1
|
Harris R, Berman N, Lampel A. Coacervates as enzymatic microreactors. Chem Soc Rev 2025; 54:4183-4199. [PMID: 40084439 PMCID: PMC11907334 DOI: 10.1039/d4cs01203h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Indexed: 03/16/2025]
Abstract
Compartmentalization, a key aspect of biochemical regulation, naturally occurs in cellular organelles, including biomolecular condensates formed through liquid-liquid phase separation (LLPS). Inspired by biological compartments, synthetic coacervates have emerged as versatile microreactors, which can provide customed environments for enzymatic reactions. In this review, we explore recent advances in coacervate-based microreactors, while emphasizing the mechanisms by which coacervates accelerate enzymatic reactions, namely by enhancing substrate and enzyme concentrations, stabilizing intermediates, and providing molecular crowding. We discuss diverse coacervate systems, including those based on synthetic polymers, peptides, and nucleic acids, and describe the selection of enzymatic model systems, as well as strategies for enzyme recruitment and their impact on reaction kinetics. Furthermore, we discuss the challenges in monitoring reactions within coacervates and review the currently available techniques including fluorescence techniques, chromatography, and NMR spectroscopy. Altogether, this review offers a comprehensive perspective on recent progress and challenges in the design of coacervate microreactors, and addresses their potential in biocatalysis, synthetic biology, and nanotechnology.
Collapse
Affiliation(s)
- Rif Harris
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Nofar Berman
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Ayala Lampel
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- Center for Nanoscience and Nanotechnology Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol Center for Regenerative Biotechnology Tel Aviv University, Tel Aviv, 69978, Israel
- Center for the Physics and Chemistry of Living Systems Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
2
|
Song J, Kawakami K, Ariga K. Localized assembly in biological activity: Origin of life and future of nanoarchitectonics. Adv Colloid Interface Sci 2025; 339:103420. [PMID: 39923322 DOI: 10.1016/j.cis.2025.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
The concept of nanoarchitectonics has emerged as a post-nanotechnology paradigm in the field of functional materials development. This concept entails the construction of functional material systems at the nanoscale, based on the knowledge acquired from nanotechnology. In biological systems, advanced nanoarchitectonics is achieved through precise structural organization governed by spatial localization, a process facilitated by localized assembly mechanisms. A thorough understanding of the principles of localized assembly is crucial for the creation of complex, asymmetric, hierarchical organizations that are similar in structure and function to living organisms. This review explores the concept of localized assembly, highlighting its biological inspiration, providing representative examples, and discussing its contributions to nanoarchitectonics. Key examples include assemblies using biological materials, those mimicking cellular functions, and those occurring within cells. Additionally, the role of interfacial interactions and liquid-liquid phase separation in localized assembly is emphasized. Particularly, the utilization of liquid-liquid phase separation demonstrates a remarkable capacity for forming intricate compartmentalized structures without discernible membranes, paving the way for multifunctional, localized systems. These localized assemblies are fundamental to essential biological functions and provide valuable insights into the molecular mechanisms underlying the origin of cells and life. Such understanding holds significant promise for advancing materials nanoarchitectonics, particularly in biomedical applications.
Collapse
Affiliation(s)
- Jingwen Song
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan.
| | - Kohsaku Kawakami
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan; Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan.
| |
Collapse
|
3
|
Brzezinski M, Argudo PG, Scheidt T, Yu M, Hosseini E, Kaltbeitzel A, Lemke EA, Michels JJ, Parekh SH. Protein-Specific Crowding Accelerates Aging in Protein Condensates. Biomacromolecules 2025; 26:2060-2075. [PMID: 39648588 DOI: 10.1021/acs.biomac.4c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Macromolecular crowding agents, such as poly(ethylene glycol) (PEG), are often used to mimic cellular cytoplasm in protein assembly studies. Despite the perception that crowding agents have an inert nature, we demonstrate and quantitatively explore the diverse effects of PEG on the phase separation and maturation of protein condensates. We use two model proteins, the FG domain of Nup98 and bovine serum albumin (BSA), which represent an intrinsically disordered protein and a protein with a well-established secondary structure, respectively. PEG expedites the maturation of Nup98, enhancing denser protein packing and fortifying interactions, which hasten beta-sheet formation and subsequent droplet gelation. In contrast to BSA, PEG enhances droplet stability and limits the available solvent for protein solubilization, inducing only minimal changes in the secondary structure, pointing toward a significantly different role of the crowding agent. Strikingly, we detect almost no presence of PEG in Nup droplets, whereas PEG is moderately detectable within BSA droplets. Our findings demonstrate a nuanced interplay between crowding agents and proteins; PEG can accelerate protein maturation in liquid-liquid phase separation systems, but its partitioning and effect on protein structure in droplets is protein specific. This suggests that crowding phenomena are specific to each protein-crowding agent pair.
Collapse
Affiliation(s)
- Mateusz Brzezinski
- Department of Biomedical Engineering University of Texas at Austin, 107 W. Dean Keeton Rd., Austin, Texas 78712, United States
- Max Planck Institute for Polymer Research Ackermannweg 10, Mainz 55128, Germany
| | - Pablo G Argudo
- Max Planck Institute for Polymer Research Ackermannweg 10, Mainz 55128, Germany
| | - Tom Scheidt
- Biocenter, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, Mainz 55128, Germany
- Institute of Molecular Biology GmbH, Ackermannweg 4, Mainz 55128, Germany
| | - Miao Yu
- Biocenter, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, Mainz 55128, Germany
- Institute of Molecular Biology GmbH, Ackermannweg 4, Mainz 55128, Germany
| | - Elnaz Hosseini
- Department of Biomedical Engineering University of Texas at Austin, 107 W. Dean Keeton Rd., Austin, Texas 78712, United States
- Max Planck Institute for Polymer Research Ackermannweg 10, Mainz 55128, Germany
| | - Anke Kaltbeitzel
- Max Planck Institute for Polymer Research Ackermannweg 10, Mainz 55128, Germany
| | - Edward A Lemke
- Biocenter, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, Mainz 55128, Germany
- Institute of Molecular Biology GmbH, Ackermannweg 4, Mainz 55128, Germany
| | - Jasper J Michels
- Max Planck Institute for Polymer Research Ackermannweg 10, Mainz 55128, Germany
| | - Sapun H Parekh
- Department of Biomedical Engineering University of Texas at Austin, 107 W. Dean Keeton Rd., Austin, Texas 78712, United States
- Max Planck Institute for Polymer Research Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
4
|
Parkavousi L, Rana N, Golestanian R, Saha S. Enhanced Stability and Chaotic Condensates in Multispecies Nonreciprocal Mixtures. PHYSICAL REVIEW LETTERS 2025; 134:148301. [PMID: 40279578 DOI: 10.1103/physrevlett.134.148301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/25/2024] [Accepted: 02/25/2025] [Indexed: 04/27/2025]
Abstract
Random nonreciprocal interactions between a large number of conserved densities are shown to enhance the stability of the system toward pattern formation. The enhanced stability is an exact result when the number of species approaches infinity and is confirmed numerically by simulations of the multispecies nonreciprocal Cahn-Hilliard model. Furthermore, the diversity in dynamical patterns increases with an increasing number of components, and novel steady states such as pulsating or spatiotemporally chaotic condensates are observed. Our results may help to unravel the mechanisms by which living systems self-organize via metabolism.
Collapse
Affiliation(s)
- Laya Parkavousi
- Max Planck Institute for Dynamics and Self-Organization, (MPI-DS), D-37077 Göttingen, Germany
| | - Navdeep Rana
- Max Planck Institute for Dynamics and Self-Organization, (MPI-DS), D-37077 Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization, (MPI-DS), D-37077 Göttingen, Germany
- University of Oxford, Rudolf Peierls Centre for Theoretical Physics, Oxford OX1 3PU, United Kingdom
| | - Suropriya Saha
- Max Planck Institute for Dynamics and Self-Organization, (MPI-DS), D-37077 Göttingen, Germany
| |
Collapse
|
5
|
Eberhard E, Burger L, Pastrana CL, Seyed-Allaei H, Giunta G, Gerland U. Force Generation by Enhanced Diffusion in Enzyme-Loaded Vesicles. NANO LETTERS 2025; 25:5754-5761. [PMID: 40138661 PMCID: PMC11987064 DOI: 10.1021/acs.nanolett.5c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
The diffusion coefficient of some metabolic enzymes increases with the concentration of their cognate substrate, a phenomenon known as enhanced diffusion. In the presence of substrate gradients, enhanced diffusion induces enzymatic drift, resulting in a nonhomogeneous enzyme distribution. Here, we study the effects of enhanced diffusion on enzyme-loaded vesicles placed in external substrate gradients using a combination of computer simulations and analytical modeling. We observe that the spatially inhomogeneous enzyme profiles generated by enhanced diffusion result in a pressure gradient across the vesicle, which leads to macroscopically observable effects, namely deformation and self-propulsion of the vesicle. Our analytical model allows us to characterize the dependence of the velocity of propulsion on experimentally tunable parameters. The effects predicted by our work provide an avenue for further validation of enhanced diffusion, and might be leveraged for the design of novel synthetic cargo transporters, such as targeted drug delivery systems.
Collapse
Affiliation(s)
| | | | | | - Hamid Seyed-Allaei
- Physics of Complex Biosystems, Department
of Bioscience, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Giovanni Giunta
- Physics of Complex Biosystems, Department
of Bioscience, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Ulrich Gerland
- Physics of Complex Biosystems, Department
of Bioscience, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
6
|
André AAM, Rehnberg N, Garg A, Kjærgaard M. Toward Design Principles for Biomolecular Condensates for Metabolic Pathways. Adv Biol (Weinh) 2025:e2400672. [PMID: 40195042 DOI: 10.1002/adbi.202400672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/14/2025] [Indexed: 04/09/2025]
Abstract
Biology uses membrane-less organelles or biomolecular condensates as dynamic reaction compartments that can form or dissolve to regulate biochemical pathways. This has led to a flurry of research aiming to design new synthetic organelles that function as reaction crucibles for enzymes and biomolecular cascades in biotechnology. The mechanisms by which a condensate can enhance multistep biochemical processes including mass action, tuning the chemical environment, scaffolding and metabolic channelling is reviewed. These mechanisms are not inherently beneficial for the rate of enzymatic processes but can also inhibit a reaction. Similarly, some aspects of condensates are likely intrinsically inhibitory including retardation of diffusion, where the net effect of a condensate will be a trade-off between inhibitory and stimulatory effects. It is discussed which generalizable conclusions can be drawn so far and how close it is to design principles for condensates for enzyme cascades in microbial cell factories including which reactions are likely to be enhanced by condensates and which type of condensate will be suited for which reaction.
Collapse
Affiliation(s)
- Alain A M André
- Department of Molecular Biology and Genetics, Aarhus University, Denmar
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - Nikita Rehnberg
- Department of Molecular Biology and Genetics, Aarhus University, Denmar
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - Ankush Garg
- Department of Molecular Biology and Genetics, Aarhus University, Denmar
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - Magnus Kjærgaard
- Department of Molecular Biology and Genetics, Aarhus University, Denmar
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Aarhus University, Denmark
| |
Collapse
|
7
|
Mukwaya V, Yu X, Yang S, Mann S, Dou H. Adaptive ATP-induced molecular condensation in membranized protocells. Proc Natl Acad Sci U S A 2025; 122:e2419507122. [PMID: 40127264 PMCID: PMC12002177 DOI: 10.1073/pnas.2419507122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Liquid-liquid phase separation (LLPS) has been achieved in various cytomimetic (protocell) models, but controlling molecular condensation using noninert crowders to systematically alter protocell function remains challenging. Intracellular ATP levels influence protein-protein interactions, and dysregulation of ATP can alter cellular crowding dynamics, thereby disrupting the normal formation or dissolution of condensates. Here, we develop a membranized protocell model capable of endogenous LLPS and liquid-gel-like phase separation through precise manipulation of intermolecular interactions within semipermeable polysaccharide-based microcapsules (polysaccharidosomes, P-somes), prepared using microtemplate-guided assembly. We demonstrate that intraprotocellular diffusion-mediated LLPS can be extended into the liquid-gel-like domain by the uptake of the biologically active crowder ATP, resulting in a range of modalities dependent on the fine-tuning of molecular condensation. Endogenous enzyme activity in these crowded polysaccharidosomes is enhanced compared to free enzymes in solution, though this enhancement diminishes at higher levels of intraprotocellular condensation. Additionally, increased molecular crowding inhibits intraprotocell DNA strand displacement reactions. Our findings introduce an expedient and optimized approach to the batch construction of membranized protocell models with controllable molecular crowding and functional diversity. Our mix-incubate-wash protocol for inducing endogenous LLPS in membranized protocells offers potential applications in microreactor technology, environmental sensing, and the delivery and sustained release of therapeutics.
Collapse
Affiliation(s)
- Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Institute of Composite Materials, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Xiaolei Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Institute of Composite Materials, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Institute of Composite Materials, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Institute of Composite Materials, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Institute of Composite Materials, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| |
Collapse
|
8
|
Jerez-Longres C, Weber W. Metabolite-Responsive Control of Transcription by Phase Separation-Based Synthetic Organelles. ACS Synth Biol 2025; 14:711-718. [PMID: 39954260 PMCID: PMC11934134 DOI: 10.1021/acssynbio.4c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/06/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Living natural materials have remarkable sensing abilities that translate external cues into functional changes of the material. The reconstruction of such sensing materials in bottom-up synthetic biology provides the opportunity to develop synthetic materials with life-like sensing and adaptation ability. Key to such functions are material modules that translate specific input signals into a biomolecular response. Here, we engineer a synthetic organelle based on liquid-liquid phase separation that translates a metabolic signal into the regulation of gene transcription. To this aim, we engineer the pyruvate-dependent repressor PdhR to undergo liquid-liquid phase separation in vitro by fusion to intrinsically disordered regions. We demonstrate that the resulting coacervates bind DNA harboring PdhR-responsive operator sites in a pyruvate dose-dependent and reversible manner. We observed that the activity of transcription units on the DNA was strongly attenuated following recruitment to the coacervates. However, the addition of pyruvate resulted in a reversible and dose-dependent reconstitution of transcriptional activity. The coacervate-based synthetic organelles linking metabolic cues to transcriptional signals represent a materials approach to confer stimulus responsiveness to minimal bottom-up synthetic biological systems and open opportunities in materials for sensor applications.
Collapse
Affiliation(s)
- Carolina Jerez-Longres
- INM −
Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Signalling
Research Centers BIOSS and CIBSS, Faculty of Biology, and SGBM - Spemann
Graduate School of Biology and Medicine, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Wilfried Weber
- INM −
Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Department
of Materials Science and Engineering, Saarland
University, 66123 Saarbrücken, Germany
- Signalling
Research Centers BIOSS and CIBSS, Faculty of Biology, and SGBM - Spemann
Graduate School of Biology and Medicine, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Ridgway-Brown D, Leathard AS, France O, Muench SP, Webb ME, Jeuken LJC, Henderson PJF, Taylor AF, Beales PA. Membrane Transport Modulates the pH-Regulated Feedback of an Enzyme Reaction Confined within Lipid Vesicles. ACS NANO 2025; 19:9814-9825. [PMID: 40029853 PMCID: PMC11924318 DOI: 10.1021/acsnano.4c13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
Understanding ion transport dynamics in reactive vesicles is pivotal for exploring biological and chemical processes and essential for designing synthetic cells. In this work, we investigate how proton transport and membrane potential regulate pH dynamics in an autocatalytic enzyme reaction within lipid vesicles. Combining experimental and numerical methods, we demonstrate that compartmentalization within lipid membranes accelerates internal reactions, attributed to protection from the external acidic environment. In experiments, we explored how proton movement significantly impacts internal reactions by changing bilayer thickness, adding ion transporters, and varying buffers. Numerical investigations incorporated electrical membrane potential and capacitance into a kinetic model of the process, elucidating the mechanisms that dictate the control of reaction time observed in the experiment, driven by both electrical and chemical potential gradients. These findings establish a framework for controlling pH clock reactions via membrane changes and targeted manipulation of proton movement, which could aid in the design of synthetic cells with precise, controlled functionalities.
Collapse
Affiliation(s)
- Darcey Ridgway-Brown
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Anna S. Leathard
- Chemical
and Biological Engineering, University of
Sheffield, Sheffield S1 3JD, U.K.
| | - Oliver France
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Stephen P. Muench
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Michael E. Webb
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Lars J. C. Jeuken
- Leiden
Institute of Chemistry, University Leiden, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Peter J. F. Henderson
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
- School
of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Annette F. Taylor
- Chemical
and Biological Engineering, University of
Sheffield, Sheffield S1 3JD, U.K.
- School of
Chemistry and Chemical Engineering, University
of Southampton, Southampton SO17 1BJ, U.K.
| | - Paul A. Beales
- School
of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
- Astbury
Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
10
|
Anselmo S, Fricano A, Sancataldo G, Vetri V. Sustainable Formation of Gold Nanoparticle-Decorated Amyloid Fibrils for the Development of Functional Hybrid Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:172-183. [PMID: 39745491 DOI: 10.1021/acs.langmuir.4c03136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Amyloid fibrils have recently emerged as promising building blocks for functional materials due to their exceptional physicochemical stability and adaptable properties. These protein-based structures can be functionalized to create hybrid materials with a diverse range of applications. Here we report a simple eco-friendly protocol for generating amyloid fibrils from hen egg white lysozyme decorated with gold nanoparticles that can self-assemble in a hydrogel. Reactive oligomeric species act as reducing agents, enabling the efficient and simple formation of small gold nanoparticles without the need of harsh reagents. Furthermore, the protein molecules template the formation of gold nanoparticles, which are stabilized at regular intervals along the fibril axis, preserving gold nanoparticle properties at a macroscopic scale. As an illustration of potential application, we show that the gold nanoparticle functionalized hydrogel can be employed to sense and quantify creatinine using fluorescence detection. These findings reinforce the growing interest in utilizing proteins as foundational elements for functional biomaterials due to their high biocompatibility, availability, and the ability to finely tune supramolecular assemblies.
Collapse
Affiliation(s)
- Sara Anselmo
- Dipartimento di Fisica e Chimica - Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18, 90128 Palermo, Italy
| | - Anna Fricano
- Dipartimento di Fisica e Chimica - Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18, 90128 Palermo, Italy
| | - Giuseppe Sancataldo
- Dipartimento di Fisica e Chimica - Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18, 90128 Palermo, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica - Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18, 90128 Palermo, Italy
| |
Collapse
|
11
|
De Luca G, Sancataldo G, Militello B, Vetri V. Surface-catalyzed liquid-liquid phase separation and amyloid-like assembly in microscale compartments. J Colloid Interface Sci 2024; 676:569-581. [PMID: 39053405 DOI: 10.1016/j.jcis.2024.07.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Liquid-liquid phase separation is a key phenomenon in the formation of membrane-less structures within the cell, appearing as liquid biomolecular condensates. Protein condensates are the most studied for their biological relevance, and their tendency to evolve, resulting in the formation of aggregates with a high level of order called amyloid. In this study, it is demonstrated that Human Insulin forms micrometric, round amyloid-like structures at room temperature within sub-microliter scale aqueous compartments. These distinctive particles feature a solid core enveloped by a fluid-like corona and form at the interface between the aqueous compartment and the glass coverslip upon which they are cast. Quantitative fluorescence microscopy is used to study in real-time the formation of amyloid-like superstructures. Their formation results driven by liquid-liquid phase separation process that arises from spatially heterogeneous distribution of nuclei at the glass-water interface. The proposed experimental setup allows modifying the surface-to-volume ratio of the aqueous compartments, which affects the aggregation rate and particle size, while also inducing fine alterations in the molecular structures of the final assemblies. These findings enhance the understanding of the factors governing amyloid structure formation, shedding light on the catalytic role of surfaces in this process.
Collapse
Affiliation(s)
- Giuseppe De Luca
- Department Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 16, 90128, Palermo, Italy; Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, 18, 90128, Palermo, Italy.
| | - Giuseppe Sancataldo
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, 18, 90128, Palermo, Italy.
| | - Benedetto Militello
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, 18, 90128, Palermo, Italy; INFN Sezione di Catania, Via Santa Sofia 64, 95123 Catania, Italy.
| | - Valeria Vetri
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, 18, 90128, Palermo, Italy.
| |
Collapse
|
12
|
Xu X, Rebane AA, Roset Julia L, Rosowski KA, Dufresne ER, Stellacci F. Amino acids modulate liquid-liquid phase separation in vitro and in vivo by regulating protein-protein interactions. Proc Natl Acad Sci U S A 2024; 121:e2407633121. [PMID: 39642205 DOI: 10.1073/pnas.2407633121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/24/2024] [Indexed: 12/08/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) is an intracellular process widely used by cells for many key biological functions. It occurs in complex and crowded environments, where amino acids (AAs) are vital components. We have found that AAs render the net interaction between proteins more repulsive. Here, we find that some AAs efficiently suppress LLPS in test tubes (in vitro). We then screen all the proteinogenic AAs and find that three specific AAs, including proline, glutamine, and glycine, significantly suppressed the formation of stress granules (SGs) in U2OS and HeLa cell lines (in vivo) irrespective of stress types. We also observe the effect in primary fibroblast cells, a viable cell model for neurodegenerative disorders. Kinetic studies by live-cell microscopy show that the presence of AAs not only slows down the formation but also decreases the saturating number and prevents the coalescence of SGs. We finally use sedimentation-diffusion equilibrium analytical ultracentrifuge (SE-AUC) to demonstrate that the suppression effects of AAs on LLPS may be due to their modulation in protein-protein and RNA-RNA interactions. Overall, this study reveals an underappreciated role of cellular AAs, which may find biomedical applications, especially in treating SG-associated diseases.
Collapse
Affiliation(s)
- Xufeng Xu
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Aleksander A Rebane
- Laboratory of Soft and Living Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
- Life Molecules and Materials Lab, Programs in Chemistry and Physics, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Laura Roset Julia
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Kathryn A Rosowski
- Laboratory of Soft and Living Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Eric R Dufresne
- Laboratory of Soft and Living Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
- Department of Physics, Cornell University, Ithaca, NY 14853
| | - Francesco Stellacci
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Bioengineering Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
13
|
Holtmannspötter AL, Machatzke C, Begemann C, Salibi E, Donau C, Späth F, Boekhoven J, Mutschler H. Regulating Nucleic Acid Catalysis Using Active Droplets. Angew Chem Int Ed Engl 2024; 63:e202412534. [PMID: 39119638 DOI: 10.1002/anie.202412534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Cells use transient membraneless organelles to regulate biological reaction networks. For example, stress granules selectively store mRNA to downregulate protein expression in response to heat or oxidative stress. Models mimicking this active behavior should be established to better understand in vivo regulation involving compartmentalization. Here we use active, complex coacervate droplets as a model for membraneless organelles to spatiotemporally control the activity of a catalytic DNA (DNAzyme). Upon partitioning into these peptide-RNA droplets, the DNAzyme unfolds and loses its ability to catalyze the cleavage of a nucleic acid strand. We can transiently pause the DNAzyme activity upon inducing droplet formation with fuel. After fuel consumption, the DNAzyme activity autonomously restarts. We envision this system could be used to up and downregulate multiple reactions in a network, helping understand the complexity of a cell's pathways. By creating a network where the DNAzyme could reciprocally regulate the droplet properties, we would have a powerful tool for engineering synthetic cells.
Collapse
Affiliation(s)
- Anna-Lena Holtmannspötter
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Corbin Machatzke
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Christian Begemann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Elia Salibi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Carsten Donau
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Fabian Späth
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Job Boekhoven
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Hannes Mutschler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
14
|
Zhang R, Mao S, Haataja MP. Chemically reactive and aging macromolecular mixtures. II. Phase separation and coarsening. J Chem Phys 2024; 161:184903. [PMID: 39526744 DOI: 10.1063/5.0196794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
In a companion paper, we put forth a thermodynamic model for complex formation via a chemical reaction involving multiple macromolecular species, which may subsequently undergo liquid-liquid phase separation and a further transition into a gel-like state. In the present work, we formulate a thermodynamically consistent kinetic framework to study the interplay between phase separation, chemical reaction, and aging in spatially inhomogeneous macromolecular mixtures. A numerical algorithm is also proposed to simulate domain growth from collisions of liquid and gel domains via passive Brownian motion in both two and three spatial dimensions. Our results show that the coarsening behavior is significantly influenced by the degree of gelation and Brownian motion. The presence of a gel phase inside condensates strongly limits the diffusive transport processes, and Brownian motion coalescence controls the coarsening process in systems with high area/volume fractions of gel-like condensates, leading to the formation of interconnected domains with atypical domain growth rates controlled by size-dependent translational and rotational diffusivities.
Collapse
Affiliation(s)
- Ruoyao Zhang
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Sheng Mao
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Mikko P Haataja
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
15
|
Cao Y, Chao Y, Shum HC. Affinity-Controlled Partitioning of Biomolecules at Aqueous Interfaces and Their Bioanalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409362. [PMID: 39171488 DOI: 10.1002/adma.202409362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Indexed: 08/23/2024]
Abstract
All-aqueous phase separation systems play essential roles in bioanalytical and biochemical applications. Compared to conventional oil and organic solvent-based systems, these systems are characterized by their rich bulk and interfacial properties, offering superior biocompatibility. In particular, phase separation in all-aqueous systems facilitates the creation of compartments with specific physicochemical properties, and therefore largely enhances the accessibility of the systems. In addition, the all-aqueous compartments have diverse affinities, with an important property known as partitioning, which can concentrate (bio)molecules toward distinct immiscible phases. This partitioning affinity imparts all-aqueous interfaces with selective permeability, enabling the controlled enrichment of target (bio)molecules. This review introduces the basic principles and applications of partitioning-induced interfacial phenomena in a typical all-aqueous system, namely aqueous two-phase systems (ATPSs); these applications include interfacial chemical reactions, bioprinting, and assembly, as well as bio-sensing and detection. The primary challenges associated with designing all-aqueous phase separation systems and several future directions are also discussed, such as the stabilization of aqueous interfaces, the handling of low-volume samples, and exploration of suitable ATPSs compositions with the efficient protocol.
Collapse
Affiliation(s)
- Yang Cao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Youchuang Chao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, 999077, China
| |
Collapse
|
16
|
Ettikkan NK, Priyanka P, Mahato RR, Maiti S. Nucleotide-mediated modulation of chemoselective protein functionalization in a liquid-like condensed phase. Commun Chem 2024; 7:242. [PMID: 39462061 PMCID: PMC11513967 DOI: 10.1038/s42004-024-01333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Liquid-like protein condensates are ubiquitous in cellular system and are increasingly recognized for their roles in physiological processes. Condensed phase harbors distinctive chemical microenvironment, markedly different than dilute aqueous phase. Herein, we demonstrate chemoselective modification pattern of nucleophilic canonical amino acid sidechains (namely - cysteine, tyrosine and lysine) of the protein towards 4-chloro-7-nitrobenzofurazan in the dilute and condensed phase. We also delineate how the effect of nucleotides and their in situ enzymatic dissociation temporally modulate the protein condensate's pH and the protein's corresponding chemoselective modification. We have shown that the pH of the condensate decreases in the presence of nucleoside triphosphate, whereas it increases in the presence of nucleoside monophosphates or phosphate ion. For instance, we find lysine-specific modification gets inhibited in the presence of adenosine triphosphate (ATP), but significantly enhanced in the presence of monophosphates. This feature enables us to gain temporal control over dynamic change in protein functionalization via enzymatic ATP hydrolysis. Overall, this work substantiates the alteration in pH-responsiveness of Brønsted basicity of a protein's ε-amine in the condensed phase. Furthermore, this environment sensitivity in chemoselective protein functionalization in condensed phase will be important in adaptable protein engineering to the chemical biology of protein phase separation.
Collapse
Affiliation(s)
- Nandha Kumar Ettikkan
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Priyanka Priyanka
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Rishi Ram Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India.
| |
Collapse
|
17
|
Kumari K, Singh AK, Mandal P, Rakshit S. Crowder Chain Length Variability and Excluded Volume Effect on the Phase Separation Behavior of Mucin. J Phys Chem Lett 2024; 15:10505-10513. [PMID: 39393020 DOI: 10.1021/acs.jpclett.4c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Phase separation within cellular membranes, a critical process underpinning diverse cellular functions, is significantly influenced by transmembrane proteins. Therefore, elucidating the behavior of a transmembrane protein in its phase-separated state is of utmost importance. Our study explores mucin behavior in the cellular milieu, aiming to determine the role of crowder chain length and excluded volume in phase separation. Confocal microscopy images demonstrate the strong partitioning of mucin into the condensed phase influenced by hydrophobic and electrostatic interactions. Fluorescence recovery after photobleaching analysis revealed increased mobility in the presence of shorter chain length crowders, indicating the dynamic behavior of protein within condensed phases. Excluded volume calculation using the theoretical model emphasizes its importance in mucin phase separation under crowded conditions. Our findings underscore the ability of mucin to phase-separate under crowded conditions, highlighting the crucial role of excluded volume and enhancing our understanding of its involvement in cancer progression.
Collapse
Affiliation(s)
- Komal Kumari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Anant Kumar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyankar Mandal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Surajit Rakshit
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
18
|
Li X, Kuchinski LM, Park A, Murphy GS, Soto KC, Schuster BS. Enzyme purification and sustained enzyme activity for pharmaceutical biocatalysis by fusion with phase-separating intrinsically disordered protein. Biotechnol Bioeng 2024; 121:3155-3168. [PMID: 38951956 DOI: 10.1002/bit.28787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024]
Abstract
In recent decades, biocatalysis has emerged as an important alternative to chemical catalysis in pharmaceutical manufacturing. Biocatalysis is attractive because enzymatic cascades can synthesize complex molecules with incredible selectivity, yield, and in an environmentally benign manner. Enzymes for pharmaceutical biocatalysis are typically used in their unpurified state, since it is time-consuming and cost-prohibitive to purify enzymes using conventional chromatographic processes at scale. However, impurities present in crude enzyme preparations can consume substrate, generate unwanted byproducts, as well as make the isolation of desired products more cumbersome. Hence, a facile, nonchromatographic purification method would greatly benefit pharmaceutical biocatalysis. To address this issue, here we have captured enzymes into membraneless compartments by fusing enzymes with an intrinsically disordered protein region, the RGG domain from LAF-1. The RGG domain can undergo liquid-liquid phase separation, forming liquid condensates triggered by changes in temperature or salt concentration. By centrifuging these liquid condensates, we have successfully purified enzyme-RGG fusions, resulting in significantly enhanced purity compared to cell lysate. Furthermore, we performed enzymatic reactions utilizing purified fusion proteins to assay enzyme activity. Results from the enzyme assays indicate that enzyme-RGG fusions purified by the centrifugation method retain enzymatic activity, with greatly reduced background activity compared to crude enzyme preparations. Our work focused on three different enzymes-a kinase, a phosphorylase, and an ATP-dependent ligase. The kinase and phosphorylase are components of the biocatalytic cascade for manufacturing molnupiravir, and we demonstrated facile co-purification of these two enzymes by co-phase separation. To conclude, enzyme capture by RGG tagging promises to overcome difficulties in bioseparations and biocatalysis for pharmaceutical synthesis.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Liam M Kuchinski
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Augene Park
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Grant S Murphy
- Department of Process Research and Development, Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Karla Camacho Soto
- Department of Process Research and Development, Process Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Benjamin S Schuster
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
19
|
Chen F, Guo W, Shum HC. Fractal-Dependent Growth of Solidlike Condensates. PHYSICAL REVIEW LETTERS 2024; 133:118401. [PMID: 39331998 DOI: 10.1103/physrevlett.133.118401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/24/2024] [Indexed: 09/29/2024]
Abstract
The phenomenon of droplet growth occurs in various industrial and natural processes. Recently, the discovery of liquidlike condensates within cells has sparked an increasing interest in understanding their growth behaviors. These condensates exhibit varying material properties that are closely related to many cellular functions and diseases, particularly during the phase transition from liquidlike droplets to solidlike aggregates. However, how the liquid-to-solid phase transition affects the growth of condensates remains largely unknown. In this study, we investigate the growth of peptide-RNA condensates, which behave as either liquidlike droplets or solidlike aggregates depending on the RNA sequences. Dynamic light scattering experiments show that solidlike condensates grow surprisingly faster, with their hydrodynamic diameters increasing over time as d_{h}(t)∼t^{1/2}, contrasting with d_{h}(t)∼t^{1/3} for liquidlike droplets. By combining theoretical analysis and simulations, we demonstrate that this accelerated growth is caused by the noncoalescence aggregation of solidlike condensates and thus formation of percolated swollen structures with a decreased fractal dimension. Moreover, we demonstrate that the accelerated growth can be slowed down by introducing agents that can revert solidlike condensates back to their liquidlike states, such as urea or specific RNAs. Together, our work reveals a fractal-dependent growth mechanism of condensates, with useful insights for understanding the aging of condensates and modulating their aggregation behaviors in synthetic and biological systems.
Collapse
Affiliation(s)
| | - Wei Guo
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
20
|
Khan T, Halder B, Das N, Sen P. Role of Associated Water Dynamics on Protein Stability and Activity in Crowded Milieu. J Phys Chem B 2024; 128:8672-8686. [PMID: 39224956 DOI: 10.1021/acs.jpcb.4c04337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Macromolecular crowding bridges in vivo and in vitro studies by simulating cellular complexities such as high viscosity and limited space while maintaining the experimental feasibility. Over the last two decades, the impact of macromolecular crowding on protein stability and activity has been a significant topic of study and discussion, though still lacking a thorough mechanistic understanding. This article investigates the role of associated water dynamics on protein stability and activity within crowded environments, using bromelain and Ficoll-70 as the model systems. Traditional crowding theory primarily attributes protein stability to entropic effects (excluded volume) and enthalpic interactions. However, our recent findings suggest that water structure modulation plays a crucial role in a crowded environment. In this report, we strengthen the conclusion of our previous study, i.e., rigid-associated water stabilizes proteins via entropy and destabilizes them via enthalpy, while flexible water has the opposite effect. In the process, we addressed previous shortcomings with a systematic concentration-dependent study using a single-domain protein and component analysis of solvation dynamics. More importantly, we analyze bromelain's hydrolytic activity using the Michaelis-Menten model to understand kinetic parameters like maximum velocity (Vmax) achieved by the system and the Michaelis-Menten coefficient (KM). Results indicate that microviscosity (not the bulk viscosity) controls the enzyme-substrate (ES) complex formation, where an increase in the microviscosity makes the ES complex formation less favorable. On the other hand, flexible associated water dynamics were found to favor the rate of product formation significantly from the ES complex, while rigid associated water hinders it. This study improves our understanding of protein stability and activity in crowded environments, highlighting the critical role of associated water dynamics.
Collapse
Affiliation(s)
- Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, UP 208 016, India
| |
Collapse
|
21
|
Meziadi A, Bloquert V, Greschner AA, de Haan HW, Gauthier MA. Harnessing Water Competition to Drive Enzyme Crosstalk. Biomacromolecules 2024; 25:6072-6081. [PMID: 39150387 DOI: 10.1021/acs.biomac.4c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In nature, enzymatic pathways often involve compartmentalization effects that can modify the intrinsic activity and specificity of the different enzymes involved. Consequently, extensive research has focused on replicating and studying the compartmentalization effects on individual enzymes and on multistep enzyme "cascade" reactions. This study explores the influence of compartmentalization achieved using molecular crowding on the glucose oxidase/horseradish peroxidase (GOx/HRP) cascade reaction. The crowder tested is methoxy poly(ethylene glycol) (mPEG) that can, depending on conditions, promote GOx and HRP coassociation at the nanoscale and extend their contact time. Low-molecular-weight mPEG (0.35 kDa), but not mPEG of higher molecular weights (5 or 20 kDa), significantly enhanced the cascade reaction where up to a 20-fold increase in the rate of the cascade reaction was observed under some conditions. The combined analyses emphasize the particularity of low-molecular-weight mPEG and point toward mPEG-induced coassociation of HRP and GOx, producing nearest crowded neighbor effects of HRP on GOx, and vice versa. These altered the nanoscale environments of these enzymes, which influenced substrate affinity. Using mPEG to promote protein coassociation is simple and does not chemically modify the proteins studied. This approach could be of interest for more broadly characterizing nearest crowded neighbor effects (i.e., protein-protein interactions) for multiprotein systems (i.e., more than just two), thus making it an interesting tool for studying very complex systems, such as those found in nature.
Collapse
Affiliation(s)
- Ahlem Meziadi
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Quebec J3X 1P7, Canada
| | - Victoria Bloquert
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Quebec J3X 1P7, Canada
| | - Andrea A Greschner
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Quebec J3X 1P7, Canada
| | - Hendrick W de Haan
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4, Canada
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, Quebec J3X 1P7, Canada
| |
Collapse
|
22
|
Doan VS, Alshareedah I, Singh A, Banerjee PR, Shin S. Diffusiophoresis promotes phase separation and transport of biomolecular condensates. Nat Commun 2024; 15:7686. [PMID: 39227569 PMCID: PMC11372141 DOI: 10.1038/s41467-024-51840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
The internal microenvironment of a living cell is heterogeneous and comprises a multitude of organelles with distinct biochemistry. Amongst them are biomolecular condensates, which are membrane-less, phase-separated compartments enriched in system-specific proteins and nucleic acids. The heterogeneity of the cell engenders the presence of multiple spatiotemporal gradients in chemistry, charge, concentration, temperature, and pressure. Such thermodynamic gradients can lead to non-equilibrium driving forces for the formation and transport of biomolecular condensates. Here, we report how ion gradients impact the transport processes of biomolecular condensates on the mesoscale and biomolecules on the microscale. Utilizing a microfluidic platform, we demonstrate that the presence of ion concentration gradients can accelerate the transport of biomolecules, including nucleic acids and proteins, via diffusiophoresis. This hydrodynamic transport process allows localized enrichment of biomolecules, thereby promoting the location-specific formation of biomolecular condensates via phase separation. The ion gradients further impart directional motility of condensates, allowing them to exhibit enhanced diffusion along the gradient. Coupled with a reentrant phase behavior, the gradient-induced enhanced motility leads to a dynamical redistribution of condensates that ultimately extends their lifetime. Together, our results demonstrate diffusiophoresis as a non-equilibrium thermodynamic force that governs the formation and transport of biomolecular condensates.
Collapse
Affiliation(s)
- Viet Sang Doan
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Ibraheem Alshareedah
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Anurag Singh
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Priya R Banerjee
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | - Sangwoo Shin
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| |
Collapse
|
23
|
Furuki T, Sakuta H, Yanagisawa N, Tabuchi S, Kamo A, Shimamoto DS, Yanagisawa M. Marangoni Droplets of Dextran in PEG Solution and Its Motile Change Due to Coil-Globule Transition of Coexisting DNA. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43016-43025. [PMID: 39088740 DOI: 10.1021/acsami.4c09362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Motile droplets using Marangoni convection are attracting attention for their potential as cell-mimicking small robots. However, the motion of droplets relative to the internal and external environments that generate Marangoni convection has not been quantitatively described. In this study, we used an aqueous two-phase system [poly(ethylene glycol) (PEG) and dextran] in an elongated chamber to generate motile dextran droplets in a constant PEG concentration gradient. We demonstrated that dextran droplets move by Marangoni convection, resulting from the PEG concentration gradient and the active transport of PEG and dextran into and out of the motile dextran droplet. Furthermore, by spontaneously incorporating long DNA into the dextran droplets, we achieved cell-like motility changes controlled by coexisting environment-sensing molecules. The DNA changes its position within the droplet and motile speed in response to external conditions. In the presence of Mg2+, the coil-globule transition of DNA inside the droplet accelerates the motile speed due to the decrease in the droplet's dynamic viscosity. Globule DNA condenses at the rear part of the droplet along the convection, while coil DNA moves away from the droplet's central axis, separating the dipole convections. These results provide a blueprint for designing autonomous small robots using phase-separated droplets, which change the mobility and molecular distribution within the droplet in reaction with the environment. It will also open unexplored areas of self-assembly mechanisms through phase separation under convections, such as intracellular phase separation.
Collapse
Affiliation(s)
- Tomohiro Furuki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
- Department of Integrated Sciences, College of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Hiroki Sakuta
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Naoya Yanagisawa
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Shingo Tabuchi
- Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan
| | - Akari Kamo
- Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan
| | - Daisuke S Shimamoto
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Miho Yanagisawa
- Department of Integrated Sciences, College of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
24
|
Qian D, Ausserwoger H, Sneideris T, Farag M, Pappu RV, Knowles TPJ. Dominance analysis to assess solute contributions to multicomponent phase equilibria. Proc Natl Acad Sci U S A 2024; 121:e2407453121. [PMID: 39102550 PMCID: PMC11331137 DOI: 10.1073/pnas.2407453121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Phase separation in aqueous solutions of macromolecules underlies the generation of biomolecular condensates in cells. Condensates are membraneless bodies, representing dense, macromolecule-rich phases that coexist with the dilute, macromolecule-deficient phases. In cells, condensates comprise hundreds of different macromolecular and small molecule solutes. How do different solutes contribute to the driving forces for phase separation? To answer this question, we introduce a formalism we term energy dominance analysis. This approach rests on analysis of shapes of the dilute phase boundaries, slopes of tie lines, and changes to dilute phase concentrations in response to perturbations of concentrations of different solutes. The framework is based solely on conditions for phase equilibria in systems with arbitrary numbers of macromolecules and solution components. Its practical application relies on being able to measure dilute phase concentrations of the components of interest. The dominance framework is both theoretically facile and experimentally applicable. We present the formalism that underlies dominance analysis and establish its accuracy and flexibility by deploying it to analyze phase diagrams probed in simulations and in experiments.
Collapse
Affiliation(s)
- Daoyuan Qian
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
| | - Hannes Ausserwoger
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
| | - Tomas Sneideris
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
| | - Mina Farag
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63130
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63130
| | - Tuomas P. J. Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, CB3 0HECambridge, United Kingdom
| |
Collapse
|
25
|
Poddar A, Satthiyasilan N, Wang PH, Chen C, Yi R, Chandru K, Jia TZ. Reactions Driven by Primitive Nonbiological Polyesters. Acc Chem Res 2024; 57:2048-2057. [PMID: 39013010 DOI: 10.1021/acs.accounts.4c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
All life on Earth is composed of cells, which are built from and run by biological reactions and structures. These reactions and structures are generally the result of action by cellular biomolecules, which are indispensable for the function and survival of all living organisms. Specifically, biological catalysis, namely by protein enzymes, but also by other biomolecules including nucleic acids, is an essential component of life. How the biomolecules themselves that perform biological catalysis came to exist in the first place is a major unanswered question that plagues researchers to this day, which is generally the focus of the origins of life (OoL) research field. Based on current knowledge, it is generally postulated that early Earth was full of a myriad of different chemicals, and that these chemicals reacted in specific ways that led to the emergence of biochemistry, cells, and later, life. In particular, a significant part of OoL research focuses on the synthesis, evolution, and function of biomolecules potentially present under early Earth conditions, as a way to understand their eventual transition into modern life. However, this narrative overlooks possibilities that other molecules contributed to the OoL, as while biomolecules that led to life were certainly present on early Earth, at the same time, other molecules that may not have strict, direct biological lineage were also widely and abundantly present. For example, hydroxy acids, although playing a role in metabolism or as parts of certain biological structures, are not generally considered to be as essential to modern biology as amino acids (a chemically similar monomer), and thus research in the OoL field tends to perhaps focus more on amino acids than hydroxy acids. However, their likely abundance on early Earth coupled with their ability to spontaneously condense into polymers (i.e., polyesters) make hydroxy acids, and their subsequent products, functions, and reactions, a reasonable target of investigation for prebiotic chemists. Whether "non-biological" hydroxy acids or polyesters can contribute to the emergence of life on early Earth is an inquiry that deserves attention within the OoL community, as this knowledge can also contribute to our understanding of the plausibility of extraterrestrial life that does not exactly use the biochemical set found in terrestrial organisms. While some demonstrations have been made with respect to compartment assembly, compartmentalization, and growth of primitive polyester-based systems, whether these "non-biological" polymers can contribute any catalytic function and/or drive primitive reactions is still an important step toward the development of early life. Here, we review research both from the OoL field as well as from industry and applied sciences regarding potential catalysis or reaction driven by "non-biological" polyesters in various forms: as linear polymers, as hyperbranched polyesters, and as membraneless microdroplets.
Collapse
Affiliation(s)
- Arunava Poddar
- Blue Marble Space Institute of Science, 600 First Ave, Floor 1, Seattle, Washington 98104, United States
- Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Pasealekua, 48620 Plentzia Bizkaia, Basque Country, Spain
| | - Nirmell Satthiyasilan
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Bandar Baru Bangi, Selangor 43600, Malaysia
| | - Po-Hsiang Wang
- Graduate Institute of Environmental Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan 32001, Taiwan (Republic of China)
- Department of Chemical and Materials Engineering, National Central University, No. 300, Zhongda Rd., Zhongli District, Taoyuan 32001, Taiwan (R.O.C.)
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ruiqin Yi
- State Key Laboratory of Isotope Geochemistry and Chinese Academy of Sciences Center for Excellence in Deep Earth Science, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia, Bandar Baru Bangi, Selangor 43600, Malaysia
- Polymer Research Center (PORCE), Faculty of Science and Technology, National University of Malaysia, Bandar Baru Bangi, Selangor 43600, Malaysia
| | - Tony Z Jia
- Blue Marble Space Institute of Science, 600 First Ave, Floor 1, Seattle, Washington 98104, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
26
|
Prathyusha KR, Saha S, Golestanian R. Anomalous Fluctuations in a Droplet of Chemically Active Colloids or Enzymes. PHYSICAL REVIEW LETTERS 2024; 133:058401. [PMID: 39159108 DOI: 10.1103/physrevlett.133.058401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Chemically active colloids or enzymes cluster into dense droplets driven by their phoretic response to collectively generated chemical gradients. Employing Brownian dynamics simulation techniques, our study of the dynamics of such a chemically active droplet uncovers a rich variety of structures and dynamical properties, including the full range of fluidlike to solidlike behavior, and non-Gaussian positional fluctuations. Our work sheds light on the complex dynamics of the active constituents of metabolic clusters, which are the main drivers of nonequilibrium activity in living systems.
Collapse
|
27
|
Tobita R, Kageyama L, Saito A, Tahara S, Kajimoto S, Nakabayashi T. Highly sensitive Raman measurements of protein aqueous solutions using liquid-liquid phase separation. Chem Commun (Camb) 2024. [PMID: 39072433 DOI: 10.1039/d4cc03035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A highly sensitive method is proposed for obtaining the Raman spectra of low-concentration proteins and nucleic acids in an aqueous solution using liquid-liquid phase separation. This method uses water droplets formed by adding a large amount of polyethylene glycol into a biomolecular aqueous solution. Ordinary spontaneous Raman spectra are obtained with a high signal-to-noise ratio.
Collapse
Affiliation(s)
- Reona Tobita
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Lisa Kageyama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Ayaka Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Shinya Tahara
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Shinji Kajimoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
28
|
Smokers IB, Visser BS, Slootbeek AD, Huck WTS, Spruijt E. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments. Acc Chem Res 2024; 57:1885-1895. [PMID: 38968602 PMCID: PMC11256357 DOI: 10.1021/acs.accounts.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/24/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
Coacervates are droplets formed by liquid-liquid phase separation (LLPS) and are often used as model protocells-primitive cell-like compartments that could have aided the emergence of life. Their continued presence as membraneless organelles in modern cells gives further credit to their relevance. The local physicochemical environment inside coacervates is distinctly different from the surrounding dilute solution and offers an interesting microenvironment for prebiotic reactions. Coacervates can selectively take up reactants and enhance their effective concentration, stabilize products, destabilize reactants and lower transition states, and can therefore play a similar role as micellar catalysts in providing rate enhancement and selectivity in reaction outcome. Rate enhancement and selectivity must have been essential for the origins of life by enabling chemical reactions to occur at appreciable rates and overcoming competition from hydrolysis. In this Accounts, we dissect the mechanisms by which coacervate protocells can accelerate reactions and provide selectivity. These mechanisms can similarly be exploited by membraneless organelles to control cellular processes. First, coacervates can affect the local concentration of reactants and accelerate reactions by copartitioning of reactants or exclusion of a product or inhibitor. Second, the local environment inside the coacervate can change the energy landscape for reactions taking place inside the droplets. The coacervate is more apolar than the surrounding solution and often rich in charged moieties, which can affect the stability of reactants, transition states and products. The crowded nature of the droplets can favor complexation of large molecules such as ribozymes. Their locally different proton and water activity can facilitate reactions involving a (de)protonation step, condensation reactions and reactions that are sensitive to hydrolysis. Not only the coacervate core, but also the surface can accelerate reactions and provides an interesting site for chemical reactions with gradients in pH, water activity and charge. The coacervate is often rich in catalytic amino acids and can localize catalysts like divalent metal ions, leading to further rate enhancement inside the droplets. Lastly, these coacervate properties can favor certain reaction pathways, and thereby give selectivity over the reaction outcome. These mechanisms are further illustrated with a case study on ribozyme reactions inside coacervates, for which there is a fine balance between concentration and reactivity that can be tuned by the coacervate composition. Furthermore, coacervates can both catalyze ribozyme reactions and provide product selectivity, demonstrating that coacervates could have functioned as enzyme-like catalytic microcompartments at the origins of life.
Collapse
Affiliation(s)
- Iris B.
A. Smokers
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands
| | - Brent S. Visser
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands
| | - Annemiek D. Slootbeek
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands
| | - Wilhelm T. S. Huck
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands
| | - Evan Spruijt
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6523 AJ Nijmegen, The Netherlands
| |
Collapse
|
29
|
Zhou HX, Kota D, Qin S, Prasad R. Fundamental Aspects of Phase-Separated Biomolecular Condensates. Chem Rev 2024; 124:8550-8595. [PMID: 38885177 PMCID: PMC11260227 DOI: 10.1021/acs.chemrev.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Biomolecular condensates, formed through phase separation, are upending our understanding in much of molecular, cell, and developmental biology. There is an urgent need to elucidate the physicochemical foundations of the behaviors and properties of biomolecular condensates. Here we aim to fill this need by writing a comprehensive, critical, and accessible review on the fundamental aspects of phase-separated biomolecular condensates. We introduce the relevant theoretical background, present the theoretical basis for the computation and experimental measurement of condensate properties, and give mechanistic interpretations of condensate behaviors and properties in terms of interactions at the molecular and residue levels.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Divya Kota
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Sanbo Qin
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
30
|
Joshi SHN, Jenkins C, Ulaeto D, Gorochowski TE. Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0037. [PMID: 38919711 PMCID: PMC11197468 DOI: 10.34133/bdr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Living cells are exquisitely tuned to sense and respond to changes in their environment. Repurposing these systems to create engineered biosensors has seen growing interest in the field of synthetic biology and provides a foundation for many innovative applications spanning environmental monitoring to improved biobased production. In this review, we present a detailed overview of currently available biosensors and the methods that have supported their development, scale-up, and deployment. We focus on genetic sensors in living cells whose outputs affect gene expression. We find that emerging high-throughput experimental assays and evolutionary approaches combined with advanced bioinformatics and machine learning are establishing pipelines to produce genetic sensors for virtually any small molecule, protein, or nucleic acid. However, more complex sensing tasks based on classifying compositions of many stimuli and the reliable deployment of these systems into real-world settings remain challenges. We suggest that recent advances in our ability to precisely modify nonmodel organisms and the integration of proven control engineering principles (e.g., feedback) into the broader design of genetic sensing systems will be necessary to overcome these hurdles and realize the immense potential of the field.
Collapse
Affiliation(s)
| | - Christopher Jenkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - David Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- BrisEngBio,
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
31
|
Jasinska W, Dindo M, Cordoba SMC, Serohijos AWR, Laurino P, Brotman Y, Bershtein S. Non-consecutive enzyme interactions within TCA cycle supramolecular assembly regulate carbon-nitrogen metabolism. Nat Commun 2024; 15:5285. [PMID: 38902266 PMCID: PMC11189929 DOI: 10.1038/s41467-024-49646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 06/22/2024] Open
Abstract
Enzymes of the central metabolism tend to assemble into transient supramolecular complexes. However, the functional significance of the interactions, particularly between enzymes catalyzing non-consecutive reactions, remains unclear. Here, by co-localizing two non-consecutive enzymes of the TCA cycle from Bacillus subtilis, malate dehydrogenase (MDH) and isocitrate dehydrogenase (ICD), in phase separated droplets we show that MDH-ICD interaction leads to enzyme agglomeration with a concomitant enhancement of ICD catalytic rate and an apparent sequestration of its reaction product, 2-oxoglutarate. Theory demonstrates that MDH-mediated clustering of ICD molecules explains the observed phenomena. In vivo analyses reveal that MDH overexpression leads to accumulation of 2-oxoglutarate and reduction of fluxes flowing through both the catabolic and anabolic branches of the carbon-nitrogen intersection occupied by 2-oxoglutarate, resulting in impeded ammonium assimilation and reduced biomass production. Our findings suggest that the MDH-ICD interaction is an important coordinator of carbon-nitrogen metabolism.
Collapse
Affiliation(s)
- Weronika Jasinska
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mirco Dindo
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Medicine and Surgery, Section of Physiology and Biochemistry, University of Perugia, Perugia, Italy
| | - Sandra M C Cordoba
- Max-Planck-Institut fur Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Adrian W R Serohijos
- Departement de Biochimie, Universite de Montreal, Quebec, Canada
- Centre Robert-Cedergren en Bio-informatique et Genomique, Universite de Montreal, Quebec, Canada
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Institute for Protein Research, Osaka University, Suita, Japan.
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Shimon Bershtein
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
32
|
Dindo M, Bevilacqua A, Soligo G, Calabrese V, Monti A, Shen AQ, Rosti ME, Laurino P. Chemotactic Interactions Drive Migration of Membraneless Active Droplets. J Am Chem Soc 2024; 146:15965-15976. [PMID: 38620052 DOI: 10.1021/jacs.4c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In nature, chemotactic interactions are ubiquitous and play a critical role in driving the collective behavior of living organisms. Reproducing these interactions in vitro is still a paramount challenge due to the complexity of mimicking and controlling cellular features, such as tangled metabolic networks, cytosolic macromolecular crowding, and cellular migration, on a microorganism size scale. Here, we generate enzymatically active cell-sized droplets able to move freely, and by following a chemical gradient, able to interact with the surrounding droplets in a collective manner. The enzyme within the droplets generates a pH gradient that extends outside the edge of the droplets. We discovered that the external pH gradient triggers droplet migration and controls its directionality, which is selectively toward the neighboring droplets. Hence, by changing the enzyme activity inside the droplet, we tuned the droplet migration speed. Furthermore, we showed that these cellular-like features can facilitate the reconstitution of a simple and linear protometabolic pathway and increase the final reaction product generation. Our work suggests that simple and stable membraneless droplets can reproduce complex biological phenomena, opening new perspectives as bioinspired materials and synthetic biology tools.
Collapse
Affiliation(s)
- Mirco Dindo
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Alessandro Bevilacqua
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Giovanni Soligo
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Vincenzo Calabrese
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Alessandro Monti
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Marco Edoardo Rosti
- Complex Fluids and Flows Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
| | - Paola Laurino
- Protein Engineering and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0412, Japan
- Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
33
|
Ou X, Tang Z, Ye Y, Chen X, Huang Y. Macromolecular Crowding Effect on Chitosan-Hyaluronic Acid Complexation and the Activity of Encapsulated Catalase. Biomacromolecules 2024; 25:3840-3849. [PMID: 38801711 DOI: 10.1021/acs.biomac.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The associative phase separation of charged biomacromolecules plays a key role in many biophysical events that take place in crowded intracellular environments. Such natural polyelectrolyte complexation and phase separation often occur at nonstoichiometric charge ratios with the incorporation of bioactive proteins, which is not studied as extensively as those complexations at stoichiometric ratios. In this work, we investigated how the addition of a crowding agent (polyethylene glycol, PEG) affected the complexation between chitosan (CS) and hyaluronic acid (HA), especially at nonstoichiometric ratios, and the encapsulation of enzyme (catalase, CAT) by the colloidal complexes. The crowded environment promoted colloidal phase separation at low charge ratios, forming complexes with increased colloidal and dissolution stability, which resulted in a smaller size and polydispersity (PDI). The binding isotherms revealed that the addition of PEG greatly enhanced the ion-pairing strength (with increased ion-pairing equilibrium constant Ka from 4.92 × 104 without PEG to 1.08 × 106 with 200 g/L PEG) and switched the coacervation from endothermic to exothermic, which explained the promoted complexation and phase separation. At the stoichiometric charge ratio, the enhanced CS-HA interaction in crowded media generated a more solid-like coacervate phase with a denser network, slower chain relaxation, and higher modulus. Moreover, both crowding and complex encapsulation enhanced the activity and catalytic efficiency of CAT, represented by a 2-fold increase in catalytic efficiency (Kcat/Km) under 100 g/L PEG crowding and CS-HA complex encapsulation. This is likely due to the lower polarity in the microenvironment surrounding the enzyme molecules. By a systematic investigation of both nonstoichiometric and stoichiometric charge ratios under macromolecular crowding, this work provided new insights into the complexation between natural polyelectrolytes in a scenario closer to an intracellular environment.
Collapse
Affiliation(s)
- Xiatong Ou
- College of Biological Science and Engineering, Fuzhou University, No.2 Xueyuan Road, Minhou County, Fuzhou 350108, Fujian, China
| | - Ziyao Tang
- College of Biological Science and Engineering, Fuzhou University, No.2 Xueyuan Road, Minhou County, Fuzhou 350108, Fujian, China
| | - Yanqi Ye
- College of Biological Science and Engineering, Fuzhou University, No.2 Xueyuan Road, Minhou County, Fuzhou 350108, Fujian, China
| | - Xiaochao Chen
- College of Biological Science and Engineering, Fuzhou University, No.2 Xueyuan Road, Minhou County, Fuzhou 350108, Fujian, China
- Chuanhua Kechuang Building, Ningwei Street, Xiaoshan District, Zhejiang Novofacies Biotech Co., Ltd., Hangzhou 311215, Zhejiang, China
| | - Yan Huang
- College of Biological Science and Engineering, Fuzhou University, No.2 Xueyuan Road, Minhou County, Fuzhou 350108, Fujian, China
| |
Collapse
|
34
|
Evangelista NN, Micheletto MC, Kava E, Mendes LFS, Costa-Filho AJ. Biomolecular condensates of Chlorocatechol 1,2-Dioxygenase as prototypes of enzymatic microreactors for the degradation of polycyclic aromatic hydrocarbons. Int J Biol Macromol 2024; 270:132294. [PMID: 38735602 DOI: 10.1016/j.ijbiomac.2024.132294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are molecules with two or more fused aromatic rings that occur naturally in the environment due to incomplete combustion of organic substances. However, the increased demand for fossil fuels in recent years has increased anthropogenic activity, contributing to the environmental concentration of PAHs. The enzyme chlorocatechol 1,2-dioxygenase from Pseudomonas putida (Pp 1,2-CCD) is responsible for the breakdown of the aromatic ring of catechol, making it a potential player in bioremediation strategies. Pp 1,2-CCD can tolerate a broader range of substrates, including halogenated compounds, than other dioxygenases. Here, we report the construction of a chimera protein able to form biomolecular condensates with potential application in bioremediation. The chimera protein was built by conjugating Pp 1,2-CCD to low complex domains (LCDs) derived from the DEAD-box protein Dhh1. We showed that the chimera could undergo liquid-liquid phase separation (LLPS), forming a protein-rich liquid droplet under different conditions (variable protein and PEG8000 concentrations and pH values), in which the protein maintained its structure and main biophysical properties. The condensates were active against 4-chlorocatechol, showing that the chimera droplets preserved the enzymatic activity of the native protein. Therefore, it constitutes a prototype of a microreactor with potential use in bioremediation.
Collapse
Affiliation(s)
- Nathan N Evangelista
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariana C Micheletto
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Emanuel Kava
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis F S Mendes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Grupo de Biofísica Molecular Sérgio Mascarenhas, Departamento de Física e Ciência Interdisciplinar, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
35
|
Jambon-Puillet E, Testa A, Lorenz C, Style RW, Rebane AA, Dufresne ER. Phase-separated droplets swim to their dissolution. Nat Commun 2024; 15:3919. [PMID: 38724503 PMCID: PMC11082165 DOI: 10.1038/s41467-024-47889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Biological macromolecules can condense into liquid domains. In cells, these condensates form membraneless organelles that can organize chemical reactions. However, little is known about the physical consequences of chemical activity in and around condensates. Working with model bovine serum albumin (BSA) condensates, we show that droplets swim along chemical gradients. Active BSA droplets loaded with urease swim toward each other. Passive BSA droplets show diverse responses to externally applied gradients of the enzyme's substrate and products. In all these cases, droplets swim toward solvent conditions that favor their dissolution. We call this behavior "dialytaxis", and expect it to be generic, as conditions which favor dissolution typically reduce interfacial tension, whose gradients are well-known to drive droplet motion through the Marangoni effect. These results could potentially suggest alternative physical mechanisms for active transport in living cells, and may enable the design of fluid micro-robots.
Collapse
Affiliation(s)
- Etienne Jambon-Puillet
- Department of Materials, ETH Zürich, Zürich, Switzerland
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Andrea Testa
- Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Charlotta Lorenz
- Department of Materials, ETH Zürich, Zürich, Switzerland
- Department of Materials Science and Engineering, Department of Physics, Cornell University, Ithaca, NY, USA
| | - Robert W Style
- Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Aleksander A Rebane
- Department of Materials, ETH Zürich, Zürich, Switzerland
- Life Molecules and Materials Lab, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Eric R Dufresne
- Department of Materials, ETH Zürich, Zürich, Switzerland.
- Department of Materials Science and Engineering, Department of Physics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
36
|
Gil-Garcia M, Benítez-Mateos AI, Papp M, Stoffel F, Morelli C, Normak K, Makasewicz K, Faltova L, Paradisi F, Arosio P. Local environment in biomolecular condensates modulates enzymatic activity across length scales. Nat Commun 2024; 15:3322. [PMID: 38637545 PMCID: PMC11026464 DOI: 10.1038/s41467-024-47435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
The mechanisms that underlie the regulation of enzymatic reactions by biomolecular condensates and how they scale with compartment size remain poorly understood. Here we use intrinsically disordered domains as building blocks to generate programmable enzymatic condensates of NADH-oxidase (NOX) with different sizes spanning from nanometers to microns. These disordered domains, derived from three distinct RNA-binding proteins, each possessing different net charge, result in the formation of condensates characterized by a comparable high local concentration of the enzyme yet within distinct environments. We show that only condensates with the highest recruitment of substrate and cofactor exhibit an increase in enzymatic activity. Notably, we observe an enhancement in enzymatic rate across a wide range of condensate sizes, from nanometers to microns, indicating that emergent properties of condensates can arise within assemblies as small as nanometers. Furthermore, we show a larger rate enhancement in smaller condensates. Our findings demonstrate the ability of condensates to modulate enzymatic reactions by creating distinct effective solvent environments compared to the surrounding solution, with implications for the design of protein-based heterogeneous biocatalysts.
Collapse
Affiliation(s)
- Marcos Gil-Garcia
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Ana I Benítez-Mateos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Marcell Papp
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Florence Stoffel
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Chiara Morelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Karl Normak
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Katarzyna Makasewicz
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Lenka Faltova
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
37
|
Naz M, Zhang L, Chen C, Yang S, Dou H, Mann S, Li J. Self-assembly of stabilized droplets from liquid-liquid phase separation for higher-order structures and functions. Commun Chem 2024; 7:79. [PMID: 38594355 PMCID: PMC11004187 DOI: 10.1038/s42004-024-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Dynamic microscale droplets produced by liquid-liquid phase separation (LLPS) have emerged as appealing biomaterials due to their remarkable features. However, the instability of droplets limits the construction of population-level structures with collective behaviors. Here we first provide a brief background of droplets in the context of materials properties. Subsequently, we discuss current strategies for stabilizing droplets including physical separation and chemical modulation. We also discuss the recent development of LLPS droplets for various applications such as synthetic cells and biomedical materials. Finally, we give insights on how stabilized droplets can self-assemble into higher-order structures displaying coordinated functions to fully exploit their potentials in bottom-up synthetic biology and biomedical applications.
Collapse
Affiliation(s)
- Mehwish Naz
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Lin Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Chong Chen
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland
| | - Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | - Jianwei Li
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland.
| |
Collapse
|
38
|
Blanc B, Zhang Z, Liu E, Zhou N, Dellatolas I, Aghvami A, Yi H, Fraden S. Active Pulsatile Gels: From a Chemical Microreactor to a Polymeric Actuator. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6862-6868. [PMID: 38385757 DOI: 10.1021/acs.langmuir.3c03784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
We report on a synthesis protocol, experimental characterization, and theoretical modeling of active pulsatile Belousov-Zhabotinsky (BZ) hydrogels. Our two-step synthesis technique allows independent optimization of the geometry, the chemical, and the mechanical properties of BZ gels. We identify the role of the surrounding medium chemistry and gel radius for the occurrence of BZ gel oscillations, quantified by the Damköhler number, which is the ratio of chemical reaction to diffusion rates. Tuning the BZ gel size to maximize its chemomechanical oscillation amplitude, we find that its oscillatory strain amplitude is limited by the time scale of gel swelling relative to the chemical oscillation period. Our experimental findings are in good agreement with a Vanag-Epstein model of BZ chemistry and a Tanaka Fillmore theory of gel swelling dynamics.
Collapse
Affiliation(s)
- Baptiste Blanc
- Department of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Zhenkun Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071 Tianjin, China
| | - Eric Liu
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ning Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Ippolyti Dellatolas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ali Aghvami
- Department of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Hyunmin Yi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Seth Fraden
- Department of Physics, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
39
|
Alfano C, Fichou Y, Huber K, Weiss M, Spruijt E, Ebbinghaus S, De Luca G, Morando MA, Vetri V, Temussi PA, Pastore A. Molecular Crowding: The History and Development of a Scientific Paradigm. Chem Rev 2024; 124:3186-3219. [PMID: 38466779 PMCID: PMC10979406 DOI: 10.1021/acs.chemrev.3c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
It is now generally accepted that macromolecules do not act in isolation but "live" in a crowded environment, that is, an environment populated by numerous different molecules. The field of molecular crowding has its origins in the far 80s but became accepted only by the end of the 90s. In the present issue, we discuss various aspects that are influenced by crowding and need to consider its effects. This Review is meant as an introduction to the theme and an analysis of the evolution of the crowding concept through time from colloidal and polymer physics to a more biological perspective. We introduce themes that will be more thoroughly treated in other Reviews of the present issue. In our intentions, each Review may stand by itself, but the complete collection has the aspiration to provide different but complementary perspectives to propose a more holistic view of molecular crowding.
Collapse
Affiliation(s)
- Caterina Alfano
- Structural
Biology and Biophysics Unit, Fondazione
Ri.MED, 90100 Palermo, Italy
| | - Yann Fichou
- CNRS,
Bordeaux INP, CBMN UMR 5248, IECB, University
of Bordeaux, F-33600 Pessac, France
| | - Klaus Huber
- Department
of Chemistry, University of Paderborn, 33098 Paderborn, Germany
| | - Matthias Weiss
- Experimental
Physics I, Physics of Living Matter, University
of Bayreuth, 95440 Bayreuth, Germany
| | - Evan Spruijt
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Simon Ebbinghaus
- Lehrstuhl
für Biophysikalische Chemie and Research Center Chemical Sciences
and Sustainability, Research Alliance Ruhr, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Giuseppe De Luca
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Valeria Vetri
- Dipartimento
di Fisica e Chimica − Emilio Segrè, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | - Annalisa Pastore
- King’s
College London, Denmark
Hill Campus, SE5 9RT London, United Kingdom
| |
Collapse
|
40
|
Doan VS, Alshareedah I, Singh A, Banerjee PR, Shin S. Diffusiophoresis promotes phase separation and transport of biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.03.547532. [PMID: 37461689 PMCID: PMC10350024 DOI: 10.1101/2023.07.03.547532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The internal microenvironment of a living cell is heterogeneous and comprises a multitude of organelles with distinct biochemistry. Amongst them are biomolecular condensates, which are membrane-less, phase-separated compartments enriched in system-specific proteins and nucleic acids. The heterogeneity of the cell engenders the presence of multiple spatiotemporal gradients in chemistry, charge, concentration, temperature, and pressure. Such thermodynamic gradients can lead to non-equilibrium driving forces for the formation and transport of biomolecular condensates. Here, we report how ion gradients impact the transport processes of biomolecular condensates on the mesoscale and biomolecules on the microscale. Utilizing a microfluidic platform, we demonstrate that the presence of ion concentration gradients can accelerate the transport of biomolecules, including nucleic acids and proteins, via diffusiophoresis. This hydrodynamic transport process allows localized enrichment of biomolecules, thereby promoting the location-specific formation of biomolecular condensates via phase separation. The ion gradients further impart active motility of condensates, allowing them to exhibit enhanced diffusion along the gradient. Coupled with a reentrant phase behavior, the gradient-induced active motility leads to a dynamical redistribution of condensates that ultimately extends their lifetime. Together, our results demonstrate diffusiophoresis as a non-equilibrium thermodynamic force that governs the formation and transport of biomolecular condensates.
Collapse
Affiliation(s)
- Viet Sang Doan
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Ibraheem Alshareedah
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Anurag Singh
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Priya R. Banerjee
- Department of Physics, University at Buffalo, The State University of New York, Buffalo, NY 14260
| | - Sangwoo Shin
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260
| |
Collapse
|
41
|
Ong Q, Xufeng X, Stellacci F. Versatile Capillary Cells for Handling Concentrated Samples in Analytical Ultracentrifugation. Anal Chem 2024; 96:2567-2573. [PMID: 38301115 PMCID: PMC10867799 DOI: 10.1021/acs.analchem.3c05006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024]
Abstract
In concentrated macromolecular dispersions, far-from-ideal intermolecular interactions determine the dispersion behaviors including phase transition, crystallization, and liquid-liquid phase separation. Here, we present a novel versatile capillary-cell design for analytical ultracentrifugation-sedimentation equilibrium (AUC-SE), ideal for studying samples at high concentrations. Current setups for such studies are difficult and unreliable to handle, leading to a low experimental success rate. The design presented here is easy to use, robust, and reusable for samples in both aqueous and organic solvents while requiring no special tools or chemical modification of AUC cells. The key and unique feature is the fabrication of liquid reservoirs directly on the bottom window of AUC cells, which can be easily realized by laser ablation or mechanical drilling. The channel length and optical path length are therefore tunable. The success rate for assembling this new cell is close to 100%. We demonstrate the practicality of this cell by studying: (1) the equation of state and second virial coefficients of concentrated gold nanoparticle dispersions in water and bovine serum albumin (BSA) as well as lysozyme solution in aqueous buffers, (2) the gelation phase transition of DNA and BSA solutions, and (3) liquid-liquid phase separation of concentrated BSA/polyethylene glycol (PEG) droplets.
Collapse
Affiliation(s)
- Quy Ong
- Laboratory Of Supramolecular
Nanomaterials And Interfaces, Ecole Polytechnique
Fédérale de Lausanne (EPFL), Station 12, 1015 Lausanne, Switzerland
| | - Xu Xufeng
- Laboratory Of Supramolecular
Nanomaterials And Interfaces, Ecole Polytechnique
Fédérale de Lausanne (EPFL), Station 12, 1015 Lausanne, Switzerland
| | - Francesco Stellacci
- Laboratory Of Supramolecular
Nanomaterials And Interfaces, Ecole Polytechnique
Fédérale de Lausanne (EPFL), Station 12, 1015 Lausanne, Switzerland
| |
Collapse
|
42
|
Scheibner C, Ori H, Cohen AE, Vitelli V. Spiking at the edge: Excitability at interfaces in reaction-diffusion systems. Proc Natl Acad Sci U S A 2024; 121:e2307996120. [PMID: 38215183 PMCID: PMC10801884 DOI: 10.1073/pnas.2307996120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/25/2023] [Indexed: 01/14/2024] Open
Abstract
Excitable media, ranging from bioelectric tissues and chemical oscillators to forest fires and competing populations, are nonlinear, spatially extended systems capable of spiking. Most investigations of excitable media consider situations where the amplifying and suppressing forces necessary for spiking coexist at every point in space. In this case, spikes arise due to local bistabilities, which require a fine-tuned ratio between local amplification and suppression strengths. But, in nature and engineered systems, these forces can be segregated in space, forming structures like interfaces and boundaries. Here, we show how boundaries can generate and protect spiking when the reacting components can spread out: Even arbitrarily weak diffusion can cause spiking at the edge between two non-excitable media. This edge spiking arises due to a global bistability, which can occur even if amplification and suppression strengths do not allow spiking when mixed. We analytically derive a spiking phase diagram that depends on two parameters: i) the ratio between the system size and the characteristic diffusive length-scale and ii) the ratio between the amplification and suppression strengths. Our analysis explains recent experimental observations of action potentials at the interface between two non-excitable bioelectric tissues. Beyond electrophysiology, we highlight how edge spiking emerges in predator-prey dynamics and in oscillating chemical reactions. Our findings provide a theoretical blueprint for a class of interfacial excitations in reaction-diffusion systems, with potential implications for spatially controlled chemical reactions, nonlinear waveguides and neuromorphic computation, as well as spiking instabilities, such as cardiac arrhythmias, that naturally occur in heterogeneous biological media.
Collapse
Affiliation(s)
- Colin Scheibner
- Department of Physics and The James Franck Institute, The University of Chicago, Chicago, IL60637
- Kadanoff Center for Theoretical Physics, The University of Chicago, Chicago, IL60637
| | - Hillel Ori
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
| | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- Department of Physics, Harvard University, Cambridge, MA02138
| | - Vincenzo Vitelli
- Department of Physics and The James Franck Institute, The University of Chicago, Chicago, IL60637
- Kadanoff Center for Theoretical Physics, The University of Chicago, Chicago, IL60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL60637
| |
Collapse
|
43
|
Shandilya E, Bains AS, Maiti S. Enzyme-Mediated Temporal Control over the Conformational Disposition of a Condensed Protein in Macromolecular Crowded Media. J Phys Chem B 2023; 127:10508-10517. [PMID: 38052045 DOI: 10.1021/acs.jpcb.3c07074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Temporal regulation between input and output signals is one of the hallmarks of complex biological processes. Herein, we report that the conformational disposition of a protein in macromolecularly crowded media can be controlled with time using enzymes. First, we demonstrate the pH dependence of bovine serum albumin (BSA) condensation and conformational alteration in the presence of poly(ethylene glycol) as a crowder. However, by exploiting the strength of pH-modulatory enzymatic reactions (glucose oxidase and urease), the conversion time between the condensed and free forms can be tuned. Additionally, we demonstrate that the trapping of intermediate states with respect to the overall system at a particular α-helix or β-sheet composition and rotational mobility can be possible simply by altering the substrate concentration. Finally, we show that the intrinsic catalytic ability of BSA toward the Kemp elimination (KE) reaction is inhibited in the aggregated form but regained in the free form. In fact, the rate of KE reaction can also be actuated enzymatically in a temporal fashion, therefore demonstrating the programmability of a cascade of biochemical events in crowded media.
Collapse
Affiliation(s)
- Ekta Shandilya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Arshdeep Singh Bains
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| |
Collapse
|
44
|
Ranganathan S, Liu J, Shakhnovich E. Enzymatic metabolons dramatically enhance metabolic fluxes of low-efficiency biochemical reactions. Biophys J 2023; 122:4555-4566. [PMID: 37915170 PMCID: PMC10719048 DOI: 10.1016/j.bpj.2023.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023] Open
Abstract
In this work, we investigate how spatial proximity of enzymes belonging to the same pathway (metabolon) affects metabolic flux. Using off-lattice Langevin dynamics simulations in tandem with a stochastic reaction-diffusion protocol and a semi-analytical reaction-diffusion model, we systematically explored how strength of protein-protein interactions, catalytic efficiency, and protein-ligand interactions affect metabolic flux through the metabolon. Formation of a metabolon leads to a greater speedup for longer pathways and especially for reaction-limited enzymes, whereas, for fully optimized diffusion-limited enzymes, the effect is negligible. Notably, specific cluster architectures are not a prerequisite for enhancing reaction flux. Simulations uncover the crucial role of optimal nonspecific protein-ligand interactions in enhancing catalytic efficiency of a metabolon. Our theory implies, and bioinformatics analysis confirms, that longer catalytic pathways are enriched in less optimal enzymes, whereas most diffusion-limited enzymes populate shorter pathways. Our findings point toward a plausible evolutionary strategy where enzymes compensate for less-than-optimal efficiency by increasing their local concentration in the clustered state.
Collapse
Affiliation(s)
- Srivastav Ranganathan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Junlang Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Eugene Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
45
|
Nobeyama T, Furuki T, Shiraki K. Phase-Diagram Observation of Liquid-Liquid Phase Separation in the Poly(l-lysine)/ATP System and a Proposal for Diagram-Based Application Strategy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17043-17049. [PMID: 37967197 DOI: 10.1021/acs.langmuir.3c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Liquid-liquid phase separation (LLPS) is essential to understanding the biomacromolecule compartmentalization in living cells and to developing soft-matter structures for chemical reactions and drug delivery systems. However, the importance of detailed experimental phase diagrams of modern LLPS systems tends to be overlooked in recent times. Even for the poly(l-lysine) (PLL)/ATP system, which is one of the most widely used LLPS models, any detailed phase diagram of LLPS has not been reported. Herein, we report the first phase diagram of the PLL/ATP system and demonstrate the feasibility of phase-diagram-based research design for understanding the physical properties of LLPS systems and realizing biophysical and medical applications. We established an experimentally handy model for the droplet formation-disappearance process by generating a concentration gradient in a chamber for extracting a suitable condition on the phase diagram, including the two-phase droplet region. As a proof of concept of pharmaceutical application, we added a human immunoglobulin G (IgG) solution to the PLL/ATP system. Using the knowledge from the phase diagram, we realized the formation of IgG/PLL droplets in a pharmaceutically required IgG concentration of ca. 10 mg/mL. Thus, this study provides guidance for using the phase diagram to analyze and utilize LLPS.
Collapse
Affiliation(s)
- Tomohiro Nobeyama
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Tomohiro Furuki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| |
Collapse
|
46
|
Wang X, Qiao X, Chen H, Wang L, Liu X, Huang X. Synthetic-Cell-Based Multi-Compartmentalized Hierarchical Systems. SMALL METHODS 2023; 7:e2201712. [PMID: 37069779 DOI: 10.1002/smtd.202201712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In the extant lifeforms, the self-sustaining behaviors refer to various well-organized biochemical reactions in spatial confinement, which rely on compartmentalization to integrate and coordinate the molecularly crowded intracellular environment and complicated reaction networks in living/synthetic cells. Therefore, the biological phenomenon of compartmentalization has become an essential theme in the field of synthetic cell engineering. Recent progress in the state-of-the-art of synthetic cells has indicated that multi-compartmentalized synthetic cells should be developed to obtain more advanced structures and functions. Herein, two ways of developing multi-compartmentalized hierarchical systems, namely interior compartmentalization of synthetic cells (organelles) and integration of synthetic cell communities (synthetic tissues), are summarized. Examples are provided for different construction strategies employed in the above-mentioned engineering ways, including spontaneous compartmentalization in vesicles, host-guest nesting, phase separation mediated multiphase, adhesion-mediated assembly, programmed arrays, and 3D printing. Apart from exhibiting advanced structures and functions, synthetic cells are also applied as biomimetic materials. Finally, key challenges and future directions regarding the development of multi-compartmentalized hierarchical systems are summarized; these are expected to lay the foundation for the creation of a "living" synthetic cell as well as provide a larger platform for developing new biomimetic materials in the future.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
47
|
Yao Y, Shi X, Zhao Z, Zhang A, Li W. Dendronization of chitosan to afford unprecedent thermoresponsiveness and tunable microconfinement. J Mater Chem B 2023; 11:11024-11034. [PMID: 37975703 DOI: 10.1039/d3tb01803b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Convenient chemical modification of biomacromolecules to create novel biocompatible functional materials satisfies the current requirements of sustainable chemistry. Dendronization of chitosan with dendritic oligoethylene glycols (OEGs) paves a strategy for the preparation of functional dendronized chitosans (DCSs) with unprecedent thermoresponsive behavior, which inherit biological features from polysaccharides and the topological features from dendritic OEGs. In addition, densely packed dendritic OEG chains around the backbone provide efficient cooperative interactions and form an intriguing confined microenvironment based on the degradable biopolymers. In this perspective, we describe the principle for the preparation of the thermoresponsive DCSs, and focus on the molecular envelop effect from the hydrophobic microconfinement to the encapsulated guest molecules or moieties. Particular attention is put on their capacity to regulate behavior and the functions of the encapsulated guests through thermally-mediated dehydration and collapse of the densely packed dendritic OEGs. We believe that the methodology described here may provide prospects for the fabrication of functional materials from biomacromolecules, especially when used as environmentally friendly nanomaterials or in accurate diagnosis and therapy.
Collapse
Affiliation(s)
- Yi Yao
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Xiaoxin Shi
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Zihong Zhao
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai 200444, China.
| |
Collapse
|
48
|
Tayar AM, Caballero F, Anderberg T, Saleh OA, Cristina Marchetti M, Dogic Z. Controlling liquid-liquid phase behaviour with an active fluid. NATURE MATERIALS 2023; 22:1401-1408. [PMID: 37679525 DOI: 10.1038/s41563-023-01660-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Demixing binary liquids is a ubiquitous transition explained using a well-established thermodynamic formalism that requires the equality of intensive thermodynamics parameters across phase boundaries. Demixing transitions also occur when binary fluid mixtures are driven away from equilibrium, but predicting and designing such out-of-equilibrium transitions remains a challenge. Here we study the liquid-liquid phase separation of attractive DNA nanostars driven away from equilibrium using a microtubule-based active fluid. We find that activity lowers the critical temperature and narrows the range of coexistence concentrations, but only in the presence of mechanical bonds between the liquid droplets and reconfiguring active fluid. Similar behaviours are observed in numerical simulations, suggesting that the activity suppression of the critical point is a generic feature of active liquid-liquid phase separation. Our work describes a versatile platform for building soft active materials with feedback control and providing an insight into self-organization in cell biology.
Collapse
Affiliation(s)
- Alexandra M Tayar
- Department of Physics, University of California, Santa Barbara, CA, USA.
| | | | - Trevor Anderberg
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - Omar A Saleh
- Department of Physics, University of California, Santa Barbara, CA, USA
- Materials Department, University of California, Santa Barbara, CA, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | - M Cristina Marchetti
- Department of Physics, University of California, Santa Barbara, CA, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | - Zvonimir Dogic
- Department of Physics, University of California, Santa Barbara, CA, USA.
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
49
|
Shrivastava A, Du Y, Adepu HK, Li R, Madhvacharyula AS, Swett AA, Choi JH. Motility of Synthetic Cells from Engineered Lipids. ACS Synth Biol 2023; 12:2789-2801. [PMID: 37729546 DOI: 10.1021/acssynbio.3c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Synthetic cells are artificial systems that resemble natural cells. Significant efforts have been made over the years to construct synthetic protocells that can mimic biological mechanisms and perform various complex processes. These include compartmentalization, metabolism, energy supply, communication, and gene reproduction. Cell motility is also of great importance, as nature uses elegant mechanisms for intracellular trafficking, immune response, and embryogenesis. In this review, we discuss the motility of synthetic cells made from lipid vesicles and relevant molecular mechanisms. Synthetic cell motion may be classified into surface-based or solution-based depending on whether it involves interactions with surfaces or movement in fluids. Collective migration behaviors have also been demonstrated. The swarm motion requires additional mechanisms for intercellular signaling and directional motility that enable communication and coordination among the synthetic vesicles. In addition, intracellular trafficking for molecular transport has been reconstituted in minimal cells with the help of DNA nanotechnology. These efforts demonstrate synthetic cells that can move, detect, respond, and interact. We envision that new developments in protocell motility will enhance our understanding of biological processes and be instrumental in bioengineering and therapeutic applications.
Collapse
Affiliation(s)
- Aishwary Shrivastava
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Yancheng Du
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Harshith K Adepu
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Ruixin Li
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Anirudh S Madhvacharyula
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Alexander A Swett
- School of Mechanical Engineering, Purdue University, Neil Armstrong Hall of Engineering, 701 W. Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
| |
Collapse
|
50
|
Testa A, Spanke HT, Jambon-Puillet E, Yasir M, Feng Y, Küffner AM, Arosio P, Dufresne ER, Style RW, Rebane AA. Surface Passivation Method for the Super-repellence of Aqueous Macromolecular Condensates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14626-14637. [PMID: 37797324 PMCID: PMC10586374 DOI: 10.1021/acs.langmuir.3c01886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Indexed: 10/07/2023]
Abstract
Solutions of macromolecules can undergo liquid-liquid phase separation to form droplets with ultralow surface tension. Droplets with such low surface tension wet and spread over common surfaces such as test tubes and microscope slides, complicating in vitro experiments. The development of a universal super-repellent surface for macromolecular droplets has remained elusive because their ultralow surface tension requires low surface energies. Furthermore, the nonwetting of droplets containing proteins poses additional challenges because the surface must remain inert to a wide range of chemistries presented by the various amino acid side chains at the droplet surface. Here, we present a method to coat microscope slides with a thin transparent hydrogel that exhibits complete dewetting (contact angles θ ≈ 180°) and minimal pinning of phase-separated droplets in aqueous solution. The hydrogel is based on a swollen matrix of chemically cross-linked polyethylene glycol diacrylate of molecular weight 12 kDa (PEGDA), and can be prepared with basic chemistry laboratory equipment. The PEGDA hydrogel is a powerful tool for in vitro studies of weak interactions, dynamics, and the internal organization of phase-separated droplets in aqueous solutions.
Collapse
Affiliation(s)
- Andrea Testa
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Etienne Jambon-Puillet
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
- LadHyX,
CNRS, Ecole Polytechnique, Institut Polytechnique
de Paris, Palaiseau 91120, France
| | - Mohammad Yasir
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Yanxia Feng
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Andreas M. Küffner
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Paolo Arosio
- Department
of Chemistry and Applied Biosciences, Institute
for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Robert W. Style
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Aleksander A. Rebane
- Department
of Materials, ETH Zürich, 8093 Zürich, Switzerland
- Life
Molecules and Materials Laboratory, Programs in Chemistry and in Physics, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|