1
|
Garda Z, Szeremeta F, Tóth CN, Bunda S, Pifferi C, Clémençon R, Même S, Tircsó G, Tóth É. Relaxation-Based In Vivo Discrimination of Oxidized and Reduced States of a Redox-Switchable 19F MRI Probe. J Am Chem Soc 2025. [PMID: 40368834 DOI: 10.1021/jacs.5c03244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
MRI assessment of the tissue redox state is important for revealing and understanding various pathologies, and redox-responsive imaging probes capable of generating discrete and quantifiable signals in both their reduced and oxidized forms can provide enhanced detection reliability. The small fluorinated, redox-active FeL1 chelate is a prototype of such agents. L1 forms stable and inert complexes with both Fe2+ and Fe3+ ions, and the redox potential of the Fe3+L1/Fe2+L1 couple (+240 mV vs NHE) is adapted to biological redox sensing. Fe2+L1 undergoes instantaneous oxidation in the presence of H2O2, and Fe3+L1 is reduced by cysteine, glutathione, and ascorbate. Fe2+L1 and Fe3+L1 have very different proton relaxivities (0.1 mM-1 s-1 and 2.83 mM-1 s-1, respectively, 60 MHz, 298 K), as well as 19F relaxation times (T1 = 71-130 ms; T2 = 60-117 ms and T1 = 2.43 ms; T2 = 1.81 ms, respectively, 400 MHz, 298 K), in accordance with the different paramagnetic relaxation enhancement capacity of the two iron redox states. Upon application of specific MRI pulse sequences adapted to the relaxation rate (RARE for Fe2+L1 and UTE for Fe3+L1, combined with appropriate acquisition parameters), both redox forms are detected in 19F MR phantom images with good sensitivity and signal-to-noise ratios linearly dependent on probe concentration. Fe2+L1 and Fe3+L1 can be readily visualized and unambiguously discriminated based on their 19F relaxation times in living mice, following intramuscular injection. The possibility of monitoring the redox switch in 1H MRI as well is an additional advantage of this bioresponsive probe.
Collapse
Affiliation(s)
- Zoltán Garda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, 4010 Debrecen, Hungary
| | - Frédéric Szeremeta
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Csilla Noémi Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Szilvia Bunda
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, 4010 Debrecen, Hungary
| | - Carlo Pifferi
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Rudy Clémençon
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| | - Gyula Tircsó
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, 4010 Debrecen, Hungary
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071 Orléans, France
| |
Collapse
|
2
|
Chang Y, Ediriweera GR, Xu W, Wang Q, Xu X, Zhang Y, Peng H, Liu K, Bar-Shir A, Whittaker AK, Fu C. Efficient Synthesis of Polymeric Fluorinated Nanoparticles with High Fluorine Content via Aqueous Photo-Polymerization-Induced Self-Assembly for 19F MRI Application. ACS NANO 2025; 19:14200-14212. [PMID: 40192098 DOI: 10.1021/acsnano.5c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Polymeric fluorinated nanoparticles (PFNPs) are useful materials in many applications, especially in the field of 19F magnetic resonance imaging (MRI). Despite the development of numerous PFNPs with diverse chemical compositions and structures, those with high fluorine content and capable of highly sensitive 19F MRI remain scarce. Here we report an elegantly designed aqueous photo-polymerization-induced self-assembly (photo-PISA) system for the synthesis of PFNPs with high fluorine content for effective 19F MRI applications. This innovative photo-PISA system is enabled by two analogous fluorinated monomers, allowing efficient production of PFNPs with different morphologies and high fluorine content (25 wt %) in aqueous solution. These PFNPs exhibit favorable 19F MRI properties and morphology-dependent biological behavior, and have potential as advanced polymeric nanomaterials for imaging and drug delivery applications.
Collapse
Affiliation(s)
- Yixin Chang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gayathri R Ediriweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Weizhi Xu
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Qiaoyun Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xin Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yuhao Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Research Council Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
3
|
Jiang Y, Fan Y, Chen L, Lin H, Gao J. Super-multiplexed imaging and coding in the range of radio frequency. Nat Commun 2025; 16:2567. [PMID: 40089513 PMCID: PMC11910524 DOI: 10.1038/s41467-025-57785-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
The era of the Internet has led to an information explosion, creating significant challenges for current techniques in information storage and access. High-performance strategies that expand existing methods offer a promising solution. Imaging-based approaches are vital for information perception but remain underexplored for information processing due to limited multiplexity. Here, we introduce 19F magnetic resonance imaging-Empowered information Assess and Storage Technique (FEAST), enabled by 22 fluorinated quaternary ammonium derivatives with distinct 19F chemical shifts. We developed three coding platforms for FEAST: fluorinated choline analog solutions, fluorinated deep eutectic solvents, and fluorinated ionogels. These platforms allow 2-spatial-dimensional applications, such as 16-bit encoding, "dual-color" watermarking, multiplexed Colorcodes, and encrypted QR codes, as well as 3-spatial-dimensional applications like "cubic" information storage, implanted anti-counterfeit labels, and FEAST-guided encryption. This work highlights FEAST's potential for advanced information storage and access, which is inspiring for further developments with versatile and robust coding platforms.
Collapse
Affiliation(s)
- Yuhang Jiang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yifan Fan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Limin Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Zhongshan Hospital, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Temme S, Kleimann P, Tiren ZB, Bouvain P, Zielinski A, Dollmeyer W, Poth S, Görges J, Flögel U. Imaging of Thromboinflammation by Multispectral 19F MRI. Int J Mol Sci 2025; 26:2462. [PMID: 40141106 PMCID: PMC11942564 DOI: 10.3390/ijms26062462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The close interplay between thrombotic and immunologic processes plays an important physiological role in the immune defence after tissue injury and has the aim to reduce damage and to prevent the spread of invading pathogens. However, the uncontrolled or exaggerated activation of these processes can lead to pathological thromboinflammation. Thromboinflammation has been shown to worsen the outcome of cardiovascular, autoinflammatory, or even infectious diseases. Imaging of thromboinflammation is difficult because many clinically relevant imaging techniques can only visualize either inflammatory or thrombotic processes. One interesting option for the noninvasive imaging of thromboinflammation is multispectral 19F magnetic resonance imaging (MRI). Due to the large chemical shift range of the 19F atoms, it is possible to simultaneously visualize immune cells as well as thrombus components with specific 19F tracer that have individual spectral 19F signatures. Of note, the 19F signal can be easily quantified and a merging of the 19F datasets with the anatomical 1H MRI images enables precise anatomical localization. In this review, we briefly summarize the background of 19F MRI for inflammation imaging, active targeting approaches to visualize thrombi and specific immune cells, introduce studies about multispectral 19F MRI, and summarize one study that imaged thromboinflammation by multispectral 19F MRI.
Collapse
Affiliation(s)
- Sebastian Temme
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (Z.-B.T.); (A.Z.); (W.D.); (J.G.)
| | - Patricia Kleimann
- Experimental Cardiovascular Imaging, Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (P.B.); (S.P.); (U.F.)
| | - Zeynep-Büsra Tiren
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (Z.-B.T.); (A.Z.); (W.D.); (J.G.)
| | - Pascal Bouvain
- Experimental Cardiovascular Imaging, Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (P.B.); (S.P.); (U.F.)
| | - Arthur Zielinski
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (Z.-B.T.); (A.Z.); (W.D.); (J.G.)
| | - William Dollmeyer
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (Z.-B.T.); (A.Z.); (W.D.); (J.G.)
| | - Sarah Poth
- Experimental Cardiovascular Imaging, Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (P.B.); (S.P.); (U.F.)
| | - Juliana Görges
- Department of Anesthesiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (Z.-B.T.); (A.Z.); (W.D.); (J.G.)
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute of Molecular Cardiology, Faculty of Medicine, University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (P.K.); (P.B.); (S.P.); (U.F.)
| |
Collapse
|
5
|
Pichler V, Martinho RP, Temming L, Segers T, Wurm FR, Koshkina O. The Environmental Impact of Medical Imaging Agents and the Roadmap to Sustainable Medical Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404411. [PMID: 39905748 PMCID: PMC11884531 DOI: 10.1002/advs.202404411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/22/2024] [Indexed: 02/06/2025]
Abstract
Medical imaging agents, i.e., contrast agents for magnetic resonance imaging (MRI) and radiopharmaceuticals, play a vital role in the diagnosis of diseases. Yet, they mostly contain harmful and non-biodegradable substances, such as per- and polyfluoroalkyl substances (PFAS), heavy metals or radionuclides. As a result of their increasing clinical use, these agents are entering various water bodies and soil, posing risks to environment and human health. Here, the environmental effects of the application of imaging agents are outlined for the major imaging modalities, and the respective chemistry of the contrast agents with environmental implications is linked. Recommendations are introduced for the design and application of contrast agents: the 3Cs of imaging agents: control, change, and combine; and recent approaches for more sustainable imaging strategies are highlighted. This combination of measures should engage an open discussion, inspire solutions to reduce pollution by imaging agents, and increase awareness for the impact of toxic waste related to imaging agents.
Collapse
Affiliation(s)
- Verena Pichler
- Department of Pharmaceutical SciencesDivision of Pharmaceutical ChemistryUniversity of ViennaVienna1090Austria
| | - Ricardo P. Martinho
- Biomolecular Nanotechnology GroupDepartment of Molecules and MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteEnschede7522The Netherlands
| | - Lisanne Temming
- Sustainable Polymer ChemistryDepartment of Molecules and MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteEnschede7522The Netherlands
| | - Tim Segers
- BIOS / Lab on a Chip GroupMax Planck Center Twente for Complex Fluid DynamicsMESA+ Institute for NanotechnologyUniversity of TwenteEnschede7514DMThe Netherlands
| | - Frederik R. Wurm
- Sustainable Polymer ChemistryDepartment of Molecules and MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteEnschede7522The Netherlands
| | - Olga Koshkina
- Sustainable Polymer ChemistryDepartment of Molecules and MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteEnschede7522The Netherlands
- Phos4nova B.V.EnschedeThe Netherlands
| |
Collapse
|
6
|
Feng R, Xu W, Ning J, Ma Q, Wang H, Li L, Xu S, Wang L. Design of Fluorinated Peptides as Biotransformed Urinalysis Biomarkers for Non-Invasive Diagnosis and Treatment of Liver Injury through Enzyme Directed Kinetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413571. [PMID: 39817848 DOI: 10.1002/adma.202413571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/29/2024] [Indexed: 01/18/2025]
Abstract
Urinalysis, as a non-invasive and efficient diagnostic method, is very important but faces great challenges due to the complex compositions of urine and limited naturally occurring biomarkers for diseases. Herein, by leveraging the intrinsic absence of endogenous fluorinated interference, a strategy with the enzymatically activated assembly of synthetic fluorinated peptide for cholestatic liver injury (CLI) diagnosis and treatment through 19F nuclear magnetic resonance (NMR) urinalysis and efficient drug retention is developed. Specifically, alkaline phosphatase (ALP), overexpressed in the liver of CLI mice, triggers the assembly of fluorinated peptide, thus, directing the traffic and dynamic distribution of the synthetic biomarkers after administration, whereas CLI mice display much slower clearance of peptides through urine as compared with healthy counterparts. As such, it enables to transform pathophysiological information into exogenous signals via noninvasive urinary monitoring. Moreover, as a proof-of-concept, by grafting different functional groups to peptides, the theranostic platforms can be established to provide a new paradigm for the design of multifunctional peptides.
Collapse
Affiliation(s)
- Ruxin Feng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weilu Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinhui Ning
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qian Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liangyu Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Zou Y, Sun Z, Wang Q, Ju Y, Sun N, Yue Q, Deng Y, Liu S, Yang S, Wang Z, Li F, Hou Y, Deng C, Ling D, Deng Y. Core-Shell Magnetic Particles: Tailored Synthesis and Applications. Chem Rev 2025; 125:972-1048. [PMID: 39729245 DOI: 10.1021/acs.chemrev.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Core-shell magnetic particles consisting of magnetic core and functional shells have aroused widespread attention in multidisciplinary fields spanning chemistry, materials science, physics, biomedicine, and bioengineering due to their distinctive magnetic properties, tunable interface features, and elaborately designed compositions. In recent decades, various surface engineering strategies have been developed to endow them desired properties (e.g., surface hydrophilicity, roughness, acidity, target recognition) for efficient applications in catalysis, optical modulation, environmental remediation, biomedicine, etc. Moreover, precise control over the shell structure features like thickness, porosity, crystallinity and compositions including metal oxides, carbon, silica, polymers, and metal-organic frameworks (MOFs) has been developed as the major method to exploit new functional materials. In this review, we highlight the synthesis methods, regulating strategies, interface engineering, and applications of core-shell magnetic particles over the past half-century. The fundamental methodologies for controllable synthesis of core-shell magnetic materials with diverse organic, inorganic, or hybrid compositions, surface morphology, and interface property are thoroughly elucidated and summarized. In addition, the influences of the synthesis conditions on the physicochemical properties (e.g., dispersibility, stability, stimulus-responsiveness, and surface functionality) are also discussed to provide constructive insight and guidelines for designing core-shell magnetic particles in specific applications. The brand-new concept of "core-shell assembly chemistry" holds great application potential in bioimaging, diagnosis, micro/nanorobots, and smart catalysis. Finally, the remaining challenges, future research directions and new applications for the core-shell magnetic particles are predicted and proposed.
Collapse
Affiliation(s)
- Yidong Zou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Zhenkun Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
| | - Yanmin Ju
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Nianrong Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qin Yue
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Yu Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Shanbiao Liu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhiyi Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Fangyuan Li
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yonghui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
8
|
Vidallon MLP, Liu H, Lu Z, Acter S, Song Y, Baldwin C, Teo BM, Bishop AI, Tabor RF, Peter K, de Campo L, Wang X. Polydopamine Nanobowl-Armoured Perfluorocarbon Emulsions: Tracking Thermal- and Photothermal-Induced Phase Change through Neutron Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406019. [PMID: 39523733 PMCID: PMC11735900 DOI: 10.1002/smll.202406019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Anisotropic polydopamine nanobowls (PDA NBs) show significant promise in biomedicine, distinguished by their unique optical properties and superior cellular uptake compared to spherical nanoparticles. This study presents a novel approach for creating multistimuli-activated PDA NB-armored emulsions, encapsulating perfluorohexane (NB-H) and perfluoropentane (NB-P) cores, with applications in controlled delivery and ultrasound imaging. Thermal and photothermal activation induced distinct responses in the emulsions, as evidenced by optical microscopy and thermogravimetric analysis. For the first time, neutron scattering techniques (SANS and USANS) under contrast matching conditions are applied to investigate these materials, revealing detailed droplet and microbubble structures and phase transition dynamics. These results show that NB-H droplets resist phase change under direct heating, whereas NB-P droplets respond more readily, exhibiting significant bubble formation. During photothermal activation with short near-infrared (NIR) exposure (15 min at 400 mW cm-2), SANS and USANS analyses reveal varying degrees of phase transition, proving this activation method to be more effective than direct heating. Importantly, NB-H and NB-P droplets have excellent ultrasound contrast enhancement and biocompatibility, indicating their potential for contrast-enhanced ultrasound imaging, theranostics, and photothermal applications. This comprehensive study advances the understanding of multifunctional colloidal materials in biomedicine, contributing essential knowledge to this rapidly evolving field.
Collapse
Affiliation(s)
- Mark Louis P. Vidallon
- Molecular Imaging and Theranostics LaboratoryBaker Heart and Diabetes Institute75 Commercial RoadMelbourneVIC3004Australia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneParkvilleVIC3010Australia
- School of ChemistryMonash UniversityClaytonVIC3800Australia
- Baker Department of Cardiovascular ResearchTranslation and ImplementationLa Trobe UniversityBundooraVIC3086Australia
| | - Haikun Liu
- Molecular Imaging and Theranostics LaboratoryBaker Heart and Diabetes Institute75 Commercial RoadMelbourneVIC3004Australia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneParkvilleVIC3010Australia
| | - Zhenzhen Lu
- Department of Chemical EngineeringUniversity of MelbourneParkville3010Australia
| | - Shahinur Acter
- Department of Radiation Oncology and Molecular SciencesThe Johns Hopkins School of MedicineJohns Hopkins University733 N BroadwayBaltimoreMD21205USA
| | - Yuyang Song
- Molecular Imaging and Theranostics LaboratoryBaker Heart and Diabetes Institute75 Commercial RoadMelbourneVIC3004Australia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneParkvilleVIC3010Australia
| | - Chris Baldwin
- Australian Nuclear Science and Technology Organization (ANSTO)New Illawarra RdLucas HeightsNSW2234Australia
| | - Boon Mian Teo
- School of ChemistryMonash UniversityClaytonVIC3800Australia
| | - Alexis I. Bishop
- School of Physics and AstronomyMonash UniversityClaytonVIC3800Australia
| | - Rico F. Tabor
- School of ChemistryMonash UniversityClaytonVIC3800Australia
| | - Karlheinz Peter
- Baker Department of Cardiometabolic HealthUniversity of MelbourneParkvilleVIC3010Australia
- Baker Department of Cardiovascular ResearchTranslation and ImplementationLa Trobe UniversityBundooraVIC3086Australia
- Atherothrombosis and Vascular Biology LaboratoryBaker Heart and Diabetes Institute75 Commercial RoadMelbourneVIC3004Australia
- School of Translational MedicineMonash UniversityMelbourneVIC3004Australia
| | - Liliana de Campo
- Australian Nuclear Science and Technology Organization (ANSTO)New Illawarra RdLucas HeightsNSW2234Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics LaboratoryBaker Heart and Diabetes Institute75 Commercial RoadMelbourneVIC3004Australia
- Baker Department of Cardiometabolic HealthUniversity of MelbourneParkvilleVIC3010Australia
- Baker Department of Cardiovascular ResearchTranslation and ImplementationLa Trobe UniversityBundooraVIC3086Australia
- School of Translational MedicineMonash UniversityMelbourneVIC3004Australia
| |
Collapse
|
9
|
Ganguly A, Babu SS, Ghosh S, Velyutham R, Kapusetti G. Advances and future trends in the detection of beta-amyloid: A comprehensive review. Med Eng Phys 2025; 135:104269. [PMID: 39922648 DOI: 10.1016/j.medengphy.2024.104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 02/10/2025]
Abstract
The neurodegenerative condition known as Alzheimer's disease is typified by the build-up of beta-amyloid plaques within the brain. The timely and precise identification of beta-amyloid is essential for understanding disease progression and developing effective therapeutic interventions. This comprehensive review explores the diverse landscape of beta-amyloid detection methods, ranging from traditional immunoassays to cutting-edge technologies. The review critically examines the strengths and limitations of established techniques such as ELISA, PET, and MRI, providing insights into their roles in research and clinical settings. Emerging technologies, including electrochemical methods, nanotechnology, fluorescence techniques, point-of-care devices, and machine learning integration, are thoroughly discussed, emphasizing recent breakthroughs and their potential for revolutionizing beta-amyloid detection. Furthermore, the review delves into the challenges associated with current detection methods, such as sensitivity, specificity, and accessibility. By amalgamating knowledge from multidisciplinary approaches, this review aims to guide researchers, clinicians, and policymakers in navigating the complex landscape of beta-amyloid detection, ultimately contributing to advancements in Alzheimer's disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Atri Ganguly
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research - Kolkata, -700054, India
| | - Srivalliputtur Sarath Babu
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research - Kolkata, -700054, India
| | - Sumanta Ghosh
- Divison of Applied Oral Science, The University of Hong Kong, SAR, Hong Kong
| | - Ravichandiran Velyutham
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research - Kolkata, -700054, India.
| | - Govinda Kapusetti
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research - Kolkata, -700054, India.
| |
Collapse
|
10
|
Ning Y, Yuwen Zhou I, Caravan P. Quantitative in Vivo Molecular MRI. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407262. [PMID: 39279542 PMCID: PMC11530320 DOI: 10.1002/adma.202407262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/29/2024] [Indexed: 09/18/2024]
Abstract
Molecular magnetic resonance imaging (MRI) combines chemistry, chemical biology, and imaging techniques to track molecular events non-invasively. Quantitative molecular MRI aims to provide meaningful, reproducible numerical measurements of molecular processes or biochemical targets within the body. In this review, the classifications of molecular MRI probes based on their signal-generating mechanism and functionality are first described. From there, the primary considerations for in vitro characterization and in vivo validation of molecular MRI probes, including how to avoid pitfalls and biases are discussed. Then, recommendations on imaging acquisition protocols and analysis methods to establish quantitative relationships between MRI signal change induced by the probes and the molecular processes of interest are provided. Finally, several representative case studies are highlighted that incorporate these features. Quantitative molecular MRI is a multidisciplinary research area incorporating expertise in chemical biology, inorganic chemistry, molecular probes, imaging physics, drug development, pathobiology, and medicine. The purpose of this review is to provide guidance to chemists developing MR imaging probes and methods in terms of in vitro and in vivo validation to accelerate the translation of these new quantitative tools for non-invasive imaging of biological processes.
Collapse
Affiliation(s)
- Yingying Ning
- Spin-X Institute, School of Chemistry and Chemical Engineering, School of Biomedical Sciences and Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, China
| | - Iris Yuwen Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
11
|
Li S, Zhang L, Xu Q, Sui M, Xiao L, Chen D, Jiang ZX, Zhou X, Chen S. Nanoengineered Neutrophil as 19F-MRI Tracer for Alert Diagnosis and Severity Assessment of Acute Lung Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401513. [PMID: 39361266 DOI: 10.1002/adma.202401513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/26/2024] [Indexed: 11/26/2024]
Abstract
Acute lung injury (ALI) is a severe complication in clinical settings. Alert diagnosis and severity assessment of ALI is pivotal to ensure curative treatment and increase survival rates. However, the development of a precise ALI diagnostic strategy remains a pending task. Here, leveraging neutrophil's inflammation-homing and physiological barrier-navigating capability, a facile strategy is proposed for achieving targeted 19F-MRI detection of ALI based on the nanoengineered neutrophil internalized with perfluorocarbon nanoemulsion (Neu@PFC). The remodeling process poses a negligible impact on the neutrophil's inherent activation and transmigration functions. The migratory behavior of Neu@PFC toward pneumonia is confirmed in vivo using an LPS-induced ALI murine model. Direct intratracheal (i.t.) administration contributes to a vast deposition of Neu@PFC within the lung, allowing for real-time 19F-MRI visualization and the potential to predict progressive pneumonia. Furthermore, intravenous (i.v.) administration of Neu@PFC enables quantitative assessment of the extent of ALI due to the chemokine-guided neutrophil migration. This study not only provides a pathway to diagnose ALI, but also sheds light on the neutrophil recruitment and activation cues in different tissues and inflammatory conditions, which is a prerequisite for developing potential therapeutic approaches.
Collapse
Affiliation(s)
- Sha Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuyi Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiju Sui
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daiqin Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Xing Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Shizhen Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| |
Collapse
|
12
|
Garda Z, Szeremeta F, Quin O, Molnár E, Váradi B, Clémençon R, Même S, Pichon C, Tircsó G, Tóth É. Small, Fluorinated Mn 2+ Chelate as an Efficient 1H and 19F MRI Probe. Angew Chem Int Ed Engl 2024; 63:e202410998. [PMID: 39083573 DOI: 10.1002/anie.202410998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
We explore the potential of fluorine-containing small Mn2+ chelates as alternatives to perfluorinated nanoparticles, widely used as 19F MRI probes. In MnL1, the cyclohexanediamine skeleton and two piperidine rings, involving each a metal-coordinating amide group and an appended CF3 moiety, provide high rigidity to the complex. This allows for good control of the Mn-F distance (rMnF=8.2±0.2 Å determined from 19F relaxation data), as well as for high kinetic inertness (a dissociation half-life of 1285 h is estimated for physiological conditions). The paramagnetic Mn2+ leads to a ~150-fold acceleration of the longitudinal 19F relaxation, with moderate line-broadening effect, resulting in T2/T1 ratios of 0.8 (9.4 T). Owing to its inner sphere water molecule, MnL1 is a good 1H relaxation agent as well (r1=5.36 mM-1 s-1 at 298 K, 20 MHz). MnL1 could be readily visualized in 19F MRI by using fast acquisition techniques, both in phantom images and living mice following intramuscular injection, with remarkable signal-to-noise ratios and short acquisition times. While applications in targeted imaging or cell therapy monitoring require further optimisation of the molecular structure, these results argue for the potential of such small, monohydrated and fluorinated Mn2+ complexes for combined 19F and 1H MRI detection.
Collapse
Affiliation(s)
- Zoltán Garda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, 4010, Debrecen, Hungary
| | - Frédéric Szeremeta
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Océane Quin
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Enikő Molnár
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, 4010, Debrecen, Hungary
| | - Balázs Váradi
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, 4010, Debrecen, Hungary
| | - Rudy Clémençon
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Sandra Même
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
- Inserm UMS 55 ART ARNm and LI2RSO, University of Orléans, F-45100, Orléans, France
- Institut Universitaire de France, 1 rue Descartes, F-75035, Paris, France
| | - Gyula Tircsó
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, 4010, Debrecen, Hungary
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans, France
| |
Collapse
|
13
|
Duan Z, Han J, Liu Y, Zhao X, Wang B, Cao S, Wu D. A polymeric 1H/ 19F dual-modal MRI contrast agent with a snowman-like Janus nanostructure. J Mater Chem B 2024; 12:7090-7102. [PMID: 38984662 DOI: 10.1039/d4tb00923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Magnetic resonance imaging (MRI) has emerged as a pivotal tool in contemporary medical diagnostics, offering non-invasive and high-resolution visualization of internal structures. Contrast agents are essential for enhancing MRI resolution, accurate lesion detection, and early pathology identification. While gadolinium-based contrast agents are widely used in clinics, safety concerns have prompted exploration of metal-free alternatives, including fluorine and nitroxide radical-based MRI contrast agents. Fluorine-containing compounds exhibit excellent MRI capabilities, with 19F MRI providing enhanced resolution and quantitative assessment. Nitroxide radicals, such as PROXYL and TEMPO, offer paramagnetic properties for MRI contrast. Despite their versatility, nitroxide radicals suffer from lower relaxivity values (r1) compared to gadolinium. Dual-modal imaging, combining 1H and 19F MRI, has gained prominence for its comprehensive insights into biological processes and disease states. However, existing dual-modal agents predominantly utilize gadolinium-organic ligands without incorporating nitroxide radicals. Here, we introduce a novel dual-modal MRI contrast agent (J-CA) featuring a Janus asymmetric nanostructure synthesized via seeded emulsion polymerization and post-modification. J-CA demonstrates excellent in vitro and in vivo performance in both 19F and 1H MRI, with a T2 relaxation time of 5 ms and an r1 value of 0.31 mM-1 s-1, ensuring dual-modal imaging capability. Moreover, J-CA exhibits superior biocompatibility and organ targeting, making it a promising candidate for precise lesion imaging and disease diagnosis. This work introduces a new avenue for metal-free dual-modal MRI, addressing safety concerns associated with traditional contrast agents.
Collapse
Affiliation(s)
- Ziwei Duan
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, China.
| | - Jialei Han
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, China.
| | - Yadong Liu
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, China.
| | - Xinyu Zhao
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, China.
| | - Bo Wang
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, China.
| | | | - Dalin Wu
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, China.
- Sun Yat-sen University, Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Shenzhen, China
| |
Collapse
|
14
|
Li L, Chen C, Bu Y, Wang J, Shao J, Li A, Lin H, Gao J. Fluorinated 1,7-DO2A-Based Iron(II) Complexes as Sensitive 19F MRI Molecular Probes for Visualizing Renal Dysfunction in Living Mice. Anal Chem 2024; 96:10827-10834. [PMID: 38885015 DOI: 10.1021/acs.analchem.4c02272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Kidney diseases have become an important global health concern due to their high incidence, inefficient diagnosis, and poor prognosis. Devising direct methods, especially imaging means, to assess renal function is the key for better understanding the mechanisms of various kidney diseases and subsequent development of effective treatment. Herein, we developed a fluorinated ferrous chelate-based sensitive probe, 1,7-DO2A-Fe(II)-F18 (Probe 1), for 19F magnetic resonance imaging (MRI). This highly fluorinated probe (containing 18 chemically equivalent 19F atoms with a fluorine content at 35 wt %) achieves a 15-time enhancement in signal intensity compared with the fluorine-containing ligand alone due to the appropriately regulated 19F relaxation times by the ferrous ion, which significantly increases imaging sensitivity and reduces acquisition time. Owing to its high aqueous solubility, biostability, and biocompatibility, this probe could be rapidly cleared by kidneys, which provides a means for monitoring renal dysfunction via 19F MRI. With this probe, we accomplish in vivo imaging of the impaired renal dysfunction caused by various kidney diseases including acute kidney injury, unilateral ureteral obstruction, and renal fibrosis at different stages. Our study illustrates the promising potential of Probe 1 for in vivo real-time visualization of kidney dysfunction, which is beneficial for the study, diagnosis, and even stratification of different kidney diseases. Furthermore, the design strategy of our probe is inspiring for the development of more high-performance 19F MRI probes for monitoring various biological processes.
Collapse
Affiliation(s)
- Lingxuan Li
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chuankai Chen
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yifan Bu
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junjie Wang
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Juan Shao
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ao Li
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Jinhao Gao
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
15
|
Hájek M, Flögel U, S Tavares AA, Nichelli L, Kennerley A, Kahn T, Futterer JJ, Firsiori A, Grüll H, Saha N, Couñago F, Aydogan DB, Caligiuri ME, Faber C, Bell LC, Figueiredo P, Vilanova JC, Santini F, Mekle R, Waiczies S. MR beyond diagnostics at the ESMRMB annual meeting: MR theranostics and intervention. MAGMA (NEW YORK, N.Y.) 2024; 37:323-328. [PMID: 38865057 PMCID: PMC11316697 DOI: 10.1007/s10334-024-01176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Affiliation(s)
- Milan Hájek
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Adriana A S Tavares
- Centre for Cardiovascular Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Lucia Nichelli
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Paris Brain Institute, ICM, Paris, France
- Department of Neuroradiology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Aneurin Kennerley
- Department of Sports and Exercise Science, Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Department of Biology, University of York, York, UK
| | - Thomas Kahn
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Leipzig, Germany
| | - Jurgen J Futterer
- Minimally Invasive Image-Guided Intervention Center (MAGIC), Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Aikaterini Firsiori
- Unit of Diagnostic and Interventional Neuroradiology, Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Holger Grüll
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Nandita Saha
- Max-Delbrück-Centrum Für Molekulare Medizin (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010, Madrid, Spain
| | - Dogu Baran Aydogan
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria Eugenia Caligiuri
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Università Degli Studi "Magna Graecia", Catanzaro, Italy
| | - Cornelius Faber
- Translational Research Imaging Center (TRIC), Clinic of Radiology, University of Münster, Münster, Germany
| | - Laura C Bell
- Early Clinical Development, Genentech Inc., South San Francisco, USA
| | - Patrícia Figueiredo
- Institute for Systems and Robotics, ISR-Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joan C Vilanova
- Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging (IDI) Girona, University of Girona, 17004, Girona, Spain
| | - Francesco Santini
- Department of Radiology, University Hospital of Basel, Basel, Switzerland
- Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Ralf Mekle
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sonia Waiczies
- Max-Delbrück-Centrum Für Molekulare Medizin (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation Between the Charité Medical Faculty and the MDC, Berlin, Germany.
| |
Collapse
|
16
|
Holt M, Lin J, Cicka M, Wong A, Epelman S, Lavine KJ. Dissecting and Visualizing the Functional Diversity of Cardiac Macrophages. Circ Res 2024; 134:1791-1807. [PMID: 38843293 DOI: 10.1161/circresaha.124.323817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Cardiac macrophages represent a functionally diverse population of cells involved in cardiac homeostasis, repair, and remodeling. With recent advancements in single-cell technologies, it is possible to elucidate specific macrophage subsets based on transcriptional signatures and cell surface protein expression to gain a deep understanding of macrophage diversity in the heart. The use of fate-mapping technologies and parabiosis studies have provided insight into the ontogeny and dynamics of macrophages identifying subsets derived from embryonic and adult definitive hematopoietic progenitors that include tissue-resident and bone marrow monocyte-derived macrophages, respectively. Within the heart, these subsets have distinct tissue niches and functional roles in the setting of homeostasis and disease, with cardiac resident macrophages representing a protective cell population while bone marrow monocyte-derived cardiac macrophages have a context-dependent effect, triggering both proinflammatory tissue injury, but also promoting reparative functions. With the increased understanding of the clinical relevance of cardiac macrophage subsets, there has been an increasing need to detect and measure cardiac macrophage compositions in living animals and patients. New molecular tracers compatible with positron emission tomography/computerized tomography and positron emission tomography/ magnetic resonance imaging have enabled investigators to noninvasively and serially visualize cardiac macrophage subsets within the heart to define associations with disease and measure treatment responses. Today, advancements within this thriving field are poised to fuel an era of clinical translation.
Collapse
Affiliation(s)
- Megan Holt
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine (M.H., M.C., K.J.L.)
| | - Julia Lin
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (J.L., A.W., S.E.)
- Department of Immunology, University of Toronto, ON, Canada (J.L., A.W., S.E.)
| | - Markus Cicka
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine (M.H., M.C., K.J.L.)
| | - Anthony Wong
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (J.L., A.W., S.E.)
- Department of Immunology, University of Toronto, ON, Canada (J.L., A.W., S.E.)
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada (J.L., A.W., S.E.)
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, Canada (S.E.)
- Department of Immunology, University of Toronto, ON, Canada (J.L., A.W., S.E.)
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada (S.E.)
| | - Kory J Lavine
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine (M.H., M.C., K.J.L.)
| |
Collapse
|
17
|
Song Y, Bienvenu LA, Bongcaron V, Prijaya SA, Maluenda AC, Walsh APG, McFayden JD, Pietersz GA, Peter K, Wang X. Platelet-targeted thromboprophylaxis with a human serum albumin fusion drug: Preventing thrombosis and reducing cardiac ischemia/reperfusion injurywithout bleeding complications. Theranostics 2024; 14:3267-3281. [PMID: 38855181 PMCID: PMC11155409 DOI: 10.7150/thno.97517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/11/2024] [Indexed: 06/11/2024] Open
Abstract
Background: Myocardial infarction (MI) as a consequence of atherosclerosis-associated acute thrombosis is a leading cause of death and disability globally. Antiplatelet and anticoagulant drugs are standard therapies in preventing and treating MI. However, all clinically used drugs are associated with bleeding complications, which ultimately limits their use in patients with a high risk of bleeding. We have developed a new recombinant drug, targ-HSA-TAP, that combines targeting and specific inhibition of activated platelets as well as anticoagulation. This drug is designed and tested for a prolonged circulating half-life, enabling unique thromboprophylaxis without bleeding complications. Methods: Targ-HSA-TAP combines a single-chain antibody (scFv) that targets activated glycoprotein IIb/IIIa on activated platelets, human serum albumin (HSA) for prolonged circulation, and tick anticoagulant peptide (TAP) for coagulation FX inhibition. A non-binding scFv is employed as a non-targeting control (non-targ-HSA-TAP). Its efficacy was investigated in vivo using murine models of acute thrombosis and cardiac ischemia-reperfusion (I/R) injury. Results: Our experiments confirmed the targeting specificity of targ-HSA-TAP to activated platelets and demonstrated effective prevention of platelet aggregation and thrombus formation, as well as FXa inhibition in vitro. Thromboprophylactic administration of targ-HSA-TAP subcutaneously in mice prevented occlusion of the carotid artery after ferric chloride injury as compared to non-targ-HSA-TAP and PBS-control treated mice. By comparing the therapeutic outcomes between targ-TAP and targ-HSA-TAP, we demonstrate the significant improvements brought by the HSA fusion in extending the drug's half-life and enhancing its therapeutic window for up to 16 h post-administration. Importantly, tail bleeding time was not prolonged with targ-HSA-TAP in contrast to the clinically used anticoagulant enoxaparin. Furthermore, in a murine model of cardiac I/R injury, mice administered targ-HSA-TAP 10 h before injury demonstrated preserved cardiac function, with significantly higher ejection fraction and fractional shortening, as compared to the non-targ-HSA-TAP and PBS control groups. Advanced strain analysis revealed reduced myocardial deformation and histology confirmed a reduced infarct size in targ-HSA-TAP treated mice compared to control groups. Conclusion: The inclusion of HSA represents a significant advancement in the design of targeted therapeutic agents for thromboprophylaxis. Our activated platelet-targeted targ-HSA-TAP is a highly effective antithrombotic drug with both anticoagulant and antiplatelet effects while retaining normal hemostasis. The long half-life of targ-HSA-TAP provides the unique opportunity to use this antithrombotic drug for more effective, long-lasting and safer anti-thrombotic prophylaxis. In cases where MI occurs, this prophylactic strategy reduces thrombus burden and effectively reduces cardiac I/R injury.
Collapse
Affiliation(s)
- Yuyang Song
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
| | - Laura A. Bienvenu
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translational and Implementation, La Trobe University, Melbourne, Australia
| | - Viktoria Bongcaron
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Shania A. Prijaya
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ana C. Maluenda
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Aidan P. G. Walsh
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - James D. McFayden
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A. Pietersz
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research, Translational and Implementation, La Trobe University, Melbourne, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Kasarla SS, Flocke V, Saw NMT, Fecke A, Sickmann A, Gunzer M, Flögel U, Phapale P. In-vivo tracking of deuterium metabolism in mouse organs using LC-MS/MS. J Chromatogr A 2024; 1717:464691. [PMID: 38301333 DOI: 10.1016/j.chroma.2024.464691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Mass spectrometry-based metabolomics with stable isotope labeling (SIL) is an established tool for sensitive and precise analyses of tissue metabolism, its flux, and pathway activities in diverse models of physiology and disease. Despite the simplicity and broad applicability of deuterium (2H)-labeled precursors for tracing metabolic pathways with minimal biological perturbations, they are rarely employed in LC-MS/MS-guided metabolomics. In this study, we have developed a LC-MS/MS-guided workflow to trace deuterium metabolism in mouse organs following 2H7 -glucose infusion. The workflow includes isotopically labeled glucose infusion, mouse organ isolation and metabolite extraction, zwitterion-based hydrophilic interaction liquid chromatography (HILIC) coupled to high-resolution tandem mass spectrometry, targeted data acquisition for sensitive detection of deuterated metabolites, a spectral library of over 400 metabolite standards, and multivariate data analysis with pathway mapping. The optimized method was validated for matrix effects, normalization, and quantification to provide both tissue metabolomics and tracking the in-vivo metabolic fate of deuterated glucose through key metabolic pathways. We quantified more than 100 metabolites in five major mouse organ tissues (liver, kidney, brain, brown adipose tissue, and heart). Furthermore, we mapped isotopologues of deuterated metabolites from glycolysis, tricarboxylic acid (TCA) cycle, and amino acid pathways, which are significant for studying both health and various diseases. This study will open new avenues in LC-MS based analysis of 2H-labeled tissue metabolism research in animal models and clinical settings.
Collapse
Affiliation(s)
- Siva Swapna Kasarla
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany
| | - Vera Flocke
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Nay Min Thaw Saw
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany
| | - Antonia Fecke
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany
| | - Matthias Gunzer
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany; Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen 45122, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf 40225, Germany
| | - Prasad Phapale
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, Dortmund 44227, Germany.
| |
Collapse
|
19
|
Nienhaus F, Walz M, Rothe M, Jahn A, Pfeiler S, Busch L, Stern M, Heiss C, Vornholz L, Cames S, Cramer M, Schrauwen-Hinderling V, Gerdes N, Temme S, Roden M, Flögel U, Kelm M, Bönner F. Quantitative assessment of angioplasty-induced vascular inflammation with 19F cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson 2023; 25:54. [PMID: 37784080 PMCID: PMC10546783 DOI: 10.1186/s12968-023-00964-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Macrophages play a pivotal role in vascular inflammation and predict cardiovascular complications. Fluorine-19 magnetic resonance imaging (19F MRI) with intravenously applied perfluorocarbon allows a background-free direct quantification of macrophage abundance in experimental vascular disease models in mice. Recently, perfluorooctyl bromide-nanoemulsion (PFOB-NE) was applied to effectively image macrophage infiltration in a pig model of myocardial infarction using clinical MRI scanners. In the present proof-of-concept approach, we aimed to non-invasively image monocyte/macrophage infiltration in response to carotid artery angioplasty in pigs using 19F MRI to assess early inflammatory response to mechanical injury. METHODS In eight minipigs, two different types of vascular injury were conducted: a mild injury employing balloon oversize angioplasty only (BA, n = 4) and a severe injury provoked by BA in combination with endothelial denudation (BA + ECDN, n = 4). PFOB-NE was administered intravenously three days after injury followed by 1H and 19F MRI to assess vascular inflammatory burden at day six. Vascular response to mechanical injury was validated using X-ray angiography, intravascular ultrasound and immunohistology in at least 10 segments per carotid artery. RESULTS Angioplasty was successfully induced in all eight pigs. Response to injury was characterized by positive remodeling with predominantly adventitial wall thickening and concomitant infiltration of monocytes/macrophages. No severe adverse reactions were observed following PFOB-NE administration. In vivo 19F signals were only detected in the four pigs following BA + ECDN with a robust signal-to-noise ratio (SNR) of 14.7 ± 4.8. Ex vivo analysis revealed a linear correlation of 19F SNR to local monocyte/macrophage cell density. Minimum detection limit of infiltrated monocytes/macrophages was estimated at approximately 410 cells/mm2. CONCLUSIONS In this proof-of-concept study, 19F MRI enabled quantification of monocyte/macrophage infiltration after vascular injury with sufficient sensitivity. This may provide the opportunity to non-invasively monitor vascular inflammation with MRI in patients after angioplasty or even in atherosclerotic plaques.
Collapse
Affiliation(s)
- Fabian Nienhaus
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Moritz Walz
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Maik Rothe
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Annika Jahn
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany
- Central Animal Research Facility, Heinrich Heine University, Düsseldorf, Germany
| | - Susanne Pfeiler
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Lucas Busch
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Manuel Stern
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Christian Heiss
- Department of Clinical and Experimental Medicine, University of Surrey, Faculty of Health and Medical Sciences, Guildford, UK
- Department of Vascular Medicine, Surrey and Sussex Healthcare NHS Trust, Redhill, UK
| | - Lilian Vornholz
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Sandra Cames
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Mareike Cramer
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Vera Schrauwen-Hinderling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sebastian Temme
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Experimental Anesthesiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Florian Bönner
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany.
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
20
|
Maxouri O, Bodalal Z, Daal M, Rostami S, Rodriguez I, Akkari L, Srinivas M, Bernards R, Beets-Tan R. How to 19F MRI: applications, technique, and getting started. BJR Open 2023; 5:20230019. [PMID: 37953866 PMCID: PMC10636348 DOI: 10.1259/bjro.20230019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 11/14/2023] Open
Abstract
Magnetic resonance imaging (MRI) plays a significant role in the routine imaging workflow, providing both anatomical and functional information. 19F MRI is an evolving imaging modality where instead of 1H, 19F nuclei are excited. As the signal from endogenous 19F in the body is negligible, exogenous 19F signals obtained by 19F radiofrequency coils are exceptionally specific. Highly fluorinated agents targeting particular biological processes (i.e., the presence of immune cells) have been visualised using 19F MRI, highlighting its potential for non-invasive and longitudinal molecular imaging. This article aims to provide both a broad overview of the various applications of 19F MRI, with cancer imaging as a focus, as well as a practical guide to 19F imaging. We will discuss the essential elements of a 19F system and address common pitfalls during acquisition. Last but not least, we will highlight future perspectives that will enhance the role of this modality. While not an exhaustive exploration of all 19F literature, we endeavour to encapsulate the broad themes of the field and introduce the world of 19F molecular imaging to newcomers. 19F MRI bridges several domains, imaging, physics, chemistry, and biology, necessitating multidisciplinary teams to be able to harness this technology effectively. As further technical developments allow for greater sensitivity, we envision that 19F MRI can help unlock insight into biological processes non-invasively and longitudinally.
Collapse
Affiliation(s)
| | | | | | | | | | - Leila Akkari
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - René Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
21
|
van Heeswijk RB, Bauer WR, Bönner F, Janjic JM, Mulder WJM, Schreiber LM, Schwitter J, Flögel U. Cardiovascular Molecular Imaging With Fluorine-19 MRI: The Road to the Clinic. Circ Cardiovasc Imaging 2023; 16:e014742. [PMID: 37725674 DOI: 10.1161/circimaging.123.014742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Fluorine-19 (19F) magnetic resonance imaging is a unique quantitative molecular imaging modality that makes use of an injectable fluorine-containing tracer that generates the only visible 19F signal in the body. This hot spot imaging technique has recently been used to characterize a wide array of cardiovascular diseases and seen a broad range of technical improvements. Concurrently, its potential to be translated to the clinical setting is being explored. This review provides an overview of this emerging field and demonstrates its diagnostic potential, which shows promise for clinical translation. We will describe 19F magnetic resonance imaging hardware, pulse sequences, and tracers, followed by an overview of cardiovascular applications. Finally, the challenges on the road to clinical translation are discussed.
Collapse
Affiliation(s)
- Ruud B van Heeswijk
- Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland (R.B.v.H.)
| | - Wolfgang R Bauer
- Department of Internal Medicine I, Universitätsklinikum Würzburg, Germany (W.R.B.)
| | - Florian Bönner
- Department of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty of Heinrich Heine University, University Hospital Düsseldorf, Germany (F.B.)
| | - Jelena M Janjic
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA (J.M.J.)
| | - Willem J M Mulder
- Laboratory of Chemical Biology, Department of Biochemical Engineering, Eindhoven University of Technology, the Netherlands (W.J.M.M.)
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands (W.J.M.M.)
| | - Laura M Schreiber
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center (CHFC), Wuerzburg University Hospitals, Germany (L.M.S.)
| | - Juerg Schwitter
- Division of Cardiology, Cardiovascular Department (J.S.), Lausanne University Hospital (CHUV), Switzerland
- CMR Center (J.S.), Lausanne University Hospital (CHUV), Switzerland
- Faculty of Biology and Medicine, University of Lausanne (UNIL), Switzerland (J.S.)
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging (U.F.), Heinrich Heine University, Germany
- Cardiovascular Research Institute Düsseldorf (CARID) (U.F.), Heinrich Heine University, Germany
| |
Collapse
|
22
|
Rheinberger T, Flögel U, Koshkina O, Wurm FR. Real-time 31P NMR reveals different gradient strengths in polyphosphoester copolymers as potential MRI-traceable nanomaterials. Commun Chem 2023; 6:182. [PMID: 37658116 PMCID: PMC10474120 DOI: 10.1038/s42004-023-00954-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/05/2023] [Indexed: 09/03/2023] Open
Abstract
Polyphosphoesters (PPEs) are used in tissue engineering and drug delivery, as polyelectrolytes, and flame-retardants. Mostly polyphosphates have been investigated but copolymers involving different PPE subclasses have been rarely explored and the reactivity ratios of different cyclic phospholanes have not been reported. We synthesized binary and ternary PPE copolymers using cyclic comonomers, including side-chain phosphonates, phosphates, thiophosphate, and in-chain phosphonates, through organocatalyzed ring-opening copolymerization. Reactivity ratios were determined for all cases, including ternary PPE copolymers, using different nonterminal models. By combining different comonomers and organocatalysts, we created gradient copolymers with adjustable amphiphilicity and microstructure. Reactivity ratios ranging from 0.02 to 44 were observed for different comonomer sets. Statistical ring-opening copolymerization enabled the synthesis of amphiphilic gradient copolymers in a one-pot procedure, exhibiting tunable interfacial and magnetic resonance imaging (MRI) properties. These copolymers self-assembled in aqueous solutions, 31 P MRI imaging confirmed their potential as MRI-traceable nanostructures. This systematic study expands the possibilities of PPE-copolymers for drug delivery and theranostics.
Collapse
Affiliation(s)
- Timo Rheinberger
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands
| | - Ulrich Flögel
- Department of Molecular Cardiology, Experimental Cardiovascular Imaging, Heinrich-Heine-University, Düsseldorf, Germany
| | - Olga Koshkina
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands
| | - Frederik R Wurm
- Sustainable Polymer Chemistry (SPC), Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, Netherlands.
| |
Collapse
|
23
|
Mo Y, Huang C, Liu C, Duan Z, Liu J, Wu D. Recent Research Progress of 19 F Magnetic Resonance Imaging Probes: Principle, Design, and Their Application. Macromol Rapid Commun 2023; 44:e2200744. [PMID: 36512446 DOI: 10.1002/marc.202200744] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Visualization of biomolecules, cells, and tissues, as well as metabolic processes in vivo is significant for studying the associated biological activities. Fluorine magnetic resonance imaging (19 F MRI) holds potential among various imaging technologies thanks to its negligible background signal and deep tissue penetration in vivo. To achieve detection on the targets with high resolution and accuracy, requirements of high-performance 19 F MRI probes are demanding. An ideal 19 F MRI probe is thought to have, first, fluorine tags with magnetically equivalent 19 F nuclei, second, high fluorine content, third, adequate fluorine nuclei mobility, as well as excellent water solubility or dispersity, but not limited to. This review summarizes the research progresses of 19 F MRI probes and mainly discusses the impacts of structures on in vitro and in vivo imaging performances. Additionally, the applications of 19 F MRI probes in ions sensing, molecular structures analysis, cells tracking, and in vivo diagnosis of disease lesions are also covered in this article. From authors' perspectives, this review is able to provide inspirations for relevant researchers on designing and synthesizing advanced 19 F MRI probes.
Collapse
Affiliation(s)
- Yongyi Mo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Chixiang Huang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Changjiang Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Ziwei Duan
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Juan Liu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Gongchang Road 66, Guangming, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
24
|
Koshkina O, Rheinberger T, Flocke V, Windfelder A, Bouvain P, Hamelmann NM, Paulusse JMJ, Gojzewski H, Flögel U, Wurm FR. Biodegradable polyphosphoester micelles act as both background-free 31P magnetic resonance imaging agents and drug nanocarriers. Nat Commun 2023; 14:4351. [PMID: 37468502 DOI: 10.1038/s41467-023-40089-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
In vivo monitoring of polymers is crucial for drug delivery and tissue regeneration. Magnetic resonance imaging (MRI) is a whole-body imaging technique, and heteronuclear MRI allows quantitative imaging. However, MRI agents can result in environmental pollution and organ accumulation. To address this, we introduce biocompatible and biodegradable polyphosphoesters, as MRI-traceable polymers using the 31P centers in the polymer backbone. We overcome challenges in 31P MRI, including background interference and low sensitivity, by modifying the molecular environment of 31P, assembling polymers into colloids, and tailoring the polymers' microstructure to adjust MRI-relaxation times. Specifically, gradient-type polyphosphonate-copolymers demonstrate improved MRI-relaxation times compared to homo- and block copolymers, making them suitable for imaging. We validate background-free imaging and biodegradation in vivo using Manduca sexta. Furthermore, encapsulating the potent drug PROTAC allows using these amphiphilic copolymers to simultaneously deliver drugs, enabling theranostics. This first report paves the way for polyphosphoesters as background-free MRI-traceable polymers for theranostic applications.
Collapse
Affiliation(s)
- Olga Koshkina
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| | - Timo Rheinberger
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Vera Flocke
- Department of Molecular Cardiology, Experimental Cardiovascular Imaging, Heinrich Heine University, Düsseldorf, Germany
| | - Anton Windfelder
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Laboratory of Experimental Radiology, Justus Liebig University, Giessen, Germany
| | - Pascal Bouvain
- Department of Molecular Cardiology, Experimental Cardiovascular Imaging, Heinrich Heine University, Düsseldorf, Germany
| | - Naomi M Hamelmann
- Biomolecular Nanotechnology Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Jos M J Paulusse
- Biomolecular Nanotechnology Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Hubert Gojzewski
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Ulrich Flögel
- Department of Molecular Cardiology, Experimental Cardiovascular Imaging, Heinrich Heine University, Düsseldorf, Germany.
| | - Frederik R Wurm
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute of Nanotechnology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
25
|
Jiang Y, Luo X, Chen L, Lin H, Gao J. Multicolor 19F magnetic resonance imaging: A promising medical technique for in vivo visualization of multiple biological targets. FUNDAMENTAL RESEARCH 2023; 3:529-533. [PMID: 38933546 PMCID: PMC11197664 DOI: 10.1016/j.fmre.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
Driven by the needs of precision medicine, current imaging techniques are under continuous development to offer more accurate and comprehensive information beyond traditional macroscopic anatomical images. Multispectral color-coded (multicolor) 19F magnetic resonance imaging (MRI) is receiving increasing attention owing to its capability for visualizing quantitative and multiplexed molecular information during various biological processes. The chemical design and preparation of 19F probes lie at the core of multicolor 19F MRI since their performance dominates the accomplishment of this technique. Herein, the working principles of multicolor 19F MRI are briefly introduced. Recent progress on multicolor 19F MRI probes for simultaneous in vivo visualization of multiple biological targets is summarized. Finally, current challenges and potential solutions in this fast-developing field are discussed.
Collapse
Affiliation(s)
| | | | - Limin Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
26
|
Lutter JC, Batchev AL, Ortiz CJ, Sertage AG, Romero J, Subasinghe SAAS, Pedersen SE, Samee MAH, Pautler RG, Allen MJ. Outersphere Approach to Increasing the Persistance of Oxygen-Sensitive Europium(II)-Containing Contrast Agents for Magnetic Resonance Imaging with Perfluorocarbon Nanoemulsions toward Imaging of Hypoxia. Adv Healthc Mater 2023; 12:e2203209. [PMID: 36906514 PMCID: PMC10440236 DOI: 10.1002/adhm.202203209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/03/2023] [Indexed: 03/13/2023]
Abstract
Radiographic mapping of hypoxia is needed to study a wide range of diseases. Complexes of Eu(II) are a promising class of molecules to fit this need, but they are generally limited by their rapid oxidation rates in vivo. Here, a perfluorocarbon-nanoemulsion perfused with N2 , forms an interface with aqueous layers to hinder oxidation of a new perfluorocarbon-soluble complex of Eu(II). Conversion of the perfluorocarbon solution of Eu(II) into nanoemulsions results in observable differences between reduced and oxidized forms by magnetic resonance imaging both in vitro and in vivo. Oxidation in vivo occurrs over a period of ≈30 min compared to <5 min for a comparable Eu(II)-containing complex without nanoparticle interfaces. These results represent a critical step toward delivery of Eu(II)-containing complexes in vivo for the study of hypoxia.
Collapse
Affiliation(s)
- Jacob C Lutter
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Andrea L Batchev
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Caitlyn J Ortiz
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alexander G Sertage
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Jonathan Romero
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - S A Amali S Subasinghe
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Steen E Pedersen
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Md Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Robia G Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
27
|
Tang X, Li A, Zuo C, Liu X, Luo X, Chen L, Li L, Lin H, Gao J. Water-Soluble Chemically Precise Fluorinated Molecular Clusters for Interference-Free Multiplex 19F MRI in Living Mice. ACS NANO 2023; 17:5014-5024. [PMID: 36862135 DOI: 10.1021/acsnano.2c12793] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fluorine-19 magnetic resonance imaging (19F MRI) is gaining widespread interest from the fields of biomolecule detection, cell tracking, and diagnosis, benefiting from its negligible background, deep tissue penetration, and multispectral capacity. However, a wide range of 19F MRI probes are in great demand for the development of multispectral 19F MRI due to the limited number of high-performance 19F MRI probes. Herein, we report a type of water-soluble molecular 19F MRI nanoprobe by conjugating fluorine-containing moieties with a polyhedral oligomeric silsesquioxane (POSS) cluster for multispectral color-coded 19F MRI. These chemically precise fluorinated molecular clusters are of excellent aqueous solubility with relatively high 19F contents and of single 19F resonance frequency with suitable longitudinal and transverse relaxation times for high-performance 19F MRI. We construct three POSS-based molecular nanoprobes with distinct 19F chemical shifts at -71.91, -123.23, and -60.18 ppm and achieve interference-free multispectral color-coded 19F MRI of labeled cells in vitro and in vivo. Moreover, in vivo 19F MRI reveals that these molecular nanoprobes could selectively accumulate in tumors and undergo rapid renal clearance afterward, illustrating their favorable in vivo behavior for biomedical applications. This study provides an efficient strategy to expand the 19F probe libraries for multispectral 19F MRI in biomedical research.
Collapse
Affiliation(s)
- Xiaoxue Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Renji Medical Research Center, Chengdu Second People's Hospital, Chengdu 610011, China
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Cuicui Zuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiangjie Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Limin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingxuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
28
|
In vivo monitoring of neutrophil trafficking to sites of injury. NATURE CARDIOVASCULAR RESEARCH 2023; 2:108-109. [PMID: 39196055 DOI: 10.1038/s44161-023-00216-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
|
29
|
Bouvain P, Ding Z, Kadir S, Kleimann P, Kluge N, Tiren ZB, Steckel B, Flocke V, Zalfen R, Petzsch P, Wachtmeister T, John G, Subramaniam N, Krämer W, Strasdeit T, Mehrabipour M, Moll JM, Schubert R, Ahmadian MR, Bönner F, Boeken U, Westenfeld R, Engel DR, Kelm M, Schrader J, Köhrer K, Grandoch M, Temme S, Flögel U. Non-invasive mapping of systemic neutrophil dynamics upon cardiovascular injury. NATURE CARDIOVASCULAR RESEARCH 2023; 2:126-143. [PMID: 39196054 PMCID: PMC11357992 DOI: 10.1038/s44161-022-00210-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/22/2022] [Indexed: 08/29/2024]
Abstract
Neutrophils play a complex role during onset of tissue injury and subsequent resolution and healing. To assess neutrophil dynamics upon cardiovascular injury, here we develop a non-invasive, background-free approach for specific mapping of neutrophil dynamics by whole-body magnetic resonance imaging using targeted multimodal fluorine-loaded nanotracers engineered with binding peptides specifically directed against murine or human neutrophils. Intravenous tracer application before injury allowed non-invasive three-dimensional visualization of neutrophils within their different hematopoietic niches over the entire body and subsequent monitoring of their egress into affected tissues. Stimulated murine and human neutrophils exhibited enhanced labeling due to upregulation of their target receptors, which could be exploited as an in vivo readout for their activation state in both sterile and nonsterile cardiovascular inflammation. This non-invasive approach will allow us to identify hidden origins of bacterial or sterile inflammation in patients and also to unravel cardiovascular disease states on the verge of severe aggravation due to enhanced neutrophil infiltration or activation.
Collapse
Affiliation(s)
- Pascal Bouvain
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Zhaoping Ding
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Shiwa Kadir
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Patricia Kleimann
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Nils Kluge
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Zeynep-Büsra Tiren
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Bodo Steckel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Vera Flocke
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Ria Zalfen
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Gordon John
- Dental Office/Oral Surgery, Dr. G. John, Plauen, Germany
| | - Nirojah Subramaniam
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wolfgang Krämer
- Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University, Freiburg im Breisgau, Germany
| | - Tobias Strasdeit
- Institute of Neuro- and Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Rolf Schubert
- Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University, Freiburg im Breisgau, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Florian Bönner
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Udo Boeken
- Clinic for Cardiac Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ralf Westenfeld
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Daniel Robert Engel
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Malte Kelm
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Schrader
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Maria Grandoch
- Institute for Translational Pharmacology, Heinrich Heine University, Düsseldorf, Germany
| | - Sebastian Temme
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany.
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany.
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
30
|
Li A, Luo X, Chen D, Li L, Lin H, Gao J. Small Molecule Probes for 19F Magnetic Resonance Imaging. Anal Chem 2023; 95:70-82. [PMID: 36625117 DOI: 10.1021/acs.analchem.2c04539] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ao Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Xiangjie Luo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Dongxia Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Lingxuan Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| |
Collapse
|
31
|
Temme S, Kleimann P, Grandoch M, Wang X, Peter K, Simon F, Schrader J, Flögel U. Aktives Targeting zur Visualisierung von thrombotischen Prozessen mittels 19F-MRT. GEFÄSSCHIRURGIE 2022. [DOI: 10.1007/s00772-022-00961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Bodalal Z, Katz S, Shi H, Beets-Tan R. "Advances in cancer imaging and technology"-special collection -introductory Editorial. BJR Open 2022; 4:20229003. [PMID: 38525165 PMCID: PMC10959000 DOI: 10.1259/bjro.20229003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Sharyn Katz
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Haibin Shi
- Center for Molecular Imaging and Nuclear Medicine, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | | |
Collapse
|
33
|
Croci D, Santalla Méndez R, Temme S, Soukup K, Fournier N, Zomer A, Colotti R, Wischnewski V, Flögel U, van Heeswijk RB, Joyce JA. Multispectral fluorine-19 MRI enables longitudinal and noninvasive monitoring of tumor-associated macrophages. Sci Transl Med 2022; 14:eabo2952. [PMID: 36260692 DOI: 10.1126/scitranslmed.abo2952] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
High-grade gliomas, the most common and aggressive primary brain tumors, are characterized by a complex tumor microenvironment (TME). Among the immune cells infiltrating the glioma TME, tumor-associated microglia and macrophages (TAMs) constitute the major compartment. In patients with gliomas, increased TAM abundance is associated with more aggressive disease. Alterations in TAM phenotypes and functions have been reported in preclinical models of multiple cancers during tumor development and after therapeutic interventions, including radiotherapy and molecular targeted therapies. These findings indicate that it is crucial to evaluate TAM abundance and dynamics over time. Current techniques to quantify TAMs in patients rely mainly on histological staining of tumor biopsies. Although informative, these techniques require an invasive procedure to harvest the tissue sample and typically only result in a snapshot of a small region at a single point in time. Fluorine isotope 19 MRI (19F MRI) represents a powerful means to noninvasively and longitudinally monitor myeloid cells in pathological conditions by intravenously injecting perfluorocarbon-containing nanoparticles (PFC-NP). In this study, we demonstrated the feasibility and power of 19F MRI in preclinical models of gliomagenesis, breast-to-brain metastasis, and breast cancer and showed that the major cellular source of 19F signal consists of TAMs. Moreover, multispectral 19F MRI with two different PFC-NP allowed us to identify spatially and temporally distinct TAM niches in radiotherapy-recurrent murine gliomas. Together, we have imaged TAMs noninvasively and longitudinally with integrated cellular, spatial, and temporal resolution, thus revealing important biological insights into the critical functions of TAMs, including in disease recurrence.
Collapse
Affiliation(s)
- Davide Croci
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Rui Santalla Méndez
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Sebastian Temme
- Department of Anesthesiology, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany.,Experimental Cardiovascular Imaging, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany
| | - Klara Soukup
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Center, Lausanne 1011, Switzerland.,Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland
| | - Anoek Zomer
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Roberto Colotti
- In Vivo Imaging Facility (IVIF), Department of Research and Training, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Vladimir Wischnewski
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany.,Institute for Molecular Cardiology, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany
| | - Ruud B van Heeswijk
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland.,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland.,Agora Cancer Research Center, Lausanne 1011, Switzerland
| |
Collapse
|
34
|
Filomena D, Dresselaers T, Bogaert J. Role of Cardiovascular Magnetic Resonance to Assess Cardiovascular Inflammation. Front Cardiovasc Med 2022; 9:877364. [PMID: 35872907 PMCID: PMC9299360 DOI: 10.3389/fcvm.2022.877364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular inflammatory diseases still represent a challenge for physicians. Inflammatory cardiomyopathy, pericarditis, and large vessels vasculitis can clinically mimic a wide spectrum of diseases. While the underlying etiologies are varied, the common physio-pathological process is characterized by vasodilation, exudation, leukocytes infiltration, cell damage, and fibrosis. Cardiovascular magnetic resonance (CMR) allows the visualization of some of these diagnostic targets. CMR provides not only morphological and functional assessment but also tissue catheterization revealing edema, hyperemia, tissue injury, and reparative fibrosis through T2 weighted images, early and late gadolinium enhancement, and parametric mapping techniques. Recent developments showed the role of CMR in the identification of ongoing inflammation also in other CV diseases like myocardial infarction, atherosclerosis, arrhythmogenic and hypertrophic cardiomyopathy. Future developments of CMR, aiming at the specific assessment of immune cell infiltration, will give deeper insight into cardiovascular inflammatory diseases.
Collapse
Affiliation(s)
- Domenico Filomena
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Tom Dresselaers
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Jan Bogaert
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Radiology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Kaldirim M, Lang A, Pfeiler S, Fiegenbaum P, Kelm M, Bönner F, Gerdes N. Modulation of mTOR Signaling in Cardiovascular Disease to Target Acute and Chronic Inflammation. Front Cardiovasc Med 2022; 9:907348. [PMID: 35845058 PMCID: PMC9280721 DOI: 10.3389/fcvm.2022.907348] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023] Open
Abstract
Inflammation is a key component in the pathogenesis of cardiovascular diseases causing a significant burden of morbidity and mortality worldwide. Recent research shows that mammalian target of rapamycin (mTOR) signaling plays an important role in the general and inflammation-driven mechanisms that underpin cardiovascular disease. mTOR kinase acts prominently in signaling pathways that govern essential cellular activities including growth, proliferation, motility, energy consumption, and survival. Since the development of drugs targeting mTOR, there is proven efficacy in terms of survival benefit in cancer and allograft rejection. This review presents current information and concepts of mTOR activity in myocardial infarction and atherosclerosis, two important instances of cardiovascular illness involving acute and chronic inflammation. In experimental models, inhibition of mTOR signaling reduces myocardial infarct size, enhances functional remodeling, and lowers the overall burden of atheroma. Aside from the well-known effects of mTOR inhibition, which are suppression of growth and general metabolic activity, mTOR also impacts on specific leukocyte subpopulations and inflammatory processes. Inflammatory cell abundance is decreased due to lower migratory capacity, decreased production of chemoattractants and cytokines, and attenuated proliferation. In contrast to the generally suppressed growth signals, anti-inflammatory cell types such as regulatory T cells and reparative macrophages are enriched and activated, promoting resolution of inflammation and tissue regeneration. Nonetheless, given its involvement in the control of major cellular pathways and the maintenance of a functional immune response, modification of this system necessitates a balanced and time-limited approach. Overall, this review will focus on the advancements, prospects, and limits of regulating mTOR signaling in cardiovascular disease.
Collapse
Affiliation(s)
- Madlen Kaldirim
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Alexander Lang
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Susanne Pfeiler
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Pia Fiegenbaum
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany.,Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine University, Düsseldorf, Germany
| | - Florian Bönner
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany.,Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine University, Düsseldorf, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Hospital, Heinrich-Heine University, Düsseldorf, Germany.,Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID), Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
36
|
Hof S, Marcus C, Kuebart A, Schulz J, Truse R, Raupach A, Bauer I, Flögel U, Picker O, Herminghaus A, Temme S. A Toolbox to Investigate the Impact of Impaired Oxygen Delivery in Experimental Disease Models. Front Med (Lausanne) 2022; 9:869372. [PMID: 35652064 PMCID: PMC9149176 DOI: 10.3389/fmed.2022.869372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/25/2022] [Indexed: 12/29/2022] Open
Abstract
Impaired oxygen utilization is the underlying pathophysiological process in different shock states. Clinically most important are septic and hemorrhagic shock, which comprise more than 75% of all clinical cases of shock. Both forms lead to severe dysfunction of the microcirculation and the mitochondria that can cause or further aggravate tissue damage and inflammation. However, the detailed mechanisms of acute and long-term effects of impaired oxygen utilization are still elusive. Importantly, a defective oxygen exploitation can impact multiple organs simultaneously and organ damage can be aggravated due to intense organ cross-talk or the presence of a systemic inflammatory response. Complexity is further increased through a large heterogeneity in the human population, differences in genetics, age and gender, comorbidities or disease history. To gain a deeper understanding of the principles, mechanisms, interconnections and consequences of impaired oxygen delivery and utilization, interdisciplinary preclinical as well as clinical research is required. In this review, we provide a "tool-box" that covers widely used animal disease models for septic and hemorrhagic shock and methods to determine the structure and function of the microcirculation as well as mitochondrial function. Furthermore, we suggest magnetic resonance imaging as a multimodal imaging platform to noninvasively assess the consequences of impaired oxygen delivery on organ function, cell metabolism, alterations in tissue textures or inflammation. Combining structural and functional analyses of oxygen delivery and utilization in animal models with additional data obtained by multiparametric MRI-based techniques can help to unravel mechanisms underlying immediate effects as well as long-term consequences of impaired oxygen delivery on multiple organs and may narrow the gap between experimental preclinical research and the human patient.
Collapse
Affiliation(s)
- Stefan Hof
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Carsten Marcus
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anne Kuebart
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jan Schulz
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Richard Truse
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Annika Raupach
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Inge Bauer
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Olaf Picker
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anna Herminghaus
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Temme
- Department of Anaesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
37
|
Fischer J, Gödecke A, Kelm M, Heusch G. Master switches in cardiac ischaemia: the Collaborative Research Center (CRC) 1116 of the German Research Foundation. Eur Heart J 2022; 43:2350-2351. [PMID: 35441663 DOI: 10.1093/eurheartj/ehac191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jens Fischer
- Institute of Pharmacology and Clinical Pharmacology, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Axel Gödecke
- Institute of Cardiovascular Physiology, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Malte Kelm
- Clinic of Cardiology, Pneumology and Angiology, Heinrich-Heine Universität Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, Universität Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
38
|
Zhu X, Xiong H, Wang S, Li Y, Chi J, Wang X, Li T, Zhou Q, Gao J, Shi S. Fluorinated Ionic Liquid Based Multicolor 19 F MRI Nanoprobes for In Vivo Sensing of Multiple Biological Targets. Adv Healthc Mater 2022; 11:e2102079. [PMID: 34898029 DOI: 10.1002/adhm.202102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/28/2021] [Indexed: 11/10/2022]
Abstract
Multicolor imaging, which maps the distribution of different targets, is important for in vivo molecular imaging and clinical diagnosis. Fluorine 19 magnetic resonance imaging (19 F MRI) is a promising technique because of unique insights without endogenous background or tissue penetration limit. Thus multicolor 19 F MRI probes, which can sense a wide variety of molecular species, are expected to help elucidate the biomolecular networks in complex biological systems. Here, a versatile model of activatable probes based on fluorinated ionic liquids (ILs) for multicolor 19 F MRI is reported. Three types of ILs at different chemical shifts are loaded in nanocarriers and sealed by three stimuli-sensitive copolymers, leading to "off" 19 F signals. The coating polymers specifically respond to their environmental stimuli, then degrade to release the loaded ILs, causing 19 F signals recovery. The nanoprobes are utilized for non-invasive detection of tumor hallmarks, which are distinguished by their individual colors in one living mouse, without interference between each other. This multicolor imaging strategy, which adopts modular construction of various ILs and stimuli-responsive polymers, will allow more comprehensive sensing of multiple biological targets, thus, opening a new realm in mechanistic understanding of complex pathophysiologic processes in vivo.
Collapse
Affiliation(s)
- Xianglong Zhu
- School of Public Health Xinxiang Medical University Xinxiang 453003 P. R. China
- College of Chemistry and Chemical Engineering Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis Xinyang Normal University Xinyang 464000 P. R. China
| | - Hehe Xiong
- College of Chemistry and Chemical Engineering Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis Xinyang Normal University Xinyang 464000 P. R. China
| | - Sitian Wang
- College of Chemistry and Chemical Engineering Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis Xinyang Normal University Xinyang 464000 P. R. China
| | - Yanyan Li
- College of Chemistry and Chemical Engineering Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis Xinyang Normal University Xinyang 464000 P. R. China
| | - Jingxian Chi
- College of Chemistry and Chemical Engineering Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis Xinyang Normal University Xinyang 464000 P. R. China
| | - Xuefei Wang
- College of Chemistry and Chemical Engineering Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis Xinyang Normal University Xinyang 464000 P. R. China
| | - Tiantian Li
- College of Chemistry and Chemical Engineering Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis Xinyang Normal University Xinyang 464000 P. R. China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis Xinyang Normal University Xinyang 464000 P. R. China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Saige Shi
- School of Public Health Xinxiang Medical University Xinxiang 453003 P. R. China
- College of Chemistry and Chemical Engineering Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis Xinyang Normal University Xinyang 464000 P. R. China
| |
Collapse
|
39
|
Liu H, Pietersz G, Peter K, Wang X. Nanobiotechnology approaches for cardiovascular diseases: site-specific targeting of drugs and nanoparticles for atherothrombosis. J Nanobiotechnology 2022; 20:75. [PMID: 35135581 PMCID: PMC8822797 DOI: 10.1186/s12951-022-01279-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/21/2022] [Indexed: 02/18/2023] Open
Abstract
Atherosclerosis and atherothrombosis, the major contributors to cardiovascular diseases (CVDs), represent the leading cause of death worldwide. Current pharmacological therapies have been associated with side effects or are insufficient at halting atherosclerotic progression effectively. Pioneering work harnessing the passive diffusion or endocytosis properties of nanoparticles and advanced biotechnologies in creating recombinant proteins for site-specific delivery have been utilized to overcome these limitations. Since CVDs are complex diseases, the most challenging aspect of developing site-specific therapies is the identification of an individual and unique antigenic epitope that is only expressed in lesions or diseased areas. This review focuses on the pathological mechanism of atherothrombosis and discusses the unique targets that are important during disease progression. We review recent advances in site-specific therapy using novel targeted drug-delivery and nanoparticle-carrier systems. Furthermore, we explore the limitations and future perspectives of site-specific therapy for CVDs.
Collapse
Affiliation(s)
- Haikun Liu
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Geoffrey Pietersz
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Burnet Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia. .,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia. .,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia. .,Department of Medicine, Monash University, Melbourne, VIC, Australia. .,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
40
|
Bönner F, Gastl M, Nienhaus F, Rothe M, Jahn A, Pfeiler S, Gross U, Schultheiss HP, Ibanez B, Kozerke S, Szendroedi J, Roden M, Westenfeld R, Schrader J, Flögel U, Heusch G, Kelm M. Regional analysis of inflammation and contractile function in reperfused acute myocardial infarction by in vivo 19F cardiovascular magnetic resonance in pigs. Basic Res Cardiol 2022; 117:21. [PMID: 35389088 PMCID: PMC8989832 DOI: 10.1007/s00395-022-00928-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 01/31/2023]
Abstract
Inflammatory cell infiltration is central to healing after acute myocardial infarction (AMI). The relation of regional inflammation to edema, infarct size (IS), microvascular obstruction (MVO), intramyocardial hemorrhage (IMH), and regional and global LV function is not clear. Here we noninvasively characterized regional inflammation and contractile function in reperfused AMI in pigs using fluorine (19F) cardiovascular magnetic resonance (CMR). Adult anesthetized pigs underwent left anterior descending coronary artery instrumentation with either 90 min occlusion (n = 17) or without occlusion (sham, n = 5). After 3 days, in surviving animals a perfluorooctyl bromide nanoemulsion was infused intravenously to label monocytes/macrophages. At day 6, in vivo 1H-CMR was performed with cine, T2 and T2* weighted imaging, T2 and T1 mapping, perfusion and late gadolinium enhancement followed by 19F-CMR. Pigs were sacrificed for subsequent ex vivo scans and histology. Edema extent was 35 ± 8% and IS was 22 ± 6% of LV mass. Six of ten surviving AMI animals displayed both MVO and IMH (3.3 ± 1.6% and 1.9 ± 0.8% of LV mass). The 19F signal, reflecting the presence and density of monocytes/macrophages, was consistently smaller than edema volume or IS and not apparent in remote areas. The 19F signal-to-noise ratio (SNR) > 8 in the infarct border zone was associated with impaired remote systolic wall thickening. A whole heart value of 19F integral (19F SNR × milliliter) > 200 was related to initial LV remodeling independently of edema, IS, MVO, and IMH. Thus, 19F-CMR quantitatively characterizes regional inflammation after AMI and its relation to edema, IS, MVO, IMH and regional and global LV function and remodeling.
Collapse
Affiliation(s)
- Florian Bönner
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - M Gastl
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - F Nienhaus
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - M Rothe
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, Partner, Düsseldorf, Germany
| | - A Jahn
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
- Central Animal Research Facility, Heinrich Heine University, Düsseldorf, Germany
| | - S Pfeiler
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - U Gross
- Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany
| | - H-P Schultheiss
- Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany
| | - B Ibanez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - S Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - J Szendroedi
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - M Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, Partner, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - R Westenfeld
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - J Schrader
- Department of Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
- Experimental Cardiovascular Imaging, Department of Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - U Flögel
- Department of Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - G Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Essen, Germany
| | - M Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty Heinrich Heine University, Moorenstr. 5, 40225, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|