1
|
Yu Y, Koyama Y, Shimada S. Development of the thermoregulatory mechanism - Raising the possibility that it is acquired at birth. Neuroscience 2025:S0306-4522(25)00337-9. [PMID: 40345478 DOI: 10.1016/j.neuroscience.2025.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/11/2025]
Abstract
Whether the human thermoregulation mechanism in response to environmental temperature stimuli originates from learning or evolution remains an intriguing research question. Body temperature regulation depends not only on innate temperature sensation but also on acquired conditioning. Maintaining body temperature is essential for homeostasis, and the brain coordinates this process through a network of interconnected regulatory systems. In this review, we discuss how humans perceive temperature and establish thermoregulatory mechanisms at birth. We also propose an acquired connectivity structure perspective for the development of neonatal thermoregulatory mechanisms, particularly for brown adipose tissue thermogenesis. This perspective will enhance our understanding of the various acquired mechanisms of thermoregulation and adaptation to environmental temperature. Ultimately, this knowledge may contribute to the development of effective interventions for thermal balance disruptions, such as neonatal hypothermia.
Collapse
Affiliation(s)
- Yong Yu
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan; School of Clinical and Basic Medicine, Shandong First Medical University &Shandong Academy of Medical Sciences, Jinan, China; Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita 565-0871, Japan.
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
2
|
Gao Y, Zhang J, Cao M, Zhang Y, Cao M, Gu W, Wang M. MDPAO1 peptide from human milk enhances brown adipose tissue thermogenesis and mitigates obesity. Mol Cell Endocrinol 2025; 597:112443. [PMID: 39710295 DOI: 10.1016/j.mce.2024.112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/19/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
The regulatory effect of breastfeeding on offspring metabolism has garnered significant attention as an effective strategy in combating childhood obesity. However, the underlying mechanism remains largely unknown. Through integrated analysis of multiple human milk peptide databases and functional screening, MDPAO1 (milk-derived peptide associated with obesity 1) was identified as having potential activity in promoting the expression of thermogenic genes. In lactating mice, intervention with MDPAO1 enhanced the thermogenic phenotype of brown adipose tissue (BAT) and overall metabolic activity. Moreover, MDPAO1 intervention led to reduced body weight gain, increased brown fat mass, and improved glucose tolerance and insulin sensitivity in a mouse model of high-fat diet (HFD)-induced obesity. RNA-seq analysis of BAT post-MDPAO1 intervention revealed close association with mitochondrial oxidative respiratory chain and mitophagy. Subsequent in vitro experiments conducted on primary brown adipocytes confirmed that MDPAO1 inhibited mitophagy, increased mitochondrial mass, and elevated levels of mitochondrial respiratory chain complexes. In conclusion, this study underscores the potential of MDPAO1, a peptide enriched in breast milk, in activating the thermogenic phenotype of brown adipose tissue and mitigating obesity, thus offering novel insights into the mechanisms underlying breastfeeding's role in preventing childhood obesity.
Collapse
Affiliation(s)
- Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China
| | - Jiahui Zhang
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China
| | - Mengda Cao
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210044, China
| | - Yiting Zhang
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China; Department of Neonatology, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China
| | - Minkai Cao
- Department of Obstetrics and Gynecology, Affiliated Women's Hospital of Jiangnan University ,Wuxi Maternity and Child Health Care Hospital, Wuxi 214002, China.
| | - Wei Gu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| | - Mingxin Wang
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China; Department of Neonatology, Affiliated Children's Hospital of Jiangnan University, Wuxi Children's Hospital, Wuxi, 214023, China.
| |
Collapse
|
3
|
Flanagan EW, Redman LM. Early Life Energy Balance: The Development of Infant Energy Expenditure and Intake in the Context of Obesity. Curr Obes Rep 2024; 13:743-754. [PMID: 39443348 DOI: 10.1007/s13679-024-00591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide a summary of the current knowledge on measurement tools and most recent evidence for prenatal and postnatal modulators of energy balance in young infants. RECENT FINDINGS The prevention of pediatric obesity depends upon curating the perfect imbalance of energy intake to energy expenditure, taking into consideration the energy needs for healthy growth. We summarize the recent evidence for the programming of fetal and infant metabolism influenced by maternal preconception health, prenatal metabolic milieu, and physical activity behaviors. In the early postnatal environment, caregiver feeding behaviors shape the extent of energy imbalance through dictating quantity and modality of infant energy intake. There are biological and behavioral contributors to improper infant energy imbalance. Furthermore, caregiver and clinician education on overfeeding and clinical tools to prescribe and monitor infant overgrowth are absent. Ultimately, the lack of high-quality and modern research of infant energy expenditure underpins the lack of advancement in clinical guidelines and the needed prevention of pediatric obesity.
Collapse
Affiliation(s)
- Emily W Flanagan
- Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA.
| | - Leanne M Redman
- Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| |
Collapse
|
4
|
Rogers JF, Vandendoren M, Prather JF, Landen JG, Bedford NL, Nelson AC. Neural cell-types and circuits linking thermoregulation and social behavior. Neurosci Biobehav Rev 2024; 161:105667. [PMID: 38599356 PMCID: PMC11163828 DOI: 10.1016/j.neubiorev.2024.105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Understanding how social and affective behavioral states are controlled by neural circuits is a fundamental challenge in neurobiology. Despite increasing understanding of central circuits governing prosocial and agonistic interactions, how bodily autonomic processes regulate these behaviors is less resolved. Thermoregulation is vital for maintaining homeostasis, but also associated with cognitive, physical, affective, and behavioral states. Here, we posit that adjusting body temperature may be integral to the appropriate expression of social behavior and argue that understanding neural links between behavior and thermoregulation is timely. First, changes in behavioral states-including social interaction-often accompany changes in body temperature. Second, recent work has uncovered neural populations controlling both thermoregulatory and social behavioral pathways. We identify additional neural populations that, in separate studies, control social behavior and thermoregulation, and highlight their relevance to human and animal studies. Third, dysregulation of body temperature is linked to human neuropsychiatric disorders. Although body temperature is a "hidden state" in many neurobiological studies, it likely plays an underappreciated role in regulating social and affective states.
Collapse
Affiliation(s)
- Joseph F Rogers
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Morgane Vandendoren
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Jonathan F Prather
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Jason G Landen
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA
| | - Nicole L Bedford
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA
| | - Adam C Nelson
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, USA; University of Wyoming Sensory Biology Center, USA.
| |
Collapse
|
5
|
Liu Y, Qian SW, Tang Y, Tang QQ. The secretory function of adipose tissues in metabolic regulation. LIFE METABOLISM 2024; 3:loae003. [PMID: 39872218 PMCID: PMC11748999 DOI: 10.1093/lifemeta/loae003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2025]
Abstract
In addition to their pivotal roles in energy storage and expenditure, adipose tissues play a crucial part in the secretion of bioactive molecules, including peptides, lipids, metabolites, and extracellular vesicles, in response to physiological stimulation and metabolic stress. These secretory factors, through autocrine and paracrine mechanisms, regulate various processes within adipose tissues. These processes include adipogenesis, glucose and lipid metabolism, inflammation, and adaptive thermogenesis, all of which are essential for the maintenance of the balance and functionality of the adipose tissue micro-environment. A subset of these adipose-derived secretory factors can enter the circulation and target the distant tissues to regulate appetite, cognitive function, energy expenditure, insulin secretion and sensitivity, gluconeogenesis, cardiovascular remodeling, and exercise capacity. In this review, we highlight the role of adipose-derived secretory factors and their signaling pathways in modulating metabolic homeostasis. Furthermore, we delve into the alterations in both the content and secretion processes of these factors under various physiological and pathological conditions, shedding light on potential pharmacological treatment strategies for related diseases.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shu-Wen Qian
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Ghesmati Z, Rashid M, Fayezi S, Gieseler F, Alizadeh E, Darabi M. An update on the secretory functions of brown, white, and beige adipose tissue: Towards therapeutic applications. Rev Endocr Metab Disord 2024; 25:279-308. [PMID: 38051471 PMCID: PMC10942928 DOI: 10.1007/s11154-023-09850-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Adipose tissue, including white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue, is vital in modulating whole-body energy metabolism. While WAT primarily stores energy, BAT dissipates energy as heat for thermoregulation. Beige adipose tissue is a hybrid form of adipose tissue that shares characteristics with WAT and BAT. Dysregulation of adipose tissue metabolism is linked to various disorders, including obesity, type 2 diabetes, cardiovascular diseases, cancer, and infertility. Both brown and beige adipocytes secrete multiple molecules, such as batokines, packaged in extracellular vesicles or as soluble signaling molecules that play autocrine, paracrine, and endocrine roles. A greater understanding of the adipocyte secretome is essential for identifying novel molecular targets in treating metabolic disorders. Additionally, microRNAs show crucial roles in regulating adipose tissue differentiation and function, highlighting their potential as biomarkers for metabolic disorders. The browning of WAT has emerged as a promising therapeutic approach in treating obesity and associated metabolic disorders. Many browning agents have been identified, and nanotechnology-based drug delivery systems have been developed to enhance their efficacy. This review scrutinizes the characteristics of and differences between white, brown, and beige adipose tissues, the molecular mechanisms involved in the development of the adipocytes, the significant roles of batokines, and regulatory microRNAs active in different adipose tissues. Finally, the potential of WAT browning in treating obesity and atherosclerosis, the relationship of BAT with cancer and fertility disorders, and the crosstalk between adipose tissue with circadian system and circadian disorders are also investigated.
Collapse
Affiliation(s)
- Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rashid
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shabnam Fayezi
- Department of Gynecologic Endocrinology and Fertility Disorders, Women's Hospital, Ruprecht-Karls University of Heidelberg, Heidelberg, Germany
| | - Frank Gieseler
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Darabi
- Division of Experimental Oncology, Department of Hematology and Oncology, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538, Lübeck, Germany.
| |
Collapse
|
7
|
Mendez-Gutierrez A, Aguilera CM, Cereijo R, Osuna-Prieto FJ, Martinez-Tellez B, Rico MC, Sanchez-Infantes D, Villarroya F, Ruiz JR, Sanchez-Delgado G. Cold exposure modulates potential brown adipokines in humans, but only FGF21 is associated with brown adipose tissue volume. Obesity (Silver Spring) 2024; 32:560-570. [PMID: 38247441 DOI: 10.1002/oby.23970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 01/23/2024]
Abstract
OBJECTIVE The study objective was to investigate the effect of cold exposure on the plasma levels of five potential human brown adipokines (chemokine ligand 14 [CXCL14], growth differentiation factor 15 [GDF15], fibroblast growth factor 21 [FGF21], interleukin 6 [IL6], and bone morphogenic protein 8b [BMP8b]) and to study whether such cold-induced effects are related to brown adipose tissue (BAT) volume, activity, or radiodensity in young humans. METHODS Plasma levels of brown adipokines were measured before and 1 h and 2 h after starting an individualized cold exposure in 30 young adults (60% women, 21.9 ± 2.3 y; 24.9 ± 5.1 kg/m2 ). BAT volume, 18 F-fluorodeoxyglucose uptake, and radiodensity were assessed by a static positron emission tomography-computerized tomography scan after cold exposure. RESULTS Cold exposure increased the concentration of CXCL14 (Δ2h = 0.58 ± 0.98 ng/mL; p = 0.007), GDF15 (Δ2h = 19.63 ± 46.2 pg/mL; p = 0.013), FGF21 (Δ2h = 33.72 ± 55.13 pg/mL; p = 0.003), and IL6 (Δ1h = 1.98 ± 3.56 pg/mL; p = 0.048) and reduced BMP8b (Δ2h = -37.12 ± 83.53 pg/mL; p = 0.022). The cold-induced increase in plasma FGF21 was positively associated with BAT volume (Δ2h: β = 0.456; R2 = 0.307; p = 0.001), but not with 18 F-fluorodeoxyglucose uptake or radiodensity. None of the changes in the other studied brown adipokines was related to BAT volume, activity, or radiodensity. CONCLUSIONS Cold exposure modulates plasma levels of several potential brown adipokines in humans, whereas only cold-induced changes in FGF21 levels are associated with BAT volume. These findings suggest that human BAT might contribute to the circulatory pool of FGF21.
Collapse
Affiliation(s)
- Andrea Mendez-Gutierrez
- Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
- "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Center of Biomedical Research, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Granada, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Concepcion M Aguilera
- Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
- "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Center of Biomedical Research, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria, Granada, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Rubén Cereijo
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain
| | - Francisco J Osuna-Prieto
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Education, Faculty of Education Sciences and SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| | - Maria C Rico
- Department of Biochemistry and Molecular Biology II, University of Granada, Granada, Spain
- "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Center of Biomedical Research, University of Granada, Granada, Spain
| | - David Sanchez-Infantes
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Health Sciences, Campus Alcorcón, University Rey Juan Carlos (URJC), Madrid, Spain
| | - Francesc Villarroya
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain
| | - Jonatan R Ruiz
- Instituto de Investigación Biosanitaria, Granada, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Guillermo Sanchez-Delgado
- "José Mataix Verdú" Institute of Nutrition and Food Technology (INYTA), Center of Biomedical Research, University of Granada, Granada, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Department of Medicine, Division of Endocrinology, Centre de recherche du Centre Hospitalier de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
8
|
González-Vila A, Luengo-Mateos M, Silveira-Loureiro M, Garrido-Gil P, Ohinska N, González-Domínguez M, Labandeira-García JL, García-Cáceres C, López M, Barca-Mayo O. Astrocytic insulin receptor controls circadian behavior via dopamine signaling in a sexually dimorphic manner. Nat Commun 2023; 14:8175. [PMID: 38071352 PMCID: PMC10710518 DOI: 10.1038/s41467-023-44039-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Mammalian circadian clocks respond to feeding and light cues, adjusting internal rhythms with day/night cycles. Astrocytes serve as circadian timekeepers, driving daily physiological rhythms; however, it's unknown how they ensure precise cycle-to-cycle rhythmicity. This is critical for understanding why mistimed or erratic feeding, as in shift work, disrupts circadian physiology- a condition linked to type 2 diabetes and obesity. Here, we show that astrocytic insulin signaling sets the free-running period of locomotor activity in female mice and food entrainment in male mice. Additionally, ablating the insulin receptor in hypothalamic astrocytes alters cyclic energy homeostasis differently in male and female mice. Remarkably, the mutants exhibit altered dopamine metabolism, and the pharmacological modulation of dopaminergic signaling partially restores distinct circadian traits in both male and female mutant mice. Our findings highlight the role of astrocytic insulin-dopaminergic signaling in conveying time-of-feeding or lighting cues to the astrocyte clock, thus governing circadian behavior in a sex-specific manner.
Collapse
Affiliation(s)
- Antía González-Vila
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Luengo-Mateos
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Silveira-Loureiro
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pablo Garrido-Gil
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Department of Morphological Science, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Nataliia Ohinska
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Marco González-Domínguez
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jose Luis Labandeira-García
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease, Department of Morphological Science, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich & German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Miguel López
- NeurObesity Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Olga Barca-Mayo
- Circadian and Glial Biology Lab, Physiology Department, Molecular Medicine and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Oelkrug R, Harder L, Pedaran M, Hoffmann A, Kolms B, Inderhees J, Gachkar S, Resch J, Johann K, Jöhren O, Krause K, Mittag J. Maternal thyroid hormone receptor β activation in mice sparks brown fat thermogenesis in the offspring. Nat Commun 2023; 14:6742. [PMID: 37875497 PMCID: PMC10597992 DOI: 10.1038/s41467-023-42425-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
It is well established that maternal thyroid hormones play an important role for the developing fetus; however, the consequences of maternal hyperthyroidism for the offspring remain poorly understood. Here we show in mice that maternal 3,3',5-triiodothyronine (T3) treatment during pregnancy leads to improved glucose tolerance in the adult male offspring and hyperactivity of brown adipose tissue (BAT) thermogenesis in both sexes starting early after birth. The activated BAT provides advantages upon cold exposure, reducing the strain on other thermogenic organs like muscle. This maternal BAT programming requires intact maternal thyroid hormone receptor β (TRβ) signaling, as offspring of mothers lacking this receptor display the opposite phenotype. On the molecular level, we identify distinct T3 induced alterations in maternal serum metabolites, including choline, a key metabolite for healthy pregnancy. Taken together, our results connect maternal TRβ activation to the fetal programming of a thermoregulatory phenotype in the offspring.
Collapse
Affiliation(s)
- Rebecca Oelkrug
- Institute for Endocrinology & Diabetes - Molecular Endocrinology, Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Lisbeth Harder
- Institute for Endocrinology & Diabetes - Molecular Endocrinology, Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Mehdi Pedaran
- Institute for Endocrinology & Diabetes - Molecular Endocrinology, Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Straße 27, 04103, Leipzig, Germany
| | - Beke Kolms
- Institute for Endocrinology & Diabetes - Molecular Endocrinology, Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Julica Inderhees
- Bioanalytic Core Facility - Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Sogol Gachkar
- Institute for Endocrinology & Diabetes - Molecular Endocrinology, Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Julia Resch
- Institute for Endocrinology & Diabetes - Molecular Endocrinology, Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Kornelia Johann
- Institute for Endocrinology & Diabetes - Molecular Endocrinology, Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Olaf Jöhren
- Bioanalytic Core Facility - Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Kerstin Krause
- Department of Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Jens Mittag
- Institute for Endocrinology & Diabetes - Molecular Endocrinology, Center of Brain Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
10
|
Luengo-Mateos M, González-Vila A, Vicente Dragano NR, Ohinska N, Silveira-Loureiro M, González-Domínguez M, Estévez-Salguero Á, Novelle-Rodríguez P, López M, Barca-Mayo O. Hypothalamic astrocytic-BMAL1 regulates energy homeostasis in a sex-dependent manner. Cell Rep 2023; 42:112949. [PMID: 37542717 DOI: 10.1016/j.celrep.2023.112949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 06/12/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023] Open
Abstract
Here, we demonstrate that hypothalamic astrocytic BMAL1 computes cyclic metabolic information to optimize energetic resources in a sexually dimorphic manner. Knockdown of BMAL1 in female astrocytes leads to negative energy balance and alters basal metabolic cycles without affecting circadian locomotor activity. Thus, astrocytic BMAL1 contributes to the control of energy balance through the modulation of the metabolic rate, hepatic and white adipose tissue lipogenesis, and the activity of brown adipose tissue. Importantly, most of these alterations are specific to hypothalamic astrocytic BMAL1. Moreover, female mice with BMAL1 knockdown in astrocytes exhibited a "male-like" metabolic obese phenotype when fed a high-fat diet. Overall, our results suggest a sexually dimorphic effect of astrocytic BMAL1 on the regulation of energy homeostasis, which may be of interest in the physiopathology of obesity and related comorbidities.
Collapse
Affiliation(s)
- María Luengo-Mateos
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antía González-Vila
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Nathalia Romanelli Vicente Dragano
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Nataliia Ohinska
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - María Silveira-Loureiro
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marco González-Domínguez
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ánxela Estévez-Salguero
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Paula Novelle-Rodríguez
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Miguel López
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain.
| | - Olga Barca-Mayo
- Physiology Department, Molecular Medicine, and Chronic Diseases Research Centre (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
11
|
Ziqubu K, Dludla PV, Mthembu SXH, Nkambule BB, Mabhida SE, Jack BU, Nyambuya TM, Mazibuko-Mbeje SE. An insight into brown/beige adipose tissue whitening, a metabolic complication of obesity with the multifactorial origin. Front Endocrinol (Lausanne) 2023; 14:1114767. [PMID: 36875450 PMCID: PMC9978510 DOI: 10.3389/fendo.2023.1114767] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Brown adipose tissue (BAT), a thermoregulatory organ known to promote energy expenditure, has been extensively studied as a potential avenue to combat obesity. Although BAT is the opposite of white adipose tissue (WAT) which is responsible for energy storage, BAT shares thermogenic capacity with beige adipose tissue that emerges from WAT depots. This is unsurprising as both BAT and beige adipose tissue display a huge difference from WAT in terms of their secretory profile and physiological role. In obesity, the content of BAT and beige adipose tissue declines as these tissues acquire the WAT characteristics via the process called "whitening". This process has been rarely explored for its implication in obesity, whether it contributes to or exacerbates obesity. Emerging research has demonstrated that BAT/beige adipose tissue whitening is a sophisticated metabolic complication of obesity that is linked to multiple factors. The current review provides clarification on the influence of various factors such as diet, age, genetics, thermoneutrality, and chemical exposure on BAT/beige adipose tissue whitening. Moreover, the defects and mechanisms that underpin the whitening are described. Notably, the BAT/beige adipose tissue whitening can be marked by the accumulation of large unilocular lipid droplets, mitochondrial degeneration, and collapsed thermogenic capacity, by the virtue of mitochondrial dysfunction, devascularization, autophagy, and inflammation.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho, South Africa
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, South Africa
| | - Sinenhlanhla X. H. Mthembu
- Department of Biochemistry, North-West University, Mmabatho, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sihle E. Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Babalwa U. Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Tawanda M. Nyambuya
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | | |
Collapse
|
12
|
Milbank E, Dragano N, Vidal-Gómez X, Rivas-Limeres V, Garrido-Gil P, Wertheimer M, Recoquillon S, Pata MP, Labandeira-Garcia JL, Diéguez C, Nogueiras R, Martínez MC, Andriantsitohaina R, López M. Small extracellular vesicle targeting of hypothalamic AMPKα1 promotes weight loss in leptin receptor deficient mice. Metabolism 2023; 139:155350. [PMID: 36423694 DOI: 10.1016/j.metabol.2022.155350] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Leptin receptor (LEPR) deficiency promotes severe obesity and metabolic disorders. However, the current therapeutic options against this syndrome are scarce. METHODS db/db mice and their wildtypes were systemically treated with neuronal-targeted small extracellular vesicles (sEVs) harboring a plasmid encoding a dominant negative mutant of AMP-activated protein kinase alpha 1 (AMPKα1-DN) driven by steroidogenic factor 1 (SF1) promoter; this approach allowed to modulate AMPK activity, specifically in SF1 cells of the ventromedial nucleus of the hypothalamus (VMH). Animals were metabolically phenotyped. RESULTS db/db mice intravenously injected with SF1-AMPKα1-DN loaded sEVs showed a marked feeding-independent weight loss and decreased adiposity, associated with increased sympathetic tone, brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). CONCLUSION Overall, this evidence indicates that specific modulation of hypothalamic AMPK using a sEV-based technology may be a suitable strategy against genetic forms of obesity, such as LEPR deficiency.
Collapse
Affiliation(s)
- Edward Milbank
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Nathalia Dragano
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Xavi Vidal-Gómez
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France; SOPAM, U1063, INSERM, UNIV Angers, Angers, France
| | - Verónica Rivas-Limeres
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Pablo Garrido-Gil
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease (CiMUS), Department of Morphological Sciences, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | | | - María P Pata
- Biostatech Advice, Training and Innovation in Biostatistics, S.L., Santiago de Compostela 15782, Spain
| | - José Luis Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease (CiMUS), Department of Morphological Sciences, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain
| | - M Carmen Martínez
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France; SOPAM, U1063, INSERM, UNIV Angers, Angers, France
| | - Ramaroson Andriantsitohaina
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France; SOPAM, U1063, INSERM, UNIV Angers, Angers, France.
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), 15706, Spain.
| |
Collapse
|
13
|
Tang J, Tan M, Liao S, Pang M, Li J. Recent progress in the biology and physiology of BMP-8a. Connect Tissue Res 2023; 64:219-228. [PMID: 36594156 DOI: 10.1080/03008207.2022.2160326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE BMP-8a is a member of bone morphogenetic proteins (BMPs) and plays a regulatory role in human growth and development as a transcription regulator. This review aims to summarize the current research on the impact and mechanism of BMP-8a in female and male reproduction, formation and eruption of teeth, bone and cartilage development, tissue differentiation, disease occurrence, progression and prognosis. METHODS The phrases "BMP-8a," "BMPs," "regulator," "mechanism," "osteoblast," "cartilage," "cancer," "disease," and "inflammation" were searched in the PubMed database. The abstracts were evaluated, and a series of original publications and reviews were examined. RESULTS According to the search, BMP-8a affects the development of the uterus by inhibiting luteinization and plays an important role in late spermatogenesis. It is highly expressed in osteogenesis and differentially expressed in chondrogenesis. Furthermore, BMP-8a has a significant impact on the occurrence, development and prognosis of various diseases. CONCLUSIONS BMP-8a regulates important factors and pathways, such as SMAD2/3 and SMAD1/5/8, to promote or inhibit the developmental processes of human reproductive organs. BMP-8a is also a member of the BMP family of proteins that regulates chondrogenesis and osteogenesis. In addition to its osteoinductive capabilities, BMP-8a is involved in the progression of diverse cancers.
Collapse
Affiliation(s)
- Jiawei Tang
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Miao Tan
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Siqi Liao
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Mengwei Pang
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Garcia-Beltran C, Navarro-Gascon A, López-Bermejo A, Quesada-López T, de Zegher F, Ibáñez L, Villarroya F. Meteorin-like levels are associated with active brown adipose tissue in early infancy. Front Endocrinol (Lausanne) 2023; 14:1136245. [PMID: 36936161 PMCID: PMC10018039 DOI: 10.3389/fendo.2023.1136245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
INTRODUCTION Meteorin-like (METRNL) is a hormonal factor released by several tissues, including thermogenically active brown and beige adipose tissues. It exerts multiple beneficial effects on metabolic and cardiovascular systems in experimental models. However, the potential role of METRNL as brown adipokine in humans has not been investigated previously, particularly in relation to the metabolic adaptations taking place in early life, when brown adipose tissue (BAT) is particularly abundant. METHODS AND MATERIALS METRNL levels, as well as body composition (DXA) and circulating endocrine-metabolic variables, were assessed longitudinally in a cohort of infants at birth, and at ages 4 and 12 months. BAT activity was measured by infrared thermography at age 12 months. METRNL levels were also determined cross-sectionally in adults; METRNL gene expression (qRT-PCR) was assessed in BAT and liver samples from neonates, and in adipose tissue and liver samples form adults. Simpson-Golabi-Behmel Syndrome (SGBS) adipose cells were thermogenically activated using cAMP, and METRNL gene expression and METRNL protein released were analysed. RESULTS Serum METRNL levels were high at birth and declined across the first year of life albeit remaining higher than in adulthood. At age 4 and 12 months, METRNL levels correlated positively with circulating C-X-C motif chemokine ligand 14 (CXCL14), a chemokine released by thermogenically active BAT, but not with parameters of adiposity or metabolic status. METRNL levels also correlated positively with infrared thermography-estimated posterior-cervical BAT activity in girls aged 12 months. Gene expression analysis indicated high levels of METRNL mRNA in neonatal BAT. Thermogenic stimulus of brown/beige adipocytes led to a significant increase of METRNL gene expression and METRN protein release to the cell culture medium. CONCLUSION Circulating METRNL levels are high in the first year of life and correlate with indices of BAT activity and with levels of an established brown adipokine such as CXCL14. These data, in addition with the high expression of METRNL in neonatal BAT and in thermogenically-stimulated brown/beige adipocytes, suggest that METRNL is actively secreted by BAT and may be a circulating biomarker of BAT activity in early life.
Collapse
Affiliation(s)
- Cristina Garcia-Beltran
- Research Institute Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Health Institute Carlos III, Madrid, Spain
| | - Artur Navarro-Gascon
- Biochemistry and Molecular Biomedicine Department, Biomedicine Institute, University of Barcelona, Barcelona, Spain
- Network Biomedical Research Center of Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, Madrid, Spain
| | - Abel López-Bermejo
- Department of Pediatrics, Dr. Josep Trueta Hospital, Girona, Spain
- Department of Medical Sciences, Faculty of Medicine, University of Girona, Girona, Spain
| | - Tania Quesada-López
- Biochemistry and Molecular Biomedicine Department, Biomedicine Institute, University of Barcelona, Barcelona, Spain
- Network Biomedical Research Center of Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, Madrid, Spain
| | - Francis de Zegher
- Leuven Research and Development, University of Leuven, Leuven, Belgium
| | - Lourdes Ibáñez
- Research Institute Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Health Institute Carlos III, Madrid, Spain
| | - Francesc Villarroya
- Research Institute Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Biomedicine Department, Biomedicine Institute, University of Barcelona, Barcelona, Spain
- Network Biomedical Research Center of Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Sahu B, Bal NC. Adipokines from white adipose tissue in regulation of whole body energy homeostasis. Biochimie 2023; 204:92-107. [PMID: 36084909 DOI: 10.1016/j.biochi.2022.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Diseases originating from altered energy homeostasis including obesity, and type 2 diabetes are rapidly increasing worldwide. Research in the last few decades on animal models and humans demonstrates that the white adipose tissue (WAT) is critical for energy balance and more than just an energy storage site. WAT orchestrates the whole-body metabolism through inter-organ crosstalk primarily mediated by cytokines named "Adipokines". The adipokines influence metabolism and fuel selection of the skeletal muscle and liver thereby fine-tuning the load on WAT itself in physiological conditions like starvation, exercise and cold. In addition, adipokine secretion is influenced by various pathological conditions like obesity, inflammation and diabetes. In this review, we have surveyed the current state of knowledge on important adipokines and their significance in regulating energy balance and metabolic diseases. Furthermore, we have summarized the interplay of pro-inflammatory and anti-inflammatory adipokines in the modulation of pathological conditions.
Collapse
Affiliation(s)
- Bijayashree Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
16
|
Rial-Pensado E, Rivas-Limeres V, Grijota-Martínez C, Rodríguez-Díaz A, Capelli V, Barca-Mayo O, Nogueiras R, Mittag J, Diéguez C, López M. Temperature modulates systemic and central actions of thyroid hormones on BAT thermogenesis. Front Physiol 2022; 13:1017381. [PMID: 36467699 PMCID: PMC9716276 DOI: 10.3389/fphys.2022.1017381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/03/2022] [Indexed: 08/07/2023] Open
Abstract
Thyroid hormones (THs) play a major role regulating energy balance and brown adipose tissue (BAT) thermogenesis, as well as body temperature, as shown in hyperthyroid patients. However, the current landscape of preclinical thyroid hormone models is complex. For example, while rats become catabolic after TH administration, mice gain weight; so, these differences in species need to be analyzed in detail and specially whether temperature could be a factor. Here, we aimed to investigate the effect of environmental temperature on those actions. Rats were subcutaneously treated with L-thyroxine (T4) or stereotaxically within the ventromedial nucleus of the hypothalamus (VMH) with triiodothyronine (T3) and housed at 23°C, 4°C or 30°C; energy balance, BAT thermogenesis and AMP-activated protein kinase (AMPK) in the VMH were analyzed. Our data showed that the effect of both systemic T4 of central T3 on energy balance and BAT thermogenesis was dependent upon environmental temperature. This evidence is of interest in the design of experimental settings highlighting the species-specific metabolic actions of THs, and in understanding its physiological role in the adaptation to temperature.
Collapse
Affiliation(s)
- Eva Rial-Pensado
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Verónica Rivas-Limeres
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Carmen Grijota-Martínez
- Department of Cell Biology, Faculty of Biology, Complutense University, Madrid, Spain
- Alberto Sols Biomedical Research Institute (CSIC-UAM), Madrid, Spain
| | - Amanda Rodríguez-Díaz
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Valentina Capelli
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Olga Barca-Mayo
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Jens Mittag
- Institute for Endocrinology and Diabetes—Molecular Endocrinology, Center of Brain Behavior and Metabolism CBBM, University of Lübeck, Lübeck, Germany
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela- Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| |
Collapse
|
17
|
Leow MKS. Brown fat detection by infrared thermography-An invaluable research methodology with noteworthy uncertainties confirmed by a mathematical proof. Endocrinol Diabetes Metab 2022; 6:e378. [PMID: 36379014 PMCID: PMC9836251 DOI: 10.1002/edm2.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Brown adipose tissue (BAT) represents a pivotal scientific renaissance worthy as a strategy for obesity and diabetes since its re-discovery in adults over a decade ago. Equally compelling is the adoption of infrared thermography (IRT) in recent times as a precise and viable alternative methodology over the 'gold standard' PET-CT scan, given constraints of the latter's high ionizing radiation doses and costs. Unravelling BAT metabolic physiology in live humans has been challenging until recent rigorous validation of IRT against PET. Nevertheless, IRT remains a nascent technique with pitfalls unbeknownst to many researchers. Factors impacting its accuracy merit an in-depth scientific scrutiny. This article discusses the strengths and pitfalls of IRT as an emergent BAT detection technique and provides a mathematical proof of its limitations that BAT researchers should be cognizant of. Understanding these limitations of IRT can prompt extra efforts to control these uncertainties with greater rigour. In conclusion, this warrants further investigations of improving IRT quality via advanced auto-segmentation, powerful image processing of thermograms and protocol standardization along the lines of BARCIST 1.0 to minimize errors and enhance the confidence of the global BAT research community in IRT as a robust and reliable BAT research tool.
Collapse
Affiliation(s)
- Melvin K. S. Leow
- Department of Human DevelopmentSingapore Institute for Clinical Sciences, A*STARSingapore CitySingapore,Lee Kong Chian School of MedicineSingapore CitySingapore,Cardiovascular and Metabolic Disorders ProgramDuke‐NUS Medical SchoolSingapore CitySingapore,Department of EndocrinologyTan Tock Seng HospitalSingapore CitySingapore
| |
Collapse
|
18
|
Martins FF, Souza-Mello V, Aguila MB, Mandarim-de-Lacerda CA. Brown adipose tissue as an endocrine organ: updates on the emerging role of batokines. Horm Mol Biol Clin Investig 2022:hmbci-2022-0044. [DOI: 10.1515/hmbci-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/20/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Brown adipose tissue (BAT) remains active in adults, oxidizing fatty acids or glucose and releasing energy in the form of heat. Brown adipocytes and enhanced thermogenesis are targets for treating obesity and its comorbidities. BAT shows high synthesis activity and secretes several signaling molecules. The brown adipokines, or batokines, take action in an autocrine, paracrine, and endocrine manner. Batokines have a role in the homeostasis of the cardiovascular system, central nervous system, white adipose tissue, liver, and skeletal muscle and exert beneficial effects on BAT. The systemic function of batokines gives BAT an endocrine organ profile. Besides, the batokines Fibroblast Growth Factor-21, Vascular Endothelial Growth Factor A, Bone Morphogenetic Protein 8, Neuregulin 4, Myostatin, and Interleukin-6 emerge as targets to treat obesity and its comorbidities, deserving attention. This review outlines the role of six emerging batokines on BAT and their cross-talk with other organs, focusing on their physiological significance and diet-induced changes.
Collapse
Affiliation(s)
- Fabiane Ferreira Martins
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases , Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases , Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases , Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Carlos Alberto Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases , Biomedical Center, Institute of Biology, The University of the State of Rio de Janeiro , Rio de Janeiro , Brazil
| |
Collapse
|
19
|
BMP2 as a promising anticancer approach: functions and molecular mechanisms. Invest New Drugs 2022; 40:1322-1332. [PMID: 36040572 DOI: 10.1007/s10637-022-01298-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
Bone morphogenetic protein 2 (BMP2), a pluripotent factor, is a member of the transforming growth factor-beta (TGF-β) superfamily and is implicated in embryonic development and postnatal homeostasis in tissues and organs. Experimental research in the contexts of physiology and pathology has indicated that BMP2 can induce macrophages to differentiate into osteoclasts and accelerate the osteolytic mechanism, aggravating cancer cell bone metastasis. Emerging studies have stressed the potent regulatory effect of BMP2 in cancer cell differentiation, proliferation, survival, and apoptosis. Complicated signaling networks involving multiple regulatory proteins imply the significant biological functions of BMP2 in cancer. In this review, we comprehensively summarized and discussed the current evidence related to the modulation of BMP2 in tumorigenesis and development, including evidence related to the roles and molecular mechanisms of BMP2 in regulating cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer angiogenesis and the tumor microenvironment (TME). All these findings suggest that BMP2 may be an effective therapeutic target for cancer and a new marker for assessing treatment efficacy.
Collapse
|
20
|
Bedwell S, Holtzclaw BJ. Early Interventions to Achieve Thermal Balance in Term Neonates. Nurs Womens Health 2022; 26:389-396. [PMID: 35988707 DOI: 10.1016/j.nwh.2022.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 05/19/2022] [Accepted: 07/21/2022] [Indexed: 11/18/2022]
Abstract
Hypothermia is one of the most recognized and potentially avoidable reasons for transfer of a term neonate to the NICU. Physiologic and physical factors involved in the loss of heat affect a neonate's ability to thermoregulate in extrauterine environments. At the same time, these processes are interdependently affected by hypothermia, hypoglycemia, and respiratory distress. Underlying principles and preventive measures to avoid hypothermia are presented with practical application to practice. The implementation of best practices will decrease NICU admissions that separate mothers and neonates at this critical time. Preventive measures, competent assessment guides, and early interventions offer measures to avert avoidable hypothermia-related admissions to the NICU.
Collapse
|
21
|
Silva GDN, Amato AA. Thermogenic adipose tissue aging: Mechanisms and implications. Front Cell Dev Biol 2022; 10:955612. [PMID: 35979379 PMCID: PMC9376969 DOI: 10.3389/fcell.2022.955612] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 12/27/2022] Open
Abstract
Adipose tissue undergoes significant anatomical and functional changes with aging, leading to an increased risk of metabolic diseases. Age-related changes in adipose tissue include overall defective adipogenesis, dysfunctional adipokine secretion, inflammation, and impaired ability to produce heat by nonshivering thermogenesis. Thermogenesis in adipose tissue is accomplished by brown and beige adipocytes, which also play a role in regulating energy homeostasis. Brown adipocytes develop prenatally, are found in dedicated depots, and involute in early infancy in humans. In contrast, beige adipocytes arise postnatally in white adipose tissue and persist throughout life, despite being lost with aging. In recent years, there have been significant advances in the understanding of age-related reduction in thermogenic adipocyte mass and function. Mechanisms underlying such changes are beginning to be delineated. They comprise diminished adipose precursor cell pool size and adipogenic potential, mitochondrial dysfunction, decreased sympathetic signaling, and altered paracrine and endocrine signals. This review presents current evidence from animal models and human studies for the mechanisms underlying thermogenic adipocyte loss and discusses potential strategies targeting brown and beige adipocytes to increase health span and longevity.
Collapse
|
22
|
Chen PY, Chiu CC, Hsieh TH, Liu YR, Chen CH, Huang CY, Lu ML, Huang MC. The relationship of antipsychotic treatment with reduced brown adipose tissue activity in patients with schizophrenia. Psychoneuroendocrinology 2022; 142:105775. [PMID: 35594830 DOI: 10.1016/j.psyneuen.2022.105775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Antipsychotic drug (APD) treatment has been associated with metabolic abnormalities. Brown adipose tissue (BAT) is the main site of adaptive thermogenesis and secretes various metabolism-improving factors known as batokines. We explored the association of BAT activity with APD treatment and metabolic abnormalities in patients with schizophrenia by measuring the blood levels of bone morphogenetic protein 8b (BMP8b), a batokine secreted by mature BAT. METHODS BMP8b levels were compared among 50 drug-free, 32 aripiprazole-treated, and 91 clozapine-treated patients with schizophrenia. Regression analysis was used to explore factors, including APD types, that might be associated with BMP8b levels and the potential effect of BMP8b on metabolic syndrome (MS). RESULTS APD-treated patients had decreased BMP8b levels relative to drug-free patients. The difference still existed after adjustment for body mass index and Brief Psychiatric Rating Scale scores. Among APD-treated group, clozapine was associated with even lower BMP8b levels than the less obesogenic APD, aripiprazole. Furthermore, higher BMP8b levels were associated with lower risks of MS after adjustment for BMI and APD treatment. CONCLUSION Using drug-free patients as the comparison group to understand the effect of APDs, this is the first study to show APD treatment is associated with reduced BAT activity that is measured by BMP8b levels, with clozapine associated a more significant reduction than aripiprazole treatment. BMP8b might have a beneficial effect against metabolic abnormalities and this effect is independent of APD treatment. Future studies exploring the causal relationship between APD treatment and BMP8b levels and the underlying mechanisms are warranted.
Collapse
Affiliation(s)
- Po-Yu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychology, National Cheng-chi University, Taiwan
| | - Chih-Chiang Chiu
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taiwan
| | - Chun-Hsin Chen
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cho-Yin Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Mong-Liang Lu
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan; Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taiwan; Psychiatric Research Center, Taipei Medical University Hospital, 250 Wu-Hsing Street, 110 Taipei, Taiwan.
| |
Collapse
|
23
|
González-García I, Urisarri A, Nogueiras R, Diéguez C, Couce ML, López M. An updated view on human neonatal thermogenesis. Nat Rev Endocrinol 2022; 18:263-264. [PMID: 35165402 DOI: 10.1038/s41574-022-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ismael González-García
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Adela Urisarri
- Neonatology Service, Department of Pediatrics, University Clinical Hospital of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- CIBER Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - María L Couce
- Neonatology Service, Department of Pediatrics, University Clinical Hospital of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- CIBER Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain.
| |
Collapse
|
24
|
González-García I, Freire-Agulleiro Ó, Nakaya N, Ortega FJ, Garrido-Gil P, Liñares-Pose L, Fernø J, Labandeira-Garcia JL, Diéguez C, Sultana A, Tomarev SI, Fernández-Real JM, López M. Olfactomedin 2 deficiency protects against diet-induced obesity. Metabolism 2022; 129:155122. [PMID: 35026233 PMCID: PMC9449885 DOI: 10.1016/j.metabol.2021.155122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/18/2021] [Accepted: 12/29/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND AIMS Olfactomedin 2 (OLFM2; also known as noelin 2) is a pleiotropic protein that plays a major role in olfaction and Olfm2 null mice exhibit reduced olfactory sensitivity, as well as abnormal motor coordination and anxiety-related behavior. Here, we investigated the possible metabolic role of OLFM2. METHODS Olfm2 null mice were metabolically phenotyped. Virogenetic modulation of central OLFM2 was also performed. RESULTS Our data showed that, the global lack of OLFM2 in mice promoted anorexia and increased energy expenditure due to elevated brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). This phenotype led to resistance to high fat diet (HFD)-induced obesity. Notably, virogenetic overexpression of Olfm2 in the lateral hypothalamic area (LHA) induced weight gain associated with decreased BAT thermogenesis. CONCLUSION Overall, this evidence first identifies central OLFM2 as a new molecular actor in the regulation of whole-body energy homeostasis.
Collapse
Affiliation(s)
- Ismael González-García
- Department of Physiology, CiMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Óscar Freire-Agulleiro
- Department of Physiology, CiMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Naoki Nakaya
- Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco J Ortega
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Service of Diabetes, Endocrinology and Nutrition (UDEN), Institut d'Investigació Biomédica de Girona (IDIBGI), Girona, Spain
| | - Pablo Garrido-Gil
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease (CiMUS), Department of Morphological Sciences, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Liñares-Pose
- Department of Physiology, CiMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - José Luis Labandeira-Garcia
- Laboratory of Cellular and Molecular Neurobiology of Parkinson's Disease (CiMUS), Department of Morphological Sciences, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Afia Sultana
- Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stanislav I Tomarev
- Section on Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - José Manuel Fernández-Real
- CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Service of Diabetes, Endocrinology and Nutrition (UDEN), Institut d'Investigació Biomédica de Girona (IDIBGI), Girona, Spain
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain; CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
25
|
Rial-Pensado E, Freire-Agulleiro O, Ríos M, Guo DF, Contreras C, Seoane-Collazo P, Tovar S, Nogueiras R, Diéguez C, Rahmouni K, López M. Obesity induces resistance to central action of BMP8B through a mechanism involving the BBSome. Mol Metab 2022; 59:101465. [PMID: 35218946 PMCID: PMC8933534 DOI: 10.1016/j.molmet.2022.101465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
Objective Bone morphogenetic protein 8B (BMP8B) plays a major role in the regulation of energy homeostasis by modulating brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. Here, we investigated whether BMP8B's role in metabolism is affected by obesity and the possible molecular mechanisms underlying that action. Methods Central treatments with BMP8B were performed in rats fed a standard (SD) and high-fat diet (HFD), as well as in genetically modified mice. Energy balance studies, infrared thermographic analysis of BAT and molecular analysis of the hypothalamus, BAT and WAT were carried out. Results We show for the first time that HFD-induced obesity elicits resistance to the central actions of BMP8B on energy balance. This obesity-induced BMP8B resistance is explained by i) lack of effects on AMP-activated protein kinase (AMPK) signaling, ii) decreased BMP receptors signaling and iii) reduced expression of Bardet-Biedl Syndrome 1 (BBS1) protein, a key component of the protein complex BBSome in the ventromedial nucleus of the hypothalamus (VMH). The possible mechanistic involvement of BBS1 in this process is demonstrated by lack of a central response to BMP8B in mice carrying a single missense disease-causing mutation in the Bbs1 gene. Conclusions Overall, our data uncover a new mechanism of central resistance to hormonal action that may be of relevance in the pathophysiology of obesity. Central BMP8B induces BAT activation and browning through hypothalamic AMPK. Obesity elicits resistance to the central effects of BMP8B on energy balance. Obesity impairs the effect of BMP8B on AMPK, BMP Type I receptors signaling and BBS1 in the hypothalamus. Lack of BBS1 function recapitulates the thermogenic-induced resistance to central BMP8B.
Collapse
Affiliation(s)
- Eva Rial-Pensado
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Oscar Freire-Agulleiro
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Marcos Ríos
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Deng Fu Guo
- Department of Neuroscience & Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Patricia Seoane-Collazo
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Sulay Tovar
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Kamal Rahmouni
- Department of Neuroscience & Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain.
| |
Collapse
|
26
|
Garcia-Beltran C, Villarroya J, Plou C, Gavaldà-Navarro A, Casano P, Cereijo R, de Zegher F, López-Bermejo A, Ibáñez L, Villarroya F. Bone Morphogenetic Protein-8B Levels at Birth and in the First Year of Life: Relation to Metabolic-Endocrine Variables and Brown Adipose Tissue Activity. Front Pediatr 2022; 10:869581. [PMID: 35402348 PMCID: PMC8988030 DOI: 10.3389/fped.2022.869581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Bone morphogenetic protein-8B (BMP8B) is an adipokine produced by brown adipose tissue (BAT) contributing to thermoregulation and metabolic homeostasis in rodent models. In humans, BAT activity is particularly relevant in newborns and young infants. We assessed BMP8B levels and their relationship with BAT activity and endocrine-metabolic parameters in young infants to ascertain its potentiality as biomarker in early life. MATERIALS AND METHODS BMP8B concentrations were assessed longitudinally by ELISA in a cohort of 27 girls and 23 boys at birth, and at age 4 and 12 months, together with adiposity parameters (DXA), and circulating endocrine-metabolic variables. BAT activity was measured by infrared thermography. BMP8B gene expression (qRT-PCR) was determined in BAT, white fat, and liver samples from neonatal necropsies, and in placenta and cord blood. RESULTS BMP8B levels were high at birth, particularly in boys (P = 0.04 vs. girls), declined progressively, and remained well above those in healthy adults and pregnant women at age 1 year (P < 0.05 and P < 0.001, respectively). Neonatal BMP8B transcript levels were higher in BAT than in white fat, liver and cord blood. Circulating BMP8B levels during the first year of life marginally correlated with bone mineral density and gains in lean mass. CONCLUSION BMP8B levels are high at birth and decline progressively over the first year of life remaining above adult levels. Although changes in BMP8B concentrations overall reflect those in BAT activity during development, BMP8B levels are unlikely to be useful to predict individual variations in endocrine-metabolic status and BAT activity in healthy young infants.
Collapse
Affiliation(s)
- Cristina Garcia-Beltran
- Endocrinology Department, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, ISCIII, Madrid, Spain
| | - Joan Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, ISCIII, Madrid, Spain
| | - Cristina Plou
- Endocrinology Department, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, ISCIII, Madrid, Spain
| | - Paula Casano
- Endocrinology Department, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, ISCIII, Madrid, Spain
| | - Rubén Cereijo
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, ISCIII, Madrid, Spain
| | - Francis de Zegher
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Dr. Josep Trueta Hospital, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Lourdes Ibáñez
- Endocrinology Department, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, ISCIII, Madrid, Spain
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, Sant Joan de Déu Research Institute, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, ISCIII, Madrid, Spain
| |
Collapse
|
27
|
Capelli V, Grijota-Martínez C, Dragano NRV, Rial-Pensado E, Fernø J, Nogueiras R, Mittag J, Diéguez C, López M. Orally Induced Hyperthyroidism Regulates Hypothalamic AMP-Activated Protein Kinase. Nutrients 2021; 13:nu13124204. [PMID: 34959756 PMCID: PMC8708331 DOI: 10.3390/nu13124204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Besides their direct effects on peripheral metabolic tissues, thyroid hormones (TH) act on the hypothalamus to modulate energy homeostasis. However, since most of the hypothalamic actions of TH have been addressed in studies with direct central administration, the estimation of the relative contribution of the central vs. peripheral effects in physiologic conditions of peripheral release (or administration) of TH remains unclear. In this study we used two different models of peripherally induced hyperthyroidism (i.e., T4 and T3 oral administration) to assess and compare the serum and hypothalamic TH status and relate them to the metabolic effects of the treatment. Peripheral TH treatment affected feeding behavior, overall growth, core body temperature, body composition, brown adipose tissue (BAT) morphology and uncoupling protein 1 (UCP1) levels and metabolic activity, white adipose tissue (WAT) browning and liver metabolism. This resulted in an increased overall uncoupling capacity and a shift of the lipid metabolism from WAT accumulation to BAT fueling. Both peripheral treatment protocols induced significant changes in TH concentrations within the hypothalamus, with T3 eliciting a downregulation of hypothalamic AMP-activated protein kinase (AMPK), supporting the existence of a central action of peripheral TH. Altogether, these data suggest that peripherally administered TH modulate energy balance by various mechanisms; they also provide a unifying vision of the centrally mediated and the direct local metabolic effect of TH in the context of hyperthyroidism.
Collapse
Affiliation(s)
- Valentina Capelli
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
- Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Carmen Grijota-Martínez
- Department of Cell Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain;
| | - Nathalia R. V. Dragano
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
| | - Eval Rial-Pensado
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, N-5021 Bergen, Norway;
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
| | - Jens Mittag
- Institute for Endocrinology and Diabetes—Molecular Endocrinology, Center of Brain Behavior and Metabolism CBBM, University of Lübeck, 23562 Lübeck, Germany;
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; (V.C.); (N.R.V.D.); (E.R.-P.); (R.N.); (C.D.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Madrid, Spain
- Correspondence: ; Tel.: +34-881815420
| |
Collapse
|
28
|
Hymczak H, Gołąb A, Mendrala K, Plicner D, Darocha T, Podsiadło P, Hudziak D, Gocoł R, Kosiński S. Core Temperature Measurement-Principles of Correct Measurement, Problems, and Complications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010606. [PMID: 34682351 PMCID: PMC8535559 DOI: 10.3390/ijerph182010606] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/19/2022]
Abstract
Core temperature reflects the temperature of the internal organs. Proper temperature measurement is essential to diagnose and treat temperature impairment in patients. However, an accurate approach has yet to be established. Depending on the method used, the obtained values may vary and differ from the actual core temperature. There is an ongoing debate regarding the most appropriate anatomical site for core temperature measurement. Although the measurement of body core temperature through a pulmonary artery catheter is commonly cited as the gold standard, the esophageal temperature measurement appears to be a reasonable and functional alternative in the clinical setting. This article provides an integrative review of invasive and noninvasive body temperature measurements and their relations to core temperature.
Collapse
Affiliation(s)
- Hubert Hymczak
- Department of Anesthesiology and Intensive Care, John Paul II Hospital, 31-202 Krakow, Poland;
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland
| | - Aleksandra Gołąb
- Faculty of Medicine and Dentistry, Pomeranian Medical University, 70-204 Szczecin, Poland;
| | - Konrad Mendrala
- Department of Anaesthesiology and Intensive Care, Medical University of Silesia, 40-055 Katowice, Poland; (K.M.); (T.D.)
| | - Dariusz Plicner
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland
- Department of Cardiovascular Surgery and Transplantation, John Paul II Hospital, 31-202 Krakow, Poland
- Correspondence:
| | - Tomasz Darocha
- Department of Anaesthesiology and Intensive Care, Medical University of Silesia, 40-055 Katowice, Poland; (K.M.); (T.D.)
| | - Paweł Podsiadło
- Institute of Medical Sciences, Jan Kochanowski University, 25-369 Kielce, Poland;
| | - Damian Hudziak
- Department of Cardiac Surgery, Upper-Silesian Heart Center, 40-055 Katowice, Poland; (D.H.); (R.G.)
| | - Radosław Gocoł
- Department of Cardiac Surgery, Upper-Silesian Heart Center, 40-055 Katowice, Poland; (D.H.); (R.G.)
| | - Sylweriusz Kosiński
- Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| |
Collapse
|