1
|
Kim DY, Yun H, You JE, Park YS, Ryu YS, Koh DI, Shin JS, Jin DH. TP53 and DNA-PK as potential biomarkers for enhanced efficacy of Olaparib in colorectal cancer. Invest New Drugs 2025:10.1007/s10637-025-01544-5. [PMID: 40377785 DOI: 10.1007/s10637-025-01544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Accepted: 05/08/2025] [Indexed: 05/18/2025]
Abstract
Olaparib is selected based on the presence of BRCA mutations in patient populations; however, further investigation is still required regarding its effect on restoring homologous recombination (HR) through the inactivation of non-homologous end joining (NHEJ). Therefore, identifying regulators of NHEJ could increase the sensitivity of cancer cells to Olaparib by inhibiting DNA damage repair is a major focus of current research. Loss of DNA-dependent protein kinase (DNA-PK), which is a major components of NHEJ, compromises DNA damage repair, and the resulting increase in DNA damage burden may heighten reliance on poly (ADP-ribose) polymerase (PARP)-dependent DNA repair in cancer cells, rendering them more susceptible to PARP inhibitor therapy. However, DNA-PK alone is not sufficient to enhance the effectiveness of Olaparib, so various adjuvant and combination therapies are being explored. We classified colorectal cancer (CRC) cells based on their sensitivity to Olaparib and found that they were categorized according to TP53 status. Here, we examine the role of DNA-PK in the response to Olaparib, emphasizing its relationship with TP53 status. Our findings indicate that the inhibition of DNA-PK enhances sensitivity to Olaparib and induces phosphorylation of p53 exclusively in cells with TP53 wild-type (WT). Furthermore, using CRC patient-derived cells (PDC) and patient-derived xenograft (PDX) model, we show that the sensitivity of Olaparib is determined TP53 and DNA-PK genotypes. These findings highlight TP53 and DNA-PK as potential predictive biomarkers for optimizing PARP inhibitor-based therapy in CRC.
Collapse
Affiliation(s)
- Do Yeon Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyeseon Yun
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Eun You
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoon Sun Park
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yea Seong Ryu
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Dong-In Koh
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Jae-Sik Shin
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Dong-Hoon Jin
- Department of Convergence Medicine, Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea.
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Cai L, Wu F, Zhou Q, Gao Y, Yao B, DeBerardinis RJ, Acquaah-Mensah GK, Aidinis V, Beane JE, Biswal S, Chen T, Concepcion-Crisol CP, Grüner BM, Jia D, Jones RA, Kurie JM, Lee MG, Lindahl P, Lissanu Y, Lorz C, MacPherson D, Martinelli R, Mazur PK, Mazzilli SA, Mii S, Moll HP, Moorehead RA, Morrisey EE, Ng SR, Oser MG, Pandiri AR, Powell CA, Ramadori G, Santos M, Snyder EL, Sotillo R, Su KY, Taki T, Taparra K, Tran PT, Xia Y, van Veen JE, Winslow MM, Xiao G, Rudin CM, Oliver TG, Xie Y, Minna JD. The Lung Cancer Autochthonous Model Gene Expression Database Enables Cross-Study Comparisons of the Transcriptomic Landscapes Across Mouse Models. Cancer Res 2025; 85:1769-1783. [PMID: 40298430 PMCID: PMC12081188 DOI: 10.1158/0008-5472.can-24-1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/23/2024] [Accepted: 02/26/2025] [Indexed: 04/30/2025]
Abstract
Lung cancer, the leading cause of cancer mortality, exhibits diverse histologic subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. In this study, we established the Lung Cancer Autochthonous Model Gene Expression Database (LCAMGDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMM), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model. Meticulous curation and collaboration with data depositors produced a robust and comprehensive database, enhancing the fidelity of the genetic landscape it depicts. The LCAMGDB aligned 859 tumors from GEMMs with human lung cancer mutations, enabling comparative analysis and revealing a pressing need to broaden the diversity of genetic aberrations modeled in the GEMMs. To accompany this resource, a web application was developed that offers researchers intuitive tools for in-depth gene expression analysis. With standardized reprocessing of gene expression data, the LCAMGDB serves as a powerful platform for cross-study comparison and lays the groundwork for future research, aiming to bridge the gap between mouse models and human lung cancer for improved translational relevance. Significance: The Lung Cancer Autochthonous Model Gene Expression Database (LCAMGDB) provides a comprehensive and accessible resource for the research community to investigate lung cancer biology in mouse models.
Collapse
Affiliation(s)
- Ling Cai
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Children’s Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fangjiang Wu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qinbo Zhou
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ying Gao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Yao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J. DeBerardinis
- Children’s Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Vassilis Aidinis
- Institute of Fundamental Biological Research, Biomedical Sciences Research Center Alexander Fleming, 34 Fleming Street, 16672 Athens, Greece
| | - Jennifer E. Beane
- Section of Computational Biomedicine, Boston University School of Medicine, 72 E. Concord Street | Boston, MA 02118
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins University School of Public Health, Baltimore, MD 21205
| | | | | | - Barbara M. Grüner
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Deshui Jia
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai 201620, China
| | - Robert A Jones
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G2W1
| | - Jonathan M. Kurie
- Department of Thoracic-Head & Neck Med Onc, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Per Lindahl
- Sahlgrenska Center for Cancer Research Institute of Biomedicine | Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Medicanaregatan 1F, 413 90 Gothenburg, Sweden
| | - Yonathan Lissanu
- Department of Thoracic & Cardiovascular Surgery, the University of Texas MD Anderson Cancer Center
| | - Corina Lorz
- Biomedical Innovation Unit. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
| | | | - Rosanna Martinelli
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, SA, Italy
| | - Pawel K. Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sarah A. Mazzilli
- Section of Computational Biomedicine, Boston University School of Medicine, 72 E. Concord Street | Boston, MA 02118
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Herwig P. Moll
- Medical University of Vienna Center for Physiology and Pharmacology Waehringer Strasse 13a 1090 Vienna, Austria
| | - Roger A. Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G2W1
| | - Edward E. Morrisey
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104
| | - Sheng Rong Ng
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138632
| | - Matthew G. Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Arun R. Pandiri
- Cellular and Molecular Pathology Branch, Division of National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709,USA
| | - Charles A. Powell
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1232, New York, N.Y. 10029
| | - Giorgio Ramadori
- Department of Cell Physiology and Metabolism, University of Geneva; Geneva, 1211, Switzerland
| | - Mirentxu Santos
- Biomedical Innovation Unit. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
| | - Eric L. Snyder
- Department of Pathology and Huntsman Cancer Institute, University of Utah, SLC, UT 84112
| | - Rocio Sotillo
- Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University
| | - Tetsuro Taki
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kekoa Taparra
- Department of Radiation Oncology, Stanford Health Care, Stanford, CA
| | - Phuoc T. Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | - Yifeng Xia
- Salk Institute for Biological Studies. La Jolla, CA 92037 USA
| | - J. Edward van Veen
- Department of Integrative Biology and Physiology, University of California Los Angeles
| | - Monte M. Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Trudy G. Oliver
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John D. Minna
- Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Lakbir S, de Wit R, de Bruijn I, Kundra R, Madupuri R, Gao J, Schultz N, Meijer GA, Heringa J, Fijneman RJA, Abeln S. Tumor break load quantitates structural variant-associated genomic instability with biological and clinical relevance across cancers. NPJ Precis Oncol 2025; 9:140. [PMID: 40369102 PMCID: PMC12078582 DOI: 10.1038/s41698-025-00922-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/24/2025] [Indexed: 05/16/2025] Open
Abstract
While structural variants (SVs) are a clear sign of genomic instability, they have not been systematically quantified per patient since declining costs have only recently enabled large-scale profiling. Therefore, the biological and clinical impact of high numbers of SVs in patients is unknown. We introduce tumor break load (TBL), defined as the sum of unbalanced SVs, as a measure for SV-associated genomic instability. Using pan-cancer data from TCGA, PCAWG, and CCLE, we show that a high TBL is associated with significant changes in gene expression in 26/31 cancer types that consistently involve upregulation of DNA damage repair and downregulation of immune response pathways. Patients with a high TBL show a higher risk of recurrence and shorter median survival times for 5/15 cancer types. Our data demonstrate that TBL is a biologically and clinically relevant feature of genomic instability that may aid patient prognostication and treatment stratification. For the datasets analyzed in this study, TBL has been made available in cBioPortal.
Collapse
Affiliation(s)
- Soufyan Lakbir
- Bioinformatics Section, Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Translational Gastrointestinal Oncology Group, Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- AI Technology for Life Group, Department of Information and Computing Science; Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Renske de Wit
- Translational Gastrointestinal Oncology Group, Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- AI Technology for Life Group, Department of Information and Computing Science; Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Ino de Bruijn
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Ritika Kundra
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | - Jianjiong Gao
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | - Gerrit A Meijer
- Translational Gastrointestinal Oncology Group, Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jaap Heringa
- Bioinformatics Section, Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Remond J A Fijneman
- Translational Gastrointestinal Oncology Group, Department of Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Sanne Abeln
- Bioinformatics Section, Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- AI Technology for Life Group, Department of Information and Computing Science; Department of Biology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Lan H, Zhu J, Hou H, Zhang C, Huo X, Zhang Y, Yang F, Zhou N, Zhang X. Combination therapy with Chicoric acid and PD-1/PD-L1 blockade improves the immunotherapy response in patient-derived ovarian cancer xenograft model. Cell Commun Signal 2025; 23:137. [PMID: 40087780 PMCID: PMC11909847 DOI: 10.1186/s12964-025-02146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/08/2025] [Indexed: 03/17/2025] Open
Abstract
PURPOSE Limited treatment options exist for refractory ovarian cancer (OC) due to its poor response to immune therapies. Therefore, there is an urgent need to develop new effective treatment strategies. Chicoric acid (CA) is reported to have immune-enhancing properties, but its efficacy in cancer treatment is not well understood. We hypothesize that CA might improve the efficacy of PD-1/PD-L1 blockade immunotherapy in refractory OC patients. METHODS Patient-derived xenograft (PDX) models were constructed from chemoresistant advanced high-grade serous ovarian cancer patients. These models were treated with CA, aPD-1/aPD-L1 antibodies, or a combination of both. Single-cell RNA sequencing was performed to analyze the cellular composition of the tumor microenvironment (TME), evaluate treatment efficacy, and explore therapeutic mechanisms. Variations in peripheral blood lymphocytes were analyzed via fluorescence-activated cell sorting. Immunohistochemistry confirmed the variations in tumor-infiltrating lymphocytes and tumor cells. RESULTS Immunocompetent peripheral blood mononuclear cell (PBMC)-PDX models were successfully constructed using malignant ascites fluid and PBMCs. After treatment, 158,734 cells from 15 samples were categorized into epithelial cells, T lymphocytes, myeloid cells, fibroblasts, and endothelial cells. CA enhanced the antitumor ability of immune cells against OC cells. Notably, CA stimulated the proliferation of CD45 + and CD3 + cells and promoted the migration of CD8 + and CD4 + T cells from peripheral blood to infiltrate the TME. Additionally, CA enhanced the response of OCs to aPD-L1/aPD-1 treatment, strengthened the interaction between tumor and nontumor cells, and identified APP/CD74 as a critical ligand‒receptor pair. CHI3L1 was also found to be a potential marker for predicting immunotherapy efficacy in OC. CONCLUSION This study demonstrated that combination therapy with CA and aPD-1/aPD-L1 might be a promising strategy for treating OC effectively.
Collapse
Affiliation(s)
- Hongwei Lan
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Jingjuan Zhu
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Helei Hou
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China
| | - Chuantao Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China
| | - Xingfa Huo
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Yuming Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Fangfang Yang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Na Zhou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China.
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China.
| |
Collapse
|
5
|
Blanchard Z, Brown EA, Ghazaryan A, Welm AL. PDX models for functional precision oncology and discovery science. Nat Rev Cancer 2025; 25:153-166. [PMID: 39681638 DOI: 10.1038/s41568-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Precision oncology relies on detailed molecular analysis of how diverse tumours respond to various therapies, with the aim to optimize treatment outcomes for individual patients. Patient-derived xenograft (PDX) models have been key to preclinical validation of precision oncology approaches, enabling the analysis of each tumour's unique genomic landscape and testing therapies that are predicted to be effective based on specific mutations, gene expression patterns or signalling abnormalities. To extend these standard precision oncology approaches, the field has strived to complement the otherwise static and often descriptive measurements with functional assays, termed functional precision oncology (FPO). By utilizing diverse PDX and PDX-derived models, FPO has gained traction as an effective preclinical and clinical tool to more precisely recapitulate patient biology using in vivo and ex vivo functional assays. Here, we explore advances and limitations of PDX and PDX-derived models for precision oncology and FPO. We also examine the future of PDX models for precision oncology in the age of artificial intelligence. Integrating these two disciplines could be the key to fast, accurate and cost-effective treatment prediction, revolutionizing oncology and providing patients with cancer with the most effective, personalized treatments.
Collapse
Affiliation(s)
- Zannel Blanchard
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Elisabeth A Brown
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Arevik Ghazaryan
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Alana L Welm
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA.
| |
Collapse
|
6
|
Isinelli G, Failla S, Plebani R, Prete A. Exploring oncology treatment strategies with tyrosine kinase inhibitors through advanced 3D models (Review). MEDICINE INTERNATIONAL 2025; 5:13. [PMID: 39790707 PMCID: PMC11707505 DOI: 10.3892/mi.2024.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025]
Abstract
The limitations of two-dimensional (2D) models in cancer research have hindered progress in fully understanding the complexities of drug resistance and therapeutic failures. However, three-dimensional (3D) models provide a more accurate representation of in vivo environments, capturing critical cellular interactions and dynamics that are essential in evaluating the efficacy and toxicity of tyrosine kinase inhibitors (TKIs). These advanced models enable researchers to explore drug resistance mechanisms with greater precision, optimizing treatment strategies and improving the predictive accuracy of clinical outcomes. By leveraging 3D models, it will be possible to deepen the current understanding of TKIs and drive forward innovations in cancer treatment. The present review discusses the limitations of 2D models and the transformative impact of 3D models on oncology research, highlighting their roles in addressing the challenges of 2D systems and advancing TKI studies.
Collapse
Affiliation(s)
- Giorgia Isinelli
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02115, USA
- Department of Chemistry, Biology and Biotechnology, University of Perugia, I-06123 Perugia, Italy
| | - Sharon Failla
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Roberto Plebani
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D'Annunzio’ University, I-66100 Chieti-Pescara, Italy
| | - Alessandro Prete
- Department of Clinical and Experimental Medicine, Endocrine Unit 2, University of Pisa, I-56122 Pisa, Italy
| |
Collapse
|
7
|
Lu Y, Huang Y, Zhu C, Li Z, Zhang B, Sheng H, Li H, Liu X, Xu Z, Wen Y, Zhang J, Zhang L. Cancer brain metastasis: molecular mechanisms and therapeutic strategies. MOLECULAR BIOMEDICINE 2025; 6:12. [PMID: 39998776 PMCID: PMC11861501 DOI: 10.1186/s43556-025-00251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/06/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Brain metastases (BMs) are the most common intracranial tumors in adults and the major cause of cancer-related morbidity and mortality. The occurrence of BMs varies according to the type of primary tumors with most frequence in lung cancer, melanoma and breast cancer. Among of them, lung cancer has been reported to have a higher risk of BMs than other types of cancers with 40 ~ 50% of such patients will develop BMs during the course of disease. BMs lead to many neurological complications and result in a poor quality of life and short life span. Although the treatment strategies were improved for brain tumors in the past decades, the prognosis of BMs patients is grim. Poorly understanding of the molecular and cellular characteristics of BMs and the complicated interaction with brain microenvironment are the major reasons for the dismal prognosis of BM patients. Recent studies have enhanced understanding of the mechanisms of BMs. The newly identified potential therapeutic targets and the advanced therapeutic strategies have brought light for a better cure of BMs. In this review, we summarized the mechanisms of BMs during the metastatic course, the molecular and cellular landscapes of BMs, and the advances of novel drug delivery systems for overcoming the obstruction of blood-brain barrier (BBB). We further discussed the challenges of the emerging therapeutic strategies, such as synergistic approach of combining targeted therapy with immunotherapy, which will provide vital clues for realizing the precise and personalized medicine for BM patients in the future.
Collapse
Affiliation(s)
- Yu Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunhang Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chenyan Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhidan Li
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Sheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haotai Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xixi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwen Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Wen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liguo Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Landuzzi L, Ruzzi F, Lollini PL, Scotlandi K. Chondrosarcoma: New Molecular Insights, Challenges in Near-Patient Preclinical Modeling, and Therapeutic Approaches. Int J Mol Sci 2025; 26:1542. [PMID: 40004005 PMCID: PMC11855192 DOI: 10.3390/ijms26041542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Chondrosarcoma (CS), the second most common malignant bone tumor after osteosarcoma, accounts for 20-30% of all malignant bone tumors. It mainly affects adults, middle-aged, and elderly people. The CS family includes various entities displaying peculiar biological, genetic, and epigenetic characteristics and clinical behaviors. Conventional CS is the most common subtype. High-grade, dedifferentiated, and mesenchymal CS, as well as unresectable and metastatic CS, exhibit poor prognoses due to their intrinsic resistance to radiotherapy and chemotherapy, underscoring the urgent need for novel therapeutic strategies. CS research is dealing with several challenges. Experimental studies can rely on animal and patient-derived models, but the paucity of representative near-patient preclinical models has hampered predictive drug screening research. This review describes the main clinical and molecular features of CS subtypes, discussing recent data on the genetic alterations and molecular mechanisms involved in CS pathogenesis and progression. The review provides an overview of the current in vitro and in vivo CS models, discusses their advantages and limitations, and highlights the recent efforts in the development of new targeted therapies against CS dependencies, including IDH1/2 mutations, NAD+ dependency, and SIRT1-HIF-2α axis, or exploring DR5 targeting, antiangiogenic therapies, epigenetic drugs, and immunological approaches. All such strategies, in combination with advanced preclinical modeling and personalized multi-omic profiling, hold promise for improving the survival of patients with advanced CS.
Collapse
Affiliation(s)
- Lorena Landuzzi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Francesca Ruzzi
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy;
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy;
- IRCCS Azienda Ospedaliera Universitaria di Bologna, 40138 Bologna, Italy
| | - Katia Scotlandi
- Experimental Oncology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| |
Collapse
|
9
|
Gu A, Li J, Li M, Liu Y. Patient-derived xenograft model in cancer: establishment and applications. MedComm (Beijing) 2025; 6:e70059. [PMID: 39830019 PMCID: PMC11742426 DOI: 10.1002/mco2.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/24/2024] [Accepted: 12/15/2024] [Indexed: 01/22/2025] Open
Abstract
The patient-derived xenograft (PDX) model is a crucial in vivo model extensively employed in cancer research that has been shown to maintain the genomic characteristics and pathological structure of patients across various subtypes, metastatic, and diverse treatment histories. Various treatment strategies utilized in PDX models can offer valuable insights into the mechanisms of tumor progression, drug resistance, and the development of novel therapies. This review provides a comprehensive overview of the establishment and applications of PDX models. We present an overview of the history and current status of PDX models, elucidate the diverse construction methodologies employed for different tumors, and conduct a comparative analysis to highlight the distinct advantages and limitations of this model in relation to other in vivo models. The applications are elucidated in the domain of comprehending the mechanisms underlying tumor development and cancer therapy, which highlights broad applications in the fields of chemotherapy, targeted therapy, delivery systems, combination therapy, antibody-drug conjugates and radiotherapy. Furthermore, the combination of the PDX model with multiomics and single-cell analyses for cancer research has also been emphasized. The application of the PDX model in clinical treatment and personalized medicine is additionally emphasized.
Collapse
Affiliation(s)
- Ao Gu
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiatong Li
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Meng‐Yao Li
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yingbin Liu
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
10
|
Kai J, Liu X, Wu M, Liu P, Lin M, Yang H, Zhao Q. Technological advances in clinical individualized medication for cancer therapy: from genes to whole organism. Per Med 2025; 22:45-58. [PMID: 39764674 DOI: 10.1080/17410541.2024.2447224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/23/2024] [Indexed: 02/13/2025]
Abstract
Efforts have been made to leverage technology to accurately identify tumor characteristics and predict how each cancer patient may respond to medications. This involves collecting data from various sources such as genomic data, histological information, functional drug profiling, and drug metabolism using techniques like polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, patient-derived organoid models, and therapeutic drug monitoring. The utilization of diverse detection technologies in clinical practice has made "individualized treatment" possible, but the desired level of accuracy has not been fully attained yet. Here, we briefly summarize the conventional and state-of-the-art technologies contributing to individualized medication in clinical settings, aiming to explore therapy options enhancing clinical outcomes.
Collapse
Affiliation(s)
- Jiejing Kai
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueling Liu
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meijia Wu
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meihua Lin
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyu Yang
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Zhang Y, Lian X, Xu H, Zhu S, Zhang H, Ni Z, Fu T, Liu S, Tao L, Zhou Y, Zhu F. OrgXenomics: an integrated proteomic knowledge base for patient-derived organoid and xenograft. Nucleic Acids Res 2025; 53:D504-D515. [PMID: 39373514 PMCID: PMC11701540 DOI: 10.1093/nar/gkae861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024] Open
Abstract
Patient-derived models (PDMs, particularly organoids and xenografts) are irreplaceable tools for precision medicine, from target development to lead identification, then to preclinical evaluation, and finally to clinical decision-making. So far, PDM-based proteomics has emerged to be one of the cutting-edge directions and massive data have been accumulated. However, such PDM-based proteomic data have not been provided by any of the available databases, and proteomics profiles of all proteins in proteomic study are also completely absent from existing databases. Herein, an integrated database named 'OrgXenomics' was thus developed to provide the proteomic data for PDMs, which was unique in (a) explicitly describing the establishment detail for a wide array of models, (b) systematically providing the proteomic profiles (expression/function/interaction) for all proteins in studied proteomic analysis and (c) comprehensively giving the raw data for diverse organoid/xenograft-based proteomic studies of various diseases. Our OrgXenomics was expected to server as one good complement to existing proteomic databases, and had great implication for the practice of precision medicine, which could be accessed at: https://idrblab.org/orgxenomics/.
Collapse
Affiliation(s)
- Yintao Zhang
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Hangwei Xu
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Sisi Zhu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Zhang
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Ziheng Ni
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Tingting Fu
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Shuiping Liu
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
12
|
Wang J, Hoffman RM, Ye Y, Dillard J, Barsky SH. Lymphovascular Tumoral Emboli in Inflammatory Breast Cancer Result from Haptotaxis-Mediated Encircling Lymphangiogenesis. LYMPHATICS 2024; 2:195-211. [PMID: 39669476 PMCID: PMC11632961 DOI: 10.3390/lymphatics2040016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Inflammatory breast cancer (IBC) is characterized by numerous tumor emboli within lymphatics. In a recent study, we observed tumor embolic budding both in vitro and in vivo within lymphovascular spaces and proposed this to account for the plethora of tumor emboli seen in IBC. These observations did not address, however, how lymphovascular invasion is initiated or the mechanisms involved. In the present study, using the well-characterized patient-derived xenograft (PDX), Mary-X, which exhibited florid lymphovascular invasion (LVI) in athymic mice (LVI) as defined by E-cadherin-positive tumor emboli within lymphatic channels distinguished by podoplanin and LYVE1 membrane and Prox1 nuclear immunoreactivities and spontaneous spheroidgenesis in vitro and human cases of IBC which showed similar LVI, we compared laser-captured microdissected emboli from Mary-X and from the cases of human IBC to non-embolic areas. Mary-X and IBC emboli expressed high levels of E-cadherin and no evidence of epithelial-mesenchymal transition (EMT). Mary-X spheroids expressed high levels of VEGF, especially VEGF-C, and stimulated both vascular and lymphatic endothelial haptotaxis. We then transplanted Mary-X serially into green, cyano, red, and nestin-green fluorescing protein (GFP-, CFP-, RFP-, and nestin-GFP) transgenic reporter mice in various combinations. Multicolor murine imaging studies indicated that reporter-labeled stroma initially encircled clumps of tumor cells and then served as a scaffold that supported nestin-GFP-labeled endothelial haptotaxis resulting in encircling lymphangiogenesis, confirmed by dual LYVE1 immunofluorescence. The present studies demonstrate a possible mechanism of a critical step of the tumor emboli formation of IBC.
Collapse
Affiliation(s)
- Justin Wang
- Scripps Mercy Hospital, MER 35, San Diego, CA 92103, USA
| | - Robert M. Hoffman
- AntiCancer, Inc., 7917 Ostow St., Suite B, San Diego, CA 92111, USA
- The Department of Surgery, University of California at San Diego, 9300 Campus Point Drive, #7220, San Diego, CA 92037, USA
| | - Yin Ye
- Department of Pathology, Anatomy and Cell Biology and the Clinical and Translational Research Center of Excellence, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA
| | - Jordan Dillard
- Department of Pathology, Anatomy and Cell Biology and the Clinical and Translational Research Center of Excellence, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA
| | - Sanford H. Barsky
- Department of Pathology, Anatomy and Cell Biology and the Clinical and Translational Research Center of Excellence, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA
| |
Collapse
|
13
|
Creighton CJ. Clinical proteomics towards multiomics in cancer. MASS SPECTROMETRY REVIEWS 2024; 43:1255-1269. [PMID: 36495097 DOI: 10.1002/mas.21827] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent technological advancements in mass spectrometry (MS)-based proteomics technologies have accelerated its application to study greater and greater numbers of human tumor specimens. Over the last several years, the Clinical Proteomic Tumor Analysis Consortium, the International Cancer Proteogenome Consortium, and others have generated MS-based proteomic profiling data combined with corresponding multiomics data on thousands of human tumors to date. Proteomic data sets in the public domain can be re-examined by other researchers with different questions in mind from what the original studies explored. In this review, we examine the increasing role of proteomics in studying cancer, along with the potential for previous studies and their associated data sets to contribute to improving the diagnosis and treatment of cancer in the clinical setting. We also explore publicly available proteomics and multi-omics data from cancer cell line models to show how such data may aid in identifying therapeutic strategies for cancer subsets.
Collapse
Affiliation(s)
- Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
14
|
Vasseur D, Bigot L, Beshiri K, Flórez-Arango J, Facchinetti F, Hollebecque A, Tselikas L, Aldea M, Blanc-Durand F, Gazzah A, Planchard D, Lacroix L, Pata-Merci N, Nobre C, Da Silva A, Nicotra C, Ngo-Camus M, Braye F, Nikolaev SI, Michiels S, Jules-Clement G, Olaussen KA, André F, Scoazec JY, Barlesi F, Ponce S, Soria JC, Besse B, Loriot Y, Friboulet L. Deciphering resistance mechanisms in cancer: final report of MATCH-R study with a focus on molecular drivers and PDX development. Mol Cancer 2024; 23:221. [PMID: 39363320 PMCID: PMC11451117 DOI: 10.1186/s12943-024-02134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Understanding the resistance mechanisms of tumor is crucial for advancing cancer therapies. The prospective MATCH-R trial (NCT02517892), led by Gustave Roussy, aimed to characterize resistance mechanisms to cancer treatments through molecular analysis of fresh tumor biopsies. This report presents the genomic data analysis of the MATCH-R study conducted from 2015 to 2022 and focuses on targeted therapies. METHODS The study included resistant metastatic patients (pts) who accepted an image-guided tumor biopsy. After evaluation of tumor content (TC) in frozen tissue biopsies, targeted NGS (10 < TC < 30%) or Whole Exome Sequencing and RNA sequencing (TC > 30%) were performed before and/or after the anticancer therapy. Patient-derived xenografts (PDX) were established by implanting tumor fragments into NOD scid gamma mice and amplified up to five passages. RESULTS A total of 1,120 biopsies were collected from 857 pts with the most frequent tumor types being lung (38.8%), digestive (16.3%) and prostate (14.1%) cancer. Molecular targetable driver were identified in 30.9% (n = 265/857) of the patients, with EGFR (41.5%), FGFR2/3 (15.5%), ALK (11.7%), BRAF (6.8%), and KRAS (5.7%) being the most common altered genes. Furthermore, 66.0% (n = 175/265) had a biopsy at progression on targeted therapy. Among resistant cases, 41.1% (n = 72/175) had no identified molecular mechanism, 32.0% (n = 56/175) showed on-target resistance, and 25.1% (n = 44/175) exhibited a by-pass resistance mechanism. Molecular profiling of the 44 patients with by-pass resistance identified 51 variants, with KRAS (13.7%), PIK3CA (11.8%), PTEN (11.8%), NF2 (7.8%), AKT1 (5.9%), and NF1 (5.9%) being the most altered genes. Treatment was tailored for 45% of the patients with a resistance mechanism identified leading to an 11 months median extension of clinical benefit. A total of 341 biopsies were implanted in mice, successfully establishing 136 PDX models achieving a 39.9% success rate. PDX models are available for EGFR (n = 31), FGFR2/3 (n = 26), KRAS (n = 18), ALK (n = 16), BRAF (n = 6) and NTRK (n = 2) driven cancers. These models closely recapitulate the biology of the original tumors in term of molecular alterations and pharmacological status, and served as valuable models to validate overcoming treatment strategies. CONCLUSION The MATCH-R study highlights the feasibility of on purpose image guided tumor biopsies and PDX establishment to characterize resistance mechanisms and guide personalized therapies to improve outcomes in pre-treated metastatic patients.
Collapse
Affiliation(s)
- Damien Vasseur
- Medical Biology and Pathology Department, Gustave Roussy, Villejuif, France
- AMMICa UAR3655/US23, Gustave Roussy, Villejuif, France
| | - Ludovic Bigot
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Kristi Beshiri
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
| | | | | | - Antoine Hollebecque
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Lambros Tselikas
- Department of Interventional Radiology, BIOTHERIS, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Mihaela Aldea
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | | | - Anas Gazzah
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
| | - David Planchard
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Ludovic Lacroix
- Medical Biology and Pathology Department, Gustave Roussy, Villejuif, France
- AMMICa UAR3655/US23, Gustave Roussy, Villejuif, France
| | | | - Catline Nobre
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Alice Da Silva
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Claudio Nicotra
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
| | - Maud Ngo-Camus
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France
| | - Floriane Braye
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Sergey I Nikolaev
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
| | - Stefan Michiels
- Université Paris-Saclay, CESP, InsermVillejuif, France
- Office of Biostatistics and Epidemiology, Gustave Roussy, Villejuif, France
| | - Gérôme Jules-Clement
- Bioinformatics Core Facility, Gustave Roussy, Université Paris-Saclay, CNRS UMS 3655, Inserm US23, Villejuif, France
| | | | - Fabrice André
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Jean-Yves Scoazec
- Medical Biology and Pathology Department, Gustave Roussy, Villejuif, France
- AMMICa UAR3655/US23, Gustave Roussy, Villejuif, France
| | - Fabrice Barlesi
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Santiago Ponce
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Jean-Charles Soria
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France
| | - Yohann Loriot
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France.
- Département d'Innovation Thérapeutique (DITEP), Gustave Roussy, Villejuif, France.
- Département de Médecine Oncologique, Gustave Roussy, Villejuif, France.
| | - Luc Friboulet
- Université Paris-Saclay, Gustave Roussy, Inserm U981, Villejuif, France.
| |
Collapse
|
15
|
Dong X, Zhang D, Zhang X, Liu Y, Liu Y. Network modeling links kidney developmental programs and the cancer type-specificity of VHL mutations. NPJ Syst Biol Appl 2024; 10:114. [PMID: 39362887 PMCID: PMC11449910 DOI: 10.1038/s41540-024-00445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024] Open
Abstract
Elucidating the molecular dependencies behind the cancer-type specificity of driver mutations may reveal new therapeutic opportunities. We hypothesized that developmental programs would impact the transduction of oncogenic signaling activated by a driver mutation and shape its cancer-type specificity. Therefore, we designed a computational analysis framework by combining single-cell gene expression profiles during fetal organ development, latent factor discovery, and information theory-based differential network analysis to systematically identify transcription factors that selectively respond to driver mutations under the influence of organ-specific developmental programs. After applying this approach to VHL mutations, which are highly specific to clear cell renal cell carcinoma (ccRCC), we revealed important regulators downstream of VHL mutations in ccRCC and used their activities to cluster patients with ccRCC into three subtypes. This classification revealed a more significant difference in prognosis than the previous mRNA profile-based method and was validated in an independent cohort. Moreover, we found that EP300, a key epigenetic factor maintaining the regulatory network of the subtype with the worst prognosis, can be targeted by a small inhibitor, suggesting a potential treatment option for a subset of patients with ccRCC. This work demonstrated an intimate relationship between organ development and oncogenesis from the perspective of systems biology, and the method can be generalized to study the influence of other biological processes on cancer driver mutations.
Collapse
Affiliation(s)
- Xiaobao Dong
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Donglei Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xian Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yun Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yuanyuan Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
16
|
Sdeor E, Okada H, Saad R, Ben-Yishay T, Ben-David U. Aneuploidy as a driver of human cancer. Nat Genet 2024; 56:2014-2026. [PMID: 39358600 DOI: 10.1038/s41588-024-01916-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/20/2024] [Indexed: 10/04/2024]
Abstract
Aneuploidy, an abnormal chromosome composition, is a major contributor to cancer development and progression and an important determinant of cancer therapeutic responses and clinical outcomes. Despite being recognized as a hallmark of human cancer, the exact role of aneuploidy as a 'driver' of cancer is still largely unknown. Identifying the specific genetic elements that underlie the recurrence of common aneuploidies remains a major challenge of cancer genetics. In this Review, we discuss recurrent aneuploidies and their function as drivers of tumor development. We then delve into the context-dependent identification and functional characterization of the driver genes underlying driver aneuploidies and examine emerging strategies to uncover these driver genes using cancer genomics data and cancer models. Lastly, we explore opportunities for targeting driver aneuploidies in cancer by leveraging the functional consequences of these common genetic alterations.
Collapse
Affiliation(s)
- Eran Sdeor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hajime Okada
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ron Saad
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Science, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tal Ben-Yishay
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- The Blavatnik School of Computer Science, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Leto SM, Grassi E, Avolio M, Vurchio V, Cottino F, Ferri M, Zanella ER, Borgato S, Corti G, di Blasio L, Somale D, Vara-Messler M, Galimi F, Sassi F, Lupo B, Catalano I, Pinnelli M, Viviani M, Sperti L, Mellano A, Ferrero A, Zingaretti CC, Puliafito A, Primo L, Bertotti A, Trusolino L. XENTURION is a population-level multidimensional resource of xenografts and tumoroids from metastatic colorectal cancer patients. Nat Commun 2024; 15:7495. [PMID: 39209908 PMCID: PMC11362617 DOI: 10.1038/s41467-024-51909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
The breadth and depth at which cancer models are interrogated contribute to the successful clinical translation of drug discovery efforts. In colorectal cancer (CRC), model availability is limited by a dearth of large-scale collections of patient-derived xenografts (PDXs) and paired tumoroids from metastatic disease, where experimental therapies are typically tested. Here we introduce XENTURION, an open-science resource offering a platform of 128 PDX models from patients with metastatic CRC, along with matched PDX-derived tumoroids. Multidimensional omics analyses indicate that tumoroids retain extensive molecular fidelity with parental PDXs. A tumoroid-based trial with the anti-EGFR antibody cetuximab reveals variable sensitivities that are consistent with clinical response biomarkers, mirror tumor growth changes in matched PDXs, and recapitulate EGFR genetic deletion outcomes. Inhibition of adaptive signals upregulated by EGFR blockade increases the magnitude of cetuximab response. These findings illustrate the potential of large living biobanks, providing avenues for molecularly informed preclinical research in oncology.
Collapse
Affiliation(s)
| | - Elena Grassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Marco Avolio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Valentina Vurchio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | | | - Martina Ferri
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | | | - Sofia Borgato
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Giorgio Corti
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Laura di Blasio
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Desiana Somale
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Aptuit, an Evotec Company, Verona, Italy
| | - Marianela Vara-Messler
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
- Sanofi Belgium, Zwijnaarde, Belgium
| | - Francesco Galimi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Francesco Sassi
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Barbara Lupo
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Irene Catalano
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | - Marika Pinnelli
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Marco Viviani
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Luca Sperti
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Alfredo Mellano
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
| | | | | | - Alberto Puliafito
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Luca Primo
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
| | - Livio Trusolino
- Candiolo Cancer Institute - FPO IRCCS, Candiolo, Torino, Italy.
- Department of Oncology, University of Torino, Candiolo, Torino, Italy.
| |
Collapse
|
18
|
Giusti V, Miserocchi G, Sbanchi G, Pannella M, Hattinger CM, Cesari M, Fantoni L, Guerrieri AN, Bellotti C, De Vita A, Spadazzi C, Donati DM, Torsello M, Lucarelli E, Ibrahim T, Mercatali L. Xenografting Human Musculoskeletal Sarcomas in Mice, Chick Embryo, and Zebrafish: How to Boost Translational Research. Biomedicines 2024; 12:1921. [PMID: 39200384 PMCID: PMC11352184 DOI: 10.3390/biomedicines12081921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Musculoskeletal sarcomas pose major challenges to researchers and clinicians due to their rarity and heterogeneity. Xenografting human cells or tumor fragments in rodents is a mainstay for the generation of cancer models and for the preclinical trial of novel drugs. Lately, though, technical, intrinsic and ethical concerns together with stricter regulations have significantly curbed the employment of murine patient-derived xenografts (mPDX). In alternatives to murine PDXs, researchers have focused on embryonal systems such as chorioallantoic membrane (CAM) and zebrafish embryos. These systems are time- and cost-effective hosts for tumor fragments and near-patient cells. The CAM of the chick embryo represents a unique vascularized environment to host xenografts with high engraftment rates, allowing for ease of visualization and molecular detection of metastatic cells. Thanks to the transparency of the larvae, zebrafish allow for the tracking of tumor development and metastatization, enabling high-throughput drug screening. This review will focus on xenograft models of musculoskeletal sarcomas to highlight the intrinsic and technically distinctive features of the different hosts, and how they can be exploited to elucidate biological mechanisms beneath the different phases of the tumor's natural history and in drug development. Ultimately, the review suggests the combination of different models as an advantageous approach to boost basic and translational research.
Collapse
Affiliation(s)
- Veronica Giusti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.M.); (A.D.V.); (C.S.)
| | - Giulia Sbanchi
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Micaela Pannella
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Claudia Maria Hattinger
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Marilena Cesari
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Leonardo Fantoni
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ania Naila Guerrieri
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Chiara Bellotti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.M.); (A.D.V.); (C.S.)
| | - Chiara Spadazzi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.M.); (A.D.V.); (C.S.)
| | - Davide Maria Donati
- Orthopaedic Oncology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Monica Torsello
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Laura Mercatali
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| |
Collapse
|
19
|
Jiao F, Yu C, Wheat A, Chen L, Lih TSM, Zhang H, Huang L. DSBSO-Based XL-MS Analysis of Breast Cancer PDX Tissues to Delineate Protein Interaction Network in Clinical Samples. J Proteome Res 2024; 23:3269-3279. [PMID: 38334954 PMCID: PMC11296914 DOI: 10.1021/acs.jproteome.3c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Protein-protein interactions (PPIs) are fundamental to understanding biological systems as protein complexes are the active molecular modules critical for carrying out cellular functions. Dysfunctional PPIs have been associated with various diseases including cancer. Systems-wide PPI analysis not only sheds light on pathological mechanisms, but also represents a paradigm in identifying potential therapeutic targets. In recent years, cross-linking mass spectrometry (XL-MS) has emerged as a powerful tool for defining endogenous PPIs of cellular networks. While proteome-wide studies have been performed in cell lysates, intact cells and tissues, applications of XL-MS in clinical samples have not been reported. In this study, we adopted a DSBSO-based in vivo XL-MS platform to map interaction landscapes from two breast cancer patient-derived xenograft (PDX) models. As a result, we have generated a PDX interaction network comprising 2,557 human proteins and identified interactions unique to breast cancer subtypes. Interestingly, most of the observed differences in PPIs correlated well with protein abundance changes determined by TMT-based proteome quantitation. Collectively, this work has demonstrated the feasibility of XL-MS analysis in clinical samples, and established an analytical workflow for tissue cross-linking that can be generalized for mapping PPIs from patient samples in the future to dissect disease-relevant cellular networks.
Collapse
Affiliation(s)
- Fenglong Jiao
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Andrew Wheat
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Lijun Chen
- Department of Pathology and Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231
| | - Tung-Shing Mamie Lih
- Department of Pathology and Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231
| | - Hui Zhang
- Department of Pathology and Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| |
Collapse
|
20
|
Qin T, Hu Z, Zhang L, Lu F, Xiao R, Liu Y, Fan J, Guo E, Yang B, Fu Y, Zhuang X, Kang X, Wu Z, Fang Z, Cui Y, Hu X, Yin J, Yan M, Li F, Song K, Chen G, Sun C. Genomic profiling of a multi-lineage and multi-passage patient-derived xenograft biobank reflects heterogeneity of ovarian cancer. Cell Rep Med 2024; 5:101631. [PMID: 38986623 PMCID: PMC11293341 DOI: 10.1016/j.xcrm.2024.101631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
Ovarian cancer (OC) manifests as a complex disease characterized by inter- and intra-patient heterogeneity. Despite enhanced biological and genetic insights, OC remains a recalcitrant malignancy with minimal survival improvement. Based on multi-site sampling and a multi-lineage patient-derived xenograft (PDX) establishment strategy, we present herein the establishment of a comprehensive PDX biobank from histologically and molecularly heterogeneous OC patients. Comprehensive profiling of matched PDX and patient samples demonstrates that PDXs closely recapitulate parental tumors. By leveraging multi-lineage models, we reveal that the previously reported genomic disparities of PDX could be mainly attributed to intra-patient spatial heterogeneity instead of substantial model-independent genomic evolution. Moreover, DNA damage response pathway inhibitor (DDRi) screening uncovers heterogeneous responses across models. Prolonged iterative drug exposure recapitulates acquired drug resistance in initially sensitive models. Meanwhile, interrogation of induced drug-resistant (IDR) models reveals that suppressed interferon (IFN) response and activated Wnt/β-catenin signaling contribute to acquired DDRi drug resistance.
Collapse
Affiliation(s)
- Tianyu Qin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Zhe Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Li Zhang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Funian Lu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Rourou Xiao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yiting Liu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Junpeng Fan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Ensong Guo
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Bin Yang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Yu Fu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Xucui Zhuang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Xiaoyan Kang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Zimeng Wu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Zixuan Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Yaoyuan Cui
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Xingyuan Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Jingjing Yin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Miao Yan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| | - Fuxia Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, Xinjiang 832008, P.R. China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.
| | - Gang Chen
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China.
| | - Chaoyang Sun
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China; Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.
| |
Collapse
|
21
|
Cocco E, de Stanchina E. Patient-Derived-Xenografts in Mice: A Preclinical Platform for Cancer Research. Cold Spring Harb Perspect Med 2024; 14:a041381. [PMID: 37696659 PMCID: PMC11216185 DOI: 10.1101/cshperspect.a041381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The use of patient-derived xenografts (PDXs) has dramatically improved drug development programs. PDXs (1) reproduce the pathological features and the genomic profile of the parental tumors more precisely than other preclinical models, and (2) more faithfully predict therapy response. However, PDXs have limitations. These include the inability to completely capture tumor heterogeneity and the role of the immune system, the low engraftment efficiency of certain tumor types, and the consequences of the human-host interactions. Recently, the use of novel mouse strains and specialized engraftment techniques has enabled the generation of "humanized" PDXs, partially overcoming such limitations. Importantly, establishing, characterizing, and maintaining PDXs is costly and requires a significant regulatory, administrative, clinical, and laboratory infrastructure. In this review, we will retrace the historical milestones that led to the implementation of PDXs for cancer research, review the most recent innovations in the field, and discuss future avenues to tackle deficiencies that still exist.
Collapse
Affiliation(s)
- Emiliano Cocco
- University of Miami, Miller School of Medicine, Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, Miami, Florida 33136, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
22
|
Papadimitriou MA, Pilala KM, Panoutsopoulou K, Levis P, Kotronopoulos G, Kanaki Z, Loules G, Zamanakou M, Linardoutsos D, Sideris DC, Stravodimos K, Klinakis A, Scorilas A, Avgeris M. CDKN2A copy number alteration in bladder cancer: Integrative analysis in patient-derived xenografts and cancer patients. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200818. [PMID: 38966038 PMCID: PMC11223115 DOI: 10.1016/j.omton.2024.200818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/20/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
Bladder cancer (BlCa) is an extensively heterogeneous disease that leads to great variability in tumor evolution scenarios and lifelong patient surveillance, emphasizing the need for modern, minimally invasive precision medicine. Here, we explored the clinical significance of copy number alterations (CNAs) in BlCa. CNA profiling was performed in 15 patient-derived xenografts (PDXs) and validated in The Cancer Genome Atlas BlCa (TCGA-BLCA; n = 408) and Lindgren et al. (n = 143) cohorts. CDKN2A copy number loss was identified as the most frequent CNA in bladder tumors, associated with reduced CDKN2A expression, tumors of a papillary phenotype, and prolonged PDX survival. The study's screening cohort consisted of 243 BlCa patients, and CDKN2A copy number was assessed in genomic DNA and cell-free DNA (cfDNA) from 217 tumors and 189 pre-treatment serum samples, respectively. CDKN2A copy number loss was correlated with superior disease-free and progression-free survival of non-muscle-invasive BlCa (NMIBC) patients. Moreover, a higher CDKN2A index (CDKN2A/LEP ratio) in pre-treatment cfDNA was associated with advanced tumor stage and grade and short-term NMIBC progression to invasive disease, while multivariate models fitted for CDKN2A index in pre-treatment cfDNA offered superior risk stratification of T1/high-grade and EORTC high-risk patients, enhancing prediction of treatment outcome. CDKN2A copy number status could serve as a minimally invasive tool to improve risk stratification and support personalized prognosis in BlCa.
Collapse
Affiliation(s)
- Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Levis
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Georgios Kotronopoulos
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Zoi Kanaki
- Biomedical Research Foundation Academy of Athens, Athens, Greece
| | | | | | - Dimitrios Linardoutsos
- First Department of Propaedeutic Surgery, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Diamantis C. Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stravodimos
- First Department of Urology, “Laiko” General Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | | | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- Laboratory of Clinical Biochemistry – Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “P. & A. Kyriakou” Children’s Hospital, Athens, Greece
| |
Collapse
|
23
|
Hobor S, Al Bakir M, Hiley CT, Skrzypski M, Frankell AM, Bakker B, Watkins TBK, Markovets A, Dry JR, Brown AP, van der Aart J, van den Bos H, Spierings D, Oukrif D, Novelli M, Chakrabarti T, Rabinowitz AH, Ait Hassou L, Litière S, Kerr DL, Tan L, Kelly G, Moore DA, Renshaw MJ, Venkatesan S, Hill W, Huebner A, Martínez-Ruiz C, Black JRM, Wu W, Angelova M, McGranahan N, Downward J, Chmielecki J, Barrett C, Litchfield K, Chew SK, Blakely CM, de Bruin EC, Foijer F, Vousden KH, Bivona TG, Hynds RE, Kanu N, Zaccaria S, Grönroos E, Swanton C. Mixed responses to targeted therapy driven by chromosomal instability through p53 dysfunction and genome doubling. Nat Commun 2024; 15:4871. [PMID: 38871738 PMCID: PMC11176322 DOI: 10.1038/s41467-024-47606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/28/2024] [Indexed: 06/15/2024] Open
Abstract
The phenomenon of mixed/heterogenous treatment responses to cancer therapies within an individual patient presents a challenging clinical scenario. Furthermore, the molecular basis of mixed intra-patient tumor responses remains unclear. Here, we show that patients with metastatic lung adenocarcinoma harbouring co-mutations of EGFR and TP53, are more likely to have mixed intra-patient tumor responses to EGFR tyrosine kinase inhibition (TKI), compared to those with an EGFR mutation alone. The combined presence of whole genome doubling (WGD) and TP53 co-mutations leads to increased genome instability and genomic copy number aberrations in genes implicated in EGFR TKI resistance. Using mouse models and an in vitro isogenic p53-mutant model system, we provide evidence that WGD provides diverse routes to drug resistance by increasing the probability of acquiring copy-number gains or losses relative to non-WGD cells. These data provide a molecular basis for mixed tumor responses to targeted therapy, within an individual patient, with implications for therapeutic strategies.
Collapse
Affiliation(s)
- Sebastijan Hobor
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Crispin T Hiley
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Department of Medical Oncology, University College London Hospitals, 235 Euston Rd, Fitzrovia, London, NW1 2BU, UK
| | - Marcin Skrzypski
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Department of Medical Oncology, University College London Hospitals, 235 Euston Rd, Fitzrovia, London, NW1 2BU, UK
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, ul. Mariana Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Alexander M Frankell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Bjorn Bakker
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, the Netherlands
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | | | - Jonathan R Dry
- Late Development, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Andrew P Brown
- Late Development, Oncology R&D, AstraZeneca, Boston, MA, USA
| | | | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, the Netherlands
| | - Diana Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, the Netherlands
| | - Dahmane Oukrif
- Research Department of Pathology, University College London Medical School, University Street, London, WC1E 6JJ, UK
| | - Marco Novelli
- Research Department of Pathology, University College London Medical School, University Street, London, WC1E 6JJ, UK
| | - Turja Chakrabarti
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| | - Adam H Rabinowitz
- Furlong Laboratory, EMBL Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Laila Ait Hassou
- European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | - Saskia Litière
- Bioinformatics & Biostatistics; Francis Crick Institute, London, UK
| | - D Lucas Kerr
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| | - Lisa Tan
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| | - Gavin Kelly
- Bioinformatics & Biostatistics; Francis Crick Institute, London, UK
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Matthew J Renshaw
- Advanced Light Microscopy, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Subramanian Venkatesan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Ariana Huebner
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Carlos Martínez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - James R M Black
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | | | - Carl Barrett
- Late Development, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Kevin Litchfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Su Kit Chew
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Collin M Blakely
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| | - Elza C de Bruin
- Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, the Netherlands
| | - Karen H Vousden
- p53 and Metabolism Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, USA
| | - Robert E Hynds
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK.
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
- Department of Medical Oncology, University College London Hospitals, 235 Euston Rd, Fitzrovia, London, NW1 2BU, UK.
| |
Collapse
|
24
|
Guo Z, Luo J, Mashl RJ, Hoog J, Maiti P, Fettig N, Davies SR, Aft R, Held JM, Govindan R, Ding L, Li S, von Morze C, Wulf GM, Shoghi KI, Ma CX. Evaluation of Copanlisib in Combination with Eribulin in Triple-negative Breast Cancer Patient-derived Xenograft Models. CANCER RESEARCH COMMUNICATIONS 2024; 4:1430-1440. [PMID: 38717161 PMCID: PMC11152037 DOI: 10.1158/2767-9764.crc-24-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
The PI3K pathway regulates essential cellular functions and promotes chemotherapy resistance. Activation of PI3K pathway signaling is commonly observed in triple-negative breast cancer (TNBC). However previous studies that combined PI3K pathway inhibitors with taxane regimens have yielded inconsistent results. We therefore set out to examine whether the combination of copanlisib, a clinical grade pan-PI3K inhibitor, and eribulin, an antimitotic chemotherapy approved for taxane-resistant metastatic breast cancer, improves the antitumor effect in TNBC. A panel of eight TNBC patient-derived xenograft (PDX) models was tested for tumor growth response to copanlisib and eribulin, alone or in combination. Treatment-induced signaling changes were examined by reverse phase protein array, immunohistochemistry (IHC) and 18F-fluorodeoxyglucose PET (18F-FDG PET). Compared with each drug alone, the combination of eribulin and copanlisib led to enhanced tumor growth inhibition, which was observed in both eribulin-sensitive and -resistant TNBC PDX models, regardless of PI3K pathway alterations or PTEN status. Copanlisib reduced PI3K signaling and enhanced eribulin-induced mitotic arrest. The combination enhanced induction of apoptosis compared with each drug alone. Interestingly, eribulin upregulated PI3K pathway signaling in PDX tumors, as demonstrated by increased tracer uptake by 18F-FDG PET scan and AKT phosphorylation by IHC. These changes were inhibited by the addition of copanlisib. These data support further clinical development for the combination of copanlisib and eribulin and led to a phase I/II trial of copanlisib and eribulin in patients with metastatic TNBC. SIGNIFICANCE In this research, we demonstrated that the pan-PI3K inhibitor copanlisib enhanced the cytotoxicity of eribulin in a panel of TNBC PDX models. The improved tumor growth inhibition was irrespective of PI3K pathway alteration and was corroborated by the enhanced mitotic arrest and apoptotic induction observed in PDX tumors after combination therapy compared with each drug alone. These data provide the preclinical rationale for the clinical testing in TNBC.
Collapse
Affiliation(s)
- Zhanfang Guo
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jingqin Luo
- Division of Public Health Science, Siteman Cancer Center Biostatistics Core, Washington University School of Medicine, St. Louis, Missouri
| | - R. Jay Mashl
- Department of Medicine, McDonnell Genome Institute, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Jeremy Hoog
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Piyush Maiti
- Mallinckrodt Institute of Radiology, St. Louis, Missouri
| | - Nikki Fettig
- Mallinckrodt Institute of Radiology, St. Louis, Missouri
| | - Sherri R. Davies
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Rebecca Aft
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Jason M. Held
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Li Ding
- Department of Medicine, McDonnell Genome Institute, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Shunqiang Li
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | | | - Gerburg M. Wulf
- Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Cynthia X. Ma
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
25
|
Hynds RE, Huebner A, Pearce DR, Hill MS, Akarca AU, Moore DA, Ward S, Gowers KHC, Karasaki T, Al Bakir M, Wilson GA, Pich O, Martínez-Ruiz C, Hossain ASMM, Pearce SP, Sivakumar M, Ben Aissa A, Grönroos E, Chandrasekharan D, Kolluri KK, Towns R, Wang K, Cook DE, Bosshard-Carter L, Naceur-Lombardelli C, Rowan AJ, Veeriah S, Litchfield K, Crosbie PAJ, Dive C, Quezada SA, Janes SM, Jamal-Hanjani M, Marafioti T, McGranahan N, Swanton C. Representation of genomic intratumor heterogeneity in multi-region non-small cell lung cancer patient-derived xenograft models. Nat Commun 2024; 15:4653. [PMID: 38821942 PMCID: PMC11143323 DOI: 10.1038/s41467-024-47547-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/28/2024] [Indexed: 06/02/2024] Open
Abstract
Patient-derived xenograft (PDX) models are widely used in cancer research. To investigate the genomic fidelity of non-small cell lung cancer PDX models, we established 48 PDX models from 22 patients enrolled in the TRACERx study. Multi-region tumor sampling increased successful PDX engraftment and most models were histologically similar to their parent tumor. Whole-exome sequencing enabled comparison of tumors and PDX models and we provide an adapted mouse reference genome for improved removal of NOD scid gamma (NSG) mouse-derived reads from sequencing data. PDX model establishment caused a genomic bottleneck, with models often representing a single tumor subclone. While distinct tumor subclones were represented in independent models from the same tumor, individual PDX models did not fully recapitulate intratumor heterogeneity. On-going genomic evolution in mice contributed modestly to the genomic distance between tumors and PDX models. Our study highlights the importance of considering primary tumor heterogeneity when using PDX models and emphasizes the benefit of comprehensive tumor sampling.
Collapse
Affiliation(s)
- Robert E Hynds
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Epithelial Cell Biology in ENT Research Group (EpiCENTR), Developmental Biology and Cancer, Great Ormond Street University College London Institute of Child Health, London, UK.
| | - Ariana Huebner
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - David R Pearce
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mark S Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Ayse U Akarca
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Sophia Ward
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Kate H C Gowers
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Takahiro Karasaki
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Maise Al Bakir
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Gareth A Wilson
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Oriol Pich
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Carlos Martínez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - A S Md Mukarram Hossain
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
| | - Simon P Pearce
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
| | - Monica Sivakumar
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Assma Ben Aissa
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Deepak Chandrasekharan
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Krishna K Kolluri
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Rebecca Towns
- Biological Services Unit, University College London, London, UK
| | - Kaiwen Wang
- School of Medicine, University of Leeds, Leeds, UK
| | - Daniel E Cook
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Leticia Bosshard-Carter
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | | | - Andrew J Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Philip A J Crosbie
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Caroline Dive
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Department of Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
26
|
Cai L, Gao Y, DeBerardinis RJ, Acquaah-Mensah G, Aidinis V, Beane JE, Biswal S, Chen T, Concepcion-Crisol CP, Grüner BM, Jia D, Jones R, Kurie JM, Lee MG, Lindahl P, Lissanu Y, Lorz Lopez MC, Martinelli R, Mazur PK, Mazzilli SA, Mii S, Moll H, Moorehead R, Morrisey EE, Ng SR, Oser MG, Pandiri AR, Powell CA, Ramadori G, Santos Lafuente M, Snyder E, Sotillo R, Su KY, Taki T, Taparra K, Xia Y, van Veen E, Winslow MM, Xiao G, Rudin CM, Oliver TG, Xie Y, Minna JD. A Lung Cancer Mouse Model Database. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582577. [PMID: 38464291 PMCID: PMC10925271 DOI: 10.1101/2024.02.28.582577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Lung cancer, the leading cause of cancer mortality, exhibits diverse histological subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. Here we established the Lung Cancer Mouse Model Database (LCMMDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMMs), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model. Meticulous curation and collaboration with data depositors have produced a robust and comprehensive database, enhancing the fidelity of the genetic landscape it depicts. The LCMMDB aligns 859 tumors from GEMMs with human lung cancer mutations, enabling comparative analysis and revealing a pressing need to broaden the diversity of genetic aberrations modeled in GEMMs. Accompanying this resource, we developed a web application that offers researchers intuitive tools for in-depth gene expression analysis. With standardized reprocessing of gene expression data, the LCMMDB serves as a powerful platform for cross-study comparison and lays the groundwork for future research, aiming to bridge the gap between mouse models and human lung cancer for improved translational relevance.
Collapse
|
27
|
Brennen WN, Le Magnen C, Karkampouna S, Anselmino N, Bock N, Choo N, Clark AK, Coleman IM, Dolgos R, Ferguson AM, Goode DL, Krutihof-de Julio M, Navone NM, Nelson PS, O'Neill E, Porter LH, Ranasinghe W, Sunada T, Williams ED, Butler LM, Corey E, van Weerden WM, Taylor RA, Risbridger GP, Lawrence MG. Defining the challenges and opportunities for using patient-derived models in prostate cancer research. Prostate 2024; 84:623-635. [PMID: 38450798 PMCID: PMC11014775 DOI: 10.1002/pros.24682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND There are relatively few widely used models of prostate cancer compared to other common malignancies. This impedes translational prostate cancer research because the range of models does not reflect the diversity of disease seen in clinical practice. In response to this challenge, research laboratories around the world have been developing new patient-derived models of prostate cancer, including xenografts, organoids, and tumor explants. METHODS In May 2023, we held a workshop at the Monash University Prato Campus for researchers with expertise in establishing and using a variety of patient-derived models of prostate cancer. This review summarizes our collective ideas on how patient-derived models are currently being used, the common challenges, and future opportunities for maximizing their usefulness in prostate cancer research. RESULTS An increasing number of patient-derived models for prostate cancer are being developed. Despite their individual limitations and varying success rates, these models are valuable resources for exploring new concepts in prostate cancer biology and for preclinical testing of potential treatments. Here we focus on the need for larger collections of models that represent the changing treatment landscape of prostate cancer, robust readouts for preclinical testing, improved in vitro culture conditions, and integration of the tumor microenvironment. Additional priorities include ensuring model reproducibility, standardization, and replication, and streamlining the exchange of models and data sets among research groups. CONCLUSIONS There are several opportunities to maximize the impact of patient-derived models on prostate cancer research. We must develop large, diverse and accessible cohorts of models and more sophisticated methods for emulating the intricacy of patient tumors. In this way, we can use the samples that are generously donated by patients to advance the outcomes of patients in the future.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Clémentine Le Magnen
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nathalie Bock
- School of Biomedical Sciences at Translational Research Institute, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicholas Choo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Ashlee K Clark
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Robin Dolgos
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alison M Ferguson
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, Division of Research and Enterprise, University of New South Wales, Sydney, NSW, Australia
| | - David L Goode
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marianna Krutihof-de Julio
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Translational Organoid Resource, University of Bern, Bern, Switzerland
| | - Nora M Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Edward O'Neill
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Laura H Porter
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Weranja Ranasinghe
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Department of Surgery, Monash University, Melbourne, VIC, Australia
- Department of Urology, Monash Health, Melbourne, VIC, Australia
- Department of Urology, Austin Health, Melbourne, VIC, Australia
| | - Takuro Sunada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Elizabeth D Williams
- School of Biomedical Sciences at Translational Research Institute, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre-Queensland, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | | | - Renea A Taylor
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Physiology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Lewis MT, Caldas C. The Power and Promise of Patient-Derived Xenografts of Human Breast Cancer. Cold Spring Harb Perspect Med 2024; 14:a041329. [PMID: 38052483 PMCID: PMC10982691 DOI: 10.1101/cshperspect.a041329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In 2016, a group of researchers engaged in the development of patient-derived xenografts (PDXs) of human breast cancer provided a comprehensive review of the state of the field. In that review, they summarized the clinical problem that PDXs might address, the technical approaches to their generation (including a discussion of host animals and transplant conditions tested), and presented transplantation success (take) rates across groups and across transplantation conditions. At the time, there were just over 500 unique PDX models created by these investigators representing all three clinically defined subtypes (ER+, HER2+, and TNBC). Today, many of these PDX resources have at least doubled in size, and several more PDX development groups now exist, such that there may be well upward of 1000 PDX models of human breast cancer in existence worldwide. They also presented a series of open questions for the field. Many of these questions have been addressed. However, several remain open, or only partially addressed. Herein, we revisit these questions, and recount the progress that has been made in a number of areas with respect to generation, characterization, and use of PDXs in translational research, and re-present questions that remain open. These open questions, and others, are now being addressed not only by individual investigators, but also large, well-funded consortia including the PDXNet program of the National Cancer Institute in the United States, and the EuroPDX Consortium, an organization of PDX developers across Europe. Finally, we discuss the new opportunities in PDX-based research.
Collapse
Affiliation(s)
- Michael T Lewis
- Baylor College of Medicine, The Lester and Sue Smith Breast Center, Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
29
|
Bulle A, Liu P, Seehra K, Bansod S, Chen Y, Zahra K, Somani V, Khawar IA, Chen HP, Dodhiawala PB, Li L, Geng Y, Mo CK, Mahsl J, Ding L, Govindan R, Davies S, Mudd J, Hawkins WG, Fields RC, DeNardo DG, Knoerzer D, Held JM, Grierson PM, Wang-Gillam A, Ruzinova MB, Lim KH. Combined KRAS-MAPK pathway inhibitors and HER2-directed drug conjugate is efficacious in pancreatic cancer. Nat Commun 2024; 15:2503. [PMID: 38509064 PMCID: PMC10954758 DOI: 10.1038/s41467-024-46811-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
Targeting the mitogen-activated protein kinase (MAPK) cascade in pancreatic ductal adenocarcinoma (PDAC) remains clinically unsuccessful. We aim to develop a MAPK inhibitor-based therapeutic combination with strong preclinical efficacy. Utilizing a reverse-phase protein array, we observe rapid phospho-activation of human epidermal growth factor receptor 2 (HER2) in PDAC cells upon pharmacological MAPK inhibition. Mechanistically, MAPK inhibitors lead to swift proteasomal degradation of dual-specificity phosphatase 6 (DUSP6). The carboxy terminus of HER2, containing a TEY motif also present in extracellular signal-regulated kinase 1/2 (ERK1/2), facilitates binding with DUSP6, enhancing its phosphatase activity to dephosphorylate HER2. In the presence of MAPK inhibitors, DUSP6 dissociates from the protective effect of the RING E3 ligase tripartite motif containing 21, resulting in its degradation. In PDAC patient-derived xenograft (PDX) models, combining ERK and HER inhibitors slows tumour growth and requires cytotoxic chemotherapy to achieve tumour regression. Alternatively, MAPK inhibitors with trastuzumab deruxtecan, an anti-HER2 antibody conjugated with cytotoxic chemotherapy, lead to sustained tumour regression in most tested PDXs without causing noticeable toxicity. Additionally, KRAS inhibitors also activate HER2, supporting testing the combination of KRAS inhibitors and trastuzumab deruxtecan in PDAC. This study identifies a rational and promising therapeutic combination for clinical testing in PDAC patients.
Collapse
Affiliation(s)
- Ashenafi Bulle
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Peng Liu
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kuljeet Seehra
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sapana Bansod
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yali Chen
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kiran Zahra
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vikas Somani
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Iftikhar Ali Khawar
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hung-Po Chen
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Paarth B Dodhiawala
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lin Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yutong Geng
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chia-Kuei Mo
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jay Mahsl
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Li Ding
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ramaswamy Govindan
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sherri Davies
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jacqueline Mudd
- Section of Hepatobiliary Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - William G Hawkins
- Section of Hepatobiliary Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ryan C Fields
- Section of Hepatobiliary Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David G DeNardo
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Jason M Held
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Patrick M Grierson
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Marianna B Ruzinova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
30
|
Budurlean L, Tukaramrao DB, Zhang L, Dovat S, Broach J. Integrating Optical Genome Mapping and Whole Genome Sequencing in Somatic Structural Variant Detection. J Pers Med 2024; 14:291. [PMID: 38541033 PMCID: PMC10971281 DOI: 10.3390/jpm14030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Structural variants drive tumorigenesis by disrupting normal gene function through insertions, inversions, translocations, and copy number changes, including deletions and duplications. Detecting structural variants is crucial for revealing their roles in tumor development, clinical outcomes, and personalized therapy. Presently, most studies rely on short-read data from next-generation sequencing that aligns back to a reference genome to determine if and, if so, where a structural variant occurs. However, structural variant discovery by short-read sequencing is challenging, primarily because of the difficulty in mapping regions of repetitive sequences. Optical genome mapping (OGM) is a recent technology used for imaging and assembling long DNA strands to detect structural variations. To capture the structural variant landscape more thoroughly in the human genome, we developed an integrated pipeline that combines Bionano OGM and Illumina whole-genome sequencing and applied it to samples from 29 pediatric B-ALL patients. The addition of OGM allowed us to identify 511 deletions, 506 insertions, 93 duplications/gains, and 145 translocations that were otherwise missed in the short-read data. Moreover, we identified several novel gene fusions, the expression of which was confirmed by RNA sequencing. Our results highlight the benefit of integrating OGM and short-read detection methods to obtain a comprehensive analysis of genetic variation that can aid in clinical diagnosis, provide new therapeutic targets, and improve personalized medicine in cancers driven by structural variation.
Collapse
Affiliation(s)
- Laura Budurlean
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Lijun Zhang
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sinisa Dovat
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Pediatrics, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - James Broach
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
31
|
Capasso M, Brignole C, Lasorsa VA, Bensa V, Cantalupo S, Sebastiani E, Quattrone A, Ciampi E, Avitabile M, Sementa AR, Mazzocco K, Cafferata B, Gaggero G, Vellone VG, Cilli M, Calarco E, Giusto E, Perri P, Aveic S, Fruci D, Tondo A, Luksch R, Mura R, Rabusin M, De Leonardis F, Cellini M, Coccia P, Iolascon A, Corrias MV, Conte M, Garaventa A, Amoroso L, Ponzoni M, Pastorino F. From the identification of actionable molecular targets to the generation of faithful neuroblastoma patient-derived preclinical models. J Transl Med 2024; 22:151. [PMID: 38351008 PMCID: PMC10863144 DOI: 10.1186/s12967-024-04954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) represents the most frequent and aggressive form of extracranial solid tumor of infants. Although the overall survival of patients with NB has improved in the last years, more than 50% of high-risk patients still undergo a relapse. Thus, in the era of precision/personalized medicine, the need for high-risk NB patient-specific therapies is urgent. METHODS Within the PeRsonalizEd Medicine (PREME) program, patient-derived NB tumors and bone marrow (BM)-infiltrating NB cells, derived from either iliac crests or tumor bone lesions, underwent to histological and to flow cytometry immunophenotyping, respectively. BM samples containing a NB cells infiltration from 1 to 50 percent, underwent to a subsequent NB cells enrichment using immune-magnetic manipulation. Then, NB samples were used for the identification of actionable targets and for the generation of 3D/tumor-spheres and Patient-Derived Xenografts (PDX) and Cell PDX (CPDX) preclinical models. RESULTS Eighty-four percent of NB-patients showed potentially therapeutically targetable somatic alterations (including point mutations, copy number variations and mRNA over-expression). Sixty-six percent of samples showed alterations, graded as "very high priority", that are validated to be directly targetable by an approved drug or an investigational agent. A molecular targeted therapy was applied for four patients, while a genetic counseling was suggested to two patients having one pathogenic germline variant in known cancer predisposition genes. Out of eleven samples implanted in mice, five gave rise to (C)PDX, all preserved in a local PDX Bio-bank. Interestingly, comparing all molecular alterations and histological and immunophenotypic features among the original patient's tumors and PDX/CPDX up to second generation, a high grade of similarity was observed. Notably, also 3D models conserved immunophenotypic features and molecular alterations of the original tumors. CONCLUSIONS PREME confirms the possibility of identifying targetable genomic alterations in NB, indeed, a molecular targeted therapy was applied to four NB patients. PREME paves the way to the creation of clinically relevant repositories of faithful patient-derived (C)PDX and 3D models, on which testing precision, NB standard-of-care and experimental medicines.
Collapse
Affiliation(s)
- Mario Capasso
- Department of Medical Biotechnology, University of Naples Federico II, 80138, Naples, Italy
- CEINGE Advanced Biotecnology, 80138, Naples, Italy
| | - Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | | | - Veronica Bensa
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Sueva Cantalupo
- Department of Medical Biotechnology, University of Naples Federico II, 80138, Naples, Italy
- CEINGE Advanced Biotecnology, 80138, Naples, Italy
| | | | | | - Eleonora Ciampi
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Marianna Avitabile
- Department of Medical Biotechnology, University of Naples Federico II, 80138, Naples, Italy
- CEINGE Advanced Biotecnology, 80138, Naples, Italy
| | - Angela R Sementa
- Pathological Anatomy, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Katia Mazzocco
- Pathological Anatomy, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Barbara Cafferata
- Pathological Anatomy, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Gabriele Gaggero
- Pathological Anatomy, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Valerio G Vellone
- Pathological Anatomy, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Michele Cilli
- Animal Facility, IRCCS Policlinico San Martino, 16100, Genoa, Italy
| | - Enzo Calarco
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Elena Giusto
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Sanja Aveic
- Pediatric Research Institute Città Della Speranza, 35127, Padua, Italy
| | - Doriana Fruci
- Department of Emato-Oncology, Bambino Gesù Children's Hospital, 00146, -Rome, Italy
| | - Annalisa Tondo
- Department of Emato-Oncology, Anna Meyer Children's Hospital, 50139, Florence, Italy
| | - Roberto Luksch
- Emato-Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, 20133, Milan, Italy
| | - Rossella Mura
- Emato-Oncology Unit, Azienda Ospedaliera Brotzu, 09047, Cagliari, Italy
| | - Marco Rabusin
- Pediatric Department, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137, Trieste, Italy
| | | | - Monica Cellini
- Emato-Oncology Unit, University-Hospital Polyclinic of Modena, 41124, Modena, Italy
| | - Paola Coccia
- University-Hospital of Marche, Presidio Ospedaliero "G. Salesi", 60126, Ancona, Italy
| | - Achille Iolascon
- Department of Medical Biotechnology, University of Naples Federico II, 80138, Naples, Italy
- CEINGE Advanced Biotecnology, 80138, Naples, Italy
| | - Maria V Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| | - Massimo Conte
- Clinical Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147, -Genoa, Italy
| | - Alberto Garaventa
- Clinical Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147, -Genoa, Italy
| | - Loredana Amoroso
- Clinical Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147, -Genoa, Italy
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy.
| | - Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147, Genoa, Italy
| |
Collapse
|
32
|
Takamatsu S, Murakami K, Matsumura N. Homologous Recombination Deficiency Unrelated to Platinum and PARP Inhibitor Response in Cell Line Libraries. Sci Data 2024; 11:171. [PMID: 38321018 PMCID: PMC10847511 DOI: 10.1038/s41597-024-03018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
While large publicly available cancer cell line databases are invaluable for preclinical drug discovery and biomarker development, the association between homologous recombination deficiency (HRD) and drug sensitivity in these resources remains unclear. In this study, we comprehensively analyzed molecular profiles and drug screening data from the Cancer Cell Line Encyclopedia. Unexpectedly, gene alterations in BRCA1/2 or homologous recombination-related genes, HRD scores, or mutational signature 3 were not positively correlated with sensitivity to platinum agents or PARP inhibitors. Rather, higher HRD scores and mutational signature 3 were significantly associated with resistance to these agents in multiple assays. These findings were consistent when analyzing exclusively breast and ovarian cancer cell lines and when using data from the COSMIC Cell Line Project. Collectively, the existing data from established cancer cell lines do not reflect the expected association between HRD status and drug response to platinum agents and PARP inhibitors in clinical tumors. This discrepancy may extend to other tumor characteristics, highlighting the importance of recognizing potential limitations in cell line data for researchers.
Collapse
Affiliation(s)
- Shiro Takamatsu
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- Department of Genomic Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kosuke Murakami
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
- The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan.
| |
Collapse
|
33
|
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Engineering Heterogeneous Tumor Models for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304160. [PMID: 37946674 PMCID: PMC10767453 DOI: 10.1002/advs.202304160] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian Shen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
34
|
Wang H, Zhao L, Yang L, Ge M, Yang X, Gao Z, Cun Y, Xiao F, Kong Q. Scrutiny of genome-wide somatic mutation profiles in centenarians identifies the key genomic regions for human longevity. Aging Cell 2024; 23:e13916. [PMID: 37400997 PMCID: PMC10776117 DOI: 10.1111/acel.13916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
Somatic mutations accumulate with age and are associated closely with human health, their characterization in longevity cohorts remains largely unknown. Here, by analyzing whole genome somatic mutation profiles in 73 centenarians and 51 younger controls in China, we found that centenarian genomes are characterized by a markedly skewed distribution of somatic mutations, with many genomic regions being specifically conserved but displaying a high function potential. This, together with the observed more efficient DNA repair ability in the long-lived individuals, supports the existence of key genomic regions for human survival during aging, with their integrity being of essential to human longevity.
Collapse
Affiliation(s)
- Hao‐Tian Wang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Long Zhao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Li‐Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Ming‐Xia Ge
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Xing‐Li Yang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Zong‐Liang Gao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
| | - Yu‐Peng Cun
- Pediatric Research Institute/Ministry of Education Key Laboratory of Child Development and Disorders/National Clinical Research Center for Child Health and DisordersChildren's Hospital of Chongqing Medical UniversityChongqingChina
| | - Fu‐Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Qing‐Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- CAS Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
| |
Collapse
|
35
|
Wu Y, Chen S, Yang X, Sato K, Lal P, Wang Y, Shinkle AT, Wendl MC, Primeau TM, Zhao Y, Gould A, Sun H, Mudd JL, Hoog J, Mashl RJ, Wyczalkowski MA, Mo CK, Liu R, Herndon JM, Davies SR, Liu D, Ding X, Evrard YA, Welm BE, Lum D, Koh MY, Welm AL, Chuang JH, Moscow JA, Meric-Bernstam F, Govindan R, Li S, Hsieh J, Fields RC, Lim KH, Ma CX, Zhang H, Ding L, Chen F. Combining the Tyrosine Kinase Inhibitor Cabozantinib and the mTORC1/2 Inhibitor Sapanisertib Blocks ERK Pathway Activity and Suppresses Tumor Growth in Renal Cell Carcinoma. Cancer Res 2023; 83:4161-4178. [PMID: 38098449 PMCID: PMC10722140 DOI: 10.1158/0008-5472.can-23-0604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/17/2023] [Accepted: 09/25/2023] [Indexed: 12/18/2023]
Abstract
Current treatment approaches for renal cell carcinoma (RCC) face challenges in achieving durable tumor responses due to tumor heterogeneity and drug resistance. Combination therapies that leverage tumor molecular profiles could offer an avenue for enhancing treatment efficacy and addressing the limitations of current therapies. To identify effective strategies for treating RCC, we selected ten drugs guided by tumor biology to test in six RCC patient-derived xenograft (PDX) models. The multitargeted tyrosine kinase inhibitor (TKI) cabozantinib and mTORC1/2 inhibitor sapanisertib emerged as the most effective drugs, particularly when combined. The combination demonstrated favorable tolerability and inhibited tumor growth or induced tumor regression in all models, including two from patients who experienced treatment failure with FDA-approved TKI and immunotherapy combinations. In cabozantinib-treated samples, imaging analysis revealed a significant reduction in vascular density, and single-nucleus RNA sequencing (snRNA-seq) analysis indicated a decreased proportion of endothelial cells in the tumors. SnRNA-seq data further identified a tumor subpopulation enriched with cell-cycle activity that exhibited heightened sensitivity to the cabozantinib and sapanisertib combination. Conversely, activation of the epithelial-mesenchymal transition pathway, detected at the protein level, was associated with drug resistance in residual tumors following combination treatment. The combination effectively restrained ERK phosphorylation and reduced expression of ERK downstream transcription factors and their target genes implicated in cell-cycle control and apoptosis. This study highlights the potential of the cabozantinib plus sapanisertib combination as a promising treatment approach for patients with RCC, particularly those whose tumors progressed on immune checkpoint inhibitors and other TKIs. SIGNIFICANCE The molecular-guided therapeutic strategy of combining cabozantinib and sapanisertib restrains ERK activity to effectively suppress growth of renal cell carcinomas, including those unresponsive to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yige Wu
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Xiaolu Yang
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Kazuhito Sato
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Preet Lal
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Yuefan Wang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Andrew T. Shinkle
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Michael C. Wendl
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Tina M. Primeau
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Alanna Gould
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Hua Sun
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Jacqueline L. Mudd
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Jeremy Hoog
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - R. Jay Mashl
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Matthew A. Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Chia-Kuei Mo
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Ruiyang Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - John M. Herndon
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
- Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | - Sherri R. Davies
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Di Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Xi Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Yvonne A. Evrard
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Bryan E. Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - David Lum
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Mei Yee Koh
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Alana L. Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Jeffrey H. Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Jeffrey A. Moscow
- Investigational Drug Branch, National Cancer Institute, Bethesda, Maryland
| | | | - Ramaswamy Govindan
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Shunqiang Li
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - James Hsieh
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Ryan C. Fields
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Kian-Huat Lim
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Cynthia X. Ma
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, Missouri
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
36
|
Kojima Y, Yoshida H, Okuya T, Okuma HS, Nishikawa T, Tanioka M, Sudo K, Noguchi E, Shimoi T, Tamura K, Tanase Y, Uno M, Ishikawa M, Arakaki M, Ichikawa H, Yagishita S, Hamada A, Fujiwara Y, Yonemori K, Kato T. Therapeutic target biomarkers of patient-derived xenograft models of gastric-type cervical adenocarcinoma. Gynecol Oncol Rep 2023; 50:101302. [PMID: 38054200 PMCID: PMC10694048 DOI: 10.1016/j.gore.2023.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 12/07/2023] Open
Abstract
Background Most cervical adenocarcinomas are associated with human papillomavirus (HPV). Gastric-type cervical adenocarcinoma (GAS), an HPV-independent adenocarcinoma, shows an aggressive clinical feature, resulting in a poor prognosis. Resistance to chemotherapy poses a difficulty in managing patients with metastatic GAS. We aimed to establish patient-derived xenografts (PDXs) of tumors from two patients with GAS and evaluated protein biomarkers for drug development using immunohistochemistry. Methods Two PDXs were established 78 and 48 days after transplanting the patient's tumor tissues into immunodeficient mice, respectively. PDX and patient's tumor samples were stained for HER2, HER3, PMS2, MSH6, PanTrk, and ARID1A to evaluate biomarkers for therapeutic targets. In addition, whole exome sequencing and RNA sequencing were performed on available samples. Results The pathological findings in morphological features and immunohistochemical profiles from the established PDXs were similar to those from the patients' surgical tumor specimens. HER3 was overexpressed in the patient's tumors, and the corresponding PDX tumors and HER2 was weakly stained in both types of tumor samples. In all PDX and patient tumor samples, PMS2, MSH6, and ARID1A were retained, and PanTrk was not expressed. In addition, a total of 10 samples, including tumor tissue samples from 8 other GAS patients, were evaluated for HER3 expression scores, all of which were 2 + or higher. Conclusions In summary, we evaluated biomarkers for therapeutic targets using newly established PDX models of GAS. Frequent HER3 overexpression and HER2 expression in GAS tumors suggest the possibility of new treatments for patients with GAS by targeting HER3 and HER2.
Collapse
Affiliation(s)
- Yuki Kojima
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
- Department of Molecular Pharmacology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Toshihiro Okuya
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Hitomi S Okuma
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Tadaaki Nishikawa
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Maki Tanioka
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Kazuki Sudo
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Emi Noguchi
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Tatsunori Shimoi
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Kenji Tamura
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Yasuhito Tanase
- Department of Gynecology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Masaya Uno
- Department of Gynecology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Mitsuya Ishikawa
- Department of Gynecology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Motoko Arakaki
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Hitoshi Ichikawa
- Department of Clinical Genomics, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Shigehiro Yagishita
- Department of Molecular Pharmacology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Akinobu Hamada
- Department of Molecular Pharmacology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Yasuhiro Fujiwara
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
37
|
Lee EJ, Noh SJ, Choi H, Kim MW, Kim SJ, Seo YA, Jeong JE, Shin I, Kim JS, Choi JK, Cho DY, Chang S. Comparative RNA-Seq Analysis Revealed Tissue-Specific Splicing Variations during the Generation of the PDX Model. Int J Mol Sci 2023; 24:17001. [PMID: 38069324 PMCID: PMC10707456 DOI: 10.3390/ijms242317001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Tissue-specific gene expression generates fundamental differences in the function of each tissue and affects the characteristics of the tumors that are created as a result. However, it is unclear how much the tissue specificity is conserved during grafting of the primary tumor into an immune-compromised mouse model. Here, we performed a comparative RNA-seq analysis of four different primary-patient derived xenograft (PDX) tumors. The analysis revealed a conserved RNA biotype distribution of primary-PDX pairs, as revealed by previous works. Interestingly, we detected significant changes in the splicing pattern of PDX, which was mainly comprised of skipped exons. This was confirmed by splicing variant-specific RT-PCR analysis. On the other hand, the correlation analysis for the tissue-specific genes indicated overall strong positive correlations between the primary and PDX tumor pairs, with the exception of gastric cancer cases, which showed an inverse correlation. These data propose a tissue-specific change in splicing events during PDX formation as a variable factor that affects primary-PDX integrity.
Collapse
Affiliation(s)
- Eun Ji Lee
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| | - Seung-Jae Noh
- PentaMedix Co., Ltd., Seongnam 13449, Republic of Korea; (S.-J.N.); (H.C.); (D.-Y.C.)
| | - Huiseon Choi
- PentaMedix Co., Ltd., Seongnam 13449, Republic of Korea; (S.-J.N.); (H.C.); (D.-Y.C.)
| | - Min Woo Kim
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| | - Su Jin Kim
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| | - Yeon Ah Seo
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| | - Ji Eun Jeong
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| | - Inkyung Shin
- PentaMedix Co., Ltd., Seongnam 13449, Republic of Korea; (S.-J.N.); (H.C.); (D.-Y.C.)
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (J.-S.K.); (J.-K.C.)
| | - Jong-Kwon Choi
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (J.-S.K.); (J.-K.C.)
| | - Dae-Yeon Cho
- PentaMedix Co., Ltd., Seongnam 13449, Republic of Korea; (S.-J.N.); (H.C.); (D.-Y.C.)
| | - Suhwan Chang
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; (E.J.L.); (M.W.K.); (S.J.K.); (Y.A.S.); (J.E.J.)
| |
Collapse
|
38
|
He F, Bandyopadhyay AM, Klesse LJ, Rogojina A, Chun SH, Butler E, Hartshorne T, Holland T, Garcia D, Weldon K, Prado LNP, Langevin AM, Grimes AC, Sugalski A, Shah S, Assanasen C, Lai Z, Zou Y, Kurmashev D, Xu L, Xie Y, Chen Y, Wang X, Tomlinson GE, Skapek SX, Houghton PJ, Kurmasheva RT, Zheng S. Genomic profiling of subcutaneous patient-derived xenografts reveals immune constraints on tumor evolution in childhood solid cancer. Nat Commun 2023; 14:7600. [PMID: 37990009 PMCID: PMC10663468 DOI: 10.1038/s41467-023-43373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Subcutaneous patient-derived xenografts (PDXs) are an important tool for childhood cancer research. Here, we describe a resource of 68 early passage PDXs established from 65 pediatric solid tumor patients. Through genomic profiling of paired PDXs and patient tumors (PTs), we observe low mutational similarity in about 30% of the PT/PDX pairs. Clonal analysis in these pairs show an aggressive PT minor subclone seeds the major clone in the PDX. We show evidence that this subclone is more immunogenic and is likely suppressed by immune responses in the PT. These results suggest interplay between intratumoral heterogeneity and antitumor immunity may underlie the genetic disparity between PTs and PDXs. We further show that PDXs generally recapitulate PTs in copy number and transcriptomic profiles. Finally, we report a gene fusion LRPAP1-PDGFRA. In summary, we report a childhood cancer PDX resource and our study highlights the role of immune constraints on tumor evolution.
Collapse
Affiliation(s)
- Funan He
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
| | - Abhik M Bandyopadhyay
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Laura J Klesse
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children's Health Children's Medical Center, Dallas, TX, USA
| | - Anna Rogojina
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sang H Chun
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Erin Butler
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children's Health Children's Medical Center, Dallas, TX, USA
| | - Taylor Hartshorne
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Trevor Holland
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Dawn Garcia
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Luz-Nereida Perez Prado
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Anne-Marie Langevin
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Allison C Grimes
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Aaron Sugalski
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Shafqat Shah
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Chatchawin Assanasen
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Yi Zou
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Dias Kurmashev
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Lin Xu
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang Xie
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Xiaojing Wang
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Gail E Tomlinson
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Pediatrics, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Stephen X Skapek
- Department of Pediatrics, Division of Hematology/Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Gill Center for Cancer and Blood Disorders, Children's Health Children's Medical Center, Dallas, TX, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Raushan T Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA.
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA.
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA.
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX, USA.
- Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
39
|
Wang W, Li Y, Lin K, Wang X, Tu Y, Zhuo Z. Progress in building clinically relevant patient-derived tumor xenograft models for cancer research. Animal Model Exp Med 2023; 6:381-398. [PMID: 37679891 PMCID: PMC10614132 DOI: 10.1002/ame2.12349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
Patient-derived tumor xenograft (PDX) models, a method involving the surgical extraction of tumor tissues from cancer patients and subsequent transplantation into immunodeficient mice, have emerged as a pivotal approach in translational research, particularly in advancing precision medicine. As the first stage of PDX development, the patient-derived orthotopic xenograft (PDOX) models implant tumor tissue in mice in the corresponding anatomical locations of the patient. The PDOX models have several advantages, including high fidelity to the original tumor, heightened drug sensitivity, and an elevated rate of successful transplantation. However, the PDOX models present significant challenges, requiring advanced surgical techniques and resource-intensive imaging technologies, which limit its application. And then, the humanized mouse models, as well as the zebrafish models, were developed. Humanized mouse models contain a human immune environment resembling the tumor and immune system interplay. The humanized mouse models are a hot topic in PDX model research. Regarding zebrafish patient-derived tumor xenografts (zPDX) and patient-derived organoids (PDO) as promising models for studying cancer and drug discovery, zPDX models are used to transplant tumors into zebrafish as novel personalized medical animal models with the advantage of reducing patient waiting time. PDO models provide a cost-effective approach for drug testing that replicates the in vivo environment and preserves important tumor-related information for patients. The present review highlights the functional characteristics of each new phase of PDX and provides insights into the challenges and prospective developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Yongshu Li
- College of Life SciencesHubei Normal UniversityHuangshiChina
- Shenzhen Institute for Technology InnovationNational Institute of MetrologyShenzhenChina
| | - Kaida Lin
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Yanyang Tu
- Research Center, Huizhou Central People's HospitalGuangdong Medical UniversityHuizhou CityChina
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| |
Collapse
|
40
|
Filipescu D, Carcamo S, Agarwal A, Tung N, Humblin É, Goldberg MS, Vyas NS, Beaumont KG, Demircioglu D, Sridhar S, Ghiraldini FG, Capparelli C, Aplin AE, Salmon H, Sebra R, Kamphorst AO, Merad M, Hasson D, Bernstein E. MacroH2A restricts inflammatory gene expression in melanoma cancer-associated fibroblasts by coordinating chromatin looping. Nat Cell Biol 2023; 25:1332-1345. [PMID: 37605008 PMCID: PMC10495263 DOI: 10.1038/s41556-023-01208-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
MacroH2A has established tumour suppressive functions in melanoma and other cancers, but an unappreciated role in the tumour microenvironment. Using an autochthonous, immunocompetent mouse model of melanoma, we demonstrate that mice devoid of macroH2A variants exhibit increased tumour burden compared with wild-type counterparts. MacroH2A-deficient tumours accumulate immunosuppressive monocytes and are depleted of functional cytotoxic T cells, characteristics consistent with a compromised anti-tumour response. Single cell and spatial transcriptomics identify increased dedifferentiation along the neural crest lineage of the tumour compartment and increased frequency and activation of cancer-associated fibroblasts following macroH2A loss. Mechanistically, macroH2A-deficient cancer-associated fibroblasts display increased myeloid chemoattractant activity as a consequence of hyperinducible expression of inflammatory genes, which is enforced by increased chromatin looping of their promoters to enhancers that gain H3K27ac. In summary, we reveal a tumour suppressive role for macroH2A variants through the regulation of chromatin architecture in the tumour stroma with potential implications for human melanoma.
Collapse
Affiliation(s)
- Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Saul Carcamo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aman Agarwal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Navpreet Tung
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Étienne Humblin
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew S Goldberg
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikki S Vyas
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deniz Demircioglu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Subhasree Sridhar
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Flavia G Ghiraldini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Claudia Capparelli
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Pharmacology, Physiology and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hélène Salmon
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institut Curie, INSERM, U932, and PSL Research University, Paris, France
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alice O Kamphorst
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
41
|
Mayoh C, Mao J, Xie J, Tax G, Chow SO, Cadiz R, Pazaky K, Barahona P, Ajuyah P, Trebilcock P, Malquori A, Gunther K, Avila A, Yun DY, Alfred S, Gopalakrishnan A, Kamili A, Wong M, Cowley MJ, Jessop S, Lau LM, Trahair TN, Ziegler DS, Fletcher JI, Gifford AJ, Tsoli M, Marshall GM, Haber M, Tyrrell V, Failes TW, Arndt GM, Lock RB, Ekert PG, Dolman MEM. High-Throughput Drug Screening of Primary Tumor Cells Identifies Therapeutic Strategies for Treating Children with High-Risk Cancer. Cancer Res 2023; 83:2716-2732. [PMID: 37523146 PMCID: PMC10425737 DOI: 10.1158/0008-5472.can-22-3702] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/10/2023] [Accepted: 06/02/2023] [Indexed: 08/01/2023]
Abstract
For one-third of patients with pediatric cancer enrolled in precision medicine programs, molecular profiling does not result in a therapeutic recommendation. To identify potential strategies for treating these high-risk pediatric patients, we performed in vitro screening of 125 patient-derived samples against a library of 126 anticancer drugs. Tumor cell expansion did not influence drug responses, and 82% of the screens on expanded tumor cells were completed while the patients were still under clinical care. High-throughput drug screening (HTS) confirmed known associations between activating genomic alterations in NTRK, BRAF, and ALK and responses to matching targeted drugs. The in vitro results were further validated in patient-derived xenograft models in vivo and were consistent with clinical responses in treated patients. In addition, effective combinations could be predicted by correlating sensitivity profiles between drugs. Furthermore, molecular integration with HTS identified biomarkers of sensitivity to WEE1 and MEK inhibition. Incorporating HTS into precision medicine programs is a powerful tool to accelerate the improved identification of effective biomarker-driven therapeutic strategies for treating high-risk pediatric cancers. SIGNIFICANCE Integrating HTS with molecular profiling is a powerful tool for expanding precision medicine to support drug treatment recommendations and broaden the therapeutic options available to high-risk pediatric cancers.
Collapse
Affiliation(s)
- Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jie Mao
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Jinhan Xie
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Gabor Tax
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Shu-Oi Chow
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Roxanne Cadiz
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Karina Pazaky
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Paulette Barahona
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Pamela Ajuyah
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Peter Trebilcock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Angela Malquori
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Kate Gunther
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Anica Avila
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Doo Young Yun
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Stephanie Alfred
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Anjana Gopalakrishnan
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Alvin Kamili
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Marie Wong
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
| | - Mark J. Cowley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Sophie Jessop
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Loretta M.S. Lau
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Toby N. Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - David S. Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Jamie I. Fletcher
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Andrew J. Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Glenn M. Marshall
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Vanessa Tyrrell
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Timothy W. Failes
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Greg M. Arndt
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- ACRF Drug Discovery Centre for Childhood Cancer, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Richard B. Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Paul G. Ekert
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - M. Emmy M. Dolman
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, New South Wales, Australia
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
42
|
Zhou B, Feng Z, Xu J, Xie J. Organoids: approaches and utility in cancer research. Chin Med J (Engl) 2023; 136:1783-1793. [PMID: 37365679 PMCID: PMC10406116 DOI: 10.1097/cm9.0000000000002477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Indexed: 06/28/2023] Open
Abstract
ABSTRACT Organoids are three-dimensional cellular structures with self-organizing and self-differentiation capacities. They faithfully recapitulate structures and functions of in vivo organs as represented by functionality and microstructural definitions. Heterogeneity in in vitro disease modeling is one of the main reasons for anti-cancer therapy failures. Establishing a powerful model to represent tumor heterogeneity is crucial for elucidating tumor biology and developing effective therapeutic strategies. Tumor organoids can retain the original tumor heterogeneity and are commonly used to mimic the cancer microenvironment when co-cultured with fibroblasts and immune cells; therefore, considerable effort has been made recently to promote the use of this new technology from basic research to clinical studies in tumors. In combination with gene editing technology and microfluidic chip systems, engineered tumor organoids show promising abilities to recapitulate tumorigenesis and metastasis. In many studies, the responses of tumor organoids to various drugs have shown a positive correlation with patient responses. Owing to these consistent responses and personalized characteristics with patient data, tumor organoids show excellent potential for preclinical research. Here, we summarize the properties of different tumor models and review their current state and progress in tumor organoids. We further discuss the substantial challenges and prospects in the rapidly developing tumor organoid field.
Collapse
Affiliation(s)
- Bingrui Zhou
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhiwei Feng
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jun Xu
- Department of Hepatobiliary and Pancreatic Surgery and Liver Transplant Center, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
43
|
Wang C, Yuan X, Xue J. Targeted therapy for rare lung cancers: Status, challenges, and prospects. Mol Ther 2023; 31:1960-1978. [PMID: 37179456 PMCID: PMC10362419 DOI: 10.1016/j.ymthe.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
Lung cancer causes the most cancer-related deaths worldwide. In recent years, molecular and immunohistochemical techniques have rapidly developed, further inaugurating an era of personalized medicine for lung cancer. The rare subset of lung cancers accounts for approximately 10%, each displaying distinct clinical characteristics. Treatments for rare lung cancers are mainly based on evidence from common counterparts, which may lead to unsolid clinical benefits considering intertumoral heterogeneity. The increasing knowledge of molecular profiling of rare lung cancers has made targeting genetic alterations and immune checkpoints a powerful strategy. Additionally, cellular therapy has emerged as a promising way to target tumor cells. In this review, we first discuss the current status of targeted therapy and preclinical models for rare lung cancers, as well as provide mutational profiles by integrating the results of existing cohorts. Finally, we point out the challenges and future directions for developing targeted agents for rare lung cancer.
Collapse
Affiliation(s)
- Chunsen Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Yuan
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
44
|
Chiorazzi M, Martinek J, Krasnick B, Zheng Y, Robbins KJ, Qu R, Kaufmann G, Skidmore Z, Juric M, Henze LA, Brösecke F, Adonyi A, Zhao J, Shan L, Sefik E, Mudd J, Bi Y, Goedegebuure SP, Griffith M, Griffith O, Oyedeji A, Fertuzinhos S, Garcia-Milian R, Boffa D, Detterbeck F, Dhanasopon A, Blasberg J, Judson B, Gettinger S, Politi K, Kluger Y, Palucka K, Fields RC, Flavell RA. Autologous humanized PDX modeling for immuno-oncology recapitulates features of the human tumor microenvironment. J Immunother Cancer 2023; 11:e006921. [PMID: 37487666 PMCID: PMC10373695 DOI: 10.1136/jitc-2023-006921] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Interactions between immune and tumor cells are critical to determining cancer progression and response. In addition, preclinical prediction of immune-related drug efficacy is limited by interspecies differences between human and mouse, as well as inter-person germline and somatic variation. To address these gaps, we developed an autologous system that models the tumor microenvironment (TME) from individual patients with solid tumors. METHOD With patient-derived bone marrow hematopoietic stem and progenitor cells (HSPCs), we engrafted a patient's hematopoietic system in MISTRG6 mice, followed by transfer of patient-derived xenograft (PDX) tissue, providing a fully genetically matched model to recapitulate the individual's TME. We used this system to prospectively study tumor-immune interactions in patients with solid tumor. RESULTS Autologous PDX mice generated innate and adaptive immune populations; these cells populated the TME; and tumors from autologously engrafted mice grew larger than tumors from non-engrafted littermate controls. Single-cell transcriptomics revealed a prominent vascular endothelial growth factor A (VEGFA) signature in TME myeloid cells, and inhibition of human VEGF-A abrogated enhanced growth. CONCLUSIONS Humanization of the interleukin 6 locus in MISTRG6 mice enhances HSPC engraftment, making it feasible to model tumor-immune interactions in an autologous manner from a bedside bone marrow aspirate. The TME from these autologous tumors display hallmarks of the human TME including innate and adaptive immune activation and provide a platform for preclinical drug testing.
Collapse
Affiliation(s)
- Michael Chiorazzi
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jan Martinek
- Jackson Laboratory - Farmington, Farmington, Connecticut, USA
| | - Bradley Krasnick
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Yunjiang Zheng
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Keenan J Robbins
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Rihao Qu
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gabriel Kaufmann
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Zachary Skidmore
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Melani Juric
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Laura A Henze
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Frederic Brösecke
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Adam Adonyi
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jun Zhao
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Liang Shan
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Esen Sefik
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jacqueline Mudd
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Ye Bi
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - S Peter Goedegebuure
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Malachi Griffith
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Obi Griffith
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Abimbola Oyedeji
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Sofia Fertuzinhos
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, Connecticut, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniel Boffa
- Department of Surgery, Section of Thoracic Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Frank Detterbeck
- Department of Surgery, Section of Thoracic Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Andrew Dhanasopon
- Department of Surgery, Section of Thoracic Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Justin Blasberg
- Department of Surgery, Section of Thoracic Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Benjamin Judson
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Scott Gettinger
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Katerina Politi
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yuval Kluger
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Ryan C Fields
- Alvin J Siteman Cancer Center, St Louis, Missouri, USA
- Department of Surgery, Washington University School of Medicine in Saint Louis, St Louis, Missouri, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, New York, New York, USA
| |
Collapse
|
45
|
Ortiz MMO, Andrechek ER. Molecular Characterization and Landscape of Breast cancer Models from a multi-omics Perspective. J Mammary Gland Biol Neoplasia 2023; 28:12. [PMID: 37269418 DOI: 10.1007/s10911-023-09540-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023] Open
Abstract
Breast cancer is well-known to be a highly heterogenous disease. This facet of cancer makes finding a research model that mirrors the disparate intrinsic features challenging. With advances in multi-omics technologies, establishing parallels between the various models and human tumors is increasingly intricate. Here we review the various model systems and their relation to primary breast tumors using available omics data platforms. Among the research models reviewed here, breast cancer cell lines have the least resemblance to human tumors since they have accumulated many mutations and copy number alterations during their long use. Moreover, individual proteomic and metabolomic profiles do not overlap with the molecular landscape of breast cancer. Interestingly, omics analysis revealed that the initial subtype classification of some breast cancer cell lines was inappropriate. In cell lines the major subtypes are all well represented and share some features with primary tumors. In contrast, patient-derived xenografts (PDX) and patient-derived organoids (PDO) are superior in mirroring human breast cancers at many levels, making them suitable models for drug screening and molecular analysis. While patient derived organoids are spread across luminal, basal- and normal-like subtypes, the PDX samples were initially largely basal but other subtypes have been increasingly described. Murine models offer heterogenous tumor landscapes, inter and intra-model heterogeneity, and give rise to tumors of different phenotypes and histology. Murine models have a reduced mutational burden compared to human breast cancer but share some transcriptomic resemblance, and representation of many breast cancer subtypes can be found among the variety subtypes. To date, while mammospheres and three- dimensional cultures lack comprehensive omics data, these are excellent models for the study of stem cells, cell fate decision and differentiation, and have also been used for drug screening. Therefore, this review explores the molecular landscapes and characterization of breast cancer research models by comparing recent published multi-omics data and analysis.
Collapse
Affiliation(s)
- Mylena M O Ortiz
- Genetics and Genomics Science Program, Michigan State University, East Lansing, MI, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, 2194 BPS Building 567 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
46
|
Arnesen S, Polaski J, Blanchard Z, Osborne K, Welm A, O’Connell R, Gertz J. Estrogen receptor alpha mutations regulate gene expression and cell growth in breast cancer through microRNAs. NAR Cancer 2023; 5:zcad027. [PMID: 37275275 PMCID: PMC10233889 DOI: 10.1093/narcan/zcad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/18/2023] [Accepted: 05/18/2023] [Indexed: 06/07/2023] Open
Abstract
Estrogen receptor α (ER) mutations occur in up to 30% of metastatic ER-positive breast cancers. Recent data has shown that ER mutations impact the expression of thousands of genes not typically regulated by wildtype ER. While the majority of these altered genes can be explained by constant activity of mutant ER or genomic changes such as altered ER binding and chromatin accessibility, as much as 33% remain unexplained, indicating the potential for post-transcriptional effects. Here, we explored the role of microRNAs in mutant ER-driven gene regulation and identified several microRNAs that are dysregulated in ER mutant cells. These differentially regulated microRNAs target a significant portion of mutant-specific genes involved in key cellular processes. When the activity of microRNAs is altered using mimics or inhibitors, significant changes are observed in gene expression and cellular proliferation related to mutant ER. An in-depth evaluation of miR-301b led us to discover an important role for PRKD3 in the proliferation of ER mutant cells. Our findings show that microRNAs contribute to mutant ER gene regulation and cellular effects in breast cancer cells.
Collapse
Affiliation(s)
- Spencer Arnesen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob T Polaski
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Zannel Blanchard
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kyle S Osborne
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan M O’Connell
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
47
|
Lawrence MG, Taylor RA, Cuffe GB, Ang LS, Clark AK, Goode DL, Porter LH, Le Magnen C, Navone NM, Schalken JA, Wang Y, van Weerden WM, Corey E, Isaacs JT, Nelson PS, Risbridger GP. The future of patient-derived xenografts in prostate cancer research. Nat Rev Urol 2023; 20:371-384. [PMID: 36650259 PMCID: PMC10789487 DOI: 10.1038/s41585-022-00706-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/19/2023]
Abstract
Patient-derived xenografts (PDXs) are generated by engrafting human tumours into mice. Serially transplantable PDXs are used to study tumour biology and test therapeutics, linking the laboratory to the clinic. Although few prostate cancer PDXs are available in large repositories, over 330 prostate cancer PDXs have been established, spanning broad clinical stages, genotypes and phenotypes. Nevertheless, more PDXs are needed to reflect patient diversity, and to study new treatments and emerging mechanisms of resistance. We can maximize the use of PDXs by exchanging models and datasets, and by depositing PDXs into biorepositories, but we must address the impediments to accessing PDXs, such as institutional, ethical and legal agreements. Through collaboration, researchers will gain greater access to PDXs representing diverse features of prostate cancer.
Collapse
Affiliation(s)
- Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
- Melbourne Urological Research Alliance, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia.
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia.
| | - Renea A Taylor
- Melbourne Urological Research Alliance, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Georgia B Cuffe
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Lisa S Ang
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Ashlee K Clark
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - David L Goode
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Laura H Porter
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Clémentine Le Magnen
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nora M Navone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack A Schalken
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, British Columbia, Canada
| | | | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - John T Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter S Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
- Melbourne Urological Research Alliance, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia.
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.
- Cabrini Institute, Cabrini Health, Malvern, Victoria, Australia.
| |
Collapse
|
48
|
Monsivais D, Parks SE, Chandrashekar DS, Varambally S, Creighton CJ. Using cancer proteomics data to identify gene candidates for therapeutic targeting. Oncotarget 2023; 14:399-412. [PMID: 37141409 PMCID: PMC11623401 DOI: 10.18632/oncotarget.28420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Gene-level associations obtained from mass-spectrometry-based cancer proteomics datasets represent a resource for identifying gene candidates for functional studies. When recently surveying proteomic correlates of tumor grade across multiple cancer types, we identified specific protein kinases having a functional impact on uterine endometrial cancer cells. This previously published study provides just one template for utilizing public molecular datasets to discover potential novel therapeutic targets and approaches for cancer patients. Proteomic profiling data combined with corresponding multi-omics data on human tumors and cell lines can be analyzed in various ways to prioritize genes of interest for interrogating biology. Across hundreds of cancer cell lines, CRISPR loss of function and drug sensitivity scoring can be readily integrated with protein data to predict any gene's functional impact before bench experiments are carried out. Public data portals make cancer proteomics data more accessible to the research community. Drug discovery platforms can screen hundreds of millions of small molecule inhibitors for those that target a gene or pathway of interest. Here, we discuss some of the available public genomic and proteomic resources while considering approaches to how these could be leveraged for molecular biology insights or drug discovery. We also demonstrate the inhibitory effect of BAY1217389, a TTK inhibitor recently tested in a Phase I clinical trial for the treatment of solid tumors, on uterine cancer cell line viability.
Collapse
Affiliation(s)
- Diana Monsivais
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sydney E. Parks
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Darshan S. Chandrashekar
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Genomic Diagnostics and Bioinformatics, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sooryanarayana Varambally
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- The Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Chad J. Creighton
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
49
|
Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther 2023; 8:160. [PMID: 37045827 PMCID: PMC10097874 DOI: 10.1038/s41392-023-01419-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Patient-derived xenograft (PDX) models, in which tumor tissues from patients are implanted into immunocompromised or humanized mice, have shown superiority in recapitulating the characteristics of cancer, such as the spatial structure of cancer and the intratumor heterogeneity of cancer. Moreover, PDX models retain the genomic features of patients across different stages, subtypes, and diversified treatment backgrounds. Optimized PDX engraftment procedures and modern technologies such as multi-omics and deep learning have enabled a more comprehensive depiction of the PDX molecular landscape and boosted the utilization of PDX models. These irreplaceable advantages make PDX models an ideal choice in cancer treatment studies, such as preclinical trials of novel drugs, validating novel drug combinations, screening drug-sensitive patients, and exploring drug resistance mechanisms. In this review, we gave an overview of the history of PDX models and the process of PDX model establishment. Subsequently, the review presents the strengths and weaknesses of PDX models and highlights the integration of novel technologies in PDX model research. Finally, we delineated the broad application of PDX models in chemotherapy, targeted therapy, immunotherapy, and other novel therapies.
Collapse
Affiliation(s)
- Yihan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| |
Collapse
|
50
|
Alkim E, Dowst H, DiCarlo J, Dobrolecki LE, Hernández-Herrera A, Hormuth DA, Liao Y, McOwiti A, Pautler R, Rimawi M, Roark A, Srinivasan RR, Virostko J, Zhang B, Zheng F, Rubin DL, Yankeelov TE, Lewis MT. Toward Practical Integration of Omic and Imaging Data in Co-Clinical Trials. Tomography 2023; 9:810-828. [PMID: 37104137 PMCID: PMC10144684 DOI: 10.3390/tomography9020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
Co-clinical trials are the concurrent or sequential evaluation of therapeutics in both patients clinically and patient-derived xenografts (PDX) pre-clinically, in a manner designed to match the pharmacokinetics and pharmacodynamics of the agent(s) used. The primary goal is to determine the degree to which PDX cohort responses recapitulate patient cohort responses at the phenotypic and molecular levels, such that pre-clinical and clinical trials can inform one another. A major issue is how to manage, integrate, and analyze the abundance of data generated across both spatial and temporal scales, as well as across species. To address this issue, we are developing MIRACCL (molecular and imaging response analysis of co-clinical trials), a web-based analytical tool. For prototyping, we simulated data for a co-clinical trial in "triple-negative" breast cancer (TNBC) by pairing pre- (T0) and on-treatment (T1) magnetic resonance imaging (MRI) from the I-SPY2 trial, as well as PDX-based T0 and T1 MRI. Baseline (T0) and on-treatment (T1) RNA expression data were also simulated for TNBC and PDX. Image features derived from both datasets were cross-referenced to omic data to evaluate MIRACCL functionality for correlating and displaying MRI-based changes in tumor size, vascularity, and cellularity with changes in mRNA expression as a function of treatment.
Collapse
Affiliation(s)
- Emel Alkim
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heidi Dowst
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Julie DiCarlo
- Oden Institute for Computational Engineering and Sciences, Austin, TX 78712, USA
- Livestrong Cancer Institutes, Austin, TX 78712, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - David A Hormuth
- Oden Institute for Computational Engineering and Sciences, Austin, TX 78712, USA
- Livestrong Cancer Institutes, Austin, TX 78712, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Apollo McOwiti
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robia Pautler
- Department of Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mothaffar Rimawi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ashley Roark
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Jack Virostko
- Oden Institute for Computational Engineering and Sciences, Austin, TX 78712, USA
- Livestrong Cancer Institutes, Austin, TX 78712, USA
- Department of Oncology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fei Zheng
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel L Rubin
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas E Yankeelov
- Oden Institute for Computational Engineering and Sciences, Austin, TX 78712, USA
- Livestrong Cancer Institutes, Austin, TX 78712, USA
- Department of Oncology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael T Lewis
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|