1
|
Szabó R, Hornyánszky Á, Kiss DJ, Keserű GM. Fluorescent tools for imaging class A G-protein coupled receptors. Eur J Pharm Sci 2025; 209:107074. [PMID: 40113106 DOI: 10.1016/j.ejps.2025.107074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
G protein-coupled receptors (GPCRs) are pivotal in biological processes and represent a significant class of drug targets, with 516 approved drugs acting on 121 GPCRs. Many GPCRs, particularly orphan receptors, remain underexplored, emphasizing the need for innovative investigative tools. Fluorescent ligands provide a powerful means to characterize GPCRs including their functional mechanisms and spatial organization, bridging fundamental research and drug discovery. This review presents recent advances (2018-2024) in fluorescent probe development for Class A GPCRs, analyzing over 120 newly developed probes covering 60 GPCRs. We examine their distribution across receptor subclasses, comparing pre-2018 data with contemporary findings and identifying previously uncharted GPCRs that now have fluorescent ligands. Notably, novel probes have been developed for 12 new receptor subtypes and 6 orphan receptors such as GPR6, GPR52, GPR84, MAS1, MRGPRX2, and MRGPRX4. Advances in GPCR structural biology, driven by cryo-EM and AlphaFold technologies, have significantly enhanced probe development, facilitating the design of selective fluorescent ligands across aminergic, peptidergic, lipid, nucleotide, alicarboxylic, melatonin, protein, and orphan GPCRs. These innovations support a broad range of applications, from single-molecule imaging and in vivo bioimaging to diagnostics and fluorescence-guided surgery. By integrating fluorescence-based approaches with structural and pharmacological insights, this field continues to refine polypharmacology profiling, optimize drug-receptor interactions, and accelerate GPCR-targeted drug discovery.
Collapse
Affiliation(s)
- Renáta Szabó
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Ágnes Hornyánszky
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Dóra Judit Kiss
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - György Miklós Keserű
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary.
| |
Collapse
|
2
|
Nakaimuki A, Paska B, Cuaya LV, Hernández-Pérez R, Czeibert K, Szabó D, Kubinyi E, Andics A. Dogs' olfactory resting-state functional connectivity is modulated by age and brain shape. Sci Rep 2025; 15:11438. [PMID: 40234563 PMCID: PMC12000304 DOI: 10.1038/s41598-025-95123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 03/19/2025] [Indexed: 04/17/2025] Open
Abstract
Humans have long applied canine olfaction in various contexts. Dog olfactory brain networks have recently been mapped by anatomical measures, but functional connections remain unexplored. Also, whereas individual characteristics, including age, sex, and brain shape, are known to affect olfactory performance, their covariation with olfactory functional networks is unknown. To address these, we investigated dogs' resting-state functional connectivities between anatomically defined olfactory regions and assessed whether and how their olfactory functional network is affected by age, sex, and brain shape. Olfactory functional connectivity strength exhibited negative correlations with both age and brain shape: older dogs and those with rounder-shaped brains demonstrated lower functional connectivity, respectively, but no effect of sex was found. The results suggest that both aging and brain morphology can negatively impact a dog's sense of smell, and older dogs and dogs with rounder-shaped brains may have diminished olfactory performance.
Collapse
Affiliation(s)
- Asami Nakaimuki
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary.
- Doctoral School of Biology, Faculty of Science, Eötvös Loránd University, Budapest, Hungary.
- MTA- ELTE NAP Canine Brain Research Group, Budapest, Hungary.
| | - Bernadett Paska
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Laura V Cuaya
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Raúl Hernández-Pérez
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- MTA- ELTE NAP Canine Brain Research Group, Budapest, Hungary
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Kalman Czeibert
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- LimesVet Ltd, Budapest, Hungary
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
| | - Dóra Szabó
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Eniko Kubinyi
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- MTA- ELTE NAP Canine Brain Research Group, Budapest, Hungary
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
| | - Attila Andics
- Department of Ethology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- MTA- ELTE NAP Canine Brain Research Group, Budapest, Hungary
| |
Collapse
|
3
|
Hentsch A, Guberman M, Radetzki S, Kaushik S, Huizenga M, He Y, Contzen J, Kuhn B, Benz J, Schippers M, Paul J, Leibrock L, Collin L, Wittwer M, Topp A, O’Hara F, Heer D, Hochstrasser R, Blaising J, von Kries JP, Mu L, van der Stelt M, Mergenthaler P, Lipstein N, Grether U, Nazaré M. Highly Specific Miniaturized Fluorescent Monoacylglycerol Lipase Probes Enable Translational Research. J Am Chem Soc 2025; 147:10188-10202. [PMID: 40063733 PMCID: PMC11951083 DOI: 10.1021/jacs.4c15223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/27/2025]
Abstract
Monoacylglycerol lipase (MAGL) is the pivotal catabolic enzyme responsible for signal termination in the endocannabinoid system. Inhibition of MAGL offers unique advantages over the direct activation of cannabinoid receptors in treating cancer, metabolic disorders, and inflammatory diseases. Although specific fluorescent molecular imaging probes are commonly used for the real-time analysis of the localization and distribution of drug targets in cells, they are almost invariably composed of a linker connecting the pharmacophore with a large fluorophore. In this study, we have developed miniaturized fluorescent probes targeting MAGL by incorporating a highly fluorescent boron-dipyrromethene (BODIPY) moiety into the inhibitor structure that interacts with the MAGL active site. These miniaturized fluorescent probes exhibit favorable drug-like properties such as high solubility and permeability, picomolar potency for MAGL across various species, and high cell selectivity and specificity. A range of translational investigations were conducted, including cell-free fluorescence polarization assays, fluorescence-activated cell sorting analysis, and confocal fluorescence microscopy of live cancer cells, live primary neurons, and human-induced pluripotent stem cell-derived brain organoids. Furthermore, the application of red-shifted analogs or 18F positron emission labeling illustrated the significant versatility and adaptability of the fluorescent ligands in various experimental contexts.
Collapse
Affiliation(s)
- Axel Hentsch
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, 13125 Berlin, Germany
| | - Mónica Guberman
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, 13125 Berlin, Germany
| | - Silke Radetzki
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, 13125 Berlin, Germany
| | - Sofia Kaushik
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, 13125 Berlin, Germany
| | - Mirjam Huizenga
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Yingfang He
- ETH Zürich, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Jörg Contzen
- Charité—Universitätsmedizin
Berlin, Center for Stroke
Research, 10117 Berlin, Germany
- Charité—Universitätsmedizin
Berlin, Dept. of Neurology with Experimental
Neurology, 10117 Berlin, Germany
| | - Bernd Kuhn
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Jörg Benz
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Maria Schippers
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Jerome Paul
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, 13125 Berlin, Germany
| | - Lea Leibrock
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Ludovic Collin
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Matthias Wittwer
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Andreas Topp
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Fionn O’Hara
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Dominik Heer
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | | | - Julie Blaising
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Jens P. von Kries
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, 13125 Berlin, Germany
| | - Linjing Mu
- ETH Zürich, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Mario van der Stelt
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Philipp Mergenthaler
- Charité—Universitätsmedizin
Berlin, Center for Stroke
Research, 10117 Berlin, Germany
- Charité—Universitätsmedizin
Berlin, Dept. of Neurology with Experimental
Neurology, 10117 Berlin, Germany
- University
of Oxford, Radcliffe Department of Medicine, OX3 9DU Oxford, United Kingdom
| | - Noa Lipstein
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, 13125 Berlin, Germany
| | - Uwe Grether
- Roche
Pharma Research & Early Development, 4070 Basel, Switzerland
| | - Marc Nazaré
- Leibniz
Forschungsinstitut für Molekulare Pharmakologie, Campus Berlin-Buch, 13125 Berlin, Germany
| |
Collapse
|
4
|
Hentsch A, Guberman M, Radetzki S, Kaushik S, Huizenga M, Paul J, Schippers M, Benz J, Kuhn B, Heer D, Topp A, Esteves Gloria L, Walter A, Hochstrasser R, Wittwer MB, von Kries JP, Collin L, Blaising J, van der Stelt M, Lipstein N, Grether U, Nazaré M. A Highly Selective and Versatile Probe Platform for Visualization of Monoacylglycerol Lipase. Angew Chem Int Ed Engl 2025; 64:e202413405. [PMID: 39916545 PMCID: PMC11878344 DOI: 10.1002/anie.202413405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 03/05/2025]
Abstract
Monoacylglycerol lipase (MAGL) is a key enzyme for signal termination in the endocannabinoid system (ECS). MAGL inhibition results in indirect activation of the cannabinoid receptors, which offers unique advantages for the treatment of, e.g., multiple sclerosis, epilepsy, and other neurological disorders. Molecular imaging techniques are valuable tools to overcome the current poor understanding of MAGL's distribution and role in patho- and physiological processes within ECS signaling. Herein, we report the design, synthesis, and validation of highly selective versatile fluorescent and click-chemistry probes for MAGL. Structure-based design combined with a reverse-design approach allowed the development of a structural unit that selectively and effectively recognizes MAGL while offering a versatile platform to attach different fluorophores and further reporter units. In this way, labeled probes with sub-nanomolar potency carrying diverse fluorescent dyes were obtained. Probe affinity and selectivity remained invariant to changes in the fluorophore subunit, showing the remarkable robustness of this platform in delivering tailor-made probes. Highly consistent inhibition across species supports pharmacological model translatability. Extensive profiling and validation in various cellular systems shows the ability of these highly potent and selective probes to elucidate the complex role of MAGL in ECS cellular signaling, inflammatory processes, and disease progression.
Collapse
Affiliation(s)
- Axel Hentsch
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Roessle-Strasse 1013125BerlinGER
| | - Mónica Guberman
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Roessle-Strasse 1013125BerlinGER
| | - Silke Radetzki
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Roessle-Strasse 1013125BerlinGER
| | - Sofia Kaushik
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Roessle-Strasse 1013125BerlinGER
| | - Mirjam Huizenga
- Leiden Institute of Chemistry (LIC)Universiteit LeidenEinsteinweg 552333 CCLeidenNL
| | - Jerome Paul
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Roessle-Strasse 1013125BerlinGER
| | - Maria Schippers
- Pharma Research & Early Development (pRED)F. Hoffmann-La Roche LtdGrenzacherstrasse 124CH-4070BaselCH
| | - Jörg Benz
- Pharma Research & Early Development (pRED)F. Hoffmann-La Roche LtdGrenzacherstrasse 124CH-4070BaselCH
| | - Bernd Kuhn
- Pharma Research & Early Development (pRED)F. Hoffmann-La Roche LtdGrenzacherstrasse 124CH-4070BaselCH
| | - Dominik Heer
- Pharma Research & Early Development (pRED)F. Hoffmann-La Roche LtdGrenzacherstrasse 124CH-4070BaselCH
| | - Andreas Topp
- Pharma Research & Early Development (pRED)F. Hoffmann-La Roche LtdGrenzacherstrasse 124CH-4070BaselCH
| | - Ludivine Esteves Gloria
- Pharma Research & Early Development (pRED)F. Hoffmann-La Roche LtdGrenzacherstrasse 124CH-4070BaselCH
| | - Alexander Walter
- Pharma Research & Early Development (pRED)F. Hoffmann-La Roche LtdGrenzacherstrasse 124CH-4070BaselCH
| | - Remo Hochstrasser
- Pharma Research & Early Development (pRED)F. Hoffmann-La Roche LtdGrenzacherstrasse 124CH-4070BaselCH
| | - Matthias B. Wittwer
- Pharma Research & Early Development (pRED)F. Hoffmann-La Roche LtdGrenzacherstrasse 124CH-4070BaselCH
| | - Jens Peter von Kries
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Roessle-Strasse 1013125BerlinGER
| | - Ludovic Collin
- Pharma Research & Early Development (pRED)F. Hoffmann-La Roche LtdGrenzacherstrasse 124CH-4070BaselCH
| | - Julie Blaising
- Pharma Research & Early Development (pRED)F. Hoffmann-La Roche LtdGrenzacherstrasse 124CH-4070BaselCH
| | - Mario van der Stelt
- Leiden Institute of Chemistry (LIC)Universiteit LeidenEinsteinweg 552333 CCLeidenNL
| | - Noa Lipstein
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Roessle-Strasse 1013125BerlinGER
| | - Uwe Grether
- Pharma Research & Early Development (pRED)F. Hoffmann-La Roche LtdGrenzacherstrasse 124CH-4070BaselCH
| | - Marc Nazaré
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Roessle-Strasse 1013125BerlinGER
| |
Collapse
|
5
|
Toms L, FitzPatrick L, Auckland P. Super-resolution microscopy as a drug discovery tool. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100209. [PMID: 39824440 DOI: 10.1016/j.slasd.2025.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
At the turn of the century a fundamental resolution barrier in fluorescence microscopy known as the diffraction limit was broken, giving rise to the field of super-resolution microscopy. Subsequent nanoscopic investigation with visible light revolutionised our understanding of how previously unknown molecular features give rise to the emergent behaviour of cells. It transpires that the devil is in these fine molecular details, and essential nanoscale processes were found everywhere researchers chose to look. Now, after nearly two decades, super-resolution microscopy has begun to address previously unmet challenges in the study of human disease and is poised to become a pivotal tool in drug discovery.
Collapse
Affiliation(s)
- Lauren Toms
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom.
| | - Lorna FitzPatrick
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom
| | - Philip Auckland
- Medicines Discovery Catapult, Block 35, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4ZF, United Kingdom.
| |
Collapse
|
6
|
Hanske A, Nazaré M, Grether U. Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci 2025. [PMID: 39747798 DOI: 10.1007/7854_2024_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ9-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CB1R and CB2R, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CB1R and CB2R probes have enhanced CB receptor studies. CB2R activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.
Collapse
Affiliation(s)
- Annaleah Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Uwe Grether
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
7
|
Mach L, Omran A, Bouma J, Radetzki S, Sykes DA, Guba W, Li X, Höffelmeyer C, Hentsch A, Gazzi T, Mostinski Y, Wasinska-Kalwa M, de Molnier F, van der Horst C, von Kries JP, Vendrell M, Hua T, Veprintsev DB, Heitman LH, Grether U, Nazare M. Highly Selective Drug-Derived Fluorescent Probes for the Cannabinoid Receptor Type 1 (CB 1R). J Med Chem 2024; 67:11841-11867. [PMID: 38990855 DOI: 10.1021/acs.jmedchem.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The cannabinoid receptor type 1 (CB1R) is pivotal within the endocannabinoid system regulating various signaling cascades with effects in appetite regulation, pain perception, memory formation, and thermoregulation. Still, understanding of CB1R's cellular signaling, distribution, and expression dynamics is very fragmentary. Real-time visualization of CB1R is crucial for addressing these questions. Selective drug-like CB1R ligands with a defined pharmacological profile were investigated for the construction of CB1R fluorescent probes using a reverse design-approach. A modular design concept with a diethyl glycine-based building block as the centerpiece allowed for the straightforward synthesis of novel probe candidates. Validated by computational docking studies, radioligand binding, and cAMP assay, this systematic approach allowed for the identification of novel pyrrole-based CB1R fluorescent probes. Application in fluorescence-based target-engagement studies and live cell imaging exemplify the great versatility of the tailored CB1R probes for investigating CB1R localization, trafficking, pharmacology, and its pathological implications.
Collapse
Affiliation(s)
- Leonard Mach
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Anahid Omran
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Jara Bouma
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Silke Radetzki
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - David A Sykes
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, NG7 2UH Nottingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Edgbaston, B15 2TT Birmingham, Midlands, U.K
| | - Wolfgang Guba
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Xiaoting Li
- iHuman Institute, ShanghaiTech University, 201210 Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Calvin Höffelmeyer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Axel Hentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Thais Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Yelena Mostinski
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | | | - Fabio de Molnier
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, EH16 4UU Edinburgh, U.K
| | - Cas van der Horst
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Jens Peter von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Marc Vendrell
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, EH16 4UU Edinburgh, U.K
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, 201210 Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Dmitry B Veprintsev
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, NG7 2UH Nottingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Edgbaston, B15 2TT Birmingham, Midlands, U.K
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Marc Nazare
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| |
Collapse
|
8
|
Barti B, Dudok B, Kenesei K, Zöldi M, Miczán V, Balla GY, Zala D, Tasso M, Sagheddu C, Kisfali M, Tóth B, Ledri M, Vizi ES, Melis M, Barna L, Lenkei Z, Soltész I, Katona I. Presynaptic nanoscale components of retrograde synaptic signaling. SCIENCE ADVANCES 2024; 10:eado0077. [PMID: 38809980 PMCID: PMC11135421 DOI: 10.1126/sciadv.ado0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
While our understanding of the nanoscale architecture of anterograde synaptic transmission is rapidly expanding, the qualitative and quantitative molecular principles underlying distinct mechanisms of retrograde synaptic communication remain elusive. We show that a particular form of tonic cannabinoid signaling is essential for setting target cell-dependent synaptic variability. It does not require the activity of the two major endocannabinoid-producing enzymes. Instead, by developing a workflow for physiological, anatomical, and molecular measurements at the same unitary synapse, we demonstrate that the nanoscale stoichiometric ratio of type 1 cannabinoid receptors (CB1Rs) to the release machinery is sufficient to predict synapse-specific release probability. Accordingly, selective decrease of extrasynaptic CB1Rs does not affect synaptic transmission, whereas in vivo exposure to the phytocannabinoid Δ9-tetrahydrocannabinol disrupts the intrasynaptic nanoscale stoichiometry and reduces synaptic variability. These findings imply that synapses leverage the nanoscale stoichiometry of presynaptic receptor coupling to the release machinery to establish synaptic strength in a target cell-dependent manner.
Collapse
Affiliation(s)
- Benjámin Barti
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Barna Dudok
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Departments of Neurology and Neuroscience, Baylor College of Medicine, 1 Baylor Plz, Houston, TX 77030, USA
- Department of Neurosurgery, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - Kata Kenesei
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Miklós Zöldi
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Vivien Miczán
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Synthetic and Systems Biology Unit, HUN-REN Biological Research Center, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Gyula Y. Balla
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Diana Zala
- Université Paris Cité, INSERM, Institute of Psychiatry and Neurosciences of Paris, F-75014 Paris, France
| | - Mariana Tasso
- Institute of Nanosystems, School of Bio and Nanotechnologies, National University of San Martín - CONICET, 25 de Mayo Ave., 1021 San Martín, Argentina
| | - Claudia Sagheddu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Máté Kisfali
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- BiTrial Ltd., Tállya st 23, H-1121 Budapest, Hungary
| | - Blanka Tóth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért square 4, H-1111 Budapest, Hungary
- Department of Molecular Biology, Semmelweis University, Üllői st 26, H-1085 Budapest, Hungary
| | - Marco Ledri
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
- Epilepsy Center, Department of Clinical Sciences, Faculty of Medicine, Lund University, Sölvegatan 17, BMC A11, 221 84 Lund, Sweden
| | - E. Sylvester Vizi
- Molecular Pharmacology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - László Barna
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
| | - Zsolt Lenkei
- Université Paris Cité, INSERM, Institute of Psychiatry and Neurosciences of Paris, F-75014 Paris, France
| | - Iván Soltész
- Department of Neurosurgery, Stanford University, 450 Jane Stanford Way, Stanford, CA 94305, USA
| | - István Katona
- Department of Psychological and Brain Sciences, Indiana University Bloomington, 702 N Walnut Grove Ave, Bloomington, IN 47405-2204, USA
- Molecular Neurobiology Research Group, HUN-REN Institute of Experimental Medicine, Szigony st 43, H-1083 Budapest, Hungary
| |
Collapse
|
9
|
Cole RH, Moussawi K, Joffe ME. Opioid modulation of prefrontal cortex cells and circuits. Neuropharmacology 2024; 248:109891. [PMID: 38417545 PMCID: PMC10939756 DOI: 10.1016/j.neuropharm.2024.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Several neurochemical systems converge in the prefrontal cortex (PFC) to regulate cognitive and motivated behaviors. A rich network of endogenous opioid peptides and receptors spans multiple PFC cell types and circuits, and this extensive opioid system has emerged as a key substrate underlying reward, motivation, affective behaviors, and adaptations to stress. Here, we review the current evidence for dysregulated cortical opioid signaling in the pathogenesis of psychiatric disorders. We begin by providing an introduction to the basic anatomy and function of the cortical opioid system, followed by a discussion of endogenous and exogenous opioid modulation of PFC function at the behavioral, cellular, and synaptic level. Finally, we highlight the therapeutic potential of endogenous opioid targets in the treatment of psychiatric disorders, synthesizing clinical reports of altered opioid peptide and receptor expression and activity in human patients and summarizing new developments in opioid-based medications. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Direktor M, Gass P, Inta D. Understanding the Therapeutic Action of Antipsychotics: From Molecular to Cellular Targets With Focus on the Islands of Calleja. Int J Neuropsychopharmacol 2024; 27:pyae018. [PMID: 38629703 PMCID: PMC11046981 DOI: 10.1093/ijnp/pyae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The understanding of the pathophysiology of schizophrenia as well as the mechanisms of action of antipsychotic drugs remains a challenge for psychiatry. The demonstration of the therapeutic efficacy of several new atypical drugs targeting multiple different receptors, apart from the classical dopamine D2 receptor as initially postulated unique antipsychotic target, complicated even more conceptualization efforts. Here we discuss results suggesting a main role of the islands of Calleja, still poorly studied GABAergic granule cell clusters in the ventral striatum, as cellular targets of several innovative atypical antipsychotics (clozapine, cariprazine, and xanomeline/emraclidine) effective in treating also negative symptoms of schizophrenia. We will emphasize the potential role of dopamine D3 and M4 muscarinic acetylcholine receptor expressed at the highest level by the islands of Calleja, as well as their involvement in schizophrenia-associated neurocircuitries. Finally, we will discuss the implications of new data showing ongoing adult neurogenesis of the islands of Calleja as a very promising antipsychotic target linking long-life neurodevelopment and dopaminergic dysfunction in the striatum.
Collapse
Affiliation(s)
- Merve Direktor
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany (Mrs Direktor and Dr Gass)
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany (Mrs Direktor and Dr Gass)
| | - Dragos Inta
- Translational Psychiatry, Department of Community Health , and Food Research and Innovation Center (FRIC)
- University of Fribourg, Switzerland
- Department of Biomedicine, University of Basel, Switzerland
| |
Collapse
|
11
|
Pang Z, Cravatt BF, Ye L. Deciphering Drug Targets and Actions with Single-Cell and Spatial Resolution. Annu Rev Pharmacol Toxicol 2024; 64:507-526. [PMID: 37722721 DOI: 10.1146/annurev-pharmtox-033123-123610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Recent advances in chemical, molecular, and genetic approaches have provided us with an unprecedented capacity to identify drug-target interactions across the whole proteome and genome. Meanwhile, rapid developments of single-cell and spatial omics technologies are revolutionizing our understanding of the molecular architecture of biological systems. However, a significant gap remains in how we align our understanding of drug actions, traditionally based on molecular affinities, with the in vivo cellular and spatial tissue heterogeneity revealed by these newer techniques. Here, we review state-of-the-art methods for profiling drug-target interactions and emerging multiomics tools to delineate the tissue heterogeneity at single-cell resolution. Highlighting the recent technical advances enabling high-resolution, multiplexable in situ small-molecule drug imaging (clearing-assisted tissue click chemistry, or CATCH), we foresee the integration of single-cell and spatial omics platforms, data, and concepts into the future framework of defining and understanding in vivo drug-target interactions and mechanisms of actions.
Collapse
Affiliation(s)
- Zhengyuan Pang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA;
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA;
| | - Li Ye
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
12
|
Zha J, He J, Wu C, Zhang M, Liu X, Zhang J. Designing drugs and chemical probes with the dualsteric approach. Chem Soc Rev 2023; 52:8651-8677. [PMID: 37990599 DOI: 10.1039/d3cs00650f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Traditionally, drugs are monovalent, targeting only one site on the protein surface. This includes orthosteric and allosteric drugs, which bind the protein at orthosteric and allosteric sites, respectively. Orthosteric drugs are good in potency, whereas allosteric drugs have better selectivity and are solutions to classically undruggable targets. However, it would be difficult to simultaneously reach high potency and selectivity when targeting only one site. Also, both kinds of monovalent drugs suffer from mutation-caused drug resistance. To overcome these obstacles, dualsteric modulators have been proposed in the past twenty years. Compared to orthosteric or allosteric drugs, dualsteric modulators are bivalent (or bitopic) with two pharmacophores. Each of the two pharmacophores bind the protein at the orthosteric and an allosteric site, which could bring the modulator with special properties beyond monovalent drugs. In this study, we comprehensively review the current development of dualsteric modulators. Our main effort reason and illustrate the aims to apply the dualsteric approach, including a "double win" of potency and selectivity, overcoming mutation-caused drug resistance, developments of function-biased modulators, and design of partial agonists. Moreover, the strengths of the dualsteric technique also led to its application outside pharmacy, including the design of highly sensitive fluorescent tracers and usage as molecular rulers. Besides, we also introduced drug targets, designing strategies, and validation methods of dualsteric modulators. Finally, we detail the conclusions and perspectives.
Collapse
Affiliation(s)
- Jinyin Zha
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jixiao He
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengwei Wu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyang Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Jiang M, Huizenga MCW, Wirt JL, Paloczi J, Amedi A, van den Berg RJBHN, Benz J, Collin L, Deng H, Di X, Driever WF, Florea BI, Grether U, Janssen APA, Hankemeier T, Heitman LH, Lam TW, Mohr F, Pavlovic A, Ruf I, van den Hurk H, Stevens AF, van der Vliet D, van der Wel T, Wittwer MB, van Boeckel CAA, Pacher P, Hohmann AG, van der Stelt M. A monoacylglycerol lipase inhibitor showing therapeutic efficacy in mice without central side effects or dependence. Nat Commun 2023; 14:8039. [PMID: 38052772 PMCID: PMC10698032 DOI: 10.1038/s41467-023-43606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Monoacylglycerol lipase (MAGL) regulates endocannabinoid 2-arachidonoylglycerol (2-AG) and eicosanoid signalling. MAGL inhibition provides therapeutic opportunities but clinical potential is limited by central nervous system (CNS)-mediated side effects. Here, we report the discovery of LEI-515, a peripherally restricted, reversible MAGL inhibitor, using high throughput screening and a medicinal chemistry programme. LEI-515 increased 2-AG levels in peripheral organs, but not mouse brain. LEI-515 attenuated liver necrosis, oxidative stress and inflammation in a CCl4-induced acute liver injury model. LEI-515 suppressed chemotherapy-induced neuropathic nociception in mice without inducing cardinal signs of CB1 activation. Antinociceptive efficacy of LEI-515 was blocked by CB2, but not CB1, antagonists. The CB1 antagonist rimonabant precipitated signs of physical dependence in mice treated chronically with a global MAGL inhibitor (JZL184), and an orthosteric cannabinoid agonist (WIN55,212-2), but not with LEI-515. Our data support targeting peripheral MAGL as a promising therapeutic strategy for developing safe and effective anti-inflammatory and analgesic agents.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Mirjam C W Huizenga
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Jonah L Wirt
- Department of Psychological and Brain Sciences, Program in Neuroscience, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/NIAAA, Rockville, MD, USA
| | - Avand Amedi
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | | | - Joerg Benz
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ludovic Collin
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Hui Deng
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Xinyu Di
- Metabolomics and analytics center, Leiden University, Leiden, Netherlands
| | - Wouter F Driever
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Bogdan I Florea
- Department of Bio-organic Synthesis, Leiden University, Leiden, Netherlands
| | - Uwe Grether
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Antonius P A Janssen
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Thomas Hankemeier
- Metabolomics and analytics center, Leiden University, Leiden, Netherlands
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden University & Oncode Institute, Leiden, Netherlands
| | | | - Florian Mohr
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Anto Pavlovic
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Iris Ruf
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Anna F Stevens
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Daan van der Vliet
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands
| | - Matthias B Wittwer
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/NIAAA, Rockville, MD, USA
| | - Andrea G Hohmann
- Department of Psychological and Brain Sciences, Program in Neuroscience, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden University & Oncode Institute, Leiden, Netherlands.
| |
Collapse
|
14
|
Szepesi Kovács D, Kontra B, Chiovini B, Müller D, Tóth EZ, Ábrányi-Balogh P, Wittner L, Várady G, Turczel G, Farkas Ö, Owen MC, Katona G, Győrffy B, Keserű GM, Mucsi Z, Rózsa BJ, Kovács E. Effective synthesis, development and application of a highly fluorescent cyanine dye for antibody conjugation and microscopy imaging. Org Biomol Chem 2023; 21:8829-8836. [PMID: 37917021 DOI: 10.1039/d3ob01471a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
An asymmetric cyanine-type fluorescent dye was designed and synthesized via a versatile, multi-step process, aiming to conjugate with an Her2+ receptor specific antibody by an azide-alkyne click reaction. The aromaticity and the excitation and relaxation energetics of the fluorophore were characterized by computational methods. The synthesized dye exhibited excellent fluorescence properties for confocal microscopy, offering efficient applicability in in vitro imaging due to its merits such as a high molar absorption coefficient (36 816 M-1 cm-1), excellent brightness, optimal wavelength (627 nm), larger Stokes shift (26 nm) and appropriate photostability compared to cyanines. The conjugated cyanine-trastuzumab was constructed via an effective, metal-free, strain-promoted azide-alkyne click reaction leading to a regulated number of dyes being conjugated. This novel cyanine-labelled antibody was successfully applied for in vitro confocal imaging and flow cytometry of Her2+ tumor cells.
Collapse
Affiliation(s)
- Dénes Szepesi Kovács
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Bence Kontra
- Brain Vision Center, H-1094 Budapest, Hungary
- Femtonics Ltd., H-1094 Budapest, Hungary
- Semmelweis University Doctoral School, H-1085 Budapest, Hungary
| | - Balázs Chiovini
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1444 Budapest, Hungary
| | - Dalma Müller
- Semmelweis University Doctoral School, H-1085 Budapest, Hungary
- Oncology Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, H-1094, Budapest, Hungary
| | - Estilla Zsófia Tóth
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- Semmelweis University Doctoral School, H-1085 Budapest, Hungary
- Integrative Neuroscience Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Lucia Wittner
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- Integrative Neuroscience Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - György Várady
- Molecular Cell Biology Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Gábor Turczel
- NMR Research Laboratory, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
| | - Ödön Farkas
- Department of Organic Chemistry, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Michael C Owen
- Institute of Chemistry, University of Miskolc, Miskolc H-3515, Hungary
- Higher Education and Industrial Cooperation Centre, University of Miskolc, Miskolc H-3515, Hungary
| | - Gergely Katona
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1444 Budapest, Hungary
| | - Balázs Győrffy
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
- Oncology Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, H-1094, Budapest, Hungary
| | - György Miklós Keserű
- Medicinal Chemistry Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
- National Laboratory for Drug Research and Development, H-1117 Budapest, Hungary
| | - Zoltán Mucsi
- Brain Vision Center, H-1094 Budapest, Hungary
- Femtonics Ltd., H-1094 Budapest, Hungary
- Institute of Chemistry, University of Miskolc, Miskolc H-3515, Hungary
| | - Balázs J Rózsa
- Brain Vision Center, H-1094 Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, H-1444 Budapest, Hungary
- Laboratory of 3D Functional Network and Dendritic Imaging, HUN-REN Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Ervin Kovács
- Femtonics Ltd., H-1094 Budapest, Hungary
- Polymer Chemistry and Physics Research Group, HUN-REN Research Centre for Natural Sciences, H-1117 Budapest, Hungary.
| |
Collapse
|
15
|
Zhang YF, Wu J, Wang Y, Johnson NL, Bhattarai JP, Li G, Wang W, Guevara C, Shoenhard H, Fuccillo MV, Wesson DW, Ma M. Ventral striatal islands of Calleja neurons bidirectionally mediate depression-like behaviors in mice. Nat Commun 2023; 14:6887. [PMID: 37898623 PMCID: PMC10613228 DOI: 10.1038/s41467-023-42662-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
The ventral striatum is a reward center implicated in the pathophysiology of depression. It contains islands of Calleja, clusters of dopamine D3 receptor-expressing granule cells, predominantly in the olfactory tubercle (OT). These OT D3 neurons regulate self-grooming, a repetitive behavior manifested in affective disorders. Here we show that chronic restraint stress (CRS) induces robust depression-like behaviors in mice and decreases excitability of OT D3 neurons. Ablation or inhibition of these neurons leads to depression-like behaviors, whereas their activation ameliorates CRS-induced depression-like behaviors. Moreover, activation of OT D3 neurons has a rewarding effect, which diminishes when grooming is blocked. Finally, we propose a model that explains how OT D3 neurons may influence dopamine release via synaptic connections with OT spiny projection neurons (SPNs) that project to midbrain dopamine neurons. Our study reveals a crucial role of OT D3 neurons in bidirectionally mediating depression-like behaviors, suggesting a potential therapeutic target.
Collapse
Affiliation(s)
- Yun-Feng Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101, Beijing, China.
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| | - Jialiang Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Yingqi Wang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Natalie L Johnson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Guanqing Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Wenqiang Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Camilo Guevara
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hannah Shoenhard
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Marc V Fuccillo
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, 32610, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Schamiloglu S, Lewis E, Keeshen CM, Hergarden AC, Bender KJ, Whistler JL. Arrestin-3 Agonism at Dopamine D 3 Receptors Defines a Subclass of Second-Generation Antipsychotics That Promotes Drug Tolerance. Biol Psychiatry 2023; 94:531-542. [PMID: 36931452 PMCID: PMC10914650 DOI: 10.1016/j.biopsych.2023.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Second-generation antipsychotics (SGAs) are frontline treatments for serious mental illness. Often, individual patients benefit only from some SGAs and not others. The mechanisms underlying this unpredictability in treatment efficacy remain unclear. All SGAs bind the dopamine D3 receptor (D3R) and are traditionally considered antagonists for dopamine receptor signaling. METHODS Here, we used a combination of two-photon calcium imaging, in vitro signaling assays, and mouse behavior to assess signaling by SGAs at D3R. RESULTS We report that some clinically important SGAs function as arrestin-3 agonists at D3R, resulting in modulation of calcium channels localized to the site of action potential initiation in prefrontal cortex pyramidal neurons. We further show that chronic treatment with an arrestin-3 agonist SGA, but not an antagonist SGA, abolishes D3R function through postendocytic receptor degradation by GASP1 (G protein-coupled receptor-associated sorting protein-1). CONCLUSIONS These results implicate D3R-arrestin-3 signaling as a source of SGA variability, highlighting the importance of including arrestin-3 signaling in characterizations of drug action. Furthermore, they suggest that postendocytic receptor trafficking that occurs during chronic SGA treatment may contribute to treatment efficacy.
Collapse
Affiliation(s)
- Selin Schamiloglu
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California
| | - Elinor Lewis
- Neuroscience Graduate Group, University of California Davis, Davis, California; Center for Neuroscience, University of California Davis, Davis, California
| | - Caroline M Keeshen
- Neuroscience Graduate Group, University of California Davis, Davis, California; Center for Neuroscience, University of California Davis, Davis, California
| | - Anne C Hergarden
- Center for Neuroscience, University of California Davis, Davis, California
| | - Kevin J Bender
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, California; Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California.
| | - Jennifer L Whistler
- Center for Neuroscience, University of California Davis, Davis, California; Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, California.
| |
Collapse
|
17
|
Fountoulakis KN, Ioannou M, Tohen M, Haarman BCM, Zarate CA. Antidepressant efficacy of cariprazine in bipolar disorder and the role of its pharmacodynamic properties: A hypothesis based on data. Eur Neuropsychopharmacol 2023; 72:30-39. [PMID: 37060629 DOI: 10.1016/j.euroneuro.2023.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/17/2023]
Abstract
The treatment of bipolar depression is one of the most challenging needs in contemporary psychiatry. Currently, only quetiapine, olanzapine-fluoxetine combination, lurasidone, cariprazine, and recently lumateperone have been FDA-approved to treat this condition. The neurobiology of bipolar depression and the possible targets of bipolar antidepressant therapy remain elusive. The current study investigated whether the pharmacodynamic properties of cariprazine fit into a previously developed model which was the first to be derived based on the strict combination of clinical and preclinical data. The authors performed a systematic review of the literature to identify the pharmacodynamic properties of cariprazine. The original model suggests that a constellation of effects on different receptors is necessary and that serotonin reuptake inhibition does not appear to play a significant role in acute bipolar depression. On the contrary, norepinephrine activity seems to be necessary. Probably the early antidepressant effect can be achieved through an agonistic activity at 5HT-1A and antagonism at alpha1 noradrenergic and 5-HT2A receptors, but the presence of a norepinephrine reuptake inhibition appears essential to sustain it. Overall, the properties of cariprazine fit well the proposed model and add to its validity. A point that needs further clarification is norepinephrine reuptake inhibition which is not yet fully studied for cariprazine.
Collapse
Affiliation(s)
- Konstantinos N Fountoulakis
- Professor and Director, 3rd Department of Psychiatry, School of Medicine, Aristotle University of Thessaloniki, Greece.
| | - Magdalini Ioannou
- Ph.D. Student, Department of Psychiatry, University Medical Center Groningen, University of Groningen, the Netherlands.
| | - Mauricio Tohen
- University Distinguished Professor and Chairman, Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, 2400 Tucker Ave NE MSC09 5030, Albuquerque, NM 87131-0001, USA.
| | - Bartholomeus C M Haarman
- University of Groningen, University Medical Centre Groningen, Department of Psychiatry, Groningen, the Netherlands.
| | - Carlos A Zarate
- Chief Experimental Therapeutics & Pathophysiology Branch, Division of Intramural Research Program, National Institute of Mental Health, Bethesda, MD 20892, US.
| |
Collapse
|
18
|
Tahk MJ, Laasfeld T, Meriste E, Brea J, Loza MI, Majellaro M, Contino M, Sotelo E, Rinken A. Fluorescence based HTS-compatible ligand binding assays for dopamine D3 receptors in baculovirus preparations and live cells. Front Mol Biosci 2023; 10:1119157. [PMID: 37006609 PMCID: PMC10062709 DOI: 10.3389/fmolb.2023.1119157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Dopamine receptors are G-protein-coupled receptors that are connected to severe neurological disorders. The development of new ligands targeting these receptors enables gaining a deeper insight into the receptor functioning, including binding mechanisms, kinetics and oligomerization. Novel fluorescent probes allow the development of more efficient, cheaper, reliable and scalable high-throughput screening systems, which speeds up the drug development process. In this study, we used a novel Cy3B labelled commercially available fluorescent ligand CELT-419 for developing dopamine D3 receptor-ligand binding assays with fluorescence polarization and quantitative live cell epifluorescence microscopy. The fluorescence anisotropy assay using 384-well plates achieved Z’ value of 0.71, which is suitable for high-throughput screening of ligand binding. The assay can also be used to determine the kinetics of both the fluorescent ligand as well as some reference unlabeled ligands. Furthermore, CELT-419 was also used with live HEK293-D3R cells in epifluorescence microscopy imaging for deep-learning-based ligand binding quantification. This makes CELT-419 quite a universal fluorescence probe which has the potential to be also used in more advanced microscopy techniques resulting in more comparable studies.
Collapse
Affiliation(s)
| | - Tõnis Laasfeld
- Institute of Chemistry, University of Tartu, Tartu, Estonia
- Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Elo Meriste
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Jose Brea
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
| | - Maria Isabel Loza
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), Universidade de Santiago de Compostela, Santiago, Spain
| | - Maria Majellaro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago, Spain
- Celtarys Research S.L., Santiago, Spain
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Eddy Sotelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago, Spain
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu, Estonia
- *Correspondence: Ago Rinken,
| |
Collapse
|
19
|
Understanding and Targeting the Endocannabinoid System with Activity‐Based Protein Profiling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Martinez Ramirez CE, Ruiz-Pérez G, Stollenwerk TM, Behlke C, Doherty A, Hillard CJ. Endocannabinoid signaling in the central nervous system. Glia 2023; 71:5-35. [PMID: 36308424 PMCID: PMC10167744 DOI: 10.1002/glia.24280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
It is hard to overestimate the influence of the endocannabinoid signaling (ECS) system on central nervous system (CNS) function. In the 40 years since cannabinoids were found to trigger specific cell signaling cascades, studies of the ECS system continue to cause amazement, surprise, and confusion! CB1 cannabinoid receptors are expressed widely in the CNS and regulate cell-cell communication via effects on the release of both neurotransmitters and gliotransmitters. CB2 cannabinoid receptors are difficult to detect in the CNS but seem to "punch above their weight" as compounds targeting these receptors have significant effects on inflammatory state and behavior. Positive and negative allosteric modulators for both receptors have been identified and examined in preclinical studies. Concentrations of the endocannabinoid ligands, N-arachidonoylethanolamine and 2-arachidonoylglycerol (2-AG), are regulated by a combination of enzymatic synthesis and degradation and inhibitors of these processes are available and making their way into clinical trials. Importantly, ECS regulates many essential brain functions, including regulation of reward, anxiety, inflammation, motor control, and cellular development. While the field is on the cusp of preclinical discoveries providing impactful clinical and therapeutic insights into many CNS disorders, there is still much to be learned about this remarkable and versatile modulatory system.
Collapse
Affiliation(s)
- César E Martinez Ramirez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gonzalo Ruiz-Pérez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Todd M Stollenwerk
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christina Behlke
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ashley Doherty
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
21
|
Zöldi M, Katona I. STORM Super-Resolution Imaging of CB 1 Receptors in Tissue Preparations. Methods Mol Biol 2023; 2576:437-451. [PMID: 36152208 DOI: 10.1007/978-1-0716-2728-0_36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single-molecule localization microscopy (SMLM) opened new possibilities to study the spatial arrangement of molecular distribution and disease-associated redistribution at a previously unprecedented resolution that was not achievable with optical microscopy approaches. Recent discoveries based on SMLM techniques uncovered specific nanoscale organizational principles of signaling proteins in several biological systems including the chemical synapses in the brain. Emerging data suggest that the spatial arrangement of the molecular players of the endocannabinoid system is also precisely regulated at the nanoscale level in synapses and in other neuronal and glial subcellular compartments. The precise nanoscale distribution pattern is likely to be important to subserve several specific signaling functions of this important messenger system in a cell-type- and subcellular domain-specific manner.STochastic Optical Reconstruction Microscopy (STORM) is an especially suitable SMLM modality for cell-type-specific nanoscale molecular imaging due to its compatibility with traditional diffraction-limited microscopy approaches and classical staining methods. Here, we describe a detailed protocol for STORM imaging in mouse brain tissue samples with a focus on the CB1 cannabinoid receptor, one of the most abundant synaptic receptors in the brain. We also summarize important conceptual and methodical details that are essential for the valid interpretation of single-molecule localization microscopy data.
Collapse
Affiliation(s)
- Miklós Zöldi
- Department of Psychological and Brain Sciences, Indiana University, IN, USA
- School of Ph.D. Studies, Semmelweis University, Budapest, Hungary
| | - István Katona
- Department of Psychological and Brain Sciences, Indiana University, IN, USA.
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
22
|
Punt J, van der Vliet D, van der Stelt M. Chemical Probes to Control and Visualize Lipid Metabolism in the Brain. Acc Chem Res 2022; 55:3205-3217. [PMID: 36283077 PMCID: PMC9670861 DOI: 10.1021/acs.accounts.2c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Signaling lipids, such as the endocannabinoids, play an important role in the brain. They regulate synaptic transmission and control various neurophysiological processes, including pain sensation, appetite, memory formation, stress, and anxiety. Unlike classical neurotransmitters, lipid messengers are produced on demand and degraded by metabolic enzymes to control their lifespan and signaling actions. Chemical biology approaches have become one of the main driving forces to study and unravel the physiological role of lipid messengers in the brain. Here, we review how the development and use of chemical probes has allowed one to study endocannabinoid signaling by (i) inhibiting the biosynthetic and metabolic enzymes; (ii) visualizing the activity of these enzymes; and (iii) controlling the release and transport of the endocannabinoids. Activity-based probes were instrumental to guide the discovery of highly selective and in vivo active inhibitors of the biosynthetic (DAGL, NAPE-PLD) and metabolic (MAGL, FAAH) enzymes of endocannabinoids. These inhibitors allowed one to study the role of these enzymes in animal models of disease. For instance, the DAGL-MAGL axis was shown to control neuroinflammation and the NAPE-PLD-FAAH axis to regulate emotional behavior. Activity-based protein profiling and chemical proteomics were essential to guide the drug discovery and development of compounds targeting MAGL and FAAH, such as ABX-1431 (Lu AG06466) and PF-04457845, respectively. These experimental drugs are now in clinical trials for multiple indications, including multiple sclerosis and post-traumatic stress disorders. Activity-based probes have also been used to visualize the activity of these lipid metabolizing enzymes with high spatial resolution in brain slices, thereby showing the cell type-specific activity of these lipid metabolizing enzymes. The transport, release, and uptake of signaling lipids themselves cannot, however, be captured by activity-based probes in a spatiotemporal controlled manner. Therefore, bio-orthogonal lipids equipped with photoreactive, photoswitchable groups or photocages have been developed. These chemical probes were employed to investigate the protein interaction partners of the endocannabinoids, such as putative membrane transporters, as well as to study the functional cellular responses within milliseconds upon irradiation. Finally, genetically encoded sensors have recently been developed to monitor the real-time release of endocannabinoids with high spatiotemporal resolution in cultured neurons, acute brain slices, and in vivo mouse models. It is anticipated that the combination of chemical probes, highly selective inhibitors, and sensors with advanced (super resolution) imaging modalities, such as PharmacoSTORM and correlative light-electron microscopy, will uncover the fundamental basis of lipid signaling at nanoscale resolution in the brain. Furthermore, chemical biology approaches enable the translation of these fundamental discoveries into clinical solutions for brain diseases with aberrant lipid signaling.
Collapse
|
23
|
Marinelli S, Marrone MC, Di Domenico M, Marinelli S. Endocannabinoid signaling in microglia. Glia 2022; 71:71-90. [PMID: 36222019 DOI: 10.1002/glia.24281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Microglia, the innate immune cells of the central nervous system (CNS), execute their sentinel, housekeeping and defense functions through a panoply of genes, receptors and released cytokines, chemokines and neurotrophic factors. Moreover, microglia functions are closely linked to the constant communication with other cell types, among them neurons. Depending on the signaling pathway and type of stimuli involved, the outcome of microglia operation can be neuroprotective or neurodegenerative. Accordingly, microglia are increasingly becoming considered cellular targets for therapeutic intervention. Among signals controlling microglia activity, the endocannabinoid (EC) system has been shown to exert a neuroprotective role in many neurological diseases. Like neurons, microglia express functional EC receptors and can produce and degrade ECs. Interestingly, boosting EC signaling leads to an anti-inflammatory and neuroprotective microglia phenotype. Nonetheless, little evidence is available on the microglia-mediated therapeutic effects of EC compounds. This review focuses on the EC signals acting on the CNS microglia in physiological and pathological conditions, namely on the CB1R, CB2R and TRPV1-mediated regulation of microglia properties. It also provides new evidence, which strengthens the understanding of mechanisms underlying the control of microglia functions by ECs. Given the broad expression of the EC system in glial and neuronal cells, the resulting picture is the need for in vivo studies in transgenic mouse models to dissect the contribution of EC microglia signaling in the neuroprotective effects of EC-derived compounds.
Collapse
Affiliation(s)
- Sara Marinelli
- CNR-National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Maria Cristina Marrone
- EBRI-Fondazione Rita Levi Montalcini, Rome, Italy.,Ministry of University and Research, Mission Unity for Recovery and Resilience Plan, Rome, Italy
| | - Marina Di Domenico
- EBRI-Fondazione Rita Levi Montalcini, Rome, Italy.,Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | |
Collapse
|
24
|
Kemble AM, Hornsperger B, Ruf I, Richter H, Benz J, Kuhn B, Heer D, Wittwer M, Engelhardt B, Grether U, Collin L. A potent and selective inhibitor for the modulation of MAGL activity in the neurovasculature. PLoS One 2022; 17:e0268590. [PMID: 36084029 PMCID: PMC9462760 DOI: 10.1371/journal.pone.0268590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
Chronic inflammation and blood–brain barrier dysfunction are key pathological hallmarks of neurological disorders such as multiple sclerosis, Alzheimer’s disease and Parkinson’s disease. Major drivers of these pathologies include pro-inflammatory stimuli such as prostaglandins, which are produced in the central nervous system by the oxidation of arachidonic acid in a reaction catalyzed by the cyclooxygenases COX1 and COX2. Monoacylglycerol lipase hydrolyzes the endocannabinoid signaling lipid 2-arachidonyl glycerol, enhancing local pools of arachidonic acid in the brain and leading to cyclooxygenase-mediated prostaglandin production and neuroinflammation. Monoacylglycerol lipase inhibitors were recently shown to act as effective anti-inflammatory modulators, increasing 2-arachidonyl glycerol levels while reducing levels of arachidonic acid and prostaglandins, including PGE2 and PGD2. In this study, we characterized a novel, highly selective, potent and reversible monoacylglycerol lipase inhibitor (MAGLi 432) in a mouse model of lipopolysaccharide-induced blood–brain barrier permeability and in both human and mouse cells of the neurovascular unit: brain microvascular endothelial cells, pericytes and astrocytes. We confirmed the expression of monoacylglycerol lipase in specific neurovascular unit cells in vitro, with pericytes showing the highest expression level and activity. However, MAGLi 432 did not ameliorate lipopolysaccharide-induced blood–brain barrier permeability in vivo or reduce the production of pro-inflammatory cytokines in the brain. Our data confirm monoacylglycerol lipase expression in mouse and human cells of the neurovascular unit and provide the basis for further cell-specific analysis of MAGLi 432 in the context of blood–brain barrier dysfunction caused by inflammatory insults.
Collapse
Affiliation(s)
- Alicia M. Kemble
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Benoit Hornsperger
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Iris Ruf
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Hans Richter
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jörg Benz
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Bernd Kuhn
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Dominik Heer
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Matthias Wittwer
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Uwe Grether
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ludovic Collin
- Roche Pharma Research & Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
- * E-mail:
| |
Collapse
|
25
|
Ejdrup AL, Lycas MD, Lorenzen N, Konomi A, Herborg F, Madsen KL, Gether U. A density-based enrichment measure for assessing colocalization in single-molecule localization microscopy data. Nat Commun 2022; 13:4388. [PMID: 35902578 PMCID: PMC9334352 DOI: 10.1038/s41467-022-32064-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
Abstract
Dual-color single-molecule localization microscopy (SMLM) provides unprecedented possibilities for detailed studies of colocalization of different molecular species in a cell. However, the informational richness of the data is not fully exploited by current analysis tools that often reduce colocalization to a single value. Here, we describe a tool specifically designed for determination of co-localization in both 2D and 3D from SMLM data. The approach uses a function that describes the relative enrichment of one molecular species on the density distribution of a reference species. The function reframes the question of colocalization by providing a density-context relevant to multiple biological questions. Moreover, the function visualize enrichment (i.e. colocalization) directly in the images for easy interpretation. We demonstrate the approach's functionality on both simulated data and cultured neurons, and compare it to current alternative measures. The method is available in a Python function for easy and parameter-free implementation.
Collapse
Affiliation(s)
- Aske L Ejdrup
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Matthew D Lycas
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Lorenzen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ainoa Konomi
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Freja Herborg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth L Madsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
26
|
Egyed A, Kiss DJ, Keserű GM. The Impact of the Secondary Binding Pocket on the Pharmacology of Class A GPCRs. Front Pharmacol 2022; 13:847788. [PMID: 35355719 PMCID: PMC8959758 DOI: 10.3389/fphar.2022.847788] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/01/2022] [Indexed: 12/19/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are considered important therapeutic targets due to their pathophysiological significance and pharmacological relevance. Class A receptors represent the largest group of GPCRs that gives the highest number of validated drug targets. Endogenous ligands bind to the orthosteric binding pocket (OBP) embedded in the intrahelical space of the receptor. During the last 10 years, however, it has been turned out that in many receptors there is secondary binding pocket (SBP) located in the extracellular vestibule that is much less conserved. In some cases, it serves as a stable allosteric site harbouring allosteric ligands that modulate the pharmacology of orthosteric binders. In other cases it is used by bitopic compounds occupying both the OBP and SBP. In these terms, SBP binding moieties might influence the pharmacology of the bitopic ligands. Together with others, our research group showed that SBP binders contribute significantly to the affinity, selectivity, functional activity, functional selectivity and binding kinetics of bitopic ligands. Based on these observations we developed a structure-based protocol for designing bitopic compounds with desired pharmacological profile.
Collapse
Affiliation(s)
| | | | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
27
|
Kusudo K, Ochi R, Nakajima S, Suzuki T, Mamo D, Caravaggio F, Mar W, Gerretsen P, Mimura M, Pollock BG, Mulsant BH, Graff-Guerrero A, Rajji TK, Uchida H. Decision tree classification of cognitive functions with D 2 receptor occupancy and illness severity in late-life schizophrenia. Schizophr Res 2022; 241:113-115. [PMID: 35121434 DOI: 10.1016/j.schres.2022.01.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Keisuke Kusudo
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Ochi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Brain Health Imaging Centre-Multimodal Imaging Group in Geriatrics and Schizophrenia, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Takefumi Suzuki
- Department of Neuropsychiatry and Clinical Ethics, University of Yamanashi, Yamanashi, Japan
| | - David Mamo
- Departments of Psychiatry & Gerontology, University of Malta, Msida, Malta
| | - Fernando Caravaggio
- Brain Health Imaging Centre-Multimodal Imaging Group in Geriatrics and Schizophrenia, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wanna Mar
- Brain Health Imaging Centre-Multimodal Imaging Group in Geriatrics and Schizophrenia, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Brain Health Imaging Centre-Multimodal Imaging Group in Geriatrics and Schizophrenia, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Adult Neurodevelopmental and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Bruce G Pollock
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Adult Neurodevelopmental and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Benoit H Mulsant
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Adult Neurodevelopmental and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- Brain Health Imaging Centre-Multimodal Imaging Group in Geriatrics and Schizophrenia, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Adult Neurodevelopmental and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | - Tarek K Rajji
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Adult Neurodevelopmental and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Toronto Dementia Research Alliance, University of Toronto, Toronto, Ontario, Canada
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Adult Neurodevelopmental and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Dudok B, Soltesz I. Imaging the endocannabinoid signaling system. J Neurosci Methods 2022; 367:109451. [PMID: 34921843 PMCID: PMC8734437 DOI: 10.1016/j.jneumeth.2021.109451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 02/03/2023]
Abstract
The endocannabinoid (eCB) system is one of the most widespread neuromodulatory systems in the mammalian brain, with a multifaceted role in functions ranging from development to synaptic plasticity. Endocannabinoids are synthesized on demand from membrane lipid precursors, and act primarily on a single G-protein coupled receptor type, CB1, to carry out diverse functions. Despite the importance of the eCB system both in healthy brain function and in disease, critically important details of eCB signaling remained unknown. How eCBs are released from the membrane, how these lipid molecules are transported between cells, and how the distribution of their receptors is controlled, remained elusive. Recent advances in optical microscopy methods and biosensor engineering may open up new avenues for studying eCB signaling. We summarize applications of superresolution microscopy using single molecule localization to reveal distinct patterns of nanoscale CB1 distribution in neuronal axons and axon terminals. We review single particle tracking studies using quantum dots that allowed visualizing CB1 trajectories. We highlight the recent development of fluorescent eCB biosensors, that revealed spatiotemporally specific eCB release in live cells and live animals. Finally, we discuss future directions where method development may help to advance a precise understanding of eCB signaling.
Collapse
Affiliation(s)
- Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
29
|
Torrisi SA, Geraci F, Contarini G, Salomone S, Drago F, Leggio GM. Dopamine D3 Receptor, Cognition and Cognitive Dysfunctions in Neuropsychiatric Disorders: From the Bench to the Bedside. Curr Top Behav Neurosci 2022; 60:133-156. [PMID: 35435642 DOI: 10.1007/7854_2022_326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dopamine D3 receptor (D3R) plays a prominent role in the modulation of cognition in healthy individuals, as well as in the pathophysiological mechanism underlying the cognitive deficits affecting patients suffering from neuropsychiatric disorders. At a therapeutic level, a growing body of evidence suggests that the D3R blockade enhances cognitive and thus it may be an optimal therapeutic strategy against cognitive dysfunctions. However, this is not always the case because other ligands targeting the D3R, and behaving as partial agonists or biased agonists, may exert their pro-cognitive effect by maintaining adequate level of dopamine in key brain areas tuning cognitive performances. In this chapter, we review and discuss preclinical and clinical findings with the aim to remark the crucial role of the D3R in cognition and to strengthen the message that drugs targeting D3R may be excellent cognitive enhancers for the treatment of several neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
| | - Federica Geraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gabriella Contarini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salomone Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|