1
|
Li FY, Huang R, Jiang J, Liu C, Gu J, Yu ZT. Constrained Minimal Interface on Iridium Oxide Surfaces for Acidic Water Oxidation with Low Iridium Loading. Inorg Chem 2025. [PMID: 40418620 DOI: 10.1021/acs.inorgchem.5c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Iridium-based oxides are the best commercial catalysts for the acidic oxygen evolution reaction (OER) because of their relatively excellent stability. However, their high price and low OER activity have greatly impeded their commercialization. Doping IrO2 with transition metals significantly enhances its activity; however, the instability of transition metals in OER kinetic processes can result in substantial metal dissolution and ion exchange. Herein, we report a metastable amorphous Fe:IrO2 OER catalyst, which provided excellent structural flexibility, enhancing the catalyst's performance in the OER with minimal Ir loading. Their constrained minimal interface structure ensures stability, as shown by the minimal dissolution of Fe ions after chronopotentiometry tests. In situ FTIR and DEMS analyses reveal that the catalyst utilizes an *O-*O radical coupling mechanism to generate O2. These findings illustrate the important role of metastable amorphous IrO2 catalysts in establishing an optimal catalytic pathway for stable and excellent electrochemical properties.
Collapse
Affiliation(s)
- Fang-Yi Li
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Renxing Huang
- School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - Jingwen Jiang
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Changhao Liu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Jun Gu
- School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, Jiangsu, China
| |
Collapse
|
2
|
Kim S, Woo J, Ngo YLT, Park HY, Kim JY, Jang JH, Seo B. NaCl Modification: A Novel Strategy for Boosting Oxygen Evolution Activity of Ir Catalysts in Proton Exchange Membrane Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412083. [PMID: 40130706 DOI: 10.1002/smll.202412083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/07/2025] [Indexed: 03/26/2025]
Abstract
The development of high-performance, low-content Ir catalysts is essential for enhancing the cost efficiency of anode catalysts and accelerating the widespread adoption of proton exchange membrane water electrolysis (PEMWE) for sustainable hydrogen production. Existing strategies, such as reducing catalyst particle size and alloying with non-precious metals, have shown limited success in surpassing the intrinsic activity of commercial IrO2 catalysts. This study presents a novel synthesis strategy for IrOx catalyst using NaCl as a structure modifier, delivering a catalyst (IrOx_NaCl) that achieves an impressive current density of 2.48 A cm-2 at 1.9 V, outperforming commercial IrO2 (2.35 A cm-2), even under low Ir catalyst loading in single-cell PEMWE test. Ex situ and in situ spectroscopic analyses suggested that NaCl incorporation effectively modulates the oxidation states and coordination structure of IrOx, leading to enhanced activity, improved stability, and greater cost efficiency. These findings offer a transformative pathway for designing advanced Ir-based catalysts for PEMWE applications.
Collapse
Affiliation(s)
- Sol Kim
- Center for Hydrogen and Fuel Cells, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Jinwoo Woo
- Center for Hydrogen and Fuel Cells, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yen-Linh Thi Ngo
- Center for Hydrogen and Fuel Cells, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hee-Young Park
- Center for Hydrogen and Fuel Cells, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jin Young Kim
- Center for Hydrogen and Fuel Cells, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Jong Hyun Jang
- Center for Hydrogen and Fuel Cells, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Bora Seo
- Center for Hydrogen and Fuel Cells, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| |
Collapse
|
3
|
Tian F, Geng S, Li M, Qiu L, Wu F, He L, Sheng J, Zhou X, Chen Z, Luo M, Liu H, Yu Y, Yang W, Guo S. Synergetic Oxidized Mg and Mo Sites on Amorphous Ru Metallene Boost Hydrogen Evolution Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501230. [PMID: 40116552 DOI: 10.1002/adma.202501230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Indexed: 03/23/2025]
Abstract
Ruthenium (Ru) is considered as a promising catalyst for the alkaline hydrogen evolution reaction (HER), yet its weak water adsorption ability hinders the water splitting efficiency. Herein, a concept of introducing the oxygenophilic MgOx and MoOy species onto amorphous Ru metallene is demonstrated through a simple one-pot salt-templating method for the synergic promotion of water adsorption and splitting to greatly enhance the alkaline HER electrocatalysis. The atomically thin MgOx and MoOy species on Ru metallene (MgOx/MoOy-Ru) show a 15.3-fold increase in mass activity for HER at the potential of 100 mV than that of Ru metallene and an ultralow overpotential of 8.5 mV at a current density of 10 mA cm-2. It is further demonstrated that the MgOx/MoOy-Ru-based anion exchange membrane water electrolyzer can achieve a high current density of 100 mA cm-2 at a remarkably low cell voltage of 1.55 V, and exhibit excellent durability of over 60 h at a current density of 500 mA cm-2. In situ spectroscopy and theoretical simulations reveal that the co-introduction of MgOx and MoOy enhances interfacial water adsorption and splitting by promoting adsorption on oxidized Mg sites and lowering the dissociation energy barrier on oxidized Mo sites.
Collapse
Affiliation(s)
- Fenyang Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Shuo Geng
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- Guizhou Provincial Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Menggang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Longyu Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Fengyu Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Lin He
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Jie Sheng
- Laboratory for Space Environment and Physical Science, Research Center of Basic Space Science, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Xin Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Zhaoyu Chen
- Laboratory for Space Environment and Physical Science, Research Center of Basic Space Science, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Hu Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Yongsheng Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Weiwei Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Yuan Y, Fang H, Chen K, Huang J, Chen J, Lu Z, Wang H, Zhao Z, Chen W, Wen Z. Engineering High-Density Grain Boundaries in Ru 0.8Ir 0.2O x Solid-Solution Nanosheets for Efficient and Durable OER Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501607. [PMID: 40123248 DOI: 10.1002/adma.202501607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/28/2025] [Indexed: 03/25/2025]
Abstract
The oxygen evolution reaction (OER) in proton exchange membrane water electrolyzers (PEMWE) has long stood as a formidable challenge for green hydrogen sustainable production, hindered by sluggish kinetics, high overpotentials, and poor durability. Here, these barriers are transcended through a novel material design: strategic engineering of high-density grain boundaries within solid-solution Ru0.8Ir0.2Ox ultrathin nanosheets. These carefully tailored grain boundaries and synergistic Ir─Ru interactions, reduce the coordination of Ru atoms and optimize the distribution of charge, thereby enhancing both the catalytic activity and stability of the nanosheets, as verified by merely requiring an overpotential of 189 mV to achieve 10 mA cm-2 in acidic electrolyte. In situ electrochemical techniques, complemented by theoretical calculations, reveal that the OER follows an adsorption evolution mechanism, demonstrating the pivotal role of grain boundary engineering and electronic modulation in accelerating reaction kinetics. Most notably, the Ru0.8Ir0.2Ox exhibits outstanding industrial-scale performance in PEMWE, reaching 4.0 A cm-2 at 2 V and maintaining stability for >1000 h at 500 mA cm-2. This efficiency reduces hydrogen production costs to $0.88 kg-1. This work marks a transformative step forward in designing efficient, durable OER catalysts, offering a promising pathway toward hydrogen production technologies and advancing the global transition to sustainable energy.
Collapse
Affiliation(s)
- Yalong Yuan
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Huiling Fang
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Kai Chen
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Junheng Huang
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Junxiang Chen
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhiwen Lu
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Huibing Wang
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhixuan Zhao
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Wenxing Chen
- Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenhai Wen
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
5
|
Kang J, Fang Y, Yang J, Huang L, Chen Y, Li D, Sun J, Jiang R. Recent Development of Ir- and Ru-Based Electrocatalysts for Acidic Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20519-20559. [PMID: 40138357 DOI: 10.1021/acsami.4c22918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Proton exchange membrane (PEM) water electrolyzers are one type of the most promising technologies for efficient, nonpolluting and sustainable production of high-purity hydrogen. The anode catalysts account for a very large fraction of cost in PEM water electrolyzer and also determine the lifetime of the electrolyzer. To date, Ir- and Ru-based materials are types of promising catalysts for the acidic oxygen evolution reaction (OER), but they still face challenges of high cost or low stability. Hence, exploring low Ir and stable Ru-based electrocatalysts for acidic OER attracts extensive research interest in recent years. Owing to these great research efforts, significant developments have been achieved in this field. In this review, the developments in the field of Ir- and Ru-based electrocatalysts for acidic OER are comprehensively described. The possible OER mechanisms are first presented, followed by the introduction of the criteria for evaluation of the OER electrocatalysts. The development of Ir- and Ru-based OER electrocatalysts are then elucidated according to the strategies utilized to tune the catalytic performances. Lastly, possible future research in this burgeoning field is discussed.
Collapse
Affiliation(s)
- Jianghao Kang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yunpeng Fang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Yang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Luo Huang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Chen
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Deng Li
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Sun
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Ruibin Jiang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
6
|
Wang Q, Chen J, Chen S, Zhou D, Du Y, Ji Y, Xiong Y, Ke J, Zhu W, Wang Y, Gao D, Huang WH, Pao CW, Sun Y, Li Y, Shao M, Hu Z, Huang X, Shao Q. 2D Metastable-Phase Hafnium Oxide Triggers Hydrogen Spillover for Boosting Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415978. [PMID: 40012464 DOI: 10.1002/adma.202415978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Hydrogen (H) manipulation plays a significantly important role in many important applications, in which the occurrence of hydrogen spillover generally shows substrate-dependent behavior. It therefore remains an open question about how to trigger the hydrogen spillover on the substrates that are generally hydrogen spillover forbidden. Here a new metastable-phase 2D edge-sharing oxide: six-hexagonal phase-hafnium oxide (Hex-HfO2, space group: P63mc (186)) with the coordination number of six is demonstrated, which serves as an ideal platform for activating efficient hydrogen spillover after loading Ru nanoclusters (Ru/Hex-HfO2). For a stark comparison, the hydrogen spillover is strongly forbidden when using stable monoclinic phase HfO2 (M-HfO2, space group: P21/c (14), coordination number: seven) as the substrate. When applied in an acidic hydrogen evolution reaction (HER), Ru/Hex-HfO2 exhibits a low overpotential of 8 mV at 10 mA cm-2 and a high Ru utilization activity of 14.37 A mgRu -1 at 30 mV. Detailed mechanism reveals the positive H adsorption free energy on Hex-HfO2, indicating that H is more likely to spillover on Hex-HfO2. Furthermore, the strong interaction between Ru and Hex-HfO2 optimizes the desorption of hydrogen intermediate, thus facilitating the surface H spillover. The discovery provides new guidance for developing metastable-phase oxide substrates for advanced catalysis.
Collapse
Affiliation(s)
- Qun Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jinxin Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Shiya Chen
- Department of Physics, Xiamen University, Xiamen, Fujian, 361005, China
| | - Dingyanyan Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yutong Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yutian Xiong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jia Ke
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Dongdong Gao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Yang Sun
- Department of Physics, Xiamen University, Xiamen, Fujian, 361005, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
7
|
Wu X, Meharban F, Xu J, Zhao Z, Tang X, Tan L, Song Y, Hu W, Xiao Q, Lin C, Li X, Xue Y, Luo W. Anode Alchemy on Multiscale: Engineering from Intrinsic Activity to Impedance Optimization for Efficient Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411704. [PMID: 40042317 DOI: 10.1002/smll.202411704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/12/2025] [Indexed: 04/11/2025]
Abstract
The past decade has seen significant progress in proton exchange membrane water electrolyzers (PEMWE), but the growing demand for cost-effective electrolytic hydrogen pushes for higher efficiency at lower costs. As a complex system, the performance of PEMWE is governed by a combination of multiscale factors. This review summarizes the latest progress from quantum to macroscopic scales. At the quantum level, electron spin configurations can be optimized to enhance catalytic activity. At the nano and meso scales, advancements in atomic structure optimization, crystal phase engineering, and heterostructure design improve catalytic performance and mass transport. At the macro scale, innovative techniques in gas bubble management and internal resistance reduction drive further efficiency gains under ampere-level operating conditions. These modifications at the quantum level cascade through meso- and macro-scales, affecting charge transfer, reaction kinetics, and gas evolution management. Unlike conventional approaches that focus solely on one scale-either at the catalyst level (e.g., atomic, or crystal modifications) or at the device level (e.g., porous transport layers design)-combining multiscale optimizations unlocks greater performance improvements. Finally, a perspective on future opportunities for multiscale engineering in PEMWE anode design toward commercial viability is offered.
Collapse
Affiliation(s)
- Xiaotong Wu
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Faiza Meharban
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jingsan Xu
- School of Chemistry and Physics & Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Zian Zhao
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiangmin Tang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Lei Tan
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yujie Song
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Weibo Hu
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
| | - Qi Xiao
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chao Lin
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaopeng Li
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yejian Xue
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
| | - Wei Luo
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
8
|
Feng W, Chang B, Ren Y, Kong D, Tao HB, Zhi L, Khan MA, Aleisa R, Rueping M, Zhang H. Proton Exchange Membrane Water Splitting: Advances in Electrode Structure and Mass-Charge Transport Optimization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416012. [PMID: 40035170 PMCID: PMC12004895 DOI: 10.1002/adma.202416012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Proton exchange membrane water electrolysis (PEMWE) represents a promising technology for renewable hydrogen production. However, the large-scale commercialization of PEMWE faces challenges due to the need for acid oxygen evolution reaction (OER) catalysts with long-term stability and corrosion-resistant membrane electrode assemblies (MEA). This review thoroughly examines the deactivation mechanisms of acidic OER and crucial factors affecting assembly instability in complex reaction environments, including catalyst degradation, dynamic behavior at the MEA triple-phase boundary, and equipment failures. Targeted solutions are proposed, including catalyst improvements, optimized MEA designs, and operational strategies. Finally, the review highlights perspectives on strict activity/stability evaluation standards, in situ/operando characteristics, and practical electrolyzer optimization. These insights emphasize the interrelationship between catalysts, MEAs, activity, and stability, offering new guidance for accelerating the commercialization of PEMWE catalysts and systems.
Collapse
Affiliation(s)
- Wenting Feng
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
- School of Materials Science and EngineeringAdvanced Chemical Engineering and Energy Materials Research CenterChina University of Petroleum (East China)Qingdao266580P. R. China
| | - Bin Chang
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Yuanfu Ren
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Debin Kong
- School of Materials Science and EngineeringAdvanced Chemical Engineering and Energy Materials Research CenterChina University of Petroleum (East China)Qingdao266580P. R. China
| | - Hua Bing Tao
- State Key Laboratory for Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Linjie Zhi
- School of Materials Science and EngineeringAdvanced Chemical Engineering and Energy Materials Research CenterChina University of Petroleum (East China)Qingdao266580P. R. China
| | - Mohd Adnan Khan
- Fuels & Chemicals DivisionResearch & Development Center, Saudi AramcoDhahran31311Saudi Arabia
| | - Rashed Aleisa
- Fuels & Chemicals DivisionResearch & Development Center, Saudi AramcoDhahran31311Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Tahir M, Dai J, Nisa FU, Naseem M, Qu L, Ma Z, Wang W, Peng Z, He L, Akbar AR, Wang D, Li L. Modulating Intrinsic Sulfate Ions in FeOOH Nanorods for Enhanced Energy Storage and Catalytic Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412645. [PMID: 40100240 DOI: 10.1002/smll.202412645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/08/2025] [Indexed: 03/20/2025]
Abstract
Designing efficient low-cost earth-abundant metal electrodes for enhanced energy storage and sluggish oxygen evolution reactions (OERs) poses significant challenges in electrochemistry. Herein an innovative approach to boost the activity of FeOOH nanorods for energy storage and catalytic OER by initiating intrinsic sulfate ion (SO4 2-) modulation is proposed. Through a one-step hydrothermal synthesis using a polymeric ferric sulfate precursor, it is successfully cultivated sulfated iron oxyhydroxide (S-FeOOH) nanorods. Remarkably, the presence of sulfate ions effectively prevented the transformation of FeOOH into less active Fe2O3, even under elevated temperature. Annealing induced the leaching of sulfate ions, leading to structural rearrangements with shorter Fe-O bond lengths and the formation of sulfate-textured FeOOH (ST-FeOOH) with additional active sites, consequently increasing the material's surface area. Importantly, compared with reported non-noble metal catalysts, the ST-FeOOH nanorods exhibited significantly enhanced energy storage capabilities (3684 mF cm-2) and catalytic performance in the OER. With a low overpotential of 173 mV to achieve a current density of 10 mA cm-2, fast OER kinetics (39 mV dec-1), and exceptional stability exceeding 80 h, these nanorods demonstrate their potential as efficient OER catalysts. This work demonstrates sulfate ion modulation's role in tailoring FeOOH nanorods for advanced cost-effective electrodes and OER electrocatalysts.
Collapse
Affiliation(s)
- Muhammad Tahir
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jun Dai
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Fazal Ul Nisa
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Mizna Naseem
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Longbing Qu
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Zeyu Ma
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenwu Wang
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhen Peng
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Liang He
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Abdul Rehman Akbar
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lihong Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
10
|
Zhu W, Ma M, Gao D, Chen J, Huang H, Feng K, Wang Q, Wu J, Li P, Guo J, Fan Z, Zhong J, Shao Q, Liao F, Liu Y, Shao M, Kang Z. Establishing the Link Between Oxygen Vacancy and Activity Enhancement in Acidic Water Oxidation of Trigonal Iridium Oxide. Angew Chem Int Ed Engl 2025; 64:e202423353. [PMID: 39794300 DOI: 10.1002/anie.202423353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/13/2025]
Abstract
Developing durable IrO2-based electrocatalysts with high oxygen evolution reaction (OER) activity under acidic condition is crucial for proton exchange membrane electrolyzers. While oxygen defects are considered potentially important in OER, their direct relationship with catalytic activity has yet to be established. In this study, we introduced abundant oxygen vacancies through Re doping in 2D IrO2 (Re0.03Ir0.97O2), demonstrating their decisive role in enhancing OER performance. The Re0.03Ir0.97O2 catalyst exhibited excellent OER performance with an overpotential of 193 mV at 10 mA cm-2 and sustained activity for over 650 hours, significantly surpassing the undoped catalyst. Moreover, it maintained operation at a cell voltage of 1.70 V (~1200 mA cm-2) for over 140 hours without significant performance degradation. Theoretical calculations coupled with cyclic voltammetry, transient potential scanning and in situ characterizations confirmed the adsorbate evolving mechanism on Re0.03Ir0.97O2, as well as the critical role of Re-induced oxygen vacancies in enhancing OER performance. These findings highlight that oxygen defects directly influence OER activity, providing guidance for the application of oxygen vacancy engineering in electrocatalyst design.
Collapse
Affiliation(s)
- Wenxiang Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Mengjie Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Dongdong Gao
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Jinxin Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Kun Feng
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Qun Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Jie Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Penghao Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Jinzeng Guo
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Zhenglong Fan
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Fan Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Mingwang Shao
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China
| |
Collapse
|
11
|
Ke J, Zhu W, Ji Y, Chen J, Li C, Wang Y, Wang Q, Huang WH, Hu Z, Li Y, Shao Q, Lu J. Optimizing Acidic Oxygen Evolution Reaction via Modulation Doping in Van der Waals Layered Iridium Oxide. Angew Chem Int Ed Engl 2025; 64:e202422740. [PMID: 39757984 DOI: 10.1002/anie.202422740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/04/2025] [Accepted: 01/04/2025] [Indexed: 01/07/2025]
Abstract
Anodic oxygen evolution reaction (OER) exhibits a sluggish four-electron transfer process, necessitating catalysts with exceptional catalytic activity to enhance its kinetic rate. Van der Waals layered oxides are ideal materials for catalyst design, yet its stability for acidic OER remains large obstacle. Doping provides a crucial way to improve the activity and stability simultaneously. However, doping in Van der Waals layered oxides remains a great challenge since it easily leads to lattice distortion or even the crystal structure damage. In this work, we successfully doping acid-resistant niobium (Nb) into Van der Waals layered edge-shared 1T phase iridium oxide (1 T-IrO2) via alkali-assisted thermal method. 1 T-IrO2 with a 5 % Nb doping (Nb0.05Ir0.95O2) only required an overpotential of 191 mV to achieve a current density of 10 mA cm-2 in 0.5 M H2SO4, 56 mV lower than that of 1T-IrO2. When applied in proton exchange membrane water electrolyzer, Nb0.05Ir0.95O2 show stable operation at a high current density of 1.2 A cm-2 for over 50 days. Density functional theory calculation reveals that doping Nb changes the potential-determining step from the *OOH deprotonation process in 1 T-IrO2 to the *O-OH coupling process in Nb0.05Ir0.95O2.
Collapse
Affiliation(s)
- Jia Ke
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, P. R. China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, P. R. China
| | - Jinxin Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, P. R. China
| | - Chenchen Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Qun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, P. R. China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Centre, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Street 40, Dresden, 01187, Germany
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, P. R. China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| |
Collapse
|
12
|
Qian Y, Guo Y, Yang Z, Luo Z, Zhang L, Zhang Q, He C, Zhang H, Sun X, Ren X. Bias-Induced Ga-O-Ir Interface Breaks the Limits of Adsorption-Energy Scaling Relationships for High-Performing Proton Exchange Membrane Electrolyzers. Angew Chem Int Ed Engl 2025; 64:e202419352. [PMID: 39875333 DOI: 10.1002/anie.202419352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/30/2024] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
Rationally manipulating the in situ formed catalytically active surface of catalysts remains a significant challenge for achieving highly efficient water electrolysis. Herein, we present a bias-induced activation strategy to modulate in situ Ga leaching and trigger the dynamic surface restructuring of lamellar Ir@Ga2O3 for the electrochemical oxygen evolution reaction. The in situ reconstructed Ga-O-Ir interface sustains high water oxidation rates at oxygen evolution reaction (OER) overpotentials. We found that OER at the Ga-O-Ir interface follows a bi-nuclear adsorbate evolution mechanism with unsaturated IrOx as the active sites, while GaOx atoms play an indirect role in promoting water dissociation to form OH* and transferring OH* to Ir sites. This breaks the scaling relationship of the adsorption energies between OH* and OOH*, significantly lowering the energy barrier of the rate-limiting step and greatly increasing reactivity. The Ir@Ga2O3 catalyst achieves lower overpotentials, a current density of 2 A cm-2 at 1.76 V, and stable operation up to 1 A cm-2 in scalable proton exchange membrane water electrolyzer (PEMWE) at 1.63 V, maintaining stable operation at 1 A cm-2 over 1000 hours with a degradation rate of 11.5 μV h-1. This work prompted us to jointly address substrate-catalyst interactions and catalyst reconstruction, an underexplored path, to improve activity and stability in Ir PEMWE anodes.
Collapse
Affiliation(s)
- Yinnan Qian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
| | - Yirun Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
| | - Zijie Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
| | - Zhaoyan Luo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
| | - Qianling Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
| | - Hao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Xueliang Sun
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315000, P. R. China
| | - Xiangzhong Ren
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China
| |
Collapse
|
13
|
Guo R, Wang S, Sheng M, Zou X, Zhang M, Li G, Cao Y, Fan Z, Chen J, Zhu W, Liao F, Ling T, Ren H, Lv F, Kang Z. Creating Bridged-H* Bond Structure for Boosting Electrocatalytic Hydrogen Evolution via Phosphorus-Doped Iridium Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412338. [PMID: 39935107 DOI: 10.1002/smll.202412338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/18/2025] [Indexed: 02/13/2025]
Abstract
Iridium (Ir) is recognized to have extremely high catalytic activity in the hydrogen evolution reaction (HER). However, there are still technical challenges in maximizing the utilization of Ir atoms in the catalytic reaction process through dimensional regulation strategies. Herein, an innovative strategy is utilized to fabricate porous phosphorus-doped iridium (P-Ir) with a 2D structure, specifically the reduction of 1T phase-IrO2 (1T-IrO2) nanosheets using phosphine gas. The optimized P-Ir achieves an overpotential of 17.2 mV (vs RHE without iR-correction) in 0.5 m H2SO4 during the HER process, outperforming benchmark Pt/C (27.0 mV) and most reported Ir-based electrocatalysts. During the long-term stability tests, P-Ir maintains stable operation for more than 100 h at both -10 and -100 mA cm-2, respectively. Moreover, the HER activity and transient potential scanning results of Ir-based phosphides prove that doping P atoms in the Ir lattice promotes the reaction kinetic rate and charge transport capacity during hydrogen evolution. Theoretical calculations reveal that P atoms doping weakens the adsorption energy of H intermediates (H*) by regulating the d-band center of the Ir sites. Simultaneously, the desorption process of H* is also facilitated by forming a special bridged-H* bond structure, eventually accelerating the HER kinetics.
Collapse
Affiliation(s)
- Ruiqi Guo
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu, 215137, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Shujuan Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Minqi Sheng
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu, 215137, China
| | - Xingli Zou
- State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Mingzhi Zhang
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu, 215137, China
| | - Guangcheng Li
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu, 215137, China
| | - Yi Cao
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu, 215137, China
| | - Zhenglong Fan
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jinxin Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wenxiang Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fan Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Tianjiao Ling
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu, 215137, China
| | - Hao Ren
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu, 215137, China
| | - Fan Lv
- School of Iron and Steel, Soochow University, Suzhou, Jiangsu, 215137, China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
| |
Collapse
|
14
|
Li G, Priyadarsini A, Xie Z, Kang S, Liu Y, Chen X, Kattel S, Chen JG. Achieving Higher Activity of Acidic Oxygen Evolution Reaction Using an Atomically Thin Layer of IrO x over Co 3O 4. J Am Chem Soc 2025; 147:7008-7016. [PMID: 39945409 DOI: 10.1021/jacs.4c17915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The development of electrocatalysts with reduced iridium (Ir) loading for the oxygen evolution reaction (OER) is essential to produce low-cost green hydrogen from water electrolysis under acidic conditions. Herein, an atomically thin layer of iridium oxide (IrOx) has been uniformly dispersed onto cobalt oxide (Co3O4) nanocrystals to improve the efficient use of Ir for acidic OER. In situ characterization and theoretical calculations reveal that compared to the conventional IrOx cluster, the atomically thin layer of IrOx shows stronger interaction with the Co3O4 and consequently higher OER activity due to the Ir-O-Co bond formation at the interface. Equally important, the facile synthetic method and the promising activity in the proton exchange membrane water electrolyzer, reaching 1 A cm-2 at 1.7 V with remarkable durability, enable potential scale-up applications. These findings provide a mechanistic understanding for designing active, stable and lower-cost electrocatalysts with well-defined structures for acidic OER.
Collapse
Affiliation(s)
- Gengnan Li
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Adyasa Priyadarsini
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, United States
| | - Zhenhua Xie
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sinwoo Kang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaobo Chen
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Shyam Kattel
- Department of Physics, University of Central Florida, Orlando, Florida 32816, United States
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
15
|
He N, Yuan Z, Wu C, Xi S, Xiong J, Huang Y, Lian G, Du Z, Liu L, Wu D, Chen Z, Tu W, Zou Z, Tong SY. Efficient Nitrate to Ammonia Conversion on Bifunctional IrCu 4 Alloy Nanoparticles. ACS NANO 2025; 19:4684-4693. [PMID: 39825843 DOI: 10.1021/acsnano.4c15234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Electrochemical nitrate reduction (NO3RR) to ammonia presents a promising alternative strategy to the traditional Haber-Bosch process. However, the competitive hydrogen evolution reaction (HER) reduces the Faradaic efficiency toward ammonia, while the oxygen evolution reaction (OER) increases the energy consumption. This study designs IrCu4 alloy nanoparticles as a bifunctional catalyst to achieve efficient NO3RR and OER while suppressing the unwanted HER. This is achieved by operating the NO3RR at positive potentials using the IrCu4 catalyst, which allows a Faradaic efficiency of 93.6% for NO3RR. When applied to OER catalysis, the IrCu4 alloy also shows excellent results, with a relatively low overpotential of 260 mV at 10 mA cm-2. Stable ammonia production can be achieved for 50 h in a 16 cm2 flow electrolyzer in simulated working conditions. Our research provides a pathway for optimizing NO3RR through bifunctional catalysts in a tandem approach.
Collapse
Affiliation(s)
- Ning He
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zhi Yuan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Chao Wu
- Agency for Science, Technology and Research, Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Singapore 627833, Republic of Singapore
| | - Shibo Xi
- Agency for Science, Technology and Research, Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Singapore 627833, Republic of Singapore
| | - Jingjing Xiong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Yucong Huang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Guanwu Lian
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zefan Du
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Laihao Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Dawei Wu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Wenguang Tu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Shuk-Yin Tong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518000, China
- Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
16
|
Wang H, Li X, Zhang G, Gu Z, Chen H, Wei G, Shen S, Cheng J, Zhang J. Recent Progress in Balancing the Activity, Durability, and Low Ir Content for Ir-Based Oxygen Evolution Reaction Electrocatalysts in Acidic Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410407. [PMID: 39711255 DOI: 10.1002/smll.202410407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Proton exchange membrane (PEM) electrolysis faces challenges associated with high overpotential and acidic environments, which pose significant hurdles in developing highly active and durable electrocatalysts for the oxygen evolution reaction (OER). Ir-based nanomaterials are considered promising OER catalysts for PEM due to their favorable intrinsic activity and stability under acidic conditions. However, their high cost and limited availability pose significant limitations. Consequently, numerous studies have emerged aimed at reducing iridium content while maintaining high activity and durability. Furthermore, the research on the OER mechanism of Ir-based catalysts has garnered widespread attention due to differing views among researchers. The recent progress in balancing activity, durability, and low iridium content in Ir-based catalysts is summarized in this review, with a particular focus on the effects of catalyst morphology, heteroatom doping, substrate introduction, and novel structure development on catalyst performance from four perspectives. Additionally, the recent mechanistic studies on Ir-based OER catalysts is discussed, and both theoretical and experimental approaches is summarized to elucidate the Ir-based OER mechanism. Finally, the perspectives on the challenges and future developments of Ir-based OER catalysts is presented.
Collapse
Affiliation(s)
- Huimin Wang
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyi Li
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guozhu Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zihan Gu
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Chen
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guanghua Wei
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junfang Cheng
- Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
17
|
Bu Y, Ma R, Wang Y, Zhao Y, Li F, Han GF, Baek JB. Metal-Based Oxygen Reduction Electrocatalysts for Efficient Hydrogen Peroxide Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412670. [PMID: 39449208 DOI: 10.1002/adma.202412670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Hydrogen peroxide (H2O2) is a high-value chemical widely used in electronics, textiles, paper bleaching, medical disinfection, and wastewater treatment. Traditional production methods, such as the anthraquinone oxidation process and direct synthesis, require high energy consumption, and involve risks from toxic substances and explosions. Researchers are now exploring photochemical, electrochemical, and photoelectrochemical synthesis methods to reduce energy use and pollution. This review focuses on the 2-electron oxygen reduction reaction (2e- ORR) for the electrochemical synthesis of H2O2, and discusses how catalyst active sites influence O2 adsorption. Strategies to enhance H2O2 selectivity by regulating these sites are presented. Catalysts require strong O2 adsorption to initiate reactions and weak *OOH adsorption to promote H2O2 formation. The review also covers advances in single-atom catalysts (SACs), multi-metal-based catalysts, and highlights non-noble metal oxides, especially perovskite oxides, for their versatile structures and potential in 2e- ORR. The potential of localized surface plasmon resonance (LSPR) effects to enhance catalyst performance is also discussed. In conclusion, emphasis is placed on optimizing catalyst structures through theoretical and experimental methods to achieve efficient and selective H2O2 production, aiming for sustainable and commercial applications.
Collapse
Affiliation(s)
- Yunfei Bu
- UNIST-NUIST Environment and Energy Jointed Lab, (UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Rong Ma
- UNIST-NUIST Environment and Energy Jointed Lab, (UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Yaobin Wang
- UNIST-NUIST Environment and Energy Jointed Lab, (UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Yunxia Zhao
- UNIST-NUIST Environment and Energy Jointed Lab, (UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Feng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan, Shanghai, 200433, P. R. China
| | - Gao-Feng Han
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology, 50 UNIST, Ulsan, 44919, South Korea
| |
Collapse
|
18
|
Jeon SS, Lee W, Jeon H, Lee H. Developing Catalysts for Membrane Electrode Assemblies in High Performance Polymer Electrolyte Membrane Water Electrolyzers. CHEMSUSCHEM 2024; 17:e202301827. [PMID: 38985026 PMCID: PMC11587686 DOI: 10.1002/cssc.202301827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/17/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Extensive research is underway to achieve carbon neutrality through the production of green hydrogen via water electrolysis, powered by renewable energy. Polymer membrane water electrolyzers, such as proton exchange membrane water electrolyzer (PEMWE) and anion exchange membrane water electrolyzer (AEMWE), are at the forefront of this research. Developing highly active and durable electrode catalysts is crucial for commercializing these electrolyzers. However, most research is conducted in half-cell setups, which may not fully represent the catalysts' effectiveness in membrane-electrode-assembly (MEA) devices. This review explores the catalysts developed for high-performance PEMWE and AEMWE MEA systems. Only the catalysts reporting on the MEA performance were discussed in this review. In PEMWE, strategies aim to minimize Ir use for the oxygen evolution reaction (OER) by maximizing activity, employing metal oxide-based supports, integrating secondary elements into IrOx lattices, or exploring non-Ir materials. For AEMWE, the emphasis is on enhancing the performance of NiFe-based and Co-based catalysts by improving electrical conductivity and mass transport. Pt-based and Ni-based catalysts for the hydrogen evolution reaction (HER) in AEMWE are also examined. Additionally, this review discusses the unique considerations for catalysts operating in pure water within AEMWE systems.
Collapse
Affiliation(s)
- Sun Seo Jeon
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Wonjae Lee
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Hyeseong Jeon
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Hyunjoo Lee
- Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| |
Collapse
|
19
|
Liu H, Jiang S, Li M, Lei S, Wu J, He T, Wang D, Lin J, Huang P. Dual Enzyme-Driven Cascade Reactions Modulate Immunosuppressive Tumor Microenvironment for Catalytic Therapy and Immune Activation. ACS NANO 2024; 18:30345-30359. [PMID: 39432819 DOI: 10.1021/acsnano.4c07374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Lactate-enriched tumor microenvironment (TME) fosters an immunosuppressive milieu to hamper the functionality of tumor-associated macrophages (TAMs). However, tackling the immunosuppressive effects wrought by lactate accumulation is still a big challenge. Herein, we construct a dual enzyme-driven cascade reaction platform (ILH) with immunosuppressive TME modulation for photoacoustic (PA) imaging-guided catalytic therapy and immune activation. The ILH is composed of iridium (Ir) metallene nanozyme, lactate oxidase (LOx), and hyaluronic acid (HA). The combination of Ir nanozyme and LOx can not only efficiently consume lactate to reverse the immunosuppressive TME into an immunoreactive one by promoting the polarization of TAMs from the M2 to M1 phenotype, thus enhancing antitumor defense, but also alleviate tumor hypoxia as well as induce strong oxidative stress, thus triggering immunogenic cell death (ICD) and activating antitumor immunity. Furthermore, the photothermal performance of Ir nanozyme can strengthen the cascade catalytic ability and endow ILH with a PA response. Based on the changes in PA signals from endogenous molecules, three-dimensional multispectral PA imaging was utilized to track the process of cascade catalytic therapy in vivo. This work provides a nanoplatform for dual enzyme-driven cascade catalytic therapy and immune activation by regulating the immunosuppressive TME.
Collapse
Affiliation(s)
- Hengke Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Meng Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Ting He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
20
|
Zhong X, Liu XH, Peng HJ, Liu X. Theoretical insights into layered IrO 2 for the oxygen evolution reaction. Chem Commun (Camb) 2024; 60:11948-11951. [PMID: 39344642 DOI: 10.1039/d4cc03458a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Here we present the density functional theory-based exploration of layered IrO2 polymorphs for the oxygen evolution reaction, as well as a data-driven geometric descriptor for catalytic activity. The layer edges are identified as promising active site motifs with not only low theoretical overpotential but also intriguing structural flexibility and to break the universal energetic scaling through torsional distortion.
Collapse
Affiliation(s)
- Xian Zhong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Xin-He Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Hong-Jie Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Xinyan Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
- Key Laboratory of Quantum Physics and Photonic Quantum Information, Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
21
|
Zhang D, Wu Q, Wu L, Cheng L, Huang K, Chen J, Yao X. Optimal Electrocatalyst Design Strategies for Acidic Oxygen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401975. [PMID: 39120481 PMCID: PMC11481214 DOI: 10.1002/advs.202401975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/18/2024] [Indexed: 08/10/2024]
Abstract
Hydrogen, a clean resource with high energy density, is one of the most promising alternatives to fossil. Proton exchange membrane water electrolyzers are beneficial for hydrogen production because of their high current density, facile operation, and high gas purity. However, the large-scale application of electrochemical water splitting to acidic electrolytes is severely limited by the sluggish kinetics of the anodic reaction and the inadequate development of corrosion- and highly oxidation-resistant anode catalysts. Therefore, anode catalysts with excellent performance and long-term durability must be developed for anodic oxygen evolution reactions (OER) in acidic media. This review comprehensively outlines three commonly employed strategies, namely, defect, phase, and structure engineering, to address the challenges within the acidic OER, while also identifying their existing limitations. Accordingly, the correlation between material design strategies and catalytic performance is discussed in terms of their contribution to high activity and long-term stability. In addition, various nanostructures that can effectively enhance the catalyst performance at the mesoscale are summarized from the perspective of engineering technology, thus providing suitable strategies for catalyst design that satisfy industrial requirements. Finally, the challenges and future outlook in the area of acidic OER are presented.
Collapse
Affiliation(s)
- Dongdong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Qilong Wu
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAustralian Institute for Innovative MaterialsUniversity of WollongongWollongongNSW2500Australia
| | - Liyun Wu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Lina Cheng
- Institute for Green Chemistry and Molecular EngineeringSun Yat‐Sen UniversityGuangzhouGuangdong510275P. R. China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Jun Chen
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials ScienceAustralian Institute for Innovative MaterialsUniversity of WollongongWollongongNSW2500Australia
| | - Xiangdong Yao
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012P. R. China
- School of Advanced Energy and IGCMEShenzhen CampusSun Yat‐Sen University (SYSU)ShenzhenGuangdong518100P. R. China
| |
Collapse
|
22
|
Chen L, Zhao W, Zhang J, Liu M, Jia Y, Wang R, Chai M. Recent Research on Iridium-Based Electrocatalysts for Acidic Oxygen Evolution Reaction from the Origin of Reaction Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403845. [PMID: 38940392 DOI: 10.1002/smll.202403845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/18/2024] [Indexed: 06/29/2024]
Abstract
As the anode reaction of proton exchange membrane water electrolysis (PEMWE), the acidic oxygen evolution reaction (OER) is one of the main obstacles to the practical application of PEMWE due to its sluggish four-electron transfer process. The development of high-performance acidic OER electrocatalysts has become the key to improving the reaction kinetics. To date, although various excellent acidic OER electrocatalysts have been widely researched, Ir-based nanomaterials are still state-of-the-art electrocatalysts. Hence, a comprehensive and in-depth understanding of the reaction mechanism of Ir-based electrocatalysts is crucial for the precise optimization of catalytic performance. In this review, the origin and nature of the conventional adsorbate evolution mechanism (AEM) and the derived volcanic relationship on Ir-based electrocatalysts for acidic OER processes are summarized and some optimization strategies for Ir-based electrocatalysts based on the AEM are introduced. To further investigate the development strategy of high-performance Ir-based electrocatalysts, several unconventional OER mechanisms including dual-site mechanism and lattice oxygen mediated mechanism, and their applications are introduced in detail. Thereafter, the active species on Ir-based electrocatalysts at acidic OER are summarized and classified into surface Ir species and O species. Finally, the future development direction and prospect of Ir-based electrocatalysts for acidic OER are put forward.
Collapse
Affiliation(s)
- Ligang Chen
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Wei Zhao
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Juntao Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Min Liu
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Yin Jia
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Ruzhi Wang
- Institute of Advanced Energy Materials and Devices, College of Material Science and Engineering; Key Laboratory of Advanced Functional Materials of Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Maorong Chai
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| |
Collapse
|
23
|
Yang B, Cao L, Ge K, Lv C, Zhao Z, Zheng T, Gao S, Zhang J, Wang T, Jiang J, Qin Y. FeSA‐Ir/Metallene Nanozymes Induce Sequential Ferroptosis‐Pyroptosis for Multi‐Immunogenic Responses Against Lung Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401110. [PMID: 38874051 DOI: 10.1002/smll.202401110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/01/2024] [Indexed: 06/15/2024]
Abstract
For cancer metastasis inhibition, the combining of nanozymes with immune checkpoint blockade (ICB) therapy remains the major challenge in controllable reactive oxygen species (ROS) generation for creating effective immunogenicity. Herein, new nanozymes with light-controlled ROS production in terms of quantity and variety are developed by conjugating supramolecular-wrapped Fe single atom on iridium metallene with lattice-strained nanoislands (FeSA-Ir@PF NSs). The Fenton-like catalysis of FeSA-Ir@PF NSs effectively produced •OH radicals in dark, which induced ferroptosis and apoptosis of cancer cells. While under second near-infrared (NIR-II) light irradiation, FeSA-Ir@PF NSs showed ultrahigh photothermal conversion efficiency (𝜂, 75.29%), cooperative robust •OH generation, photocatalytic O2 and 1O2 generation, and caused significant pyroptosis of cancer cells. The controllable ROS generation, sequential cancer cells ferroptosis and pyroptosis, led 99.1% primary tumor inhibition and multi-immunogenic responses in vivo. Most importantly, the inhibition of cancer lung metastasis is completely achieved by FeSA-Ir@PF NSs with immune checkpoint inhibitors, as demonstrated in different mice lung metastasis models, including circulating tumor cells (CTCs) model. This work provided new inspiration for developing nanozymes for cancer treatments and metastasis inhibition.
Collapse
Affiliation(s)
- Baochan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lingzhi Cao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Kun Ge
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Chaofan Lv
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Zunling Zhao
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Jinchao Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Qin
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
24
|
Ji Q, Tang B, Zhang X, Wang C, Tan H, Zhao J, Liu R, Sun M, Liu H, Jiang C, Zeng J, Cai X, Yan W. Operando identification of the oxide path mechanism with different dual-active sites for acidic water oxidation. Nat Commun 2024; 15:8089. [PMID: 39284800 PMCID: PMC11405856 DOI: 10.1038/s41467-024-52471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
The microscopic reaction pathway plays a crucial role in determining the electrochemical performance. However, artificially manipulating the reaction pathway still faces considerable challenges. In this study, we focus on the classical acidic water oxidation based on RuO2 catalysts, which currently face the issues of low activity and poor stability. As a proof-of-concept, we propose a strategy to create local structural symmetry but oxidation-state asymmetric Mn4-δ-O-Ru4+δ active sites by introducing Mn atoms into RuO2 host, thereby switching the reaction pathway from traditional adsorbate evolution mechanism to oxide path mechanism. Through advanced operando synchrotron spectroscopies and density functional theory calculations, we demonstrate the synergistic effect of dual-active metal sites in asymmetric Mn4-δ-O-Ru4+δ microstructure in optimizing the adsorption energy and rate-determining step barrier via an oxide path mechanism. This study highlights the importance of engineering reaction pathways and provides an alternative strategy for promoting acidic water oxidation.
Collapse
Affiliation(s)
- Qianqian Ji
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
- Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, China
| | - Bing Tang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Xilin Zhang
- School of Physics, Henan Key Laboratory of Advanced Semiconductor & Functional Device Integration, Henan Normal University, Xinxiang, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Jie Zhao
- Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, China
| | - Ruiqi Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Mei Sun
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| | - Hengjie Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Chang Jiang
- College of Energy, Xiamen University, Xiamen, China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Xingke Cai
- Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, China.
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
25
|
Xia F, Shu L, Yang F, Wen Y, Zheng C. Computational screening of transition metal atom doped ZnS and ZnSe nanostructures as promising bifunctional oxygen electrocatalysts. RSC Adv 2024; 14:28998-29005. [PMID: 39282065 PMCID: PMC11391343 DOI: 10.1039/d4ra04011b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024] Open
Abstract
The design of bifunctional oxygen electrocatalysts showing high catalytic performance for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is of great significance for developing new renewable energy storage and conversion technologies. Herein, based on the first principles calculations, we systematically explored the electrocatalytic activity of a series of transition metal atom (Fe, Co, Ni, Cu, Pd and Pt)-doped ZnS and ZnSe nanostructures for OER and ORR. The calculated results revealed that Ni- and Pt-doped ZnS and ZnSe nanostructures exhibit promising electrocatalytic performance for both OER and ORR in comparison to the pristine ZnS and ZnSe nanostructures. Especially, the OER/ORR overpotentials of Ni-doped ZnS and ZnSe nanostructures are estimated to be 0.28/0.30 and 0.31/0.31 V, respectively, disclosing their great potential as bifunctional oxygen electrocatalysts. Moreover, it is found that Ni-doped ZnS and ZnSe nanostructures for OER and ORR are on the top of the volcano plots, evincing promising catalytic performance. Our results provide theoretical insights into a feasible strategy to synthesize highly efficient ZnS- and ZnSe-based bifunctional oxygen electrocatalysts in the future.
Collapse
Affiliation(s)
- Feifei Xia
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 Jiangsu P. R. China
| | - Li Shu
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 Jiangsu P. R. China
| | - Fengli Yang
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 Jiangsu P. R. China
| | - Yingpin Wen
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 Jiangsu P. R. China
| | - Chunzhi Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 Jiangsu P. R. China
| |
Collapse
|
26
|
Bagdwal H, Sood P, Dhillon AK, Singh A, Singh M. Deciphering the work function induced local charge regulation towards activating an octamolybdate cluster-based solid for acidic water oxidation. NANOSCALE 2024; 16:16420-16429. [PMID: 39171964 DOI: 10.1039/d4nr02645d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The advancement of highly robust and efficient electrocatalysts for the oxygen evolution reaction (OER) under acidic conditions is imperative for the sustainable production of green hydrogen. In accomplishing sustainable and sturdy electrocatalysts for oxygen evolution at low pH, the challenge is tough for non-iridium/ruthenium-based electrocatalysts. This study elaborates on the intrinsic alterations in electronic arrangements and structural disorder upon the precise activation of an octamolybdate cluster-based solid [{Cu(pz)4}2Mo8O26]·2H2O through room temperature grinding with rGO (reduced graphene oxide), resulting in enhanced conductivity, stability, and activity of the electrocatalyst towards the acidic OER without employing any benchmark metal ion (Ru or Ir). Additionally, the work function of the composites was found to be low compared to that of pristine polyoxometalates (POMs), indicative of the improved conducive behavior, which is lacking in the POM structure. The catalyst displays a notably reduced overpotential of 185 mV to achieve a current density of 10 mA cm-2, coupled with significant stability lasting 24 hours at a higher current density of 100 mA cm-2. These findings propose the manipulation of crystalline POMs with highly conductive non-metallic elements to facilitate superior water oxidation at lower pH levels which can help in the production of green hydrogen.
Collapse
Affiliation(s)
- Harshita Bagdwal
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Parul Sood
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Arshminder Kaur Dhillon
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Ashi Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Monika Singh
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| |
Collapse
|
27
|
Shen Y, Zhang XL, Qu MR, Ma J, Zhu S, Min YL, Gao MR, Yu SH. Cr dopant mediates hydroxyl spillover on RuO 2 for high-efficiency proton exchange membrane electrolysis. Nat Commun 2024; 15:7861. [PMID: 39251585 PMCID: PMC11385839 DOI: 10.1038/s41467-024-51871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Simultaneously improving the activity and stability of catalysts for anodic oxygen evolution reaction (OER) in proton exchange membrane water electrolysis (PEMWE) remains a notable challenge. Here, we report a chromium-doped ruthenium dioxide with oxygen vacancies, termed Cr0.2Ru0.8O2-x, that drives OER with an overpotential of 170 mV at 10 mA cm-2 and operates stably over 2000 h in acidic media. Experimental and theoretical studies show that the synergy of Cr dopant and oxygen vacancy induces an unconventional dopant-mediated hydroxyl spillover mechanism. Such dynamic hydroxyl spillover from Cr dopant to Ru active site changes the rate-determining step from OOH* formation to O2 formation and thus greatly improves the OER performance. Moreover, the Cr dopant and oxygen vacancy also play a crucial role in stabilizing surface Ru and lattice oxygen in the Ru-O-Cr structural motif. When assembled into the anode of a practical PEMWE device, Cr0.2Ru0.8O2-x enables long-term durability of over 200 h at an ampere-level current density and 60 degrees centigrade.
Collapse
Affiliation(s)
- Yu Shen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ming-Rong Qu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jie Ma
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, China
| | - Sheng Zhu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Yu-Lin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, China.
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, New Cornerstone Science Laboratory, Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
28
|
Saad I, El-Dek SI, Eissa MF, Assaud L, Amin RM. LaCo 0.2Fe 0.8O 3 perovskites doped with natural Ca 2+ as bifunctional electrocatalysts for oxygen evolution and reduction reactions. RSC Adv 2024; 14:27488-27503. [PMID: 39221128 PMCID: PMC11360433 DOI: 10.1039/d4ra04105d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Perovskite oxides are promising electrocatalysts for various energy applications due to their exceptional catalytic activity, flexible architecture, and low cost. In this study, LCFO was doped with different ratios of Ca2+ from eggshells, resulting in dual-purpose electrocatalysts for oxygen reduction and evolution processes. The nanoparticles were characterized using various techniques, including Brunauer-Emmett-Teller analysis and XRD. Results clarified the relative surface area and roughness, increasing with Ca2+ doping. LCFO also demonstrated highly magnetic properties, improved charge transfer, catalytic activity, and long-term durability. The results demonstrated the perovskite's cost-effectiveness as a bifunctional electrocatalyst, and the role of Ca2+ in enhancing its properties. La0.6Ca0.4Co0.2Fe0.8O3(LCCFO-0.4) showed higher magnetic properties (M s = 13.36 emu g-1 and M r = 2.54 emu g-1). The LCFO sample showed a current density of 5.13 mA cm-2 and 3 mA cm-2 for OER and ORR respectively, at E onset 1.7 V and 0.57 V (vs. RHE). The LCFO electrochemical active surface area is 0.033 cm2.
Collapse
Affiliation(s)
- Islam Saad
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| | - S I El-Dek
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - M F Eissa
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| | - Loïc Assaud
- ICMMO-ERIEE, Université Paris-Saclay, UMR CNRS 8182 17 Avenue des Sciences 91400 Orsay France
| | - Rafat M Amin
- Physics Department, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| |
Collapse
|
29
|
Sokolov M, Doblhoff-Dier K, Exner KS. Best practices of modeling complex materials in electrocatalysis, exemplified by oxygen evolution reaction on pentlandites. Phys Chem Chem Phys 2024; 26:22359-22370. [PMID: 39158931 DOI: 10.1039/d4cp01792g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Pentlandites are natural ores with structural properties comparable to that of [FeNi] hydrogenases. While this class of transition-metal sulfide materials - (Fe,Ni)9S8 - with a variable Fe : Ni ratio has been proven to be an active electrode material for the hydrogen evolution reaction, it is also discussed as electrocatalyst for the alkaline oxygen evolution reaction (OER), corresponding to the bottleneck of anion exchange membrane electrolyzers for green hydrogen production. Despite the experimental evidence for the use of (Fe,Ni)9S8 as an OER catalyst, a detailed investigation of the elementary reaction steps, including consideration of adsorbate coverages and limiting steps under anodic polarizing conditions, is still missing. We address this gap in the present manuscript by gaining atomistic insights into the OER on an Fe4.5Ni4.5S8(111) surface through density functional theory calculations combined with a descriptor-based analysis. We use this system to introduce best practices for modeling this rather complex material by pointing out hidden pitfalls that can arise when using the popular computational hydrogen electrode approach to describe electrocatalytic processes at the electrified solid/liquid interface for energy conversion and storage.
Collapse
Affiliation(s)
- Maksim Sokolov
- Faculty of Chemistry, Theoretical Inorganic Chemistry, University Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany.
- Cluster of Excellence RESOLV, 44801 Bochum, Germany
| | - Katharina Doblhoff-Dier
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, Leiden 2300, RA, The Netherlands
| | - Kai S Exner
- Faculty of Chemistry, Theoretical Inorganic Chemistry, University Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany.
- Cluster of Excellence RESOLV, 44801 Bochum, Germany
- Center for Nanointegration (CENIDE) Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
30
|
Chen D, Yu R, Zhao H, Jiao J, Mu X, Yu J, Mu S. Boron-Induced Interstitial Effects Drive Water Oxidation on Ordered Ir-B Compounds. Angew Chem Int Ed Engl 2024; 63:e202407577. [PMID: 38771672 DOI: 10.1002/anie.202407577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Interstitial filling of light atoms strongly affects the electronic structure and adsorption properties of the parent catalyst due to ligand and ensemble effects. Different from the conventional doping and surface modification, constructing ordered intermetallic structures is more promising to overcome the dissolution and reconstruction of active sites through strong interactions generated by atomic periodic arrangement, achieving joint improvement in catalytic activity and stability. However, for tightly arranged metal lattices, such as iridium (Ir), obtaining ordered filling atoms and further unveiling their interstitial effects are still limited by highly activated processes. Herein, we report a high-temperature molten salt assisted strategy to form the intermetallic Ir-B compounds (IrB1.1) with ordered filling by light boron (B) atoms. The B residing in the interstitial lattice of Ir constitutes favorable adsorption surfaces through a donor-acceptor architecture, which has an optimal free energy uphill in rate-determining step (RDS) of oxygen evolution reaction (OER), resulting in enhanced activity. Meanwhile, the strong coupling of Ir-B structural units suppresses the demetallation and reconstruction behavior of Ir, ensuring catalytic stability. Such B-induced interstitial effects endow IrB1.1 with higher OER performance than commercial IrO2, which is further validated in proton exchange membrane water electrolyzers (PEMWEs).
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Ruohan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- The Sanya Science and Education Innovation Park of, Wuhan University of Technology, Sanya, 572000, P. R. China
| | - Hongyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jixiang Jiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xueqin Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
31
|
Wang H, Yan Z, Cheng F, Chen J. Advances in Noble Metal Electrocatalysts for Acidic Oxygen Evolution Reaction: Construction of Under-Coordinated Active Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401652. [PMID: 39189476 PMCID: PMC11348273 DOI: 10.1002/advs.202401652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 08/28/2024]
Abstract
Renewable energy-driven proton exchange membrane water electrolyzer (PEMWE) attracts widespread attention as a zero-emission and sustainable technology. Oxygen evolution reaction (OER) catalysts with sluggish OER kinetics and rapid deactivation are major obstacles to the widespread commercialization of PEMWE. To date, although various advanced electrocatalysts have been reported to enhance acidic OER performance, Ru/Ir-based nanomaterials remain the most promising catalysts for PEMWE applications. Therefore, there is an urgent need to develop efficient, stable, and cost-effective Ru/Ir catalysts. Since the structure-performance relationship is one of the most important tools for studying the reaction mechanism and constructing the optimal catalytic system. In this review, the recent research progress from the construction of unsaturated sites to gain a deeper understanding of the reaction and deactivation mechanism of catalysts is summarized. First, a general understanding of OER reaction mechanism, catalyst dissolution mechanism, and active site structure is provided. Then, advances in the design and synthesis of advanced acidic OER catalysts are reviewed in terms of the classification of unsaturated active site design, i.e., alloy, core-shell, single-atom, and framework structures. Finally, challenges and perspectives are presented for the future development of OER catalysts and renewable energy technologies for hydrogen production.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
32
|
Yu H, Ji Y, Li C, Zhu W, Wang Y, Hu Z, Zhou J, Pao CW, Huang WH, Li Y, Huang X, Shao Q. Strain-Triggered Distinct Oxygen Evolution Reaction Pathway in Two-Dimensional Metastable Phase IrO 2 via CeO 2 Loading. J Am Chem Soc 2024; 146:20251-20262. [PMID: 38996085 DOI: 10.1021/jacs.4c05204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
A strain engineering strategy is crucial for designing a high-performance catalyst. However, how to control the strain in metastable phase two-dimensional (2D) materials is technically challenging due to their nanoscale sizes. Here, we report that cerium dioxide (CeO2) is an ideal loading material for tuning the in-plane strain in 2D metastable 1T-phase IrO2 (1T-IrO2) via an in situ growth method. Surprisingly, 5% CeO2 loaded 1T-IrO2 with 8% compressive strain achieves an overpotential of 194 mV at 10 mA cm-2 in a three-electrode system. It also retained a high current density of 900 mA cm-2 at a cell voltage of 1.8 V for a 400 h stability test in the proton-exchange membrane device. More importantly, the Fourier transform infrared measurements and density functional theory calculation reveal that the CeO2 induced strained 1T-IrO2 directly undergo the *O-*O radical coupling mechanism for O2 generation, totally different from the traditional adsorbate evolution mechanism in pure 1T-IrO2. These findings illustrate the important role of strain engineering in paving up an optimal catalytic pathway in order to achieve robust electrochemical performance.
Collapse
Affiliation(s)
- Hao Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chenchen Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | - Jing Zhou
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
33
|
Li W, Bu Y, Ge X, Li F, Han GF, Baek JB. Recent Advances in Iridium-based Electrocatalysts for Acidic Electrolyte Oxidation. CHEMSUSCHEM 2024; 17:e202400295. [PMID: 38362788 DOI: 10.1002/cssc.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Ongoing research to develop advanced electrocatalysts for the oxygen evolution reaction (OER) is needed to address demand for efficient energy conversion and carbon-free energy sources. In the OER process, acidic electrolytes have higher proton concentration and faster response than alkaline ones, but their harsh strongly acidic environment requires catalysts with greater corrosion and oxidation resistance. At present, iridium oxide (IrO2) with its strong stability and excellent catalytic performance is the catalyst of choice for the anode side of commercial PEM electrolysis cells. However, the scarcity and high cost of iridium (Ir) and the unsatisfactory activity of IrO2 hinder industrial scale application and the sustainable development of acidic OER catalytic technology. This highlights the importance of further research on acidic Ir-based OER catalysts. In this review, recent advances in Ir-based acidic OER electrocatalysts are summarized, including fundamental understanding of the acidic OER mechanism, recent insights into the stability of acidic OER catalysts, highly efficient Ir-based electrocatalysts, and common strategies for optimizing Ir-based catalysts. The future challenges and prospects of developing highly effective Ir-based catalysts are also discussed.
Collapse
Affiliation(s)
- Wanqing Li
- UNIST-NUIST Environment and Energy Jointed Lab, UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Yunfei Bu
- UNIST-NUIST Environment and Energy Jointed Lab, UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Xinlei Ge
- UNIST-NUIST Environment and Energy Jointed Lab, UNNU), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), Nanjing, 210044, P. R. China
| | - Feng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan, Shanghai, 200433, P. R. China
| | - Gao-Feng Han
- Key Laboratory of Automobile Materials, Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| |
Collapse
|
34
|
Li Z, Li X, Wang M, Wang Q, Wei P, Jana S, Liao Z, Yu J, Lu F, Liu T, Wang G. KIr 4O 8 Nanowires with Rich Hydroxyl Promote Oxygen Evolution Reaction in Proton Exchange Membrane Water Electrolyzer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402643. [PMID: 38718084 DOI: 10.1002/adma.202402643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Indexed: 05/18/2024]
Abstract
The sluggish kinetics for anodic oxygen evolution reaction (OER) and insufficient catalytic performance over the corresponding Ir-based catalysts are still enormous challenges in proton exchange membrane water electrolyzer (PEMWE). Herein, it is reported that KIr4O8 nanowires anode catalyst with more exposed active sites and rich hydroxyl achieves a current density of 1.0 A cm-2 at 1.68 V and possesses excellent catalytic stability with 1230 h in PEMWE. Combining in situ Raman spectroscopy and differential electrochemical mass spectroscopy results, the modified adsorbate evolution mechanism is proposed, wherein the rich hydroxyl in the inherent structure of KIr4O8 nanowires directly participates in the catalytic process for favoring the OER. Density functional theory calculation results further suggest that the enhanced proximity between Ir (d) and O (p) band center in KIr4O8 can strengthen the covalence of Ir-O, facilitate the electron transfer between adsorbents and active sites, and decrease the energy barrier of rate-determining step from OH* to O* during the OER.
Collapse
Affiliation(s)
- Zhenyu Li
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiang Li
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Dalian Jiaotong University, Dalian, 116028, China
| | - Mengna Wang
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Dalian Jiaotong University, Dalian, 116028, China
| | - Qi Wang
- Dalian Jiaotong University, Dalian, 116028, China
| | - Pengfei Wei
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Subhajit Jana
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Ziqi Liao
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- College of Energy, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jingcheng Yu
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- College of Energy, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fang Lu
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tianfu Liu
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
35
|
Jo H, Wy Y, Ahn H, Kim Y, Goo BS, Kwon Y, Kim JH, Choi JS, Han SW. Atomically thin iridium nanosheets for oxygen evolution electrocatalysis. NANOSCALE 2024; 16:11524-11529. [PMID: 38819792 DOI: 10.1039/d4nr01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
2D nanostructures of noble metals hold great potential for developing efficient electrocatalysts due to their high atom efficiency associated with their large specific surface area and abundant active sites. Here, we introduce a one-pot solvothermal synthesis method that can enable the fabrication of freestanding atomically thin Ir nanosheets. The thermal decomposition of a complex of Ir and a long-chain amine, which could readily be formed with the assistance of a strong base, under CO flow conditions successfully yielded Ir nanosheets consisting of 2-4 atomic layers. The prepared Ir nanosheets showed prominent activity and stability toward oxygen evolution electrocatalysis in acidic conditions, which can be attributed to their ultrathin 2D structure.
Collapse
Affiliation(s)
- Hyeongbin Jo
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea.
| | - Younghyun Wy
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea.
| | - Hojin Ahn
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea.
| | - Yonghyeon Kim
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea.
| | - Bon Seung Goo
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea.
| | - Yongmin Kwon
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea.
| | - Jin Hong Kim
- Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Jin Sik Choi
- Department of Physics, Konkuk University, Seoul 05029, Korea
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
36
|
Li L, Zhang G, Zhou C, Lv F, Tan Y, Han Y, Luo H, Wang D, Liu Y, Shang C, Zeng L, Huang Q, Zeng R, Ye N, Luo M, Guo S. Lanthanide-regulating Ru-O covalency optimizes acidic oxygen evolution electrocatalysis. Nat Commun 2024; 15:4974. [PMID: 38862507 PMCID: PMC11166638 DOI: 10.1038/s41467-024-49281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
Precisely modulating the Ru-O covalency in RuOx for enhanced stability in proton exchange membrane water electrolysis is highly desired. However, transition metals with d-valence electrons, which were doped into or alloyed with RuOx, are inherently susceptible to the influence of coordination environment, making it challenging to modulate the Ru-O covalency in a precise and continuous manner. Here, we first deduce that the introduction of lanthanide with gradually changing electronic configurations can continuously modulate the Ru-O covalency owing to the shielding effect of 5s/5p orbitals. Theoretical calculations confirm that the durability of Ln-RuOx following a volcanic trend as a function of Ru-O covalency. Among various Ln-RuOx, Er-RuOx is identified as the optimal catalyst and possesses a stability 35.5 times higher than that of RuO2. Particularly, the Er-RuOx-based device requires only 1.837 V to reach 3 A cm-2 and shows a long-term stability at 500 mA cm-2 for 100 h with a degradation rate of mere 37 μV h-1.
Collapse
Grants
- S.J.G. acknowledge the fundings from National Science Fund for Distinguished Young Scholars (No. 52025133), National Key R&D Program of China (No. 2022YFE0128500), National Natural Science Foundation of China (Nos. 52261135633, 52303363, 52302207, 22205010, 22305010, 22309004, 22105007), China National Petroleum Corporation-Peking University Strategic Cooperation Project of Fundamental Research, the Beijing Natural Science Foundation (No. Z220020), New Cornerstone Science Foundation through the XPLORER PRIZE, CNPC Innovation Found (No. 2021DQ02-1002), China National Postdoctoral Program for Innovative Talents (No. BX20220009), China Postdoctoral Science Foundation (Nos. 2022M720225, 2023M730029, 2022M710187, 2023M730051, 2020M670018) and Yunnan Fundamental Research Projects (grant NO. 202401AT070370).
Collapse
Affiliation(s)
- Lu Li
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Gengwei Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chenhui Zhou
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Yingjun Tan
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Ying Han
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Heng Luo
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Dawei Wang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Youxing Liu
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Changshuai Shang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Qizheng Huang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Ruijin Zeng
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Na Ye
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, China.
| |
Collapse
|
37
|
Han X, Mou T, Islam A, Kang S, Chang Q, Xie Z, Zhao X, Sasaki K, Rodriguez JA, Liu P, Chen JG. Theoretical Prediction and Experimental Verification of IrO x Supported on Titanium Nitride for Acidic Oxygen Evolution Reaction. J Am Chem Soc 2024. [PMID: 38859684 DOI: 10.1021/jacs.4c02936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Reducing iridium (Ir) catalyst loading for acidic oxygen evolution reaction (OER) is a critical strategy for large-scale hydrogen production via proton exchange membrane (PEM) water electrolysis. However, simultaneously achieving high activity, long-term stability, and reduced material cost remains challenging. To address this challenge, we develop a framework by combining density functional theory (DFT) prediction using model surfaces and proof-of-concept experimental verification using thin films and nanoparticles. DFT results predict that oxidized Ir monolayers over titanium nitride (IrOx/TiN) should display higher OER activity than IrOx while reducing Ir loading. This prediction is verified by depositing Ir monolayers over TiN thin films via physical vapor deposition. The promising thin film results are then extended to commercially viable powder IrOx/TiN catalysts, which demonstrate a lower overpotential and higher mass activity than commercial IrO2 and long-term stability of 250 h to maintain a current density of 10 mA cm-2. The superior OER performance of IrOx/TiN is further confirmed using a proton exchange membrane water electrolyzer (PEMWE), which shows a lower cell voltage than commercial IrO2 to achieve a current density of 1 A cm-2. Both DFT and in situ X-ray absorption spectroscopy reveal that the high OER performance of IrOx/TiN strongly depends on the IrOx-TiN interaction via direct Ir-Ti bonding. This study highlights the importance of close interaction between theoretical prediction based on mechanistic understanding and experimental verification based on thin film model catalysts to facilitate the development of more practical powder IrOx/TiN catalysts with high activity and stability for acidic OER.
Collapse
Affiliation(s)
- Xue Han
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Tianyou Mou
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Arephin Islam
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sinwoo Kang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Qiaowan Chang
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Zhenhua Xie
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Xueru Zhao
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kotaro Sasaki
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A Rodriguez
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jingguang G Chen
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
38
|
Zhang L, Zhang M, Zhang Y, Zhuo W, Chen T, Fang Y, Hong J, Wei H, Gong XQ. Construction of Ultrafine PtIr Clusters Supported on Co 3O 4 Nanoflowers for Enhanced Overall Water Splitting. Chemistry 2024; 30:e202400329. [PMID: 38551107 DOI: 10.1002/chem.202400329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 05/07/2024]
Abstract
Green hydrogen production through electrochemical overall water splitting has suffered from sluggish oxygen evolution reaction (OER) kinetics, inferior conversion efficiency, and high cost. Herein, ultrafine PtIr clusters are synthesized via an electrodeposition method and decorated on the Co3O4 nanoflowers assembled by nanowires (PtIr-Co3O4). The encouraging performances in electrochemical OER and hydrogen evolution reaction (HER) are achieved over the PtIr-Co3O4 catalyst, with the overpotentials as low as 410 and 237 mV at 100 mA cm-2, respectively, outperforming the commercial IrO2 and Pt/C catalysts. Due to the ultralow loading of PtIr clusters, the PtIr-Co3O4 catalyst exhibits 1270 A gIr -1 for OER at the overpotential of 400 mV. Our detailed analyses also show that the strong interactions between the ultrafine PtIr clusters and the Co3O4 nanoflowers enable the PtIr-Co3O4 catalyst to afford 10 mA cm-2 for the overall water splitting at the potential of 1.57 V, accompanied by high durability for 100 h.
Collapse
Affiliation(s)
- Longtao Zhang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Mingliang Zhang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yu Zhang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wei Zhuo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Tong Chen
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yilin Fang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jiaxiang Hong
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hehe Wei
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xue-Qing Gong
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
39
|
Gao H, Xu J, Zhang X, Zhou M. Benchmarking the Intrinsic Activity of Transition Metal Oxides for the Oxygen Evolution Reaction with Advanced Nanoelectrodes. Angew Chem Int Ed Engl 2024; 63:e202404663. [PMID: 38575553 DOI: 10.1002/anie.202404663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
The intrinsic activity assessment of transition metal oxides (TMOs) as key electrocatalysts for the oxygen evolution reaction (OER) has not been standardized due to uncertainties regarding their structure and composition, difficulties in accurately measuring their electrochemically active surface area (ECSA), and deficiencies in mass-transfer (MT) rates in conventional measurements. To address these issues, we utilized an electrodeposition-thermal annealing method to precisely synthesize single-particle TMOs with well-defined structure and composition. Concurrently, we engineered low roughness, spherical surfaces for individual particles, enabling precise measurement of their ECSA. Furthermore, by constructing a conductor-core semiconductor-shell structure, we evaluated the inherent OER activity of perovskite-type semiconductor materials, broadening the scope beyond just conductive TMOs. Finally, using single-particle nanoelectrode technique, we systematically measured individual TMO particles of various sizes for OER, overcoming MT limitations seen in conventional approaches. These improvements have led us to propose a precise and reliable approach to evaluating the intrinsic activity of TMOs, not only validating the accuracy of theoretical calculations but also revealing a strong correlation of OER activity on the melting point of TMOs. This discovery holds significant importance for future high-throughput material research and applications, offering valuable insights in electrocatalysis.
Collapse
Affiliation(s)
- Han Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jianan Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xueqi Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Min Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
40
|
Zhang J, Jin L, Sun H, Liu X, Ji Y, Li Y, Liu W, Su D, Liu X, Zhuang Z, Hu Z, Shao Q, Huang X. An all-metallic nanovesicle for hydrogen oxidation. Natl Sci Rev 2024; 11:nwae153. [PMID: 38800666 PMCID: PMC11126156 DOI: 10.1093/nsr/nwae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Vesicle, a microscopic unit that encloses a volume with an ultrathin wall, is ubiquitous in biomaterials. However, it remains a huge challenge to create its inorganic metal-based artificial counterparts. Here, inspired by the formation of biological vesicles, we proposed a novel biomimetic strategy of curling the ultrathin nanosheets into nanovesicles, which was driven by the interfacial strain. Trapped by the interfacial strain between the initially formed substrate Rh layer and subsequently formed RhRu overlayer, the nanosheet begins to deform in order to release a certain amount of strain. Density functional theory (DFT) calculations reveal that the Ru atoms make the curling of nanosheets more favorable in thermodynamics applications. Owing to the unique vesicular structure, the RhRu nanovesicles/C displays excellent hydrogen oxidation reaction (HOR) activity and stability, which has been proven by both experiments and DFT calculations. Specifically, the HOR mass activity of RhRu nanovesicles/C are 7.52 A mg(Rh+Ru)-1 at an overpotential of 50 mV at the rotating disk electrode (RDE) level; this is 24.19 times that of commercial Pt/C (0.31 mA mgPt-1). Moreover, the hydroxide exchange membrane fuel cell (HEMFC) with RhRu nanovesicles/C displays a peak power density of 1.62 W cm-2 in the H2-O2 condition, much better than that of commercial Pt/C (1.18 W cm-2). This work creates a new biomimetic strategy to synthesize inorganic nanomaterials, paving a pathway for designing catalytic reactors.
Collapse
Affiliation(s)
- Juntao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Lujie Jin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Hao Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yujin Ji
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Wei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuerui Liu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Qi Shao
- College of Chemistry and Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
41
|
Li L, Liu Y, Chen Y, Zhai W, Dai Z. Research progress on layered metal oxide electrocatalysts for an efficient oxygen evolution reaction. Dalton Trans 2024; 53:8872-8886. [PMID: 38738345 DOI: 10.1039/d4dt00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Hydrogen, highly valued for its pristine cleanliness and remarkable efficiency as an emerging energy source, is anticipated to ascend to a preeminent status within the forthcoming energy landscape. Electrocatalytic water splitting is considered a pivotal, eco-friendly, and sustainable strategy for hydrogen production. The substantial energy consumption stemming from oxygen evolution side reactions significantly impedes the commercial viability of water electrolysis. Consequently, the pursuit of a cost-effective and efficacious oxygen evolution reaction (OER) catalyst stands as an imperative strategy for realizing hydrogen production via water electrolysis. Layered metal oxides, owing to their robust anisotropic properties, versatile adjustability, and extensive surface area, have emerged as suitable candidates for OER catalysts. However, owing to the distinctive attributes of layered metal oxides, ongoing investigations into these materials are slightly fragmented, lacking universal consensus. This article comprehensively surveys the recent advancements in layered metal oxide-based OER catalysts, categorized into single metal oxides, alkali cobalt oxides, perovskites, and miscellaneous metal oxides. Initially, the main OER intermediate reaction steps of layered metal oxides are scrutinized. Subsequently, the design, mechanism, and application of several pivotal layered metal oxides in the OER are systematically delineated. Finally, a summary is provided, alongside the proposal of future research trajectories and challenges encountered by layered metal oxides, with the aspiration that this paper may serve as a valuable reference for scholars in the field.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ya Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Wenfang Zhai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
42
|
Ding C, Zhao Y, Qiao Z. Modification of carbon nanofibers for boosting oxygen electrocatalysis. Phys Chem Chem Phys 2024; 26:13606-13621. [PMID: 38682278 DOI: 10.1039/d3cp05904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Oxygen electrocatalysis is a key process for many effective energy conversion techniques, which requires the development of high-performance electrocatalysts. Carbon nanofibers featuring good electronic conductivity, large specific surface area, high axial strength and modulus, and good resistance toward harsh environments have thus been recognized as reinforcements in oxygen electrocatalysis. This review summarizes the recent progress on carbon nanofibers as electrocatalysts for oxygen electrocatalysis, with special focus on the modulation of carbon nanofibers for further elevating their electrocatalytic performance, which includes morphological and structural engineering, surface and pore size distribution, defect engineering, and coupling with other electroactive materials. Additionally, the correlation between the geometrical/electronic structure of their active centers and electrocatalytic activity is systematically discussed. Finally, conclusions and perspectives of this interesting research field are presented, which we hope will provide guidance for the future fabrication of more advanced carbon-fiber-based electrocatalysts.
Collapse
Affiliation(s)
- Changming Ding
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Jiangsu Ruilante New Materials Co., Ltd, Yangzhou, 211400, China
| | - Yitao Zhao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province, 213164, China
- Jiangsu Key Laboratory of High-Performance Fiber Composites, JITRI-PGTEX Joint Innovation Center, PGTEX CHINA Co., Ltd., Changzhou, Jiangsu Province, 213164, China
| | - Zhiyong Qiao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China.
- Jiangsu Ruilante New Materials Co., Ltd, Yangzhou, 211400, China
| |
Collapse
|
43
|
Wang L, Du R, Liang X, Zou Y, Zhao X, Chen H, Zou X. Optimizing Edge Active Sites via Intrinsic In-Plane Iridium Deficiency in Layered Iridium Oxides for Oxygen Evolution Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312608. [PMID: 38195802 DOI: 10.1002/adma.202312608] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Indexed: 01/11/2024]
Abstract
Improving catalytic activity of surface iridium sites without compromising catalytic stability is the core task of designing more efficient electrocatalysts for oxygen evolution reaction (OER) in acid. This work presents phase transition of a bulk layered iridate Na2IrO3 in acid solution at room temperature, and subsequent exfoliation to produce 2D iridium oxide nanosheets with around 4 nm thickness. The nanosheets consist of OH-terminated, honeycomb-type layers of edge-sharing IrO6 octahedral framework with intrinsic in-plane iridium deficiency. The nanosheet material is among the most active Ir-based catalysts reported for acidic OER and gives an iridium mass activity improvement up to a factor of 16.5 over rutile IrO2 nanoparticles. The material also exhibits good catalytic and structural stability and retains the catalytic activity for more than 1300 h. The combined experimental and theoretical results demonstrate that edge Ir sites of the layer are active centers for OER, with structural hydroxyl groups participating in the catalytic cycle of OER via a non-traditional adsorbate evolution mechanism. The existence of intrinsic in-plane iridium deficiency is the key to building a unique local environment of edge active sites that have optimal surface oxygen adsorption properties and thereby high catalytic activity.
Collapse
Affiliation(s)
- Lina Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruofei Du
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiao Zhao
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Hui Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
44
|
Yang Y, Zhou T, Zeng Z, Hu Y, Yang F, Sun W, He L. Novel sulfate solid supported binary Ru-Ir oxides for superior electrocatalytic activity towards OER and CER. J Colloid Interface Sci 2024; 659:191-202. [PMID: 38176229 DOI: 10.1016/j.jcis.2023.12.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Electrolysis for producing hydrogen powered by renewable electricity can be dramatically expanded by adapting different electrolytes (brine, seawater or pure water), which means the anode materials must stand up to complex electrolyte conditions. Here, a novel catalyst/support hybrid of binary Ru3.5Ir1Ox supported by barium strontium sulfate (BaSrSO4) was synthesized (RuIrOx/BSS) by exchanging the anion ligands of support. The as-synthesized RuIrOx/BSS exhibits compelling oxygen evolution (OER) and chlorine evolution (CER) performances, which affords to 10 mA cm-2 with only overpotential of 244 mV and 38 mV, respectively. The performed X-ray adsorption spectra clearly indicate the presence of an interface charge transfer effect, which results in the assignment of more electrons to the d orbitals of the Ru and Ir sites. The theoretical calculations demonstrated that the electronic structures of the catalytic active sites were modulated to give a lower overpotential, confirming the intrinsically high OER and CER catalytic activity.
Collapse
Affiliation(s)
- Yifei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Tingxi Zhou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Zhen Zeng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Yuling Hu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China
| | - Wei Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Road, Haikou 570228, PR China.
| | - Leilei He
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, PR China.
| |
Collapse
|
45
|
Su J, Huang X, Shao Q. Emerging two dimensional metastable-phase oxides: insights and prospects in synthesis and catalysis. Angew Chem Int Ed Engl 2024; 63:e202318028. [PMID: 38179810 DOI: 10.1002/anie.202318028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Since the discovery of graphene, the development of new two-dimensional (2D) materials has received considerable interest. Recently, as a newly emerging member of the 2D family, 2D metastable-phase oxides that combine the unique advantages of metal oxides, 2D structures, and metastable-phase materials have shown enormous potential in various catalytic reactions. In this review, the potential of various 2D materials to form a metastable-phase is predicted. The advantages of 2D metastable-phase oxides for advanced applications, reliable methods of synthesizing 2D metastable-phase oxides, and the application of these oxides in different catalytic reactions are presented. Finally, the challenges associated with 2D metastable-phase oxides and future perspectives are discussed.
Collapse
Affiliation(s)
- Jiaqi Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| |
Collapse
|
46
|
Zhang Z, Jia C, Ma P, Feng C, Yang J, Huang J, Zheng J, Zuo M, Liu M, Zhou S, Zeng J. Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution. Nat Commun 2024; 15:1767. [PMID: 38409177 PMCID: PMC10897172 DOI: 10.1038/s41467-024-46176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
Developing efficient and economical electrocatalysts for acidic oxygen evolution reaction (OER) is essential for proton exchange membrane water electrolyzers (PEMWE). Cobalt oxides are considered promising non-precious OER catalysts due to their high activities. However, the severe dissolution of Co atoms in acid media leads to the collapse of crystal structure, which impedes their application in PEMWE. Here, we report that introducing acid-resistant Ir single atoms into the lattice of spinel cobalt oxides can significantly suppress the Co dissolution and keep them highly stable during the acidic OER process. Combining theoretical and experimental studies, we reveal that the stabilizing effect induced by Ir heteroatoms exhibits a strong dependence on the distance of adjacent Ir single atoms, where the OER stability of cobalt oxides continuously improves with decreasing the distance. When the distance reduces to about 0.6 nm, the spinel cobalt oxides present no obvious degradation over a 60-h stability test for acidic OER, suggesting potential for practical applications.
Collapse
Affiliation(s)
- Zhirong Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Chuanyi Jia
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Education University, Guiyang, Guizhou, 550018, PR China
| | - Peiyu Ma
- National Synchrotron Radiation Laboratory, Key Laboratory of Precision and Intelligent Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Chen Feng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Jin Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Junming Huang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Jiana Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ming Zuo
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Mingkai Liu
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China
| | - Shiming Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China.
| |
Collapse
|
47
|
Su J, Ji Y, Geng S, Li L, Liu D, Yu H, Song B, Li Y, Pao CW, Hu Z, Huang X, Lu J, Shao Q. Core-Shell Design of Metastable Phase Catalyst Enables Highly-Performance Selective Hydrogenation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308839. [PMID: 37906727 DOI: 10.1002/adma.202308839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Indexed: 11/02/2023]
Abstract
Highly selective semihydrogenation of alkynes to alkenes is a highly important reaction for catalytic industry. Developing non-noble metal based catalysts with platinum group metal-like activity and selectivity is extremely crucial yet challenging. Metastable phase catalysts provide a potential candidate to realize high activity, yet the control of selectivity remains an open question. Here, this work first reports a metastable phase core-shell: face-centered cubic (fcc) phase Ag (10 at%) core-metastable hexagonal closest packed (hcp) phase Ni (90 at%) shell catalyst, which represents high conversion rate, high selectivity, and remarkable universality for the semihydrogenation of phenylacetylene and its derivatives. More impressively, a turnover frequency (TOF) value of 8241.8 h-1 is achieved, much higher than those of stable phase catalysts and reported platinum group metal based catalysts. Mechanistic investigation reveals that the surface of hcp Ni becomes more oxidized due to electron transfer from hcp Ni shell to fcc Ag core, which decreases the adsorption capacity of styrene on the metastable phase Ni surface, thus preventing full hydrogenation. This work has gained crucial research significance for the design of high performance metastable phase catalysts.
Collapse
Affiliation(s)
- Jiaqi Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Yujin Ji
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, China
| | - Shize Geng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Lamei Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Da Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Hao Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, China
| | - Beibei Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, 01187, Dresden, Germany
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, China
| |
Collapse
|
48
|
Lee T, Lee Y, Eo J, Nam DH. Acidic CO 2 electroreduction for high CO 2 utilization: catalysts, electrodes, and electrolyzers. NANOSCALE 2024; 16:2235-2249. [PMID: 38193364 DOI: 10.1039/d3nr05480b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) is considered a promising technology for converting atmospheric CO2 into value-added compounds by utilizing renewable energy. The CO2RR has developed in various ways over the past few decades, including product selectivity, current density, and catalytic stability. However, its commercialization is still unsuitable in terms of economic feasibility. One of the major challenges in its commercialization is the low single-pass conversion efficiency (SPCE) of CO2, which is primarily caused by the formation of carbonate (CO32-) in neutral and alkaline electrolytes. Notably, the majority of CO2RRs take place in such media, necessitating significant energy input for CO2 regeneration. Therefore, performing the CO2RR under conditions that minimize CO32- formation to suppress reactant and electrolyte ion loss is regarded an optimal strategy for practical applications. Here, we introduce the recent progress and perspectives in the electrochemical CO2RR in acidic electrolytes, which receives great attention because of the inhibition of CO32- formation. This includes the categories of nanoscale catalytic design, microscale microenvironmental effects, and bulk scale applications in electrolyzers for zero carbon loss reactions. Additionally, we offer insights into the issue of limited catalytic durability, a notable drawback under acidic conditions and propose guidelines for further development of the acidic CO2RR.
Collapse
Affiliation(s)
- Taemin Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Yujin Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Jungsu Eo
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Dae-Hyun Nam
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.
| |
Collapse
|
49
|
Fan Z, Sun Q, Yang H, Zhu W, Liao F, Shao Q, Zhang T, Huang H, Cheng T, Liu Y, Shao M, Shao M, Kang Z. Layered Quasi-Nevskite Metastable-Phase Cobalt Oxide Accelerates Alkaline Oxygen Evolution Reaction Kinetics. ACS NANO 2024. [PMID: 38286031 DOI: 10.1021/acsnano.3c11199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Clarifying the structure-reactivity relationship of non-noble-metal electrocatalysts is one of the decisive factors for the practical application of water electrolysis. In this field, the anodic oxygen evolution reaction (OER) with a sluggish kinetic process has become a huge challenge for large-scale production of high-purity hydrogen. Here we synthesize a layered quasi-nevskite metastable-phase cobalt oxide (LQNMP-Co2O3) nanosheet via a simple molten alkali synthesis strategy. The unit-cell parameters of LQNMP-Co2O3 are determined to be a = b = 2.81 Å and c = 6.89 Å with a space group of P3̅m1 (No. 164). The electrochemical results show that the LQNMP-Co2O3 electrocatalyst enables delivering an ultralow overpotential of 266 mV at a current density of 10 mA cmgeo-2 with excellent durability. The operando XANES and EXAFS analyses clearly reveal the origin of the OER activity and the electrochemical stability of the LQNMP-Co2O3 electrocatalyst. Density functional theory (DFT) simulations show that the energy barrier of the rate-determining step (RDS) (from *O to *OOH) is significantly reduced on the LQNMP-Co2O3 electrocatalyst by comparing with simulated monolayered CoO2 (M-CoO2).
Collapse
Affiliation(s)
- Zhenglong Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, People's Republic of China
- Energy Institute, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, People's Republic of China
| | - Qintao Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Tianyang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, People's Republic of China
- Energy Institute, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, People's Republic of China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, People's Republic of China
| |
Collapse
|
50
|
Yang Y, Hao Y, Huang L, Luo Y, Chen S, Xu M, Chen W. Recent Advances in Electrochemical Sensors for Formaldehyde. Molecules 2024; 29:327. [PMID: 38257238 PMCID: PMC11154431 DOI: 10.3390/molecules29020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Formaldehyde, a ubiquitous indoor air pollutant, plays a significant role in various biological processes, posing both environmental and health challenges. This comprehensive review delves into the latest advancements in electrochemical methods for detecting formaldehyde, a compound of growing concern due to its widespread use and potential health hazards. This review underscores the inherent advantages of electrochemical techniques, such as high sensitivity, selectivity, and capability for real-time analysis, making them highly effective for formaldehyde monitoring. We explore the fundamental principles, mechanisms, and diverse methodologies employed in electrochemical formaldehyde detection, highlighting the role of innovative sensing materials and electrodes. Special attention is given to recent developments in nanotechnology and sensor design, which significantly enhance the sensitivity and selectivity of these detection systems. Moreover, this review identifies current challenges and discusses future research directions. Our aim is to encourage ongoing research and innovation in this field, ultimately leading to the development of advanced, practical solutions for formaldehyde detection in various environmental and biological contexts.
Collapse
Affiliation(s)
- Yufei Yang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
| | - Yuanqiang Hao
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Lijie Huang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
| | - Yuanjian Luo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
| | - Maotian Xu
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China; (Y.Y.); (Y.H.); (L.H.); (M.X.)
| | - Wansong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China
| |
Collapse
|