1
|
Manhertz-Patterson R, Atilla-Gokcumen GE. S-acylation in apoptotic and non-apoptotic cell death: a central regulator of membrane dynamics and protein function. Biochem Soc Trans 2025; 53:BST20253012. [PMID: 40304073 DOI: 10.1042/bst20253012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025]
Abstract
Protein lipidation is a collection of important post-translational modifications that modulate protein localization and stability. Protein lipidation affects protein function by facilitating interactions with cellular membranes, changing the local environment of protein interactions. Among these modifications, S-acylation has emerged as a key regulator of various cellular processes, including different forms of cell death. In this mini-review, we highlight the role of S-acylation in apoptosis and its emerging contributions to necroptosis and pyroptosis. While traditionally associated with the incorporation of palmitic acid (palmitoylation), recent findings indicate that other fatty acids can also participate in S-acylation, expanding its functional repertoire. In apoptosis, S-acylation influences the localization and function of key regulators such as Bcl-2-associated X protein and other proteins modulating their role in mitochondrial permeabilization and death receptor signaling. Similarly, in necroptosis, S-acylation of mixed lineage kinase domain-like protein (MLKL) with palmitic acid and very long-chain fatty acids enhances membrane binding and membrane permeabilization, contributing to cell death and inflammatory responses. Recent studies also highlight the role of S-acylation in pyroptosis, where S-acylated gasdermin D facilitates membrane localization and pore assembly upon inflammasome activation. Blocking palmitoylation has shown to suppress pyroptosis and cytokine release, reducing inflammatory activity and tissue damage in septic models. Collectively, these findings underscore S-acylation as a shared and important regulatory mechanism across cell death pathways affecting membrane association of key signaling proteins and membrane dynamics, and offer insights into the spatial and temporal control of protein function.
Collapse
Affiliation(s)
- Rojae Manhertz-Patterson
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, U.S.A
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, U.S.A
| |
Collapse
|
2
|
He Z, Tan X, Yuan M, Chen L, Meng Y, Wang Q, Hu J, Qiu Z, Yang Y. Anethole trithione mitigates LPS/D-Gal-induced acute liver injury by suppressing ROS production and NF-κB activity. Int Immunopharmacol 2025; 152:114371. [PMID: 40054324 DOI: 10.1016/j.intimp.2025.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/14/2025] [Accepted: 02/24/2025] [Indexed: 03/24/2025]
Abstract
Acute liver injury (ALI) is a prevalent form of hepatic disease associated with significant morbidity and mortality due to medical treatments, exposure to toxins or viral infections. Anethole trithione (ATT) is a heterocyclic sulfur compound recognized for its chemoprotective properties against cancer and drug-induced toxicity. This study aimed to evaluate the effectiveness of ATT in the treatment of ALI. The therapeutic effects of ATT on hepatic injury were evaluated in vivo by inducing ALI in mice through the administration of lipopolysaccharide (LPS) and D-galactosamine (D-Gal). Additionally, HepG2 and Huh7 cells exposed to LPS were utilized to investigate the underlying mechanisms in vitro. The results indicated that ATT significantly reduced the production of reactive oxygen species (ROS), mitigated oxidative stress-related biochemical markers, and inhibited hepatocyte apoptosis in vivo, resulting in marked improvement in ALI in the murine model. Mechanistic studies conducted both in vivo and in vitro demonstrated that ATT alleviates LPS/D-Gal-induced ALI by inhibiting ROS production and the activity of nuclear factor-kappa B (NF-κB). Collectively, these findings underscore the potential therapeutic benefits of ATT in the management of ALI.
Collapse
Affiliation(s)
- Zhen He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiangyun Tan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ming Yuan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Liang Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qi Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Junjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Zhenpeng Qiu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China.
| | - Yuan Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China.
| |
Collapse
|
3
|
Yin J, Chen L, Lin Y, Qiu J, Liu F, Wang Y, Dou X. Bifidobacterium bifidum reduces oxidative stress and alters gut flora to mitigate acute liver injury caused by N-acetyl-p-aminophenol. BMC Microbiol 2025; 25:87. [PMID: 40000948 PMCID: PMC11853282 DOI: 10.1186/s12866-025-03775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Pharmacologically-induced liver injury from N-acetyl-p-aminophenol (APAP) overdose has become a leading cause of acute liver failure. Extensive research has elucidated the relationship between the intestinal microbiota and the pathophysiology of liver diseases. The growing body of evidence supporting the beneficial effects of probiotics, coupled with their established safety profile, has led to their widespread adoption in clinical practice. Among these, Bifidobacterium bifidum has garnered substantial attention due to its potential hepatoprotective properties, particularly in APAP-induced acute liver injury (AILI). However, the precise therapeutic effects and underlying mechanisms of its potential to alleviate drug-induced liver toxicity remain largely unexplored. To address this knowledge gap, the present study aimed to investigate the role of a new Bifidobacterium bifidum strain CGMCC No. 29,545 isolated from faeces on AILI. A mouse model was constructed through the administration of heat-killed or active B. bifidum CGMCC No. 29,545 preparations via gavage, followed by an intraperitoneal overdose of APAP. The results showed that the active B. bifidum could significantly reverse the increase in plasma transaminase levels and reduce the necrotic area of liver cells in AILI mice. A reduction in oxidative stress accompanied a reduction in this effect. Furthermore, B. bifidum attenuated plasma endotoxin levels and improved colonic inflammation, reducing hepatocyte apoptosis. The 16 S rRNA diversity of intestinal contents suggests that the involvement of B. bifidum in the regulation of the intestinal microbiota also plays a crucial role in the protection against AILI. The above results suggest that the amelioration of multiple injuries due to APAP overprocessing is closely related to active B. bifidum, which was confirmed by heat-killed B. bifidum preparations. Heat-killed B. bifidum preparations did not attenuate the degree of liver injury and oxidative stress caused by APAP treatment. The effects of two different active B. bifidum preparations provide new insights into the protective strategies of active B. bifidum as a probiotic against AILI.
Collapse
Affiliation(s)
- Juan Yin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
- Zhejiang-Hong Kong Joint Laboratory of Liver and Spleen Simultaneous Treatment in Traditional Chinese Medicine, Zhejiang, 310053, PR China
| | - Lin Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
| | - Yiyou Lin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
| | - Jiannan Qiu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
| | - Fucai Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China
| | - Yuhao Wang
- School of Medicine, Zhejiang University, Hangzhou, 310020, Zhejiang, PR China.
- , 268 Kaixuan Road, Shangcheng District, Hangzhou, 310029, Zhejiang, China.
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.
- Zhejiang-Hong Kong Joint Laboratory of Liver and Spleen Simultaneous Treatment in Traditional Chinese Medicine, Zhejiang, 310053, PR China.
| |
Collapse
|
4
|
Salah TM, Rabie MA, El Sayed NS. Renoprotective effect of berberine in cisplatin-induced acute kidney injury: Role of Klotho and the AMPK/mtor/ULK1/Beclin-1 pathway. Food Chem Toxicol 2025; 196:115179. [PMID: 39645019 DOI: 10.1016/j.fct.2024.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Cisplatin (Cisp) is a potent cancer drug, but its use is limited by acute kidney injury (AKI). Autophagy, a process that removes damaged proteins and maintains cellular homeostasis, has been shown to alleviate Cisp-induced AKI. The balance between autophagy and apoptosis is crucial to kidney protection. Treatment with Berberine, known for its antioxidant and anti-inflammatory effects in nephrotoxicity models, was studied for its potential to enhance autophagy in Cisp-induced AKI. Treatment with Berberine (Berb) upregulated Klotho gene expression, enhancing autophagy as indicated by elevated protein levels of pS486-AMPK, pS638-ULK1, and Beclin-1, accompanied by a decrease in pS248-mTOR protein expression. Also, Berb mitigated oxidative stress by reducing elevated MDA levels and boosting SOD activity, which in turn suppressed inflammation by down-regulating HMGB1 and RAGE gene expression, as well as reducing pS536-NF-κB and IL-6 protein contents. Additionally, Berb reduced apoptosis by increasing Bcl-2 and decreasing Bax. This coordinated action preserved kidney function, evidenced by reductions in early injury markers (cystatin C, KIM-1, NGAL) and late markers (creatinine, BUN), along with attenuation of histopathological alterations. The use 3-MA, autophagy inhibitor, nullified these protective effects, highlighting Berb's role in promoting autophagy, reducing oxidative stress, inflammation, and apoptosis, and preserving renal health in Cisp-induced AKI.
Collapse
Affiliation(s)
- Tasneem M Salah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt.
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| |
Collapse
|
5
|
Gelles JD, Chen Y, Luna-Vargas MPA, Follis AV, Bayiokos SG, Mohammed JN, Sebastian TM, Al Noman MA, Pham ND, Shi Y, Kriwacki RW, Chipuk JE. A gated hydrophobic funnel within BAX binds long-chain alkenals to potentiate pro-apoptotic function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630122. [PMID: 39763924 PMCID: PMC11703243 DOI: 10.1101/2024.12.23.630122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Mitochondria maintain a biochemical environment that cooperates with BH3-only proteins (e.g., BIM) to potentiate BAX activation, the key event to initiate physiological and pharmacological forms of apoptosis. The sphingosine-1-phosphate metabolite 2-trans-hexadecenal (2t-hexadecenal) is one such component described to support BAX activation, but molecular mechanisms remain largely unknown. Here, we utilize complementary biochemical and biophysical techniques to reveal that 2t-hexadecenal non-covalently interacts with BAX, and cooperates with BIM to stimulate early-activation steps of monomeric BAX. Integrated structural and computational approaches reveal 2t-hexadecenal binds an undefined region - a hydrophobic cavity formed by core-facing residues of α5, α6, and gated by α8 - we now term the "BAX actuating funnel" (BAF). We define alkenal length and α8 mobility as critical determinants for 2t-hexadecenal synergy with BIM and BAX, and demonstrate that proline 168 allosterically regulates BAF function. Collectively, this work imparts detailed molecular insights advancing our fundamental knowledge of BAX regulation and identifies a regulatory region with implications for biological and therapeutic opportunities.
Collapse
Affiliation(s)
- Jesse D. Gelles
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Yiyang Chen
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Mark P. A. Luna-Vargas
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Ariele Viacava Follis
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Stella G. Bayiokos
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Jarvier N. Mohammed
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Tara M. Sebastian
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - M. Abdullah Al Noman
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Ngoc Dung Pham
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Yi Shi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, Tennessee 38105, USA
| | - Jerry E. Chipuk
- Laboratory of Mitochondrial Biology in Human Health and Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
- The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029, USA
| |
Collapse
|
6
|
Pebam M, Khatun S, Ali MS, Srivastava A, Rengan AK. Self-assembled IR dye/mitoxantrone loaded Porphysomes nanosystem for enhanced combinatorial chemo-photothermal cancer therapy. Colloids Surf B Biointerfaces 2024; 241:113985. [PMID: 38838443 DOI: 10.1016/j.colsurfb.2024.113985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Chemo-photothermal therapy (PTT) is an emerging non-invasive cancer treatment modality. Light-responsive porphysomes (DPP IR Mtx @Lipo NPs) nanosystems ablate breast cancer cells upon oxidative stress and hyperthermia. The unique self-assembled porphysomes were formed spherical shape in the size range of 150 ± 30 nm formed by the co-assembly of porphyrins along with IR 775 and chemotherapeutic drug, Mitoxantrone (Mtx), forming a camouflaged nanosystem (DPP IR Mtx @Lipo NPs, porphysomes). The advent of the prepared porphysomes aids in proper tuning of NIR absorbance improving singlet oxygen species generation among other anticancer drugs. The eminent release of DPP and adjuvant chemo-drug, Mitoxantrone from the self-assembled porphysomes is triggered by IR 775, a NIR photosensitizer upon laser irradiation. These multifunctional DPP IR Mtx @Lipo NPs have an efficient photothermal conversion efficiency of 65.8% as well as bioimaging properties. In-vitro studies in 2D and 3D models showed a significant cell death of 4T1 cells via the apoptotic pathway when irradiated with NIR laser, causing minimal damage to nearby healthy cells. DPP IR Mtx @Lipo NPs exhibited commingled PDT/PTT interdependent via NIR laser exposure, leading to mitochondrial disruption. Interestingly, the transient transfection using p53-GFP in cancer cells followed by DPP IR Mtx @Lipo NPs treatment causes rapid cell death. The activation of p53-dependent apoptosis pathways was vividly expressed, evidenced by the upregulation of Bax and increased pattern of Caspase-3 cleavage. This effect was pronounced upon transfection and induction with DPP IR Mtx @Lipo NPs, particularly in comparison to non-transfected malignant breast cancer 4T1 cells.
Collapse
Affiliation(s)
- Monika Pebam
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Aditya Srivastava
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502284, India.
| |
Collapse
|
7
|
McHenry MW, Shi P, Camara CM, Cohen DT, Rettenmaier TJ, Adhikary U, Gygi MA, Yang K, Gygi SP, Wales TE, Engen JR, Wells JA, Walensky LD. Covalent inhibition of pro-apoptotic BAX. Nat Chem Biol 2024; 20:1022-1032. [PMID: 38233584 PMCID: PMC11252247 DOI: 10.1038/s41589-023-01537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
BCL-2-associated X protein (BAX) is a promising therapeutic target for activating or restraining apoptosis in diseases of pathologic cell survival or cell death, respectively. In response to cellular stress, BAX transforms from a quiescent cytosolic monomer into a toxic oligomer that permeabilizes the mitochondria, releasing key apoptogenic factors. The mitochondrial lipid trans-2-hexadecenal (t-2-hex) sensitizes BAX activation by covalent derivatization of cysteine 126 (C126). In this study, we performed a disulfide tethering screen to discover C126-reactive molecules that modulate BAX activity. We identified covalent BAX inhibitor 1 (CBI1) as a compound that selectively derivatizes BAX at C126 and inhibits BAX activation by triggering ligands or point mutagenesis. Biochemical and structural analyses revealed that CBI1 can inhibit BAX by a dual mechanism of action: conformational constraint and competitive blockade of lipidation. These data inform a pharmacologic strategy for suppressing apoptosis in diseases of unwanted cell death by covalent targeting of BAX C126.
Collapse
Affiliation(s)
- Matthew W McHenry
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Peiwen Shi
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christina M Camara
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel T Cohen
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - T Justin Rettenmaier
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Utsarga Adhikary
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Micah A Gygi
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ka Yang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - James A Wells
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Loren D Walensky
- Department of Pediatric Oncology and Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
8
|
Du Y, Zhao X, He F, Gong H, Yang J, Wu L, Cui X, Gai S, Yang P, Lin J. A Vacancy-Engineering Ferroelectric Nanomedicine for Cuproptosis/Apoptosis Co-Activated Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403253. [PMID: 38703184 DOI: 10.1002/adma.202403253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/14/2024] [Indexed: 05/06/2024]
Abstract
Low efficacy of immunotherapy due to the poor immunogenicity of most tumors and their insufficient infiltration by immune cells highlights the importance of inducing immunogenic cell death and activating immune system for achieving better treatment outcomes. Herein, ferroelectric Bi2CuO4 nanoparticles with rich copper vacancies (named BCO-VCu) are rationally designed and engineered for ferroelectricity-enhanced apoptosis, cuproptosis, and the subsequently evoked immunotherapy. In this structure, the suppressed recombination of the electron-hole pairs by the vacancies and the band bending by the ferroelectric polarization lead to high catalytic activity, triggering reactive oxygen species bursts and inducing apoptosis. The cell fragments produced by apoptosis serve as antigens to activate T cells. Moreover, due to the generated charge by the ferroelectric catalysis, this nanomedicine can act as "a smart switch" to open the cell membrane, promote nanomaterial endocytosis, and shut down the Cu+ outflow pathway to evoke cuproptosis, and thus a strong immune response is triggered by the reduced content of adenosine triphosphate. Ribonucleic acid transcription tests reveal the pathways related to immune response activation. Thus, this study firstly demonstrates a feasible strategy for enhancing the efficacy of immunotherapy using single ferroelectric semiconductor-induced apoptosis and cuproptosis.
Collapse
Affiliation(s)
- Yaqian Du
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xudong Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Haijiang Gong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jiani Yang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150001, P. R. China
| | - Linzhi Wu
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xianchang Cui
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
9
|
Miller MS, Cowan AD, Brouwer JM, Smyth ST, Peng L, Wardak AZ, Uren RT, Luo C, Roy MJ, Shah S, Tan Z, Reid GE, Colman PM, Czabotar PE. Sequence differences between BAX and BAK core domains manifest as differences in their interactions with lipids. FEBS J 2024; 291:2335-2353. [PMID: 38088212 DOI: 10.1111/febs.17031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
The B-cell lymphoma 2 (BCL2) family members, BCL2-associated protein X (BAX) and BCL2 homologous antagonist killer (BAK), are required for programmed cell death via the mitochondrial pathway. When cells are stressed, damaged or redundant, the balance of power between the BCL2 family of proteins shifts towards BAX and BAK, allowing their transition from an inactive, monomeric state to a membrane-active oligomeric form that releases cytochrome c from the mitochondrial intermembrane space. That oligomeric state has an essential intermediate, a symmetric homodimer of BAX or BAK. Here we describe crystal structures of dimers of the core domain of BAX, comprising its helices α2-α5. These structures provide an atomic resolution description of the interactions that drive BAX homo-dimerisation and insights into potential interaction between core domain dimers and membrane lipids. The previously identified BAK lipid-interacting sites are not conserved with BAX and are likely to determine the differences between them in their interactions with lipids. We also describe structures of heterodimers of BAK/BAX core domains, yielding further insight into the differences in lipid binding between BAX and BAK.
Collapse
Affiliation(s)
- Michelle S Miller
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Angus D Cowan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Jason M Brouwer
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Sean T Smyth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Liuyu Peng
- School of Chemistry, University of Melbourne, Parkville, Vic., Australia
| | - Ahmad Z Wardak
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Rachel T Uren
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Cindy Luo
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
| | - Michael J Roy
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Sayali Shah
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Ziwen Tan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Gavin E Reid
- School of Chemistry, University of Melbourne, Parkville, Vic., Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Vic., Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Vic., Australia
| | - Peter M Colman
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia
- Department of Medical Biology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
10
|
Zhang W, Zhuang S, Guan H, Li F, Zou H, Li D. New insights into the anti-apoptotic mechanism of natural polyphenols in complex with Bax protein. J Biomol Struct Dyn 2024; 42:3081-3093. [PMID: 37184126 DOI: 10.1080/07391102.2023.2212066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/01/2023] [Indexed: 05/16/2023]
Abstract
Excessive apoptosis can kill normal cells and lead to liver damage, heart failure and neurodegenerative diseases. Polyphenols are secondary metabolites of plants that can interact with proteins to inhibit toxins and disease-related apoptosis. Bax is the major pro-apoptotic protein that disrupts the outer mitochondrial membrane to induce apoptosis, but limited studies have focused on the interaction between polyphenols and Bax and the associated anti-apoptotic mechanisms, especially at the atomic level. In this article, we collected 69 common polyphenols for active ingredient screening targeting Bax. Polyphenols with better and worse molecular docking scores were selected, and their anti-apoptosis effects were compared using the H2O2-induced HepG2 cell model. The interactions between the selected polyphenols and Bax protein were analyzed using molecular dynamics simulation to explore the molecular mechanism underlying the anti-apoptosis effect. Secoisolariciresinol diglucoside (SDG) and Epigallocatechin-3-gallate (EGCG) with the best affinity for Bax (-6.76 and -6.52 kcal/mol) reduced the expression of cytochrome c and caspase 3, decreasing the apoptosis rate from 52 to 11% and 12%. Molecular dynamics simulation results showed that Bim unfolded the α1-α2 loop of Bax, and disrupted the non-bond interactions between the loop (Pro-43, Glu-44 and Leu-45) and surface (Ile-133, Arg-134 and Met-137) residues, with binding free energy changed from -15.0 to 0 kJ/mol. The hydrogen bonds and van der Waals interactions formed between polyphenols and Bax prevented the unfolding of the loop. Taken together, our results proved that polyphenols can inhibit apoptosis by maintaining the unactivated conformation of Bax to reduce outer mitochondrial membrane damage.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wenyuan Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, China
| | | | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, China
| | - Hui Zou
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian, China
| | - Dapeng Li
- Qingdao Institute for Food and Drug Control, Qingdao, China
| |
Collapse
|
11
|
Luan Y, Luan Y, Jiao Y, Liu H, Huang Z, Feng Q, Pei J, Yang Y, Ren K. Broadening Horizons: Exploring mtDAMPs as a Mechanism and Potential Intervention Target in Cardiovascular Diseases. Aging Dis 2023; 15:2395-2416. [PMID: 38270118 PMCID: PMC11567272 DOI: 10.14336/ad.2023.1130] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
Cardiovascular diseases (CVDs) have been recognized as the leading cause of premature mortality and morbidity worldwide despite significant advances in therapeutics. Inflammation is a key factor in CVD progression. Once stress stimulates cells, they release cellular compartments known as damage-associated molecular patterns (DAMPs). Mitochondria can release mitochondrial DAMPs (mtDAMPs) to initiate an immune response when stimulated with cellular stress. Investigating the molecular mechanisms underlying the DAMPs that regulate CVD progression is crucial for improving CVDs. Herein, we discuss the composition and mechanism of DAMPs, the significance of mtDAMPs in cellular inflammation, the presence of mtDAMPs in different types of cells, and the main signaling pathways associated with mtDAMPs. Based on this, we determined the role of DAMPs in CVDs and the effects of mtDAMP intervention on CVD progression. By offering a fresh perspective and comprehensive insights into the molecular mechanisms of DAMPs, this review seeks to provide important theoretical foundations for developing drugs targeting CVDs.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ying Luan
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
| | - Yuxue Jiao
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.
| | - Zhen Huang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.
| | - Qi Feng
- Department ofIntegrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jinyan Pei
- Quality Management Department, The Third People’s Hospital of Henan Provine, Zhengzhou, China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
12
|
Rouchidane Eyitayo A, Boudier-Lemosquet A, Chaignepain S, Priault M, Manon S. Bcl-xL Is Spontaneously Inserted into Preassembled Nanodiscs and Stimulates Bax Insertion in a Cell-Free Protein Synthesis System. Biomolecules 2023; 13:876. [PMID: 37371456 DOI: 10.3390/biom13060876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
The antiapoptotic protein Bcl-xL is a major regulator of cell death and survival, but many aspects of its functions remain elusive. It is mostly localized in the mitochondrial outer membrane (MOM) owing to its C-terminal hydrophobic α-helix. In order to gain further information about its membrane organization, we set up a model system combining cell-free protein synthesis and nanodisc insertion. We found that, contrary to its proapoptotic partner Bax, neosynthesized Bcl-xL was spontaneously inserted into nanodiscs. The deletion of the C-terminal α-helix of Bcl-xL prevented nanodisc insertion. We also found that nanodisc insertion protected Bcl-xL against the proteolysis of the 13 C-terminal residues that occurs during expression of Bcl-xL as a soluble protein in E. coli. Interestingly, we observed that Bcl-xL increased the insertion of Bax into nanodiscs, in a similar way to that which occurs in mitochondria. Cell-free synthesis in the presence of nanodiscs is, thus, a suitable model system to study the molecular aspects of the interaction between Bcl-xL and Bax during their membrane insertion.
Collapse
Affiliation(s)
- Akandé Rouchidane Eyitayo
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
| | - Axel Boudier-Lemosquet
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
| | - Stéphane Chaignepain
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
- Centre de Génomique Fonctionnelle de Bordeaux, Université de Bordeaux, 33077 Bordeaux, France
| | - Muriel Priault
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, Université de Bordeaux, CNRS, UMR 5095, 33077 Bordeaux, France
| |
Collapse
|
13
|
Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat Rev Mol Cell Biol 2022; 24:312-333. [PMID: 36543934 DOI: 10.1038/s41580-022-00564-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Regulated cell death (RCD) relies on activation and recruitment of pore-forming proteins (PFPs) that function as executioners of specific cell death pathways: apoptosis regulator BAX (BAX), BCL-2 homologous antagonist/killer (BAK) and BCL-2-related ovarian killer protein (BOK) for apoptosis, gasdermins (GSDMs) for pyroptosis and mixed lineage kinase domain-like protein (MLKL) for necroptosis. Inactive precursors of PFPs are converted into pore-forming entities through activation, membrane recruitment, membrane insertion and oligomerization. These mechanisms involve protein-protein and protein-lipid interactions, proteolytic processing and phosphorylation. In this Review, we discuss the structural rearrangements incurred by RCD-related PFPs and describe the mechanisms that manifest conversion from autoinhibited to membrane-embedded molecular states. We further discuss the formation and maturation of membrane pores formed by BAX/BAK/BOK, GSDMs and MLKL, leading to diverse pore architectures. Lastly, we highlight commonalities and differences of PFP mechanisms involving BAX/BAK/BOK, GSDMs and MLKL and conclude with a discussion on how, in a population of challenged cells, the coexistence of cell death modalities may have profound physiological and pathophysiological implications.
Collapse
|
14
|
Fatty acid-binding proteins 3 and 5 are involved in the initiation of mitochondrial damage in ischemic neurons. Redox Biol 2022; 59:102547. [PMID: 36481733 PMCID: PMC9727700 DOI: 10.1016/j.redox.2022.102547] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
We have previously shown that a fatty acid-binding protein7 (FABP7) inhibitor ameliorates cerebral ischemia-reperfusion injury in mice, suggesting an association between FABPs and ischemic neuronal injury. However, the precise role of FABPs in ischemic neuronal injury remains unclear. In this study, we investigated the role of FABPs in ischemia-reperfusion neuronal injury. FABP3, FABP5, and FABP7 were upregulated in the ischemic penumbra regions in mice. However, only FABP3 and FABP5 were expressed in injured neurons. Furthermore, FABP3 and FABP5 accumulated in the mitochondria of ischemic neurons. Overexpressing either FABP3 or FABP5 aggravated the reduced mitochondrial membrane potential and induced cell death in human neuroblastoma SH-SY5Y cells during oxidative stress. This damage was mediated by the formation of BAX-containing pores in the mitochondrial membrane. Moreover, FABP5 mediates lipid peroxidation and generates toxic by-products (i.e., 4-HNE) in SH-SY5Y cells. HY11-08 (HY08), a novel FABP3 and 5 inhibitor that does not act on FABP7, significantly reduced cerebral infarct volume and blocked FABP3/5-induced mitochondrial damage, including lipid peroxidation and BAX-related apoptotic signaling. Thus, FABP3 and FABP5 are key players in triggering mitochondrial damage in ischemic neurons. In addition, the novel FABP inhibitor, HY08, may be a potential neuroprotective treatment for ischemic stroke.
Collapse
|
15
|
Gahl RF. Expanding the Biological Importance of Protein Structures: Insight into Dynamic Biological Function from Protein Folding Theory Analyses. J Phys Chem B 2022; 126:6438-6445. [PMID: 35984908 DOI: 10.1021/acs.jpcb.2c04581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While recent developments in the determination of the three-dimensional structure of proteins have rapidly progressed, there remains a difficult challenge of studying proteins that exhibit dynamic behavior as part of their biological functions in environments considerably different than how their three-dimensional structure was determined. This study investigates the dynamic behavior of Bax, a member of the Bcl-2 family of proteins, during the regulation of apoptosis in the context of its published three-dimensional structure. The location of Bax in live cells is an equilibrium between the cytosol and outer-mitochondrial membrane. However, the regions of Bax that have been determined to be responsible for this equilibrium are shown to be inaccessible to engage in these interactions, namely, the C-terminal helix, according to the solved three-dimensional structure. Therefore, the analyses that have been applied to identify chain folding initiation sites (CFIS) and propose unfolding pathways have also been applied to the three-dimensional structure of Bax to provide a rationale for how Bax can engage in the dynamic behavior that is part of its biological function. The analyses identified regions in Bax that contribute to its stability and regions that could be susceptible to conformational changes, including the C-terminal helix, and, consequently, dynamic behavior. Experimental observations confirmed the classification of these regions. Consequently, the utilization of methods to identify CFIS on three-dimensional structures can be an effective tool to help expand our knowledge about the biological function of proteins that exhibit dynamic behavior.
Collapse
Affiliation(s)
- Robert F Gahl
- Division of Extramural Activities, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20850, United States
| |
Collapse
|
16
|
Prew MS, Camara CM, Botzanowski T, Moroco JA, Bloch NB, Levy HR, Seo HS, Dhe-Paganon S, Bird GH, Herce HD, Gygi MA, Escudero S, Wales TE, Engen JR, Walensky LD. Structural basis for defective membrane targeting of mutant enzyme in human VLCAD deficiency. Nat Commun 2022; 13:3669. [PMID: 35760926 PMCID: PMC9237092 DOI: 10.1038/s41467-022-31466-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/17/2022] [Indexed: 12/03/2022] Open
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) is an inner mitochondrial membrane enzyme that catalyzes the first and rate-limiting step of long-chain fatty acid oxidation. Point mutations in human VLCAD can produce an inborn error of metabolism called VLCAD deficiency that can lead to severe pathophysiologic consequences, including cardiomyopathy, hypoglycemia, and rhabdomyolysis. Discrete mutations in a structurally-uncharacterized C-terminal domain region of VLCAD cause enzymatic deficiency by an incompletely defined mechanism. Here, we conducted a structure-function study, incorporating X-ray crystallography, hydrogen-deuterium exchange mass spectrometry, computational modeling, and biochemical analyses, to characterize a specific membrane interaction defect of full-length, human VLCAD bearing the clinically-observed mutations, A450P or L462P. By disrupting a predicted α-helical hairpin, these mutations either partially or completely impair direct interaction with the membrane itself. Thus, our data support a structural basis for VLCAD deficiency in patients with discrete mutations in an α-helical membrane-binding motif, resulting in pathologic enzyme mislocalization.
Collapse
Affiliation(s)
- Michelle S. Prew
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Christina M. Camara
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Thomas Botzanowski
- grid.261112.70000 0001 2173 3359Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA USA
| | - Jamie A. Moroco
- grid.261112.70000 0001 2173 3359Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA USA
| | - Noah B. Bloch
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Hannah R. Levy
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Hyuk-Soo Seo
- grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Sirano Dhe-Paganon
- grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Gregory H. Bird
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Henry D. Herce
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Micah A. Gygi
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Silvia Escudero
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Thomas E. Wales
- grid.261112.70000 0001 2173 3359Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA USA
| | - John R. Engen
- grid.261112.70000 0001 2173 3359Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA USA
| | - Loren D. Walensky
- grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA ,grid.65499.370000 0001 2106 9910Linde Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, MA USA
| |
Collapse
|
17
|
Physiological and pharmacological modulation of BAX. Trends Pharmacol Sci 2022; 43:206-220. [PMID: 34848097 PMCID: PMC8840970 DOI: 10.1016/j.tips.2021.11.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 01/29/2023]
Abstract
Bcl-2-associated X protein (BAX) is a critical executioner of mitochondrial regulated cell death through its lethal activity of permeabilizing the mitochondrial outer membrane (MOM). While the physiological function of BAX ensures tissue homeostasis, dysregulation of BAX leads to aberrant cell death. Despite BAX being a promising therapeutic target for human diseases, historically the development of drugs has focused on antiapoptotic BCL-2 proteins, due to challenges in elucidating the mechanism of BAX activation and identifying druggable surfaces of BAX. Here, we discuss recent studies that have provided structure-function insights and identified regulatory surfaces that control BAX activation. Moreover, we emphasize the development of small molecule orthosteric, allosteric, and oligomerization modulators that provide novel opportunities for biological investigation and progress towards drugging BAX.
Collapse
|
18
|
Erekat NS. Apoptosis and its therapeutic implications in neurodegenerative diseases. Clin Anat 2021; 35:65-78. [PMID: 34558138 DOI: 10.1002/ca.23792] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative disorders are characterized by progressive loss of particular populations of neurons. Apoptosis has been implicated in the pathogenesis of neurodegenerative diseases, including Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis. In this review, we focus on the existing notions relevant to comprehending the apoptotic death process, including the morphological features, mediators and regulators of cellular apoptosis. We also highlight the evidence of neuronal apoptotic death in Parkinson disease, Alzheimer disease, Huntington disease, and amyotrophic lateral sclerosis. Additionally, we present evidence of potential therapeutic agents that could modify the apoptotic pathway in the aforementioned neurodegenerative diseases and delay disease progression. Finally, we review the clinical trials that were conducted to evaluate the use of anti-apoptotic drugs in the treatment of the aforementioned neurodegenerative diseases, in order to highlight the essential need for early detection and intervention of neurodegenerative diseases in humans.
Collapse
Affiliation(s)
- Nour S Erekat
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|