1
|
Marreddy RKR, Phelps GA, Churion K, Picker J, Powell R, Cherian PT, Bowling JJ, Stephan CC, Lee RE, Hurdle JG. Chemical genetic analysis of enoxolone inhibition of Clostridioides difficile toxin production reveals adenine deaminase and ATP synthase as antivirulence targets. J Biol Chem 2024; 300:107839. [PMID: 39343002 PMCID: PMC11566853 DOI: 10.1016/j.jbc.2024.107839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Toxins TcdA and TcdB are the main virulence factors of Clostridioides difficile, a leading cause of hospital-acquired diarrhea. Despite their importance, there is a significant knowledge gap of druggable targets for inhibiting toxin production. To address this, we screened nonantibiotic phytochemicals to identify potential chemical genetic probes to discover antivirulence drug targets. This led to the identification of 18β-glycyrrhetinic acid (enoxolone), a licorice metabolite, as an inhibitor of TcdA and TcdB biosynthesis. Using affinity-based proteomics, potential targets were identified as ATP synthase subunit alpha (AtpA) and adenine deaminase (Ade, which catalyzes conversion of adenine to hypoxanthine in the purine salvage pathway). To validate these targets, a multifaceted approach was adopted. Gene silencing of ade and atpA inhibited toxin biosynthesis, while surface plasmon resonance and isothermal titration calorimetry molecular interaction analyses revealed direct binding of enoxolone to Ade. Metabolomics demonstrated enoxolone induced the accumulation of adenosine, while depleting hypoxanthine and ATP in C. difficile. Transcriptomics further revealed enoxolone dysregulated phosphate uptake genes, which correlated with reduced cellular phosphate levels. These findings suggest that enoxolone's cellular action is multitargeted. Accordingly, supplementation with both hypoxanthine and triethyl phosphate, a phosphate source, was required to fully restore toxin production in the presence of enoxolone. In conclusion, through the characterization of enoxolone, we identified promising antivirulence targets that interfere with nucleotide salvage and ATP synthesis, which may also block toxin biosynthesis.
Collapse
Affiliation(s)
- Ravi K R Marreddy
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Gregory A Phelps
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA; Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kelly Churion
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Jonathan Picker
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Reid Powell
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Philip T Cherian
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John J Bowling
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Clifford C Stephan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Julian G Hurdle
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA.
| |
Collapse
|
2
|
Cummer R, Grosjean F, Bolteau R, Vasegh SE, Veyron S, Keogh L, Trempe JF, Castagner B. Structure-Activity Relationship of Inositol Thiophosphate Analogs as Allosteric Activators of Clostridioides difficile Toxin B. J Med Chem 2024; 67:16576-16597. [PMID: 39254660 DOI: 10.1021/acs.jmedchem.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Clostridioides difficile is a bacterium that causes life-threatening intestinal infections. Infection symptoms are mediated by a toxin secreted by the bacterium. Toxin pathogenesis is modulated by the intracellular molecule, inositol-hexakisphosphate (IP6). IP6 binds to a cysteine protease domain (CPD) on the toxin, inducing autoproteolysis, which liberates a virulence factor in the cell cytosol. We developed second-generation IP6 analogs designed to induce autoproteolysis in the gut lumen, prior to toxin uptake, circumventing pathogenesis. We synthesized a panel of thiophosphate-/sulfate-containing IP6 analogs and characterized their toxin binding affinity, autoproteolysis induction, and cation interactions. Our top candidate was soluble in extracellular cation concentrations, unlike IP6. The IP6 analogs were more negatively charged than IP6, which improved affinity and stabilization of the CPD, enhancing toxin autoproteolysis. Our data illustrate the optimization of IP6 with thiophosphate biomimetic which are more capable of inducing toxin autoproteolysis than the native ligand, warranting further studies in vivo.
Collapse
Affiliation(s)
- Rebecca Cummer
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Félix Grosjean
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Raphaël Bolteau
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Seyed Ehsan Vasegh
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Simon Veyron
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Liam Keogh
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| | - Bastien Castagner
- Department of Pharmacology and Therapeutics, McGill University, Québec H3G 1Y6, Canada
| |
Collapse
|
3
|
Bernabè G, Castagliuolo I, Porzionato A, Casarotto G, Monte RD, Carpi A, Brun P. Insoluble polysaccharides produced in plant cell cultures protect from Clostridioides difficile colitis. Microbiol Res 2024; 286:127812. [PMID: 38954992 DOI: 10.1016/j.micres.2024.127812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Clostridioides difficile infection (CDI) poses a significant health threat due to high recurrence rates. Antimicrobial agents are commonly used to manage CDI-related diarrhoea; however, by aggravating intestinal dysbiosis, antibiotics enable C. difficile spores germination and production of toxins, the main virulence factors. Therefore, the binding of exotoxins using adsorbents represents an attractive alternative medication for the prevention and treatment of relapses. In this study, we provided evidence that the natural insoluble polysaccharides, named ABR119, extracted by plant cell cultures, effectively trap C. difficile toxins. In our experiments, ABR119 exhibited no cytotoxicity in vitro and was safely administered in vivo. In the animal model of C. difficile-associated colitis, ABR119 (50 mg/kg body weight) significantly reduced the colonic myeloperoxidase activity and severity of inflammation, preventing body weight loss. These effects were not evident when we treated animals with wheat bran polysaccharides. We did not detect bacterial killing effects of ABR119 against C. difficile nor against bacterial species of the normal gut microbiota. Moreover, ABR119 did not interfere in vitro with the antimicrobial activities of most clinically used antibiotics. In summary, ABR119 holds promise for treating and preventing C. difficile colitis by trapping the bacterial toxins, warranting further studies to assess the ABR119 potential in human infections caused by C. difficile.
Collapse
Affiliation(s)
- Giulia Bernabè
- University of Padova, Department of Molecular Medicine via A. Gabelli, 63, Padova 35121, Italy
| | - Ignazio Castagliuolo
- University of Padova, Department of Molecular Medicine via A. Gabelli, 63, Padova 35121, Italy; Microbiology Unit of Padua University Hospital, via N. Giustiniani, 2, Padova 35128, Italy
| | - Andrea Porzionato
- University of Padova, Department of Neurosciences, via A. Gabelli, 65, Padova 35121, Italy
| | - Gino Casarotto
- Active Botanicals Research, Via dell'Impresa, 1, Brendola, Vicenza 36040, Italy
| | - Renzo Dal Monte
- Active Botanicals Research, Via dell'Impresa, 1, Brendola, Vicenza 36040, Italy
| | - Andrea Carpi
- Active Botanicals Research, Via dell'Impresa, 1, Brendola, Vicenza 36040, Italy
| | - Paola Brun
- University of Padova, Department of Molecular Medicine via A. Gabelli, 63, Padova 35121, Italy.
| |
Collapse
|
4
|
Abouelkhair AA, Seleem MN. Exploring novel microbial metabolites and drugs for inhibiting Clostridioides difficile. mSphere 2024; 9:e0027324. [PMID: 38940508 PMCID: PMC11288027 DOI: 10.1128/msphere.00273-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024] Open
Abstract
Clostridioides difficile is an enteric pathogen that can cause a range of illnesses from mild diarrhea to pseudomembranous colitis and even death. This pathogen often takes advantage of microbial dysbiosis provoked by antibiotic use. With the increasing incidence and severity of infections, coupled with high recurrence rates, there is an urgent need to identify innovative therapies that can preserve the healthy state of the gut microbiota. In this study, we screened a microbial metabolite library against C. difficile. From a collection of 527 metabolites, we identified 18 compounds with no previously identified antimicrobial activity and metabolites that exhibited potent activity against C. difficile growth. Of these 18 hits, five drugs and three metabolites displayed the most potent anti-C. difficile activity and were subsequently assessed against 20 clinical isolates of C. difficile. These potent agents included ecteinascidin 770 (minimum inhibitory concentration against 50% of isolates [MIC50] ≤0.06 µg/mL); 8-hydroxyquinoline derivatives, such as broxyquinoline and choloroquinaldol (MIC50 = 0.125 µg/mL); ionomycin calcium salt, carbadox, and robenidine hydrochloride (MIC50 = 1 µg/mL); and dronedarone and milbemycin oxime (MIC50 = 4 µg/mL). Unlike vancomycin and fidaxomicin, which are the standard-of-care anti-C. difficile antibiotics, most of these metabolites showed robust bactericidal activity within 2-8 h with minimal impact on the growth of representative members of the normal gut microbiota. These results suggest that the drugs and microbial metabolite scaffolds may offer alternative avenues to address unmet needs in C. difficile disease prevention and treatment. IMPORTANCE The most frequent infection associated with hospital settings is Clostridioides difficile, which can cause fatal diarrhea and severe colitis, toxic megacolon, sepsis, and leaky gut. Those who have taken antibiotics for other illnesses that affect the gut's healthy microbiota are more susceptible to C. difficile infection (CDI). Recently, some reports showed higher recurrence rates and resistance to anti-C. difficile, which may compromise the efficacy of CDI treatment. Our study is significant because it is anticipated to discover novel microbial metabolites and drugs with microbial origins that are safe for the intestinal flora, effective against C. difficile, and reduce the risk of recurrence associated with CDI.
Collapse
Affiliation(s)
- Ahmed A. Abouelkhair
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Department of Bacteriology, Mycology, and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
5
|
Paparella AS, Brew I, Hong HA, Ferriera W, Cutting S, Lamiable-Oulaidi F, Popadynec M, Tyler PC, Schramm VL. Isofagomine Inhibits Multiple TcdB Variants and Protects Mice from Clostridioides difficile-Induced Mortality. ACS Infect Dis 2024; 10:928-937. [PMID: 38334357 DOI: 10.1021/acsinfecdis.3c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Clostridioides difficile causes life-threatening diarrhea and is one of the leading causes of nosocomial infections. During infection, C. difficile releases two gut-damaging toxins, TcdA and TcdB, which are the primary determinants of disease pathogenesis and are important therapeutic targets. Once in the cytosol of mammalian cells, TcdA and TcdB use UDP-glucose to glucosylate host Rho GTPases, which leads to cytoskeletal changes that result in a loss of intestinal integrity. Isofagomine inhibits TcdA and TcdB as a mimic of the glucocation transition state of the glucosyltransferase reaction. However, sequence variants of TcdA and TcdB across the clades of infective C. difficile continue to be identified, and therefore, evaluation of isofagomine inhibition against multiple toxin variants is required. Here, we show that isofagomine inhibits the glucosyltransferase domain of multiple TcdB variants and protects TcdB-induced cell rounding of the most common full-length toxin variants. Furthermore, we demonstrate that isofagomine protects against C. difficile-induced mortality in two murine models of C. difficile infection. Isofagomine treatment of mouse C. difficile infection also permitted the recovery of the gastrointestinal microbiota, an important barrier to preventing recurring C. difficile infection. The broad specificity of isofagomine supports its potential as a prophylactic to protect against C. difficile-induced morbidity and mortality.
Collapse
Affiliation(s)
- Ashleigh S Paparella
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Isabella Brew
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Huynh A Hong
- SporeGen Ltd., The London BioScience Innovation Centre, London NW1 0NH, U.K
| | - William Ferriera
- SporeGen Ltd., The London BioScience Innovation Centre, London NW1 0NH, U.K
| | - Simon Cutting
- SporeGen Ltd., The London BioScience Innovation Centre, London NW1 0NH, U.K
| | - Farah Lamiable-Oulaidi
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Michael Popadynec
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Peter C Tyler
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt 5010, New Zealand
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
6
|
Sapa D, Brosse A, Coullon H, Péan de Ponfilly G, Candela T, Le Monnier A. A Streamlined Method to Obtain Biologically Active TcdA and TcdB Toxins from Clostridioides difficile. Toxins (Basel) 2024; 16:38. [PMID: 38251254 PMCID: PMC10821508 DOI: 10.3390/toxins16010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
The major virulence factors of Clostridioides difficile (C. difficile) are enterotoxins A (TcdA) and B (TcdB). The study of toxins is a crucial step in exploring the virulence of this pathogen. Currently, the toxin purification process is either laborious and time-consuming in C. difficile or performed in heterologous hosts. Therefore, we propose a streamlined method to obtain functional toxins in C. difficile. Two C. difficile strains were generated, each harboring a sequence encoding a His-tag at the 3' end of C. difficile 630∆erm tcdA or tcdB genes. Each toxin gene is expressed using the Ptet promoter, which is inducible by anhydro-tetracycline. The obtained purification yields were 0.28 mg and 0.1 mg per liter for rTcdA and rTcdB, respectively. In this study, we successfully developed a simple routine method that allows the production and purification of biologically active rTcdA and rTcdB toxins with similar activities compared to native toxins.
Collapse
Affiliation(s)
- Diane Sapa
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (D.S.); (H.C.); (G.P.d.P.); (T.C.); (A.L.M.)
| | - Anaïs Brosse
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (D.S.); (H.C.); (G.P.d.P.); (T.C.); (A.L.M.)
| | - Héloïse Coullon
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (D.S.); (H.C.); (G.P.d.P.); (T.C.); (A.L.M.)
| | - Gauthier Péan de Ponfilly
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (D.S.); (H.C.); (G.P.d.P.); (T.C.); (A.L.M.)
- Service de Microbiologie Clinique, GH Paris Saint-Joseph, 75674 Paris, France
| | - Thomas Candela
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (D.S.); (H.C.); (G.P.d.P.); (T.C.); (A.L.M.)
| | - Alban Le Monnier
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France; (D.S.); (H.C.); (G.P.d.P.); (T.C.); (A.L.M.)
- Service de Microbiologie Clinique, GH Paris Saint-Joseph, 75674 Paris, France
| |
Collapse
|
7
|
Paparella AS, Brew I, Hong HA, Ferriera W, Cutting S, Lamiable-Oulaidi F, Popadynec M, Tyler PC, Schramm VL. Isofagomine inhibits multiple TcdB variants and protects mice from Clostridioides difficile induced mortality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558375. [PMID: 37781587 PMCID: PMC10541099 DOI: 10.1101/2023.09.19.558375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Clostridioides difficile causes life-threatening diarrhea and is the leading cause of healthcare associated bacterial infections in the United States. During infection, C. difficile releases the gut-damaging toxins, TcdA and TcdB, the primary determinants of disease pathogenesis and are therefore therapeutic targets. TcdA and TcdB contain a glycosyltransferase domain that uses UDP-glucose to glycosylate host Rho GTPases, causing cytoskeletal changes that result in a loss of intestinal integrity. Isofagomine inhibits TcdA and TcdB as a mimic of the oxocarbenium ion transition state of the glycosyltransferase reaction. However, sequence variants of TcdA and TcdB across the clades of infective C. difficile continue to be identified and therefore, evaluation of isofagomine inhibition against multiple toxin variants are required. Here we show that Isofagomine inhibits the glycosyltransferase activity of multiple TcdB variants and also protects TcdB toxin-induced cell rounding of the most common full-length toxin variants. Further, isofagomine protects against C. difficile induced mortality in two murine models of C. difficile infection. Isofagomine treatment of mouse C. difficile infection permitted recovery of the gastrointestinal microbiota, an important barrier to prevent recurring C. difficile infection. The broad specificity of isofagomine supports its potential as a prophylactic to protect against C. difficile induced morbidity and mortality.
Collapse
Affiliation(s)
- Ashleigh S. Paparella
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Isabella Brew
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Huynh A. Hong
- SporeGen Ltd, The London BioScience Innovation Centre, London, United Kingdom
| | - William Ferriera
- SporeGen Ltd, The London BioScience Innovation Centre, London, United Kingdom
| | - Simon Cutting
- SporeGen Ltd, The London BioScience Innovation Centre, London, United Kingdom
| | - Farah Lamiable-Oulaidi
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Michael Popadynec
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Peter C. Tyler
- The Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
8
|
Sarma S, Catella CM, San Pedro ET, Xiao X, Durmusoglu D, Menegatti S, Crook N, Magness ST, Hall CK. Design of 8-mer peptides that block Clostridioides difficile toxin A in intestinal cells. Commun Biol 2023; 6:878. [PMID: 37634026 PMCID: PMC10460389 DOI: 10.1038/s42003-023-05242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
Infections by Clostridioides difficile, a bacterium that targets the large intestine (colon), impact a large number of people worldwide. Bacterial colonization is mediated by two exotoxins: toxins A and B. Short peptides that can be delivered to the gut and inhibit the biocatalytic activity of these toxins represent a promising therapeutic strategy to prevent and treat C. diff. infection. We describe an approach that combines a Peptide Binding Design (PepBD) algorithm, molecular-level simulations, a rapid screening assay to evaluate peptide:toxin binding, a primary human cell-based assay, and surface plasmon resonance (SPR) measurements to develop peptide inhibitors that block Toxin A in colon epithelial cells. One peptide, SA1, is found to block TcdA toxicity in primary-derived human colon (large intestinal) epithelial cells. SA1 binds TcdA with a KD of 56.1 ± 29.8 nM as measured by surface plasmon resonance (SPR).
Collapse
Affiliation(s)
- Sudeep Sarma
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Carly M Catella
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Ellyce T San Pedro
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Xingqing Xiao
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Deniz Durmusoglu
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Stefano Menegatti
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, 27695, USA
| | - Nathan Crook
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Scott T Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Carol K Hall
- Department of Chemical Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA.
| |
Collapse
|
9
|
Alamri MA, Tariq MH, Tahir Ul Qamar M, Alabbas AB, Alqahtani SM, Ahmad S. Discovery of potential phytochemicals as inhibitors of TcdB, a major virulence factors of Clostridioides difficile. J Biomol Struct Dyn 2023; 41:12768-12776. [PMID: 36644848 DOI: 10.1080/07391102.2023.2167120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023]
Abstract
Clostridioides difficile is a gram-positive bacterium which is associated with different gastrointestinal related infections, and the numbers of cases related to it are continuously increasing in the past few years. Owing to high prevalence and development of resistance towards available antibiotics, it is required to develop new therapeutics to combat C. difficile infection. The current study was aimed to identify novel phytochemicals that could bind and inhibits the TcdB, an exotoxin which is required for the pathogenesis of bacteria, and hence can be considered as the future drug candidates against C. difficile. ∼2500 therapeutically important phyto-compounds were docked against the active sites of TcdB protein by using AutoDock-Vina software. The interactions between the ligands and the binding site of the top five docked complexes, based on the docking scores, were further elucidated by Molecular Dynamics Simulations of 500 ns, Molecular Mechanics Energies combined with the Poisson-Boltzmann and Surface Area (MMPBSA) or Generalized Born and Surface Area (MMGBSA), and WaterSwap Analysis. Findings of molecular docking suggested that natural compounds A183, A704, A1528, A2083, and A2129 with distinct chemical scaffolds are best docked in the binding site of TcdB and their bonding remained stable throughout the simulation studies of 500 ns. Compounds A2129 and A704 can be considered as prospective drug candidates against Clostridioides difficile, however, further wet lab experiments are needed to confirm our study.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mubarak A Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Muhammad Tahir Ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Alhumaidi B Alabbas
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Safar M Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| |
Collapse
|
10
|
Lemiech-Mirowska E, Michałkiewicz M, Sierocka A, Gaszyńska E, Marczak M. The Hospital Environment as a Potential Source for Clostridioides difficile Transmission Based on Spore Detection Surveys Conducted at Paediatric Oncology and Gastroenterology Units. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1590. [PMID: 36674344 PMCID: PMC9866502 DOI: 10.3390/ijerph20021590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Clostridioides difficile is an anaerobic, Gram-positive bacterium widely present in the hospital environment due to its ability to generate spores. The transfer of spores to patients through the hands of medical personnel is one of the most frequent paths of C. difficile transmission. In paediatric patients burdened with a serious primary illness requiring long-term hospitalisation and antibiotic therapy, C. difficile may be a significant risk factor for antibiotic-associated diarrhoea. The goal of the study was to assess the state of hospital environments as a potential source of C. difficile spores and to establish the share of hyperepidemic strains at the two paediatric units. The survey for C. difficile was conducted with a C. diff Banana BrothTM medium, used to detect spores and to recover vegetative forms of the bacteria. Environmental samples (n = 86) and swabs from the clothing of medical personnel (n = 14) were collected at two units of a paediatric hospital, where the cases of antibiotic-associated diarrhoea with a C. difficile aetiology constitute a significant clinical problem. In 17 samples, a change in the broth's colour was observed, indicating the presence of spores. Out of seven samples, C. difficile strains were cultured. The pathogenic isolates of C. difficile were obtained from swabs collected from elements of beds, a toilet, a door handle and a doctor's uniform. In our study, we indicated points of increased risk of pathogen transmission, which could constitute a source of infection. The clothing of medical personnel may be a dangerous carrier of pathogenic spores. Periodical surveys of hospital environments with the use of specialist microbiological mediums successfully indicate the direction of corrective actions to be undertaken by the medical facility in order to increase patient safety.
Collapse
Affiliation(s)
- Ewelina Lemiech-Mirowska
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| | - Michał Michałkiewicz
- Institute of Environmental Engineering and Building Installations, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland
| | - Aleksandra Sierocka
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| | - Ewelina Gaszyńska
- Department of Nutrition and Epidemiology, Medical University of Lodz, 90-419 Lodz, Poland
| | - Michał Marczak
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
11
|
Paparella A, Cahill SM, Aboulache BL, Schramm VL. Clostridioides difficile TcdB Toxin Glucosylates Rho GTPase by an S Ni Mechanism and Ion Pair Transition State. ACS Chem Biol 2022; 17:2507-2518. [PMID: 36038138 PMCID: PMC9486934 DOI: 10.1021/acschembio.2c00408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Toxins TcdA and TcdB from Clostridioides difficile glucosylate human colon Rho GTPases. TcdA and TcdB glucosylation of RhoGTPases results in cytoskeletal changes, causing cell rounding and loss of intestinal integrity. Clostridial toxins TcdA and TcdB are proposed to catalyze glucosylation of Rho GTPases with retention of stereochemistry from UDP-glucose. We used kinetic isotope effects to analyze the mechanisms and transition-state structures of the glucohydrolase and glucosyltransferase activities of TcdB. TcdB catalyzes Rho GTPase glucosylation with retention of stereochemistry, while hydrolysis of UDP-glucose by TcdB causes inversion of stereochemistry. Kinetic analysis revealed TcdB glucosylation via the formation of a ternary complex with no intermediate, supporting an SNi mechanism with nucleophilic attack and leaving group departure occurring on the same face of the glucose ring. Kinetic isotope effects combined with quantum mechanical calculations revealed that the transition states of both glucohydrolase and glucosyltransferase activities of TcdB are highly dissociative. Specifically, the TcdB glucosyltransferase reaction proceeds via an SNi mechanism with the formation of a distinct oxocarbenium phosphate ion pair transition state where the glycosidic bond to the UDP leaving group breaks prior to attack of the threonine nucleophile from Rho GTPase.
Collapse
|
12
|
Pal R, Seleem MN. Discovery of a novel natural product inhibitor of Clostridioides difficile with potent activity in vitro and in vivo. PLoS One 2022; 17:e0267859. [PMID: 35939437 PMCID: PMC9359557 DOI: 10.1371/journal.pone.0267859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/17/2022] [Indexed: 11/22/2022] Open
Abstract
Clostridioides difficile infection is a global health threat and remains the primary cause of hospital-acquired infections worldwide. The burgeoning incidence and severity of infections coupled with high rates of recurrence have created an urgent need for novel therapeutics. Here, we report a novel natural product scaffold as a potential anticlostridial lead with antivirulence properties and potent activity both in vitro and in vivo. A whole cell phenotypic screening of 1,000 purified natural products identified 6 compounds with potent activity against C. difficile (minimum inhibitory concentration (MIC) range from 0.03 to 2 μg/ml). All these 6 compounds were non-toxic to human colorectal cells. The natural product compounds also inhibited the production of key toxins, TcdA and TcdB, the key virulence determinants of C. difficile infection pathology. Additionally, the compounds exhibited rapid bactericidal activity and were superior to the standard-of-care antibiotic vancomycin, in reducing a high inoculum of C. difficile in vitro. Furthermore, a murine model of C. difficile infection revealed that compound NP-003875 conferred 100% protection to the infected mice from clinical manifestations of the disease. Collectively, the current study lays the foundation for further investigation of the natural product NP-003875 as a potential therapeutic choice for C. difficile infection.
Collapse
Affiliation(s)
- Rusha Pal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
13
|
Herrera-González I, González-Cuesta M, García-Moreno MI, García Fernández JM, Ortiz Mellet C. Stereoselective Synthesis of Nojirimycin α- C-Glycosides from a Bicyclic Acyliminium Intermediate: A Convenient Entry to N, C-Biantennary Glycomimetics. ACS OMEGA 2022; 7:22394-22405. [PMID: 35811898 PMCID: PMC9260894 DOI: 10.1021/acsomega.2c01469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
A simple and efficient method for the stereoselective synthesis of nojirimycin α-C-glycoside derivatives has been developed using a bicyclic carbamate-type sp2-iminosugar, whose preparation on a gram scale has been optimized, as the starting material. sp2-iminosugar O-glycosides or anomeric esters serve as excellent precursors of acyliminium cations, which can add nucleophiles, including C-nucleophiles. The stereochemical outcome of the reaction is governed by stereoelectronic effects, affording the target α-anomer with total stereoselectivity. Thus, the judicious combination of C-allylation, carbamate hydrolysis, cross-metathesis, and hydrogenation reactions provides a very convenient entry to iminosugar α-C-glycosides, which have been transformed into N,C-biantennary derivatives by reductive amination or thiourea-forming reactions. The thiourea adducts undergo intramolecular cyclization to bicyclic iminooxazolidine iminosugar α-C-glycosides upon acid treatment, broadening the opportunities for molecular diversity. A preliminary evaluation against a panel of commercial glycosidases validates the approach for finely tuning the inhibitory profile of glycomimetics.
Collapse
Affiliation(s)
- Irene Herrera-González
- Department
of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Sevilla, Spain
| | - Manuel González-Cuesta
- Department
of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Sevilla, Spain
| | - M. Isabel García-Moreno
- Department
of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Sevilla, Spain
| | - José Manuel García Fernández
- Instituto
de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, C/Américo Vespucio 49,
Isla de la Cartuja, 41092 Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department
of Organic Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Sevilla, Spain
| |
Collapse
|