review, we summarize decades of research on cytoskeletal filament mechanics, highlighting their most salient features and discussing recent insights from this active field of research.
Collapse
Affiliation(s)
| | - Cécile Leduc
- Université Paris-Cité, CNRS, Institut Jacques Monod, Paris, France; , , ,
| | - Antoine Jégou
- Université Paris-Cité, CNRS, Institut Jacques Monod, Paris, France; , , ,
| | - Hugo Wioland
- Université Paris-Cité, CNRS, Institut Jacques Monod, Paris, France; , , ,
| |
Collapse
|
2
|
Yuan M, Yi S, Wang X, Han G, Wei P, Lv Z, Gui B, Chen X, Wang Y, Zhu L. Promoted Translocation of Perfluorooctanoic Acid across the Blood-Retinal Barrier due to its Inhibition of Tight Junction Assembly by Antagonizing LPAR1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4807-4819. [PMID: 40038073 DOI: 10.1021/acs.est.4c12051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Eye health is becoming a significant public health concern, and a recent epidemiological investigation suggested that perfluorooctanoic acid (PFOA), a so-called forever chemical, was correlated with decreased human visual acuity; however, it remains unknown whether PFOA can pass through the blood-retinal barrier (BRB) to cause visual toxicity. In this study, the mice received a 28-day subchronic oral exposure to PFOA. The results of spatial mass spectrometry imaging indicated that the eye-enriched PFOA dispersed into the subretina primarily through the outer BRB (oBRB), which subsequently resulted in significantly increased apoptosis and decreased thickness of multiple oBRB-associated layers. BRB integrity and function were compromised due to decreased expression of the tight junction (TJ). Mechanistically, PFOA outcompeted lysophosphatidic acid to bind strongly with lysophosphatidic acid receptor 1 (LPAR1) in its antagonism, abolishing its ability to stimulate the TJ assembly-related signaling pathway. This subsequently attenuated phosphorylation of the myosin light chain, rendering insufficient contraction of the actomyosin cytoskeleton, leading to decreased TJ assembly and BRB leakage. This, in turn, facilitated PFOA translocation across the BRB and accumulation within the subretinal space. Our findings suggest that oBRB is particularly vulnerable to PFOA, which targets directly LPAR1 to disable its function of maintaining TJ assembly cascades, leading to adverse visual effects.
Collapse
Affiliation(s)
- Meng Yuan
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoyan Wang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guoge Han
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| | - Pinghui Wei
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| | - Zixuan Lv
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Bingxin Gui
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuan Chen
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| | - Yan Wang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300020, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Wang L, Wang J, Wang N, Wang X, Song M, Zhou Y, Wang Z, Meng H, Guo E, Miao S. ANLN promotes head and neck squamous cell carcinoma progression by upregulating PD-L1 via the ERK-MAPK pathway. iScience 2025; 28:111633. [PMID: 39967877 PMCID: PMC11834070 DOI: 10.1016/j.isci.2024.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/27/2024] [Accepted: 12/16/2024] [Indexed: 02/20/2025] Open
Abstract
Anillin (ANLN) is a highly conserved protein involved in cytokinesis and cytoskeletal remodeling. This study investigates the role of ANLN in head and neck squamous cell carcinoma (HNSCC) progression and its impact on the tumor immune microenvironment, with a focus on the combination of ANLN silencing and anti-programmed cell death protein 1 (PD-1) therapy. Through in vitro and in vivo experiments, along with clinical specimen analysis, we discovered that silencing ANLN not only inhibits the malignant progression of HNSCC but also reduces the activation of the extracellular signal-regulated kinase-mitogen-activated protein kinase (ERK-MAPK) signaling pathway and decreases programmed death ligand-1 (PD-L1) expression. Integrating ANLN silencing with anti-PD-1 monoclonal antibody treatment significantly enhances the activation of infiltrating CD8+ T cells, leading to marked tumor growth suppression. Our findings highlight the potential of ANLN as a therapeutic target in HNSCC, providing a foundation for developing innovative and effective combined treatment strategies.
Collapse
Affiliation(s)
- Lei Wang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, P.R. China
| | - Junrong Wang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, P.R. China
| | - Nana Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, P.R. China
| | - Xueying Wang
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha 410008, Hunan, P.R. China
| | - Ming Song
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, P.R. China
| | - Yang Zhou
- Department of Respiratory Medicine, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, P.R. China
| | - Ziyuan Wang
- Department of Pathology, Harbin Medical University, Harbin 150081, Heilongjiang, P.R. China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Erliang Guo
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, P.R. China
| | - Susheng Miao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, P.R. China
| |
Collapse
|
4
|
Kerivan EM, Amari VN, Weeks WB, Hardin LH, Tobin L, Al Azzam OY, Reinemann DN. Deciphering Mechanochemical Influences of Emergent Actomyosin Crosstalk Using QCM-D. Cell Mol Bioeng 2025; 18:99-108. [PMID: 39949486 PMCID: PMC11813833 DOI: 10.1007/s12195-024-00835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/19/2024] [Indexed: 02/16/2025] Open
Abstract
Purpose Cytoskeletal protein ensembles exhibit emergent mechanics where behavior in teams is not necessarily the sum of the components' single molecule properties. In addition, filaments may act as force sensors that distribute feedback and influence motor protein behavior. To understand the design principles of such emergent mechanics, we developed an approach utilizing QCM-D to measure how actomyosin bundles respond mechanically to environmental variables that alter constituent myosin II motor behavior. Methods QCM-D is used for the first time to probe alterations in actin-myosin bundle viscoelasticity due to changes in skeletal myosin II concentration and motor nucleotide state. Actomyosin bundles were constructed on a gold QCM-D sensor using a microfluidic setup, and frequency and dissipation change measurements were recorded for each component addition to decipher which assay constituents lead to changes in bundle structural compliancy. Results Lowering myosin concentration is detected as lower shifts in frequency and dissipation, while the relative changes in frequency and dissipation shifts for both the first and second actin additions are relatively similar. Strikingly, buffer washes with different nucleotides (ATP vs. ADP) yielded unique signatures in frequency and dissipation shifts. As myosin II's ADP-bound state tightly binds actin filaments, we observe an increase in frequency and decrease in dissipation change, indicating a decrease in viscoelasticity, likely due to myosin's increased affinity for actin, conversion from an active motor to a static crosslinker, and ability to recruit additional actin filaments from the surface, making an overall more rigid sensor coating. However, lowering the ADP concentration results in increased system compliancy, indicating that transient crosslinking and retaining a balance of motor activity perhaps results in a more cooperative and productive force generating system. Conclusions QCM-D can detect changes in actomyosin viscoelasticity due to molecular-level alterations, such as motor concentration and nucleotide state. These results provide support for actin's role as a mechanical force-feedback sensor and demonstrate a new approach for deciphering the feedback mechanisms that drive emergent cytoskeletal ensemble crosstalk and intracellular mechanosensing. This approach can be adapted to investigate environmental influences on more complex cytoskeletal ensemble mechanics, including addition of other motors, crosslinkers, and filament types. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00835-w.
Collapse
Affiliation(s)
- Emily M. Kerivan
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Victoria N. Amari
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - William B. Weeks
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Leigh H. Hardin
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Lyle Tobin
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
| | - Omayma Y. Al Azzam
- Department of Chemical Engineering, University of Mississippi, University, MS 38677 USA
| | - Dana N. Reinemann
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677 USA
- Department of Chemical Engineering, University of Mississippi, University, MS 38677 USA
| |
Collapse
|
5
|
Li Y, Zhang H, Yang F, Zhu D, Chen S, Wang Z, Wei Z, Yang Z, Jia J, Zhang Y, Wang D, Ma M, Kang X. Mechanisms and therapeutic potential of disulphidptosis in cancer. Cell Prolif 2025; 58:e13752. [PMID: 39354653 DOI: 10.1111/cpr.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/30/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024] Open
Abstract
SLC7A11 plays a pivotal role in tumour development by facilitating cystine import to enhance glutathione synthesis and counteract oxidative stress. Disulphidptosis, an emerging form of cell death observed in cells with high expression of SLC7A11 under glucose deprivation, is regulated through reduction-oxidation reactions and disulphide bond formation. This process leads to contraction and collapse of the F-actin cytoskeleton from the plasma membrane, ultimately resulting in cellular demise. Compared to other forms of cell death, disulphidptosis exhibits distinctive characteristics and regulatory mechanisms. This mechanism provides novel insights and innovative strategies for cancer treatment while also inspiring potential therapeutic approaches for other diseases. Our review focuses on elucidating the molecular mechanism underlying disulphidptosis and its connection with the actin cytoskeleton, identifying alternative metabolic forms of cell death, as well as offering insights into disulphidptosis-based cancer therapy. A comprehensive understanding of disulphidptosis will contribute to our knowledge about fundamental cellular homeostasis and facilitate the development of groundbreaking therapies for disease treatment.
Collapse
Affiliation(s)
- Yanhu Li
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Haijun Zhang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
- The Second People's Hospital of Gansu Province, Lanzhou, PR China
| | - Fengguang Yang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Daxue Zhu
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Shijie Chen
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Zhaoheng Wang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Ziyan Wei
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Zhili Yang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Jingwen Jia
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Yizhi Zhang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Dongxin Wang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Mingdong Ma
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| | - Xuewen Kang
- Lanzhou University Second Hospital, Lanzhou, PR China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, PR China
| |
Collapse
|
6
|
Waechtler BE, Jayasankar R, Morin EP, Robinson DN. Benefits and challenges of reconstituting the actin cortex. Cytoskeleton (Hoboken) 2024; 81:843-863. [PMID: 38520148 PMCID: PMC11417134 DOI: 10.1002/cm.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The cell's ability to change shape is a central feature in many cellular processes, including cytokinesis, motility, migration, and tissue formation. The cell constructs a network of contractile proteins underneath the cell membrane to form the cortex, and the reorganization of these components directly contributes to cellular shape changes. The desire to mimic these cell shape changes to aid in the creation of a synthetic cell has been increasing. Therefore, membrane-based reconstitution experiments have flourished, furthering our understanding of the minimal components the cell uses throughout these processes. Although biochemical approaches increased our understanding of actin, myosin II, and actin-associated proteins, using membrane-based reconstituted systems has further expanded our understanding of actin structures and functions because membrane-cortex interactions can be analyzed. In this review, we highlight the recent developments in membrane-based reconstitution techniques. We examine the current findings on the minimal components needed to recapitulate distinct actin structures and functions and how they relate to the cortex's impact on cellular mechanical properties. We also explore how co-processing of computational models with wet-lab experiments enhances our understanding of these properties. Finally, we emphasize the benefits and challenges inherent to membrane-based, reconstitution assays, ranging from the advantage of precise control over the system to the difficulty of integrating these findings into the complex cellular environment.
Collapse
Affiliation(s)
- Brooke E. Waechtler
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| | - Rajan Jayasankar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, 725 N Wolfe Street, Baltimore, MD 21205
| | - Emma P. Morin
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Medicine, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Oncology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| |
Collapse
|
7
|
Reverte-López M, Kanwa N, Qutbuddin Y, Belousova V, Jasnin M, Schwille P. Self-organized spatial targeting of contractile actomyosin rings for synthetic cell division. Nat Commun 2024; 15:10415. [PMID: 39614082 PMCID: PMC11607352 DOI: 10.1038/s41467-024-54807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024] Open
Abstract
A key challenge for bottom-up synthetic biology is engineering a minimal module for self-division of synthetic cells. Actin-based cytokinetic rings are considered a promising structure to produce the forces required for the controlled excision of cell-like compartments such as giant unilamellar vesicles (GUVs). Despite prior demonstrations of actin ring targeting to GUV membranes and myosin-induced constriction, large-scale vesicle deformation has been precluded due to the lacking spatial control of these contractile structures. Here we show the combined reconstitution of actomyosin rings and the bacterial MinDE protein system within GUVs. Incorporating this spatial positioning tool, able to induce active transport of membrane-attached diffusible molecules, yields self-organized equatorial assembly of actomyosin rings in vesicles. Remarkably, the synergistic effect of Min oscillations and the contractility of actomyosin bundles induces mid-vesicle deformations and vesicle blebbing. Our system showcases how functional machineries from various organisms may be combined in vitro, leading to the emergence of functionalities towards a synthetic division system.
Collapse
Affiliation(s)
- María Reverte-López
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nishu Kanwa
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yusuf Qutbuddin
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Viktoriia Belousova
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marion Jasnin
- Helmholtz Pioneer Campus, Helmholtz Munich, Neuherberg, Germany; Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
8
|
Wu S, Li D, Han P, Li L, Zhao J, Zhang H, Zhou X, Li P, Mo Y. MicroRNA‑374a‑5p/ANLN axis promotes malignant progression of Oral squamous cell carcinoma. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-16. [PMID: 39449219 DOI: 10.1080/15257770.2024.2419555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Recent research has revealed a significant association between Anillin (ANLN) and miR-374a‑5p with the progression of tumors. Additionally, bioinformatics analysis indicated an inverse relationship in transcript expression levels between ANLN and miR-374a-5p. However, the specific mechanisms driving the miR-374a-5p/ANLN signaling axis in oral squamous cell carcinoma (OSCC) have not been thoroughly explored. METHODS ANLN and miR-374a‑5p expression were evaluated within OSCC cell lines and tissues by RT-qPCR. Using bioinformatics databases, it has been demonstrated that the ANLN gene could be a target of miR-374a-5p. MiR-374a‑5p and ANLN correlation could be assessed via the dual-luciferase reporter assay and western blotting techniques. Functional studies were employed to investigate the behavioral patterns of miR-374a‑5p within OSCC cells. RESULTS miR-374a‑5p expression could be remarkably downregulated within both OSCC tissues and cells, coinciding with high ANLN expression. ANLN was a specific target gene for miR-374a‑5p by luciferase function assay. The expression of miR-374a‑5p could serve as a diagnostic biomarker and independently predict a poor prognosis in patients with OSCC, and the counteractive effect of upregulating miR-374a‑5p was observed on the proliferative, migratory, and invasive capabilities of OSCC cells. CONCLUSIONS The findings suggest that the miR-374a‑5p/ANLN signaling axis potentially modulates the advancement of OSCC, and miR-374a‑5p may serve as potential therapeutic targets of oral cancer.
Collapse
Affiliation(s)
- Shu Wu
- Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Health Commission Key laboratory of prevention and treatment for oral infectious diseases, Nanning, P.R. China
- Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Danping Li
- Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Health Commission Key laboratory of prevention and treatment for oral infectious diseases, Nanning, P.R. China
- Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Peipei Han
- Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Limei Li
- Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Health Commission Key laboratory of prevention and treatment for oral infectious diseases, Nanning, P.R. China
- Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Jun Zhao
- Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Health Commission Key laboratory of prevention and treatment for oral infectious diseases, Nanning, P.R. China
- Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Haishan Zhang
- Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Health Commission Key laboratory of prevention and treatment for oral infectious diseases, Nanning, P.R. China
- Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Xiaohui Zhou
- Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Health Commission Key laboratory of prevention and treatment for oral infectious diseases, Nanning, P.R. China
- Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Ping Li
- Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Health Commission Key laboratory of prevention and treatment for oral infectious diseases, Nanning, P.R. China
- Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Yingxi Mo
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, P.R. China
| |
Collapse
|
9
|
Linehan JB, Zampetaki A, Werner ME, Heck B, Maddox PS, Fürthauer S, Maddox AS. Subcellular context-specific tuning of actomyosin ring contractility within a common cytoplasm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607200. [PMID: 39253424 PMCID: PMC11383051 DOI: 10.1101/2024.08.08.607200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The non-muscle actomyosin cytoskeleton generates contractile force through the dynamic rearrangement of its constituent parts. Actomyosin rings are a specialization of the non-muscle actomyosin cytoskeleton that drive cell shape changes during division, wound healing, and other events. Contractile rings throughout phylogeny and in a range of cellular contexts are built from conserved components including non-muscle myosin II (NMMII), actin filaments (F-actin), and crosslinking proteins. However, it is unknown whether diverse actomyosin rings close via a single unifying mechanism. To explore how contractile forces are generated by actomyosin rings, we studied three instances of ring closure within the common cytoplasm of the C. elegans oogenic germline: mitotic cytokinesis of germline stem cells (GSCs), apoptosis of meiotic compartments, and cellularization of oocytes. We found that each ring type closed with unique kinetics, protein density and abundance dynamics. These measurements suggested that the mechanism of contractile force generation varied across the subcellular contexts. Next, we formulated a physical model that related the forces generated by filament-filament interactions to the material properties of these rings that dictate the kinetics of their closure. Using this framework, we related the density of conserved cytoskeletal proteins anillin and NMMII to the kinematics of ring closure. We fitted model rings to in situ measurements to estimate parameters that are currently experimentally inaccessible, such as the asymmetric distribution of protein along the length of F-actin, which occurs naturally due to differences in the dimensions of the crosslinker and NMMII filaments. Our work predicted that the role of NMMII varies across these ring types, due in part to its distribution along F-actin and motoring. Our model also predicted that the degree of contractility and the impact of ring material properties on contractility differs among ring types.
Collapse
Affiliation(s)
- John B Linehan
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Michael E Werner
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bryan Heck
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Paul S Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Amy S Maddox
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
10
|
Stjepić V, Nakamura M, Hui J, Parkhurst SM. Two Septin complexes mediate actin dynamics during cell wound repair. Cell Rep 2024; 43:114215. [PMID: 38728140 PMCID: PMC11203717 DOI: 10.1016/j.celrep.2024.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Cells have robust wound repair systems to prevent further damage or infection and to quickly restore cell cortex integrity when exposed to mechanical and chemical stress. Actomyosin ring formation and contraction at the wound edge are major events during closure of the plasma membrane and underlying cytoskeleton during cell wound repair. Here, we show that all five Drosophila Septins are required for efficient cell wound repair. Based on their different recruitment patterns and knockdown/mutant phenotypes, two distinct Septin complexes, Sep1/Sep2/Pnut and Sep4/Sep5/Pnut, are assembled to regulate actin ring assembly, contraction, and remodeling during the repair process. Intriguingly, we find that these two Septin complexes have different F-actin bending activities. In addition, we find that Anillin regulates the recruitment of only one of two Septin complexes upon wounding. Our results demonstrate that two functionally distinct Septin complexes work side by side to discretely regulate actomyosin ring dynamics during cell wound repair.
Collapse
Affiliation(s)
- Viktor Stjepić
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
11
|
Illig M, Jahnke K, Weise LP, Scheffold M, Mersdorf U, Drechsler H, Zhang Y, Diez S, Kierfeld J, Göpfrich K. Triggered contraction of self-assembled micron-scale DNA nanotube rings. Nat Commun 2024; 15:2307. [PMID: 38485920 PMCID: PMC10940629 DOI: 10.1038/s41467-024-46339-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Contractile rings are formed from cytoskeletal filaments during cell division. Ring formation is induced by specific crosslinkers, while contraction is typically associated with motor protein activity. Here, we engineer DNA nanotubes and peptide-functionalized starPEG constructs as synthetic crosslinkers to mimic this process. The crosslinker induces bundling of ten to hundred DNA nanotubes into closed micron-scale rings in a one-pot self-assembly process yielding several thousand rings per microliter. Molecular dynamics simulations reproduce the detailed architectural properties of the DNA rings observed in electron microscopy. Theory and simulations predict DNA ring contraction - without motor proteins - providing mechanistic insights into the parameter space relevant for efficient nanotube sliding. In agreement between simulation and experiment, we obtain ring contraction to less than half of the initial ring diameter. DNA-based contractile rings hold promise for an artificial division machinery or contractile muscle-like materials.
Collapse
Affiliation(s)
- Maja Illig
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany
- Max Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Kevin Jahnke
- Max Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120, Heidelberg, Germany
- Harvard University, School of Engineering and Applied Sciences (SEAS), 9 Oxford Street, 02138, Cambridge, MA, USA
| | - Lukas P Weise
- TU Dortmund University, Department of Physics, Otto-Hahn-Str. 4, 44221, Dortmund, Germany
| | - Marlene Scheffold
- Max Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Ulrike Mersdorf
- Max Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Hauke Drechsler
- B CUBE - Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
- Tübingen University, Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Yixin Zhang
- B CUBE - Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, Tatzberg 41, 01307, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany.
| | - Jan Kierfeld
- TU Dortmund University, Department of Physics, Otto-Hahn-Str. 4, 44221, Dortmund, Germany.
| | - Kerstin Göpfrich
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany.
- Max Planck Institute for Medical Research, Biophysical Engineering Group, Jahnstraße 29, 69120, Heidelberg, Germany.
| |
Collapse
|
12
|
Larsen AH. Understanding cytokinesis interaction by interaction. Structure 2024; 32:120-121. [PMID: 38306987 DOI: 10.1016/j.str.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Abstract
In this issue of Structure, Hall et al.1 investigate the binding modes of anillin-like Mid1. During cytokinesis, Mid1 connects the contractile ring to the plasma membrane. Using computer simulations, the authors demonstrated how this connection is established via the L3 loop of the C2 domain.
Collapse
|
13
|
Sabo J, Dujava Zdimalova M, Slater PG, Dostal V, Herynek S, Libusova L, Lowery LA, Braun M, Lansky Z. CKAP5 enables formation of persistent actin bundles templated by dynamically instable microtubules. Curr Biol 2024; 34:260-272.e7. [PMID: 38086388 PMCID: PMC10841699 DOI: 10.1016/j.cub.2023.11.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
Cytoskeletal rearrangements and crosstalk between microtubules and actin filaments are vital for living organisms. Recently, an abundantly present microtubule polymerase, CKAP5 (XMAP215 homolog), has been reported to play a role in mediating crosstalk between microtubules and actin filaments in the neuronal growth cones. However, the molecular mechanism of this process is unknown. Here, we demonstrate, in a reconstituted system, that CKAP5 enables the formation of persistent actin bundles templated by dynamically instable microtubules. We explain the templating by the difference in CKAP5 binding to microtubules and actin filaments. Binding to the microtubule lattice with higher affinity, CKAP5 enables the formation of actin bundles exclusively on the microtubule lattice, at CKAP5 concentrations insufficient to support any actin bundling in the absence of microtubules. Strikingly, when the microtubules depolymerize, actin bundles prevail at the positions predetermined by the microtubules. We propose that the local abundance of available CKAP5-binding sites in actin bundles allows the retention of CKAP5, resulting in persisting actin bundles. In line with our observations, we found that reducing CKAP5 levels in vivo results in a decrease in actin-microtubule co-localization in growth cones and specifically decreases actin intensity at microtubule plus ends. This readily suggests a mechanism explaining how exploratory microtubules set the positions of actin bundles, for example, in cytoskeleton-rich neuronal growth cones.
Collapse
Affiliation(s)
- Jan Sabo
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, Prague West, Prague 25250, Czech Republic; Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 12800, Czech Republic
| | - Michaela Dujava Zdimalova
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, Prague West, Prague 25250, Czech Republic
| | - Paula G Slater
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencias, Universidad San Sebastián, Campus Los Leones, Lota 2465, Providencia, Santiago 7510602, Chile
| | - Vojtech Dostal
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 12800, Czech Republic
| | - Stepan Herynek
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, Prague West, Prague 25250, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Vinicna 7, Prague 12800, Czech Republic
| | - Lenka Libusova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 12800, Czech Republic
| | - Laura A Lowery
- Department of Medicine, Section of Hematology/Oncology, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Marcus Braun
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, Prague West, Prague 25250, Czech Republic.
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, Prague West, Prague 25250, Czech Republic.
| |
Collapse
|
14
|
Guo S, Hoeprich GJ, Magliozzi JO, Gelles J, Goode BL. Dynamic remodeling of actin networks by cyclase-associated protein and CAP-Abp1 complexes. Curr Biol 2023; 33:4484-4495.e5. [PMID: 37797614 PMCID: PMC10860761 DOI: 10.1016/j.cub.2023.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/20/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
How actin filaments are spatially organized and remodeled into diverse higher-order networks in vivo is still not well understood. Here, we report an unexpected F-actin "coalescence" activity driven by cyclase-associated protein (CAP) and enhanced by its interactions with actin-binding protein 1 (Abp1). We directly observe S. cerevisiae CAP and Abp1 rapidly transforming branched or linear actin networks by bundling and sliding filaments past each other, maximizing filament overlap, and promoting compaction into bundles. This activity does not require ATP and is conserved, as similar behaviors are observed for the mammalian homologs of CAP and Abp1. Coalescence depends on the CAP oligomerization domain but not the helical folded domain (HFD) that mediates its functions in F-actin severing and depolymerization. Coalescence by CAP-Abp1 further depends on interactions between CAP and Abp1 and interactions between Abp1 and F-actin. Our results are consistent with a mechanism in which the formation of energetically favorable sliding CAP and CAP-Abp1 crosslinks drives F-actin bundle compaction. Roles for CAP and CAP-Abp1 in actin remodeling in vivo are supported by strong phenotypes arising from deletion of the CAP oligomerization domain and by genetic interactions between sac6Δ and an srv2-301 mutant that does not bind Abp1. Together, these observations identify a new actin filament remodeling function for CAP, which is further enhanced by its direct interactions with Abp1.
Collapse
Affiliation(s)
- Siyang Guo
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Gregory J Hoeprich
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Joseph O Magliozzi
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | - Bruce L Goode
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
15
|
Lebedev M, Chan FY, Lochner A, Bellessem J, Osório DS, Rackles E, Mikeladze-Dvali T, Carvalho AX, Zanin E. Anillin forms linear structures and facilitates furrow ingression after septin and formin depletion. Cell Rep 2023; 42:113076. [PMID: 37665665 PMCID: PMC10548094 DOI: 10.1016/j.celrep.2023.113076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
During cytokinesis, a contractile ring consisting of unbranched filamentous actin (F-actin) and myosin II constricts at the cell equator. Unbranched F-actin is generated by formin, and without formin no cleavage furrow forms. In Caenorhabditis elegans, depletion of septin restores furrow ingression in formin mutants. How the cleavage furrow ingresses without a detectable unbranched F-actin ring is unknown. We report that, in this setting, anillin (ANI-1) forms a meshwork of circumferentially aligned linear structures decorated by non-muscle myosin II (NMY-2). Analysis of ANI-1 deletion mutants reveals that its disordered N-terminal half is required for linear structure formation and sufficient for furrow ingression. NMY-2 promotes the circumferential alignment of the linear ANI-1 structures and interacts with various lipids, suggesting that NMY-2 links the ANI-1 network with the plasma membrane. Collectively, our data reveal a compensatory mechanism, mediated by ANI-1 linear structures and membrane-bound NMY-2, that promotes furrowing when unbranched F-actin polymerization is compromised.
Collapse
Affiliation(s)
- Mikhail Lebedev
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Fung-Yi Chan
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Anna Lochner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany
| | - Jennifer Bellessem
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Daniel S Osório
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Elisabeth Rackles
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Tamara Mikeladze-Dvali
- Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany
| | - Ana Xavier Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Esther Zanin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biologie, 91058 Erlangen, Germany; Department Biologie, Ludwig-Maximilians University, Munich, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
16
|
Cumberworth A, Ten Wolde PR. Constriction of Actin Rings by Passive Crosslinkers. PHYSICAL REVIEW LETTERS 2023; 131:038401. [PMID: 37540881 DOI: 10.1103/physrevlett.131.038401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2023] [Indexed: 08/06/2023]
Abstract
In many organisms, cell division is driven by the constriction of a cytokinetic ring, which consists of actin filaments and crosslinking proteins. While it has long been believed that the constriction is driven by motor proteins, it has recently been discovered that passive crosslinkers that do not turn over fuel are able to generate enough force to constrict actin filament rings. To study the ring constriction dynamics, we develop a model that includes the driving force of crosslinker condensation and the opposing forces of friction and filament bending. We analyze the constriction force as a function of ring topology and crosslinker concentration, and predict forces that are sufficient to constrict an unadorned plasma membrane. Our model also predicts that actin-filament sliding arises from an interplay between filament rotation and crosslinker hopping, producing frictional forces that are low compared with those of crosslinker-mediated microtubule sliding.
Collapse
|
17
|
Carim SC, Hickson GR. The Rho1 GTPase controls anillo-septin assembly to facilitate contractile ring closure during cytokinesis. iScience 2023; 26:106903. [PMID: 37378349 PMCID: PMC10291328 DOI: 10.1016/j.isci.2023.106903] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/20/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
Animal cell cytokinesis requires activation of the GTPase RhoA (Rho1 in Drosophila), which assembles an F-actin- and myosin II-dependent contractile ring (CR) at the equatorial plasma membrane. CR closure is poorly understood, but involves the multidomain scaffold protein, Anillin. Anillin binds many CR components including F-actin and myosin II (collectively actomyosin), RhoA and the septins. Anillin recruits septins to the CR but the mechanism is unclear. Live imaging of Drosophila S2 cells and HeLa cells revealed that the Anillin N-terminus, which scaffolds actomyosin, cannot recruit septins to the CR. Rather, septin recruitment required the ability of the Anillin C-terminus to bind Rho1-GTP and the presence of the Anillin PH domain, in a sequential mechanism occurring at the plasma membrane, independently of F-actin. Anillin mutations that blocked septin recruitment, but not actomyosin scaffolding, slowed CR closure and disrupted cytokinesis. Thus, CR closure requires coordination of two Rho1-dependent networks: actomyosin and anillo-septin.
Collapse
Affiliation(s)
- Sabrya C. Carim
- CHU Sainte-Justine Research Center, 3175 Chemin de la Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
| | - Gilles R.X. Hickson
- CHU Sainte-Justine Research Center, 3175 Chemin de la Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, P.O. Box 6128, Station Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
18
|
Nakamura M, Hui J, Parkhurst SM. Bending actin filaments: twists of fate. Fac Rev 2023; 12:7. [PMID: 37081903 PMCID: PMC10111394 DOI: 10.12703/r/12-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
In many cellular contexts, intracellular actomyosin networks must generate directional forces to carry out cellular tasks such as migration and endocytosis, which play important roles during normal developmental processes. A number of different actin binding proteins have been identified that form linear or branched actin, and that regulate these filaments through activities such as bundling, crosslinking, and depolymerization to create a wide variety of functional actin assemblies. The helical nature of actin filaments allows them to better accommodate tensile stresses by untwisting, as well as to bend to great curvatures without breaking. Interestingly, this latter property, the bending of actin filaments, is emerging as an exciting new feature for determining dynamic actin configurations and functions. Indeed, recent studies using in vitro assays have found that proteins including IQGAP, Cofilin, Septins, Anillin, α-Actinin, Fascin, and Myosins-alone or in combination-can influence the bending or curvature of actin filaments. This bending increases the number and types of dynamic assemblies that can be generated, as well as the spectrum of their functions. Intriguingly, in some cases, actin bending creates directionality within a cell, resulting in a chiral cell shape. This actin-dependent cell chirality is highly conserved in vertebrates and invertebrates and is essential for cell migration and breaking L-R symmetry of tissues/organs. Here, we review how different types of actin binding protein can bend actin filaments, induce curved filament geometries, and how they impact on cellular functions.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA 98109
| |
Collapse
|
19
|
Hui J, Nakamura M, Dubrulle J, Parkhurst SM. Coordinated efforts of different actin filament populations are needed for optimal cell wound repair. Mol Biol Cell 2023; 34:ar15. [PMID: 36598808 PMCID: PMC10011732 DOI: 10.1091/mbc.e22-05-0155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cells are subjected to a barrage of daily insults that often lead to their cortices being ripped open and requiring immediate repair. An important component of the cell's repair response is the formation of an actomyosin ring at the wound periphery to mediate its closure. Here we show that inhibition of myosin or the linear actin nucleation factors Diaphanous and/or dishevelled associated activator of morphogenesis results in a disrupted contractile apparatus and delayed wound closure. We also show that the branched actin nucleators WASp and SCAR function nonredundantly as scaffolds to assemble and maintain this contractile actomyosin cable. Removing branched actin leads to the formation of smaller circular actin-myosin structures at the cell cortex and to slow wound closure. Removing linear and branched actin simultaneously results in failed wound closure. Surprisingly, removal of branched actin and myosin results in the formation of parallel linear F-actin filaments that undergo a chiral swirling movement to close the wound, uncovering a new mechanism of cell wound closure. Taken together, we demonstrate the roles of different actin substructures that are required for optimal actomyosin ring formation and the extraordinary resilience of the cell to undergo wound repair when it is unable to form different subsets of these substructures.
Collapse
Affiliation(s)
- Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | | | - Julien Dubrulle
- Cellular Imaging Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| |
Collapse
|
20
|
Haghizadeh A, Iftikhar M, Dandpat SS, Simpson T. Looking at Biomolecular Interactions through the Lens of Correlated Fluorescence Microscopy and Optical Tweezers. Int J Mol Sci 2023; 24:2668. [PMID: 36768987 PMCID: PMC9916863 DOI: 10.3390/ijms24032668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Understanding complex biological events at the molecular level paves the path to determine mechanistic processes across the timescale necessary for breakthrough discoveries. While various conventional biophysical methods provide some information for understanding biological systems, they often lack a complete picture of the molecular-level details of such dynamic processes. Studies at the single-molecule level have emerged to provide crucial missing links to understanding complex and dynamic pathways in biological systems, which are often superseded by bulk biophysical and biochemical studies. Latest developments in techniques combining single-molecule manipulation tools such as optical tweezers and visualization tools such as fluorescence or label-free microscopy have enabled the investigation of complex and dynamic biomolecular interactions at the single-molecule level. In this review, we present recent advances using correlated single-molecule manipulation and visualization-based approaches to obtain a more advanced understanding of the pathways for fundamental biological processes, and how this combination technique is facilitating research in the dynamic single-molecule (DSM), cell biology, and nanomaterials fields.
Collapse
|
21
|
Minor Kinases with Major Roles in Cytokinesis Regulation. Cells 2022; 11:cells11223639. [PMID: 36429067 PMCID: PMC9688779 DOI: 10.3390/cells11223639] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Cytokinesis, the conclusive act of cell division, allows cytoplasmic organelles and chromosomes to be faithfully partitioned between two daughter cells. In animal organisms, its accurate regulation is a fundamental task for normal development and for preventing aneuploidy. Cytokinesis failures produce genetically unstable tetraploid cells and ultimately result in chromosome instability, a hallmark of cancer cells. In animal cells, the assembly and constriction of an actomyosin ring drive cleavage furrow ingression, resulting in the formation of a cytoplasmic intercellular bridge, which is severed during abscission, the final event of cytokinesis. Kinase-mediated phosphorylation is a crucial process to orchestrate the spatio-temporal regulation of the different stages of cytokinesis. Several kinases have been described in the literature, such as cyclin-dependent kinase, polo-like kinase 1, and Aurora B, regulating both furrow ingression and/or abscission. However, others exist, with well-established roles in cell-cycle progression but whose specific role in cytokinesis has been poorly investigated, leading to considering these kinases as "minor" actors in this process. Yet, they deserve additional attention, as they might disclose unexpected routes of cell division regulation. Here, we summarize the role of multifunctional kinases in cytokinesis with a special focus on those with a still scarcely defined function during cell cleavage. Moreover, we discuss their implication in cancer.
Collapse
|
22
|
Ozugergin I, Piekny A. Diversity is the spice of life: An overview of how cytokinesis regulation varies with cell type. Front Cell Dev Biol 2022; 10:1007614. [PMID: 36420142 PMCID: PMC9676254 DOI: 10.3389/fcell.2022.1007614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Cytokinesis is required to physically cleave a cell into two daughters at the end of mitosis. Decades of research have led to a comprehensive understanding of the core cytokinesis machinery and how it is regulated in animal cells, however this knowledge was generated using single cells cultured in vitro, or in early embryos before tissues develop. This raises the question of how cytokinesis is regulated in diverse animal cell types and developmental contexts. Recent studies of distinct cell types in the same organism or in similar cell types from different organisms have revealed striking differences in how cytokinesis is regulated, which includes different threshold requirements for the structural components and the mechanisms that regulate them. In this review, we highlight these differences with an emphasis on pathways that are independent of the mitotic spindle, and operate through signals associated with the cortex, kinetochores, or chromatin.
Collapse
Affiliation(s)
- Imge Ozugergin
- Department of Biology, McGill University, Montreal, QC, Canada
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
23
|
Baldauf L, van Buren L, Fanalista F, Koenderink GH. Actomyosin-Driven Division of a Synthetic Cell. ACS Synth Biol 2022; 11:3120-3133. [PMID: 36164967 PMCID: PMC9594324 DOI: 10.1021/acssynbio.2c00287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 01/24/2023]
Abstract
One of the major challenges of bottom-up synthetic biology is rebuilding a minimal cell division machinery. From a reconstitution perspective, the animal cell division apparatus is mechanically the simplest and therefore attractive to rebuild. An actin-based ring produces contractile force to constrict the membrane. By contrast, microbes and plant cells have a cell wall, so division requires concerted membrane constriction and cell wall synthesis. Furthermore, reconstitution of the actin division machinery helps in understanding the physical and molecular mechanisms of cytokinesis in animal cells and thus our own cells. In this review, we describe the state-of-the-art research on reconstitution of minimal actin-mediated cytokinetic machineries. Based on the conceptual requirements that we obtained from the physics of the shape changes involved in cell division, we propose two major routes for building a minimal actin apparatus capable of division. Importantly, we acknowledge both the passive and active roles that the confining lipid membrane can play in synthetic cytokinesis. We conclude this review by identifying the most pressing challenges for future reconstitution work, thereby laying out a roadmap for building a synthetic cell equipped with a minimal actin division machinery.
Collapse
Affiliation(s)
| | | | - Federico Fanalista
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje Hendrika Koenderink
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
24
|
Cui Z, Mo J, Song P, Wang L, Wang R, Cheng F, Wang L, Zou F, Guan X, Zheng N, Yang X, Wang W. Comprehensive bioinformatics analysis reveals the prognostic value, predictive value, and immunological roles of ANLN in human cancers. Front Genet 2022; 13:1000339. [PMID: 36199577 PMCID: PMC9527346 DOI: 10.3389/fgene.2022.1000339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
Anillin (ANLN) is a unique scaffolding, actin-binding protein, which is essential for the integrity and ingression of the cleavage furrow. It is mainly involved in the cytokinesis process, while its role in various tumors has not been fully addressed and remains largely elusive. To provide a thorough perspective of ANLN’s roles among diverse malignancies, we conducted a comprehensive, pan-cancer analysis about ANLN, including but not limited to gene expression levels, prognostic value, biological functions, interacting proteins, immune-related analysis, and predictive value. As a result, when compared to normal tissues, ANLN expression is elevated in most cancers, and its expression also differs in different immune subtypes and molecular subtypes in diverse cancers. In addition, in 17 types of cancer, ANLN expression is increased in early tumor stages, and higher ANLN expression predicts worse survival outcomes in more than ten cancers. Furthermore, ANLN shows close correlations with the infiltration levels of most immune cells, and enrichment analysis using ANLN co-expressed genes reveals that ANLN plays essential roles in cell cycle, mitosis, cellular senescence, and p53 signaling pathways. In the final, ANLN exhibits high accuracy in predicting many cancers, and subsequent multivariate analysis suggests ANLN could be an independent prognostic factor in specific cancer types. Taken together, ANLN is proved to be a novel and promising biomarker for its excellent predictive utility, promising prognostic value, and potential immunological roles in pan-cancer. Targeting ANLN might be an attractive approach to tumor treatment.
Collapse
Affiliation(s)
- Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiantao Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ping Song
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lijun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Fan Zou
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Nini Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wei Wang, ; Xinyuan Yang,
| | - Wei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wei Wang, ; Xinyuan Yang,
| |
Collapse
|
25
|
Hui J, Stjepić V, Nakamura M, Parkhurst SM. Wrangling Actin Assemblies: Actin Ring Dynamics during Cell Wound Repair. Cells 2022; 11:2777. [PMID: 36139352 PMCID: PMC9497110 DOI: 10.3390/cells11182777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/18/2022] Open
Abstract
To cope with continuous physiological and environmental stresses, cells of all sizes require an effective wound repair process to seal breaches to their cortex. Once a wound is recognized, the cell must rapidly plug the injury site, reorganize the cytoskeleton and the membrane to pull the wound closed, and finally remodel the cortex to return to homeostasis. Complementary studies using various model organisms have demonstrated the importance and complexity behind the formation and translocation of an actin ring at the wound periphery during the repair process. Proteins such as actin nucleators, actin bundling factors, actin-plasma membrane anchors, and disassembly factors are needed to regulate actin ring dynamics spatially and temporally. Notably, Rho family GTPases have been implicated throughout the repair process, whereas other proteins are required during specific phases. Interestingly, although different models share a similar set of recruited proteins, the way in which they use them to pull the wound closed can differ. Here, we describe what is currently known about the formation, translocation, and remodeling of the actin ring during the cell wound repair process in model organisms, as well as the overall impact of cell wound repair on daily events and its importance to our understanding of certain diseases and the development of therapeutic delivery modalities.
Collapse
Affiliation(s)
| | | | | | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
26
|
Korkmazhan E, Dunn AR. The membrane-actin linker ezrin acts as a sliding anchor. SCIENCE ADVANCES 2022; 8:eabo2779. [PMID: 35930643 PMCID: PMC9355349 DOI: 10.1126/sciadv.abo2779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Protein linkages to filamentous (F)-actin provide the cell membrane with mechanical stability and support intricate membrane architectures. However, the actin cytoskeleton is highly dynamic and undergoes rapid changes in shape during cell motility and other processes. The molecular mechanisms that generate a mechanically robust yet fluid connection between the membrane and actin cytoskeleton remain poorly understood. Here, we adapted a single-molecule optical trap assay to examine how the prototypical membrane-actin linker ezrin acts to anchor F-actin to the cell membrane. We find that ezrin forms a complex that slides along F-actin over micrometer distances while resisting detachment by forces oriented perpendicular to the filament axis. The ubiquity of ezrin and analogous proteins suggests that sliding anchors such as ezrin may constitute an important but overlooked element in the construction of the actin cytoskeleton.
Collapse
Affiliation(s)
- Elgin Korkmazhan
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305 USA
- Graduate Program in Biophysics, Stanford University, Stanford, CA 94305 USA
| | - Alexander R. Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305 USA
- Corresponding author.
| |
Collapse
|
27
|
Fernandez-Gonzalez R, Peifer M. Powering morphogenesis: multiscale challenges at the interface of cell adhesion and the cytoskeleton. Mol Biol Cell 2022; 33. [PMID: 35696393 DOI: 10.1091/mbc.e21-09-0452] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Among the defining features of the animal kingdom is the ability of cells to change shape and move. This underlies embryonic and postembryonic development, tissue homeostasis, regeneration, and wound healing. Cell shape change and motility require linkage of the cell's force-generating machinery to the plasma membrane at cell-cell and cell-extracellular matrix junctions. Connections of the actomyosin cytoskeleton to cell-cell adherens junctions need to be both resilient and dynamic, preventing tissue disruption during the dramatic events of embryonic morphogenesis. In the past decade, new insights radically altered the earlier simple paradigm that suggested simple linear linkage via the cadherin-catenin complex as the molecular mechanism of junction-cytoskeleton interaction. In this Perspective we provide a brief overview of our current state of knowledge and then focus on selected examples highlighting what we view as the major unanswered questions in our field and the approaches that offer exciting new insights at multiple scales from atomic structure to tissue mechanics.
Collapse
Affiliation(s)
- Rodrigo Fernandez-Gonzalez
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G5, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5S 3G5, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Mark Peifer
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599-3280.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| |
Collapse
|
28
|
Cross-linkers at growing microtubule ends generate forces that drive actin transport. Proc Natl Acad Sci U S A 2022; 119:e2112799119. [PMID: 35271394 PMCID: PMC8931237 DOI: 10.1073/pnas.2112799119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complex cellular processes such as cell migration require coordinated remodeling of both the actin and the microtubule cytoskeleton. The two networks for instance exert forces on each other via active motor proteins. Here we show that, surprisingly, coupling via passive cross-linkers can also result in force generation. We specifically study the transport of actin filaments by growing microtubule ends. We show by cell-free reconstitution experiments, computer simulations, and theoretical modeling that this transport is driven by the affinity of the cross-linker for the chemically distinct microtubule tip region. Our work predicts that growing microtubules could potentially rapidly relocate newly nucleated actin filaments to the leading edge of the cell and thus boost migration. The actin and microtubule cytoskeletons form active networks in the cell that can contract and remodel, resulting in vital cellular processes such as cell division and motility. Motor proteins play an important role in generating the forces required for these processes, but more recently the concept of passive cross-linkers being able to generate forces has emerged. So far, these passive cross-linkers have been studied in the context of separate actin and microtubule systems. Here, we show that cross-linkers also allow actin and microtubules to exert forces on each other. More specifically, we study single actin filaments that are cross-linked to growing microtubule ends, using in vitro reconstitution, computer simulations, and a minimal theoretical model. We show that microtubules can transport actin filaments over large (micrometer-range) distances and find that this transport results from two antagonistic forces arising from the binding of cross-linkers to the overlap between the actin and microtubule filaments. The cross-linkers attempt to maximize the overlap between the actin and the tip of the growing microtubules, creating an affinity-driven forward condensation force, and simultaneously create a competing friction force along the microtubule lattice. We predict and verify experimentally how the average transport time depends on the actin filament length and the microtubule growth velocity, confirming the competition between a forward condensation force and a backward friction force. In addition, we theoretically predict and experimentally verify that the condensation force is of the order of 0.1 pN. Thus, our results reveal an active mechanism for local actin remodeling by growing microtubules that relies on passive cross-linkers.
Collapse
|
29
|
Henriques-Pons A, Beghini DG, Silva VDS, Iwao Horita S, da Silva FAB. Pulmonary Mesenchymal Stem Cells in Mild Cases of COVID-19 Are Dedicated to Proliferation; In Severe Cases, They Control Inflammation, Make Cell Dispersion, and Tissue Regeneration. Front Immunol 2022; 12:780900. [PMID: 35095855 PMCID: PMC8793136 DOI: 10.3389/fimmu.2021.780900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in virtually all tissues; they have potent self-renewal capacity and differentiate into multiple cell types. For many reasons, these cells are a promising therapeutic alternative to treat patients with severe COVID-19 and pulmonary post-COVID sequelae. These cells are not only essential for tissue regeneration; they can also alter the pulmonary environment through the paracrine secretion of several mediators. They can control or promote inflammation, induce other stem cells differentiation, restrain the virus load, and much more. In this work, we performed single-cell RNA-seq data analysis of MSCs in bronchoalveolar lavage samples from control individuals and COVID-19 patients with mild and severe clinical conditions. When we compared samples from mild cases with control individuals, most genes transcriptionally upregulated in COVID-19 were involved in cell proliferation. However, a new set of genes with distinct biological functions was upregulated when we compared severely affected with mild COVID-19 patients. In this analysis, the cells upregulated genes related to cell dispersion/migration and induced the γ-activated sequence (GAS) genes, probably triggered by IFNGR1 and IFNGR2. Then, IRF-1 was upregulated, one of the GAS target genes, leading to the interferon-stimulated response (ISR) and the overexpression of many signature target genes. The MSCs also upregulated genes involved in the mesenchymal-epithelial transition, virus control, cell chemotaxis, and used the cytoplasmic RNA danger sensors RIG-1, MDA5, and PKR. In a non-comparative analysis, we observed that MSCs from severe cases do not express many NF-κB upstream receptors, such as Toll-like (TLRs) TLR-3, -7, and -8; tumor necrosis factor (TNFR1 or TNFR2), RANK, CD40, and IL-1R1. Indeed, many NF-κB inhibitors were upregulated, including PPP2CB, OPTN, NFKBIA, and FHL2, suggesting that MSCs do not play a role in the "cytokine storm" observed. Therefore, lung MSCs in COVID-19 sense immune danger and act protectively in concert with the pulmonary environment, confirming their therapeutic potential in cell-based therapy for COVID-19. The transcription of MSCs senescence markers is discussed.
Collapse
Affiliation(s)
- Andrea Henriques-Pons
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, Brazil
| | - Daniela Gois Beghini
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, Brazil
| | | | - Samuel Iwao Horita
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, Brazil
| | | |
Collapse
|