1
|
Liu B, Zhang H, Qin X. Amyloid Fibrils and Their Applications: Current Status and Latest Developments. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:255. [PMID: 39997818 PMCID: PMC11858031 DOI: 10.3390/nano15040255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025]
Abstract
Amyloid fibrils are one of the important forms of protein aggregates, first discovered in the pathological brain tissues of patients with various neurodegenerative diseases. They are considered the core pathological markers of different neurodegenerative diseases. In recent years, research has found that multiple proteins or peptides dynamically assemble to form functional amyloid-like nanofibrils under physiological conditions, exhibiting excellent mechanical properties, high environmental stability, and self-healing ability. Therefore, they have become a class of functional biological nanomaterials with important development potential. This article systematically reviews the latest progress in the preparation, functionalization, and application of amyloid-like nanofibrils in engineering and provides an outlook on possible future development directions.
Collapse
Affiliation(s)
| | - Hongnan Zhang
- Key Laboratory of Textile Science & Technology, College of Textiles, Donghua University, Ministry of Education, Shanghai 200051, China; (B.L.); (X.Q.)
| | | |
Collapse
|
2
|
Burns N, Rajesh A, Manjula-Basavanna A, Duraj-Thatte A. 3D extrusion bioprinting of microbial inks for biomedical applications. Adv Drug Deliv Rev 2025; 217:115505. [PMID: 39701387 DOI: 10.1016/j.addr.2024.115505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
In recent years, the field of 3D bioprinting has witnessed the intriguing development of a new type of bioink known as microbial inks. Bioinks, typically associated with mammalian cells, have been reimagined to involve microbes, enabling many new applications beyond tissue engineering and regenerative medicine. This review presents the latest advancements in microbial inks, including their definition, types, composition, salient characteristics, and biomedical applications. Herein, microbes are genetically engineered to produce 1) extrudable bioink and 2) life-like functionalities such as self-regeneration, self-healing, self-regulation, biosynthesis, biosensing, biosignaling, biosequestration, etc. We also discuss some of the promising applications of 3D extrusion printed microbial inks, such as 1) drugs and probiotics delivery, 2) metabolite production, 3) tissue engineering, 4) bioremediation, 5) biosensors and bioelectronics, 6) biominerals and biocomposites, and 7) infectious disease modeling. Finally, we describe some of the current challenges of microbial inks that needs to be addressed in the coming years, to make a greater impact in health science and technology and many other fields.
Collapse
Affiliation(s)
- Nicolas Burns
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington Street, Blacksburg 24061, USA
| | - Arjun Rajesh
- Department of Chemistry and Chemical Biology, Northeastern University, 334 Huntington Avenue, Boston 02115, USA
| | - Avinash Manjula-Basavanna
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington Street, Blacksburg 24061, USA; Department of Chemistry and Chemical Biology, Northeastern University, 334 Huntington Avenue, Boston 02115, USA; Department of Bioengineering, Northeastern University, 805 Columbus Avenue, Boston 02120, USA.
| | - Anna Duraj-Thatte
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington Street, Blacksburg 24061, USA; Macromolecular Innovation Institute, Virginia Tech, 240 W Campus Dr, Blacksburg 24060, USA.
| |
Collapse
|
3
|
Wu L, Song Y. Recent innovations in interfacial strategies for DLP 3D printing process optimization. MATERIALS HORIZONS 2025; 12:401-417. [PMID: 39470616 DOI: 10.1039/d4mh01160k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Three-dimensional (3D) printing, also known as additive manufacturing, is capable of transforming computer-aided designs into intricate structures directly and on demand. This technology has garnered significant attention in recent years. Among the various approaches, digital light processing (DLP) 3D printing, which utilizes polymers or prepolymers as the ink, has emerged as the leading new technology, driven by high demand across diverse fields such as customized production, healthcare, education, and art design. DLP 3D printing technology employs cured slices as molding units and is recognized for its potential to achieve both high printing speed and resolution. Recent insights into the DLP printing process highlight its inherent interface transformations between liquid and solid states. This review summarizes key aspects of the printing process, speed, precision, and material diversity optimization, from the view of interfacial interactions between solid and liquid phases which are influenced by resin formation, curing surfaces and light source properties. These interactions include those at the liquid resin-UV pattern interface, the cured structure-curing surface interface, the liquid resin-curing surface interface, and the liquid resin-cured structure interface, each contributing to the unique characteristics of the printed results. Finally, this review addresses the current challenges and limitations of DLP 3D printing, providing valuable insights for future improvements and guiding potential innovations in the field.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Yanlin Song
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| |
Collapse
|
4
|
Li FH, Liang ZH, Sun H, Tang Q, Yu HQ. Engineering Programmable Electroactive Living Materials for Highly Efficient Uranium Capture and Accumulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:23053-23063. [PMID: 39688929 DOI: 10.1021/acs.est.4c07276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Uranium is the primary fuel for nuclear energy, critical for sustainable, carbon-neutral energy transitions. However, limited terrestrial resources and environmental risks from uranium contamination require innovative immobilization and recovery solutions. In this work, we present a novel uranium recovery method using programmable electroactive living materials (ELMs). Utilizing Shewanella oneidensis, this approach leverages the intrinsic extracellular electron transfer capability of exoelectrogenic species, combining their adaptability and programmability with the robustness of engineered multicellular systems. These exoelectrogenic cells were endowed to selectively capture and enhance U(VI) reduction by expressing uranyl-binding proteins, coupled with a reconfigured transmembrane Mtr electron nanoconduit. By incorporating biofilm-promoting circuits, we improved cell-to-cell interactions and biofilm formation, enabling the stable assembly of ELMs with robust structural integrity. The ELMs demonstrated superior electrogenic activity, achieving a 3.30-fold increase in current density and a 3.15-fold increase in voltage output compared to controls in microbial electrochemical and fuel cells. When applied for uranium recovery, the ELMs exhibited robust U(VI) capture, reduction, and accumulation capabilities, with a maximum capacity of 808.42 μmol/g. This work not only provides a versatile and environmentally friendly solution for uranium recovery, but also highlights the potential of ELMs in sustainable environmental and energy technologies.
Collapse
Affiliation(s)
- Feng-He Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- School of Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032, China
| | - Zi-Han Liang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hong Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Tang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Malcı K, Li IS, Kisseroudis N, Ellis T. Modulating Microbial Materials - Engineering Bacterial Cellulose with Synthetic Biology. ACS Synth Biol 2024; 13:3857-3875. [PMID: 39509658 DOI: 10.1021/acssynbio.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The fusion of synthetic biology and materials science offers exciting opportunities to produce sustainable materials that can perform programmed biological functions such as sensing and responding or enhance material properties through biological means. Bacterial cellulose (BC) is a unique material for this challenge due to its high-performance material properties and ease of production from culturable microbes. Research in the past decade has focused on expanding the benefits and applications of BC through many approaches. Here, we explore how the current landscape of BC-based biomaterials is being shaped by progress in synthetic biology. As well as discussing how it can aid production of more BC and BC with tailored material properties, we place special emphasis on the potential of using BC for engineered living materials (ELMs); materials of a biological nature designed to carry out specific tasks. We also explore the role of 3D bioprinting being used for BC-based ELMs and highlight specific opportunities that this can bring. As synthetic biology continues to advance, it will drive further innovation in BC-based materials and ELMs, enabling many new applications that can help address problems in the modern world, in both biomedicine and many other application fields.
Collapse
Affiliation(s)
- Koray Malcı
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Ivy S Li
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Natasha Kisseroudis
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Tom Ellis
- Department of Bioengineering, Imperial College London, London SW7 2AZ, U.K
- Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
6
|
Xiao M, Lv S, Zhu C. Bacterial Patterning: A Promising Biofabrication Technique. ACS APPLIED BIO MATERIALS 2024; 7:8008-8018. [PMID: 38408887 DOI: 10.1021/acsabm.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Bacterial patterning has emerged as a pivotal biofabrication technique in the biomedical field. In the past 2 decades, a diverse array of bacterial patterning approaches have been developed to enable the precise manipulation of the spatial distribution of bacterial patterns for various applications. Despite the significance of these advancements, there is a deficiency of review articles providing an overview of bacterial patterning technologies. In this mini-review, we systematically summarize the progress of bacterial patterning over the past 2 decades. This review commences with an elucidation of the definition and fundamental principles of bacterial patterning. Subsequently, we introduce the established bacterial patterning strategies, accompanied by discussions about the advantages and limitations of each approach. Furthermore, we showcase the biomedical applications of these strategies, highlighting their efficacy in spatial control of biofilms, biosensing, and biointervention. Finally, this mini-review is concluded with a summary and an outlook on future challenges and opportunities. It is anticipated that this mini-review can serve as a concise guide for those who are interested in this exciting and rapidly evolving research area.
Collapse
Affiliation(s)
- Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Schulte-Hermann J, Rießland H, MacKinnon N, Korvink JG, Islam M. Biomineralization of Electrospun Bacteria-Encapsulated Fibers: A Relevant Step toward Living Ceramic Fibers. ACS APPLIED BIO MATERIALS 2024; 7:7936-7943. [PMID: 39205657 DOI: 10.1021/acsabm.4c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Living ceramic materials are proposed as high-performance engineered living materials due to their expected properties, including improved mechanical stability and performance, which could impact a wide range of applications across various fields. Particularly, living ceramic fibers are anticipated to exhibit even superior mechanical and structural properties, considering their fibril nature. This work presents the foundation for developing the family of living ceramic fibers. Ureolytic bacteria, Sporosarcina pasteurii, are encapsulated within electrospun alginate fibers, which are further subjected to biomineralization. A live-dead assay reveals that the encapsulated bacteria survive the electrospinning process. Successful biomineralization of the fibers results in the precipitation of near-spherical calcium carbonate nanoparticles at the fiber sites. The cell density within the fibers exhibits a significant impact on the packing of calcium carbonate nanoparticles. While further extensive research is required to fully realize the potential of living ceramic fibers, the findings of this study represent a significant step toward their development.
Collapse
Affiliation(s)
- Julia Schulte-Hermann
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hagen Rießland
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Neil MacKinnon
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Monsur Islam
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- IMDEA Materials Institute, Tecnogetafe, Calle Eric Kandel, 2, 28906 Getafe, Madrid, Spain
| |
Collapse
|
8
|
Charlton SG, Jana S, Chen J. Yielding behaviour of chemically treated Pseudomonas fluorescens biofilms. Biofilm 2024; 8:100209. [PMID: 39071175 PMCID: PMC11279707 DOI: 10.1016/j.bioflm.2024.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
The mechanics of biofilms are intrinsically shaped by their physicochemical environment. By understanding the influence of the extracellular matrix composition, pH and elevated levels of cationic species on the biofilm rheology, novel living materials with tuned properties can be formulated. In this study, we examine the role of a chaotropic agent (urea), two divalent cations and distilled deionized water on the nonlinear viscoelasticity of a model biofilm Pseudomonas fluorescens. The structural breakdown of each biofilm is quantified using tools of non-linear rheology. Our findings reveal that urea induced a softening response, and displayed strain overshoots comparable to distilled deionized water, without altering the microstructural packing fraction and macroscale morphology. The absorption of divalent ferrous and calcium cations into the biofilm matrix resulted in stiffening and a reduction in normalized elastic energy dissipation, accompanied by macroscale morphological wrinkling and moderate increases in the packing fraction. Notably, ferrous ions induced a predominance of rate dependent yielding, whereas the calcium ions resulted in equal contribution from both rate and strain dependent yielding and structural breakdown of the biofilms. Together, these results indicate that strain rate increasingly becomes an important factor controlling biofilm fluidity with cation-induced biofilm stiffening. The finding can help inform effective biofilm removal protocols and in development of bio-inks for additive manufacturing of biofilm derived materials.
Collapse
Affiliation(s)
- Samuel G.V. Charlton
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, 8093, Switzerland
- Newcastle University, School of Engineering, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Saikat Jana
- Ulster University, School of Engineering, 2-24 York Street, Belfast, BT15 1AP, United Kingdom
- Newcastle University, School of Engineering, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Jinju Chen
- Newcastle University, School of Engineering, Newcastle Upon Tyne, NE1 7RU, United Kingdom
- Loughborough University, Department of Materials, Loughborough, LE11 3TU, United Kingdom
| |
Collapse
|
9
|
Manjula-Basavanna A, Duraj-Thatte AM, Joshi NS. Mechanically Tunable, Compostable, Healable and Scalable Engineered Living Materials. Nat Commun 2024; 15:9179. [PMID: 39532836 PMCID: PMC11557937 DOI: 10.1038/s41467-024-53052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Advanced design strategies are essential to realize the full potential of engineered living materials, including their biodegradability, manufacturability, sustainability, and ability to tailor functional properties. Toward these goals, we present mechanically engineered living material with compostability, healability, and scalability - a material that integrates these features in the form of a stretchable plastic that is simultaneously flushable, compostable, and exhibits the characteristics of paper. This plastic/paper-like material is produced in scalable quantities (0.5-1 g L-1), directly from cultured bacterial biomass (40%) containing engineered curli protein nanofibers. The elongation at break (1-160%) and Young's modulus (6-450 MPa) is tuned to more than two orders of magnitude. By genetically encoded covalent crosslinking of curli nanofibers, we increase the Young's modulus by two times. The designed engineered living materials biodegrade completely in 15-75 days, while its mechanical properties are comparable to petrochemical plastics and thus may find use as compostable materials for primary packaging.
Collapse
Affiliation(s)
- Avinash Manjula-Basavanna
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA.
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, USA.
| | - Anna M Duraj-Thatte
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Neel S Joshi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, USA.
| |
Collapse
|
10
|
Xiong H, Zhou X, Cao Z, Xu A, Dong W, Jiang M. Microbial biofilms as a platform for diverse biocatalytic applications. BIORESOURCE TECHNOLOGY 2024; 411:131302. [PMID: 39173957 DOI: 10.1016/j.biortech.2024.131302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Microbial biofilms have gained significant traction in commercial wastewater treatment due to their inherent resilience, well-organized structure, and potential for collaborative metabolic processes. As our understanding of their physiology deepens, these living catalysts are finding exciting applications beyond wastewater treatment, including the production of bulk and fine chemicals, bioelectricity generation, and enzyme immobilization. While the biological applications of biofilms in different biocatalytic systems have been extensively summarized, the applications of artificially engineered biofilms were rarely discussed. This review aims to bridge this gap by highlighting the untapped potential of engineered microbial biofilms in diverse biocatalytic applications, with a focus on strategies for biofilms engineering. Strategies for engineering biofilm-based systems will be explored, including genetic modification, synthetic biology approaches, and targeted manipulation of biofilm formation processes. Finally, the review will address key challenges and future directions in developing robust biofilm-based biocatalytic platforms for large-scale production of chemicals, pharmaceuticals, and biofuels.
Collapse
Affiliation(s)
- Hongda Xiong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xinyu Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhanqing Cao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Anming Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
11
|
Murphy JF, Lavelle M, Asciak L, Burdis R, Levis HJ, Ligorio C, McGuire J, Polleres M, Smith PO, Tullie L, Uribe-Gomez J, Chen B, Dawson JI, Gautrot JE, Hooper NM, Kelly DJ, Li VSW, Mata A, Pandit A, Phillips JB, Shu W, Stevens MM, Williams RL, Armstrong JPK, Huang YYS. Biofabrication and biomanufacturing in Ireland and the UK. Biodes Manuf 2024; 7:825-856. [PMID: 39650072 PMCID: PMC11618173 DOI: 10.1007/s42242-024-00316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/11/2024] [Indexed: 12/11/2024]
Abstract
As we navigate the transition from the Fourth to the Fifth Industrial Revolution, the emerging fields of biomanufacturing and biofabrication are transforming life sciences and healthcare. These sectors are benefiting from a synergy of synthetic and engineering biology, sustainable manufacturing, and integrated design principles. Advanced techniques such as 3D bioprinting, tissue engineering, directed assembly, and self-assembly are instrumental in creating biomimetic scaffolds, tissues, organoids, medical devices, and biohybrid systems. The field of biofabrication in the United Kingdom and Ireland is emerging as a pivotal force in bioscience and healthcare, propelled by cutting-edge research and development. Concentrating on the production of biologically functional products for use in drug delivery, in vitro models, and tissue engineering, research institutions across these regions are dedicated to innovating healthcare solutions that adhere to ethical standards while prioritising sustainability, affordability, and healthcare system benefits. Graphic abstract
Collapse
Affiliation(s)
- Jack F. Murphy
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ UK
| | - Martha Lavelle
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY UK
| | - Lisa Asciak
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW UK
| | - Ross Burdis
- Department of Materials, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Hannah J. Levis
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX UK
| | - Cosimo Ligorio
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD UK
| | - Jamie McGuire
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, S016 6YD UK
| | - Marlene Polleres
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Poppy O. Smith
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
| | - Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT UK
| | - Juan Uribe-Gomez
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 W2TY Ireland
| | - Biqiong Chen
- School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, BT9 5AH UK
| | - Jonathan I. Dawson
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, S016 6YD UK
| | - Julien E. Gautrot
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS UK
| | - Nigel M. Hooper
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, M13 9PL UK
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 H903 Ireland
| | - Vivian S. W. Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT UK
| | - Alvaro Mata
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD UK
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 W2TY Ireland
| | - James B. Phillips
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
| | - Wenmiao Shu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW UK
| | - Molly M. Stevens
- Department of Materials, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
- Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
| | - Rachel L. Williams
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX UK
| | - James P. K. Armstrong
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY UK
| | | |
Collapse
|
12
|
Byrne R, Carrico A, Lettieri M, Rajan AK, Forster RJ, Cumba LR. Bioinks and biofabrication techniques for biosensors development: A review. Mater Today Bio 2024; 28:101185. [PMID: 39205870 PMCID: PMC11350460 DOI: 10.1016/j.mtbio.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/09/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024] Open
Abstract
3D bioprinting technologies and bioink development are enabling significant advances in miniaturized and integrated biosensors. For example, bioreceptors can be immobilized within a porous 3D structure to significantly amplify the signal, while biocompatible and mechanically flexible systems uniquely enable wearable chem- and bio-sensors. This advancement is accelerating translation by enabling the production of high performance, reproducible, and flexible analytical devices. The formulation of the bioink plays a crucial role in determining the bio-functionality of the resulting printed structures, e.g., the porosity that allows the analyte to diffuse through the 3D structure, the affinity and avidity of the receptors, etc. This review explores the next generation of advanced bioinks for biosensor development and provides insights into the latest cutting-edge bioprinting technologies. The bioprinting methods available for biosensor fabrication including inkjet, extrusion, and laser-based bioprinting, are discussed. The advantages and limitations of each method are analysed, and recent advancements in bioprinting technologies are presented. The review then delves into the properties of advanced bioinks, such as biocompatibility, printability, stability, and applicability. Different types of advanced bioinks are explored, including multicomponent, stimuli-responsive, and conductive bioinks. Finally, the next generation of bioinks for biosensors is considered, identifying possible new opportunities and challenges. Overall, this literature review highlights the combined importance of bioink formulation and bioprinting methods for the development of high-performance analytical biosensors.
Collapse
Affiliation(s)
- Róisín Byrne
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Amanda Carrico
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Mariagrazia Lettieri
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Athira K. Rajan
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Robert J. Forster
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
- FutureNeuro, The SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons, Ireland
| | - Loanda R. Cumba
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
13
|
Cui X, Jiao J, Yang L, Wang Y, Jiang W, Yu T, Li M, Zhang H, Chao B, Wang Z, Wu M. Advanced tumor organoid bioprinting strategy for oncology research. Mater Today Bio 2024; 28:101198. [PMID: 39205873 PMCID: PMC11357813 DOI: 10.1016/j.mtbio.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/14/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Bioprinting is a groundbreaking technology that enables precise distribution of cell-containing bioinks to construct organoid models that accurately reflect the characteristics of tumors in vivo. By incorporating different types of tumor cells into the bioink, the heterogeneity of tumors can be replicated, enabling studies to simulate real-life situations closely. Precise reproduction of the arrangement and interactions of tumor cells using bioprinting methods provides a more realistic representation of the tumor microenvironment. By mimicking the complexity of the tumor microenvironment, the growth patterns and diffusion of tumors can be demonstrated. This approach can also be used to evaluate the response of tumors to drugs, including drug permeability and cytotoxicity, and other characteristics. Therefore, organoid models can provide a more accurate oncology research and treatment simulation platform. This review summarizes the latest advancements in bioprinting to construct tumor organoid models. First, we describe the bioink used for tumor organoid model construction, followed by an introduction to various bioprinting methods for tumor model formation. Subsequently, we provide an overview of existing bioprinted tumor organoid models.
Collapse
Affiliation(s)
- Xiangran Cui
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Lili Yang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Weibo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Mufeng Li
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| |
Collapse
|
14
|
Liu XL, Wang X, Wang Y, Huang D, Li KW, Luo MJ, Liu DF, Mu Y. 3D Bioprinting of Engineered Living Materials with Extracellular Electron Transfer Capability for Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39226031 DOI: 10.1021/acs.est.4c06120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Attention is widely drawn to the extracellular electron transfer (EET) process of electroactive bacteria (EAB) for water purification, but its efficacy is often hindered in complex environmental matrices. In this study, the engineered living materials with EET capability (e-ELMs) were for the first time created with customized geometric configurations for pollutant removal using three-dimensional (3D) bioprinting platform. By combining EAB and tailored viscoelastic matrix, a biocompatible and tunable electroactive bioink for 3D bioprinting was initially developed with tuned rheological properties, enabling meticulous manipulation of microbial spatial arrangement and density. e-ELMs with different spatial microstructures were then designed and constructed by adjusting the filament diameter and orientation during the 3D printing process. Simulations of diffusion and fluid dynamics collectively showcase internal mass transfer rates and EET efficiency of e-ELMs with different spatial microstructures, contributing to the outstanding decontamination performances. Our research propels 3D bioprinting technology into the environmental realm, enabling the creation of intricately designed e-ELMs and providing promising routes to address the emerging water pollution concerns.
Collapse
Affiliation(s)
- Xiao-Li Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingyu Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yixuan Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Dahong Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ke-Wan Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Meng-Jie Luo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
15
|
Pu X, Wu Y, Liu J, Wu B. 3D Bioprinting of Microbial-based Living Materials for Advanced Energy and Environmental Applications. CHEM & BIO ENGINEERING 2024; 1:568-592. [PMID: 39974701 PMCID: PMC11835188 DOI: 10.1021/cbe.4c00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 02/21/2025]
Abstract
Microorganisms, serving as super biological factories, play a crucial role in the production of desired substances and the remediation of environments. The emergence of 3D bioprinting provides a powerful tool for engineering microorganisms and polymers into living materials with delicate structures, paving the way for expanding functionalities and realizing extraordinary performance. Here, the current advancements in microbial-based 3D-printed living materials are comprehensively discussed from material perspectives, covering various 3D bioprinting techniques, types of microorganisms used, and the key parameters and selection criteria for polymer bioinks. Endeavors on the applications of 3D printed living materials in the fields of energy and environment are then emphasized. Finally, the remaining challenges and future trends in this burgeoning field are highlighted. We hope our perspective will inspire some interesting ideas and accelerate the exploration within this field to reach superior solutions for energy and environment challenges.
Collapse
Affiliation(s)
- Xingqun Pu
- College
of Material, Chemistry, and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
- State
Key Laboratory of Chemical Engineering, College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuqi Wu
- College
of Material, Chemistry, and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Junqiu Liu
- College
of Material, Chemistry, and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Baiheng Wu
- College
of Material, Chemistry, and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
16
|
Chen M, Xia L, Wu C, Wang Z, Ding L, Xie Y, Feng W, Chen Y. Microbe-material hybrids for therapeutic applications. Chem Soc Rev 2024; 53:8306-8378. [PMID: 39005165 DOI: 10.1039/d3cs00655g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
As natural living substances, microorganisms have emerged as useful resources in medicine for creating microbe-material hybrids ranging from nano to macro dimensions. The engineering of microbe-involved nanomedicine capitalizes on the distinctive physiological attributes of microbes, particularly their intrinsic "living" properties such as hypoxia tendency and oxygen production capabilities. Exploiting these remarkable characteristics in combination with other functional materials or molecules enables synergistic enhancements that hold tremendous promise for improved drug delivery, site-specific therapy, and enhanced monitoring of treatment outcomes, presenting substantial opportunities for amplifying the efficacy of disease treatments. This comprehensive review outlines the microorganisms and microbial derivatives used in biomedicine and their specific advantages for therapeutic application. In addition, we delineate the fundamental strategies and mechanisms employed for constructing microbe-material hybrids. The diverse biomedical applications of the constructed microbe-material hybrids, encompassing bioimaging, anti-tumor, anti-bacteria, anti-inflammation and other diseases therapy are exhaustively illustrated. We also discuss the current challenges and prospects associated with the clinical translation of microbe-material hybrid platforms. Therefore, the unique versatility and potential exhibited by microbe-material hybrids position them as promising candidates for the development of next-generation nanomedicine and biomaterials with unique theranostic properties and functionalities.
Collapse
Affiliation(s)
- Meng Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Zeyu Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Li Ding
- Department of Medical Ultrasound, National Clinical Research Center of Interventional Medicine, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
- Shanghai Institute of Materdicine, Shanghai 200051, P. R. China
| |
Collapse
|
17
|
Niknezhad SV, Mehrali M, Khorasgani FR, Heidari R, Kadumudi FB, Golafshan N, Castilho M, Pennisi CP, Hasany M, Jahanshahi M, Mehrali M, Ghasemi Y, Azarpira N, Andresen TL, Dolatshahi-Pirouz A. Enhancing volumetric muscle loss (VML) recovery in a rat model using super durable hydrogels derived from bacteria. Bioact Mater 2024; 38:540-558. [PMID: 38872731 PMCID: PMC11170101 DOI: 10.1016/j.bioactmat.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/12/2024] [Accepted: 04/08/2024] [Indexed: 06/15/2024] Open
Abstract
Bacteria can be programmed to deliver natural materials with defined biological and mechanical properties for controlling cell growth and differentiation. Here, we present an elastic, resilient and bioactive polysaccharide derived from the extracellular matrix of Pantoea sp. BCCS 001. Specifically, it was methacrylated to generate a new photo crosslinkable hydrogel that we coined Pantoan Methacrylate or put simply PAMA. We have used it for the first time as a tissue engineering hydrogel to treat VML injuries in rats. The crosslinked PAMA hydrogel was super elastic with a recovery nearing 100 %, while mimicking the mechanical stiffness of native muscle. After inclusion of thiolated gelatin via a Michaelis reaction with acrylate groups on PAMA we could also guide muscle progenitor cells into fused and aligned tubes - something reminiscent of mature muscle cells. These results were complemented by sarcomeric alpha-actinin immunostaining studies. Importantly, the implanted hydrogels exhibited almost 2-fold more muscle formation and 50 % less fibrous tissue formation compared to untreated rat groups. In vivo inflammation and toxicity assays likewise gave rise to positive results confirming the biocompatibility of this new biomaterial system. Overall, our results demonstrate that programmable polysaccharides derived from bacteria can be used to further advance the field of tissue engineering. In greater detail, they could in the foreseeable future be used in practical therapies against VML.
Collapse
Affiliation(s)
- Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, 71987-54361, Iran
| | - Mehdi Mehrali
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Nasim Golafshan
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, 3584 CX, the Netherlands
| | - Miguel Castilho
- Department of Biomedical Engineering, Eindhoven University of Technology, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cristian Pablo Pennisi
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, 9260, Gistrup, Denmark
| | - Masoud Hasany
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | | | - Mohammad Mehrali
- Faculty of Engineering Technology, Department of Thermal and Fluid Engineering (TFE), University of Twente, 7500 AE, Enschede, the Netherlands
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Thomas L. Andresen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | |
Collapse
|
18
|
Laurent JM, Jain A, Kan A, Steinacher M, Enrriquez Casimiro N, Stavrakis S, deMello AJ, Studart AR. Directed evolution of material-producing microorganisms. Proc Natl Acad Sci U S A 2024; 121:e2403585121. [PMID: 39042685 PMCID: PMC11295069 DOI: 10.1073/pnas.2403585121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Nature is home to a variety of microorganisms that create materials under environmentally friendly conditions. While this offers an attractive approach for sustainable manufacturing, the production of materials by native microorganisms is usually slow and synthetic biology tools to engineer faster microorganisms are only available when prior knowledge of genotype-phenotype links is available. Here, we utilize a high-throughput directed evolution platform to enhance the fitness of whole microorganisms under selection pressure and identify genetic pathways to enhance the material production capabilities of native species. Using Komagataeibacter sucrofermentans as a model cellulose-producing microorganism, we show that our droplet-based microfluidic platform enables the directed evolution of these bacteria toward a small number of cellulose overproducers from an initial pool of 40,000 random mutants. Sequencing of the evolved strains reveals an unexpected link between the cellulose-forming ability of the bacteria and a gene encoding a protease complex responsible for protein turnover in the cell. The ability to enhance the fitness of microorganisms toward a specific phenotype and to unravel genotype-phenotype links makes this high-throughput directed evolution platform a promising tool for the development of new strains for the sustainable manufacturing of materials.
Collapse
Affiliation(s)
- Julie M. Laurent
- Department of Materials, Complex Materials, ETH Zürich, Zürich8093, Switzerland
| | - Ankit Jain
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich8093, Switzerland
| | - Anton Kan
- Department of Materials, Complex Materials, ETH Zürich, Zürich8093, Switzerland
| | - Mathias Steinacher
- Department of Materials, Complex Materials, ETH Zürich, Zürich8093, Switzerland
| | | | - Stavros Stavrakis
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich8093, Switzerland
| | - Andrew J. deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich8093, Switzerland
| | - André R. Studart
- Department of Materials, Complex Materials, ETH Zürich, Zürich8093, Switzerland
| |
Collapse
|
19
|
Hu L, Zhou S, Zhang X, Shi C, Zhang Y, Chen X. Self-Assembly of Polymers and Their Applications in the Fields of Biomedicine and Materials. Polymers (Basel) 2024; 16:2097. [PMID: 39125124 PMCID: PMC11314328 DOI: 10.3390/polym16152097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Polymer self-assembly can prepare various shapes and sizes of pores, making it widely used. The complexity and diversity of biomolecules make them a unique class of building blocks for precise assembly. They are particularly suitable for the new generation of biomaterials integrated with life systems as they possess inherent characteristics such as accurate identification, self-organization, and adaptability. Therefore, many excellent methods developed have led to various practical results. At the same time, the development of advanced science and technology has also expanded the application scope of self-assembly of synthetic polymers. By utilizing this technology, materials with unique shapes and properties can be prepared and applied in the field of tissue engineering. Nanomaterials with transparent and conductive properties can be prepared and applied in fields such as electronic displays and smart glass. Multi-dimensional, controllable, and multi-level self-assembly between nanostructures has been achieved through quantitative control of polymer dosage and combination, chemical modification, and composite methods. Here, we list the classic applications of natural- and artificially synthesized polymer self-assembly in the fields of biomedicine and materials, introduce the cutting-edge technologies involved in these applications, and discuss in-depth the advantages, disadvantages, and future development directions of each type of polymer self-assembly.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyi Chen
- School of Pharmacy, Jiamusi University, Jiamusi 154007, China; (L.H.); (S.Z.); (X.Z.); (C.S.); (Y.Z.)
| |
Collapse
|
20
|
Zhao J, Li X, Ji D, Bae J. Extrusion-based 3D printing of soft active materials. Chem Commun (Camb) 2024; 60:7414-7426. [PMID: 38894652 DOI: 10.1039/d4cc01889c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Active materials are capable of responding to external stimuli, as observed in both natural and synthetic systems, from sensitive plants to temperature-responsive hydrogels. Extrusion-based 3D printing of soft active materials facilitates the fabrication of intricate geometries with spatially programmed compositions and architectures at various scales, further enhancing the functionality of materials. This Feature Article summarizes recent advances in extrusion-based 3D printing of active materials in both non-living (i.e., synthetic) and living systems. It highlights emerging ink formulations and architectural designs that enable programmable properties, with a focus on complex shape morphing and controllable light-emitting patterns. The article also spotlights strategies for engineering living materials that can produce genetically encoded material responses and react to a variety of environmental stimuli. Lastly, it discusses the challenges and prospects for advancements in both synthetic and living composite materials from the perspectives of chemistry, modeling, and integration.
Collapse
Affiliation(s)
- Jiayu Zhao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Xiao Li
- Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Donghwan Ji
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Jinhye Bae
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA 92093, USA.
- Material Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Lammers A, Hsu HH, Sundaram S, Gagnon KA, Kim S, Lee JH, Tung YC, Eyckmans J, Chen CS. Rapid Tissue Perfusion Using Sacrificial Percolation of Anisotropic Networks. MATTER 2024; 7:2184-2204. [PMID: 39221109 PMCID: PMC11360881 DOI: 10.1016/j.matt.2024.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Tissue engineering has long sought to rapidly generate perfusable vascularized tissues with vessel sizes spanning those seen in humans. Current techniques such as biological 3D printing (top-down) and cellular self-assembly (bottom-up) are resource intensive and have not overcome the inherent tradeoff between vessel resolution and assembly time, limiting their utility and scalability for engineering tissues. We present a flexible and scalable technique termed SPAN - Sacrificial Percolation of Anisotropic Networks, where a network of perfusable channels is created throughout a tissue in minutes, irrespective of its size. Conduits with length scales spanning arterioles to capillaries are generated using pipettable alginate fibers that interconnect above a percolation density threshold and are then degraded within constructs of arbitrary size and shape. SPAN is readily used within common tissue engineering processes, can be used to generate endothelial cell-lined vasculature in a multi-cell type construct, and paves the way for rapid assembly of perfusable tissues.
Collapse
Affiliation(s)
- Alex Lammers
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Heng-Hua Hsu
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Subramanian Sundaram
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Keith A. Gagnon
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sudong Kim
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Joshua H. Lee
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jeroen Eyckmans
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christopher S. Chen
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Lead contact
| |
Collapse
|
22
|
Costan SA, Ryan PM, Kim H, Wolgemuth CW, Riedel-Kruse IH. Biophysical characterization of synthetic adhesins for predicting and tuning engineered living material properties. MATTER 2024; 7:2125-2143. [PMID: 39165662 PMCID: PMC11335339 DOI: 10.1016/j.matt.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Bacterial synthetic multicellular systems are promising platforms for engineered living materials (ELMs) for medical, biosynthesis, environmental, and smart materials applications. Recent advancements in genetically encoded adhesion toolkits have enabled precise manipulation of cell-cell adhesion and the design and patterning of self-assembled multicellular materials. However, in contrast to gene regulation in synthetic biology, the characterization and control of synthetic adhesins remains limited. Here, we demonstrate the quantitative characterization of a bacterial synthetic adhesion toolbox through various biophysical methods. We determine key parameters, including number of adhesins per cell, in-membrane diffusion constant, production and decay rates, and bond-breaking force between adhesins. With these parameters, we demonstrate the bottom-up prediction and quantitative tuning of macroscopic ELM properties (tensile strength) and, furthermore, that cells inside ELMs are connected only by a small fraction of available adhesins. These results enable the rational engineering, characterization, and modeling of other synthetic and natural adhesins and multicellular consortia.
Collapse
Affiliation(s)
- Stefana A. Costan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Paul M. Ryan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
| | - Honesty Kim
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Charles W. Wolgemuth
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
- Department of Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA
| | - Ingmar H. Riedel-Kruse
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Physics, University of Arizona, Tucson, AZ 85721, USA
- Department of Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA
- Lead contact
| |
Collapse
|
23
|
Liu S, Yang M, Smarr C, Zhang G, Barton H, Xu W. Engineered Living Structures with Shape-Morphing Capability Enabled by 4D Printing with Functional Bacteria. ACS APPLIED BIO MATERIALS 2024; 7:3247-3257. [PMID: 38648508 DOI: 10.1021/acsabm.4c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Engineered living structures with the incorporation of functional bacteria have been explored extensively in recent years and have shown promising potential applications in biosensing, environmental remediation, and biomedicine. However, it is still rare and challenging to achieve multifunctional capabilities such as material production, shape transformation, and sensing in a single-engineered living structure. In this study, we demonstrate bifunctional living structures by synergistically integrating cellulose-generating bacteria with pH-responsive hydrogels, and the entire structures can be precisely fabricated by three-dimensional (3D) printing. Such 3D-printed bifunctional living structures produce cellulose nanofibers in ambient conditions and have reversible and controlled shape-morphing properties (usually referred to as four-dimensional printing). Those functionalities make them biomimetic versions of silkworms in the sense that both can generate nanofibers and have body motion. We systematically investigate the processing-structure-property relationship of the bifunctional living structures. The on-demand separation of 3D cellulose structures from the hydrogel template and the living nature of the bacteria after processing and shape transformation are also demonstrated.
Collapse
Affiliation(s)
- Shan Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Muxuan Yang
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Cade Smarr
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Hazel Barton
- Department of Biology, The University of Akron, Akron, Ohio 44325, United States
| | - Weinan Xu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
24
|
Zhai L, Fu L, Wei W, Zheng D. Advances of Bacterial Biomaterials for Disease Therapy. ACS Synth Biol 2024; 13:1400-1411. [PMID: 38605650 DOI: 10.1021/acssynbio.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have immense potential as biological therapeutic agents that can be used to treat diseases, owing to their inherent immunomodulatory activity, targeting capabilities, and biosynthetic functions. The integration of synthetic biomaterials with natural bacteria has led to the construction of bacterial biomaterials with enhanced functionality and exceptional safety features. In this review, recent progress in the field of bacterial biomaterials, including bacterial drug delivery systems, bacterial drug-producing factories, bacterial biomaterials for metabolic engineering, bacterial biomaterials that can be remotely controlled, and living bacteria hydrogel formulations, is described and summarized. Furthermore, future trends in advancing next-generation bacterial biomaterials for enhanced clinical applications are proposed in the conclusion.
Collapse
Affiliation(s)
- Lin Zhai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Laiying Fu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Diwei Zheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
25
|
Szulc N, Gąsior-Głogowska M, Żyłka P, Szefczyk M, Wojciechowski JW, Żak AM, Dyrka W, Kaczorowska A, Burdukiewicz M, Tarek M, Kotulska M. Structural effects of charge destabilization and amino acid substitutions in amyloid fragments of CsgA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124094. [PMID: 38503257 DOI: 10.1016/j.saa.2024.124094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
The most studied functional amyloid is the CsgA, major curli subunit protein, which is produced by numerous strains of Enterobacteriaceae. Although CsgA sequences are highly conserved, they exhibit species diversity, which reflects the specific evolutionary and functional adaptability of the major curli subunit. Herein, we performed bioinformatics analyses to uncover the differences in the amyloidogenic properties of the R4 fragments in Escherichia coli and Salmonella enterica and proposed four mutants for more detailed studies: M1, M2, M3, and M4. The mutated sequences were characterized by various experimental techniques, such as circular dichroism, ATR-FTIR, FT-Raman, thioflavin T, transmission electron microscopy and confocal microscopy. Additionally, molecular dynamics simulations were performed to determine the role of buffer ions in the aggregation process. Our results demonstrated that the aggregation kinetics, fibril morphology, and overall structure of the peptide were significantly affected by the positions of charged amino acids within the repeat sequences of CsgA. Notably, substituting glycine with lysine resulted in the formation of distinctive spherically packed globular aggregates. The differences in morphology observed are attributed to the influence of phosphate ions, which disrupt the local electrostatic interaction network of the polypeptide chains. This study provides knowledge on the preferential formation of amyloid fibrils based on charge states within the polypeptide chain.
Collapse
Affiliation(s)
- Natalia Szulc
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; CNRS, University of Lorraine, F-5400 Nancy, France; Department of Physics and Biophysics, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Paweł Żyłka
- Department of Electrical Engineering Fundamentals, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Jakub W Wojciechowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Andrzej M Żak
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Witold Dyrka
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Kaczorowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Michał Burdukiewicz
- Institute of Biotechnology and Biomedicine, Autonomous University of Barcelona, Campus Universitat Autònoma de Barcelona Plaça Cívica Bellaterra, s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain; Clinical Research Centre, Medical University of Bialystok, Jana Kilinskiego 1, 15-089 Bialystok, Poland
| | - Mounir Tarek
- CNRS, University of Lorraine, F-5400 Nancy, France.
| | - Malgorzata Kotulska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
26
|
Altin-Yavuzarslan G, Sadaba N, Brooks SM, Alper HS, Nelson A. Engineered Living Material Bioreactors with Tunable Mechanical Properties using Vat Photopolymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306564. [PMID: 38105580 DOI: 10.1002/smll.202306564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/29/2023] [Indexed: 12/19/2023]
Abstract
3D-printed engineered living materials (ELM) are promising bioproduction platforms for agriculture, biotechnology, sustainable energy, and green technology applications. However, the design of these platforms faces several challenges, such as the processability of these materials into complex form factors and control over their mechanical properties. Herein, ELM are presented as 3D-printed bioreactors with arbitrary shape geometries and tunable mechanical properties (moduli and toughness). Poly(ethylene glycol) diacrylate (PEGDA) is used as the precursor to create polymer networks that encapsulate the microorganisms during the vat photopolymerization process. A major limitation of PEGDA networks is their propensity to swell and fracture when submerged in water. The authors overcame this issue by adding glycerol to the resin formulation to 3D print mechanically tough ELM hydrogels. While polymer concentration affects the modulus and reduces bioproduction, ELM bioreactors still maintain their metabolic activity regardless of polymer concentration. These ELM bioreactors have the potential to be used in different applications for sustainable architecture, food production, and biomedical devices that require different mechanical properties from soft to stiff.
Collapse
Affiliation(s)
- Gokce Altin-Yavuzarslan
- Molecular Engineering and Sciences Institute, University of Washington, Box 351700, Seattle, WA, 98195, USA
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA
| | - Naroa Sadaba
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA
| | - Sierra M Brooks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hal S Alper
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Alshakim Nelson
- Molecular Engineering and Sciences Institute, University of Washington, Box 351700, Seattle, WA, 98195, USA
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195, USA
| |
Collapse
|
27
|
Lee MS, Lee JA, Biondo JR, Lux JE, Raig RM, Berger PN, Bernhards CB, Kuhn DL, Gupta MK, Lux MW. Cell-Free Protein Expression in Polymer Materials. ACS Synth Biol 2024; 13:1152-1164. [PMID: 38467017 PMCID: PMC11036507 DOI: 10.1021/acssynbio.3c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
While synthetic biology has advanced complex capabilities such as sensing and molecular synthesis in aqueous solutions, important applications may also be pursued for biological systems in solid materials. Harsh processing conditions used to produce many synthetic materials such as plastics make the incorporation of biological functionality challenging. One technology that shows promise in circumventing these issues is cell-free protein synthesis (CFPS), where core cellular functionality is reconstituted outside the cell. CFPS enables genetic functions to be implemented without the complications of membrane transport or concerns over the cellular viability or release of genetically modified organisms. Here, we demonstrate that dried CFPS reactions have remarkable tolerance to heat and organic solvent exposure during the casting processes for polymer materials. We demonstrate the utility of this observation by creating plastics that have spatially patterned genetic functionality, produce antimicrobials in situ, and perform sensing reactions. The resulting materials unlock the potential to deliver DNA-programmable biofunctionality in a ubiquitous class of synthetic materials.
Collapse
Affiliation(s)
- Marilyn S. Lee
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Jennifer A. Lee
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
- Defense
Threat Reduction Agency, 2800 Bush River Road, Gunpowder, Maryland 21010, United States
| | - John R. Biondo
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
- Excet
Inc., 6225 Brandon Avenue,
Suite 360, Springfield, Virginia 22150, United States
| | - Jeffrey E. Lux
- US
Air Force Research Laboratory, 2179 12th Street, B652/R122, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES
Inc., 4401 Dayton-Xenia
Road, Dayton, Ohio 45432, United States
| | - Rebecca M. Raig
- US
Air Force Research Laboratory, 2179 12th Street, B652/R122, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES
Inc., 4401 Dayton-Xenia
Road, Dayton, Ohio 45432, United States
| | - Pierce N. Berger
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Casey B. Bernhards
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Danielle L. Kuhn
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Maneesh K. Gupta
- US
Air Force Research Laboratory, 2179 12th Street, B652/R122, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Matthew W. Lux
- U.S.
Army Combat Capabilities Development Command Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
28
|
Solomonov A, Kozell A, Shimanovich U. Designing Multifunctional Biomaterials via Protein Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202318365. [PMID: 38206201 DOI: 10.1002/anie.202318365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Protein self-assembly is a fundamental biological process where proteins spontaneously organize into complex and functional structures without external direction. This process is crucial for the formation of various biological functionalities. However, when protein self-assembly fails, it can trigger the development of multiple disorders, thus making understanding this phenomenon extremely important. Up until recently, protein self-assembly has been solely linked either to biological function or malfunction; however, in the past decade or two it has also been found to hold promising potential as an alternative route for fabricating materials for biomedical applications. It is therefore necessary and timely to summarize the key aspects of protein self-assembly: how the protein structure and self-assembly conditions (chemical environments, kinetics, and the physicochemical characteristics of protein complexes) can be utilized to design biomaterials. This minireview focuses on the basic concepts of forming supramolecular structures, and the existing routes for modifications. We then compare the applicability of different approaches, including compartmentalization and self-assembly monitoring. Finally, based on the cutting-edge progress made during the last years, we summarize the current knowledge about tailoring a final function by introducing changes in self-assembly and link it to biomaterials' performance.
Collapse
Affiliation(s)
- Aleksei Solomonov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 234 Herzl st., Rehovot, 76100, Israel
| | - Anna Kozell
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 234 Herzl st., Rehovot, 76100, Israel
| | - Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 234 Herzl st., Rehovot, 76100, Israel
| |
Collapse
|
29
|
Zhu R, Zhang J, Wang L, Zhang Y, Zhao Y, Han Y, Sun J, Zhang X, Dou Y, Yao H, Yan W, Luo X, Dai J, Dai Z. Engineering functional materials through bacteria-assisted living grafting. Cell Syst 2024; 15:264-274.e9. [PMID: 38460522 DOI: 10.1016/j.cels.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/15/2023] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Functionalizing materials with biomacromolecules such as enzymes has broad applications in biotechnology and biomedicine. Here, we introduce a grafting method mediated by living cells to functionalize materials. We use polymeric scaffolds to trap engineered bacteria and micron-sized particles with chemical groups serving as active sites for grafting. The bacteria synthesize the desired protein for grafting and autonomously lyse to release it. The released functional moieties are locally grafted onto the active sites, generating the materials engineered by living grafting (MELGs). MELGs are resilient to perturbations because of both the bonding and the regeneration of functional domains synthesized by living cells. The programmability of the bacteria enables us to fabricate MELGs that can respond to external input, decompose a pollutant, reconstitute synthetic pathways for natural product synthesis, and purify mismatched DNA. Our work establishes a bacteria-assisted grafting strategy to functionalize materials with a broad range of biological activities in an integrated, flexible, and modular manner. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Runtao Zhu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiao Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lin Wang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunfeng Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Zhao
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ying Han
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Sun
- Soft Bio-interface Electronics Lab, Center of Neural Engineering, CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xi Zhang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ying Dou
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huaxiong Yao
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Yan
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaozhou Luo
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Junbiao Dai
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhuojun Dai
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
30
|
Chen Y, Le Y, Yang J, Yang Y, Feng X, Cai J, Shang Y, Sugiarto S, Wei Q, Kai D, Zheng L, Zhao J. 3D Bioprinted Xanthan Hydrogels with Dual Antioxidant and Chondrogenic Functions for Post-traumatic Cartilage Regeneration. ACS Biomater Sci Eng 2024; 10:1661-1675. [PMID: 38364815 DOI: 10.1021/acsbiomaterials.3c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Intra-articular trauma typically initiates the overgeneration of reactive oxidative species (ROS), leading to post-traumatic osteoarthritis and cartilage degeneration. Xanthan gum (XG), a branched polysaccharide, has shown its potential in many biomedical fields, but some of its inherent properties, including undesirable viscosity and poor mechanical stability, limit its application in 3D printed scaffolds for cartilage regeneration. In this project, we developed 3D bioprinted XG hydrogels by modifying XG with methacrylic (MA) groups for post-traumatic cartilage therapy. Our results demonstrated that the chemical modification optimized the viscoelasticity of the bioink, improved printability, and enhanced the mechanical properties of the resulting scaffolds. The XG hydrogels also exhibit decent ROS scavenging capacities to protect stem cells from oxidative stress. Furthermore, XGMA(H) (5% MA substitution) exhibited superior chondrogenic potential in vitro and promoted cartilage regeneration in vivo. These dual-functional XGMA hydrogels may provide a new opportunity for cartilage tissue engineering.
Collapse
Affiliation(s)
- Yuting Chen
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yiguan Le
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, China
| | - Junxu Yang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yifeng Yang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xianjing Feng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jinhong Cai
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yifeng Shang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Sigit Sugiarto
- Institute of Sustainability for Chemicals, Energy, and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634 Republic of Singapore
| | - Qingjun Wei
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Dan Kai
- Institute of Sustainability for Chemicals, Energy, and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634 Republic of Singapore
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
31
|
Li S, Gong L, Wu X, Liu X, Bai N, Guo Y, Liu X, Zhang H, Fu H, Shou Q. Load-bearing columns inspired fabrication of ductile and mechanically enhanced BSA hydrogels. Int J Biol Macromol 2024; 261:129910. [PMID: 38309395 DOI: 10.1016/j.ijbiomac.2024.129910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Currently, protein-based hydrogels are widely applied in soft materials, tissue engineering and implantable scaffolds owing to their excellent biocompatibility, and degradability. However, most protein-based hydrogels are soft brittle. In this study, a ductile and mechanically enhanced bovine serum albumin (BSA) hydrogel is fabricated by soaking the a 1-(3-dimethylaminopropyl)-3ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) induced BSA hydrogel in (NH4)2SO4 solution. An EDC/NHS coupling reaction induce protein coupling reactions that cause the BSA skeleton to resemble architectural load-bearing walls, protecting the integrity of the hydrogel and preventing collapse. The effects of the BSA and (NH4)2SO4 concentrations on the hydrogel mechanics are evaluated, and the possible strengthening mechanism is discussed. Besides, the highly kosmotropic ions greatly enhance the hydrophobic interaction within BSA gels and dehydration effect and their mechanical properties were significantly enhanced. The various mechanical properties of hydrogels can be regulated over a large window by soaking hydrogels into various ions. And most of them can be washed away, maintaining high biocompatibility of the protein. Importantly, the protein hydrogels prepared by this strategy could also be modified as strain sensors. In a word, this work demonstrates a new, universal method to provide multi-functional, biocompatible, strength enhanced and regulable mechanical pure protein hydrogel, combining the Hofmeister effect with -NH2/-COOH association groups.
Collapse
Affiliation(s)
- Shengyu Li
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Second Clinical Medical School of Zhejiang Chinese Medical University, Hangzhou 310000, PR China.
| | - Lihong Gong
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Second Clinical Medical School of Zhejiang Chinese Medical University, Hangzhou 310000, PR China; Third Clinical Medical School of Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Xijin Wu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Second Clinical Medical School of Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Xianli Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Second Clinical Medical School of Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Ningning Bai
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Second Clinical Medical School of Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Yingxue Guo
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Second Clinical Medical School of Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Xia Liu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Second Clinical Medical School of Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Hong Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Second Clinical Medical School of Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Huiying Fu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Second Clinical Medical School of Zhejiang Chinese Medical University, Hangzhou 310000, PR China.
| | - Qiyang Shou
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Second Clinical Medical School of Zhejiang Chinese Medical University, Hangzhou 310000, PR China; Jinghua academy of Zhejiang Chinese Medicine University, Jinghua 321015, PR China.
| |
Collapse
|
32
|
Fu C, Wang Z, Zhou X, Hu B, Li C, Yang P. Protein-based bioactive coatings: from nanoarchitectonics to applications. Chem Soc Rev 2024; 53:1514-1551. [PMID: 38167899 DOI: 10.1039/d3cs00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Protein-based bioactive coatings have emerged as a versatile and promising strategy for enhancing the performance and biocompatibility of diverse biomedical materials and devices. Through surface modification, these coatings confer novel biofunctional attributes, rendering the material highly bioactive. Their widespread adoption across various domains in recent years underscores their importance. This review systematically elucidates the behavior of protein-based bioactive coatings in organisms and expounds on their underlying mechanisms. Furthermore, it highlights notable advancements in artificial synthesis methodologies and their functional applications in vitro. A focal point is the delineation of assembly strategies employed in crafting protein-based bioactive coatings, which provides a guide for their expansion and sustained implementation. Finally, the current trends, challenges, and future directions of protein-based bioactive coatings are discussed.
Collapse
Affiliation(s)
- Chengyu Fu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zhengge Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xingyu Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bowen Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
33
|
Boons R, Siqueira G, Grieder F, Kim SJ, Giovanoli D, Zimmermann T, Nyström G, Coulter FB, Studart AR. 3D Bioprinting of Diatom-Laden Living Materials for Water Quality Assessment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300771. [PMID: 37691091 DOI: 10.1002/smll.202300771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/17/2023] [Indexed: 09/12/2023]
Abstract
Diatoms have long been used as living biological indicators for the assessment of water quality in lakes and rivers worldwide. While this approach benefits from the great diversity of these unicellular algae, established protocols are time-consuming and require specialized equipment. Here, this work 3D prints diatom-laden hydrogels that can be used as a simple multiplex bio-indicator for water assessment. The hydrogel-based living materials are created with the help of a desktop extrusion-based printer using a suspension of diatoms, cellulose nanocrystals (CNC) and alginate as bio-ink constituents. Rheology and mechanical tests are employed to establish optimum bio-ink formulations, whereas cell culture experiments are utilized to evaluate the proliferation of the entrapped diatoms in the presence of selected water contaminants. Bioprinting of diatom-laden hydrogels is shown to be an enticing approach to generate living materials that can serve as low-cost bio-indicators for water quality assessment.
Collapse
Affiliation(s)
- Rani Boons
- Cellulose & Wood Materials Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Gilberto Siqueira
- Cellulose & Wood Materials Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Florian Grieder
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Soo-Jeong Kim
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Diego Giovanoli
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Tanja Zimmermann
- Cellulose & Wood Materials Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - Gustav Nyström
- Cellulose & Wood Materials Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zürich, 8092, Switzerland
| | - Fergal B Coulter
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
34
|
Sharma Y, Shankar V. Technologies for the fabrication of crosslinked polysaccharide-based hydrogels and its role in microbial three-dimensional bioprinting - A review. Int J Biol Macromol 2023; 250:126194. [PMID: 37562476 DOI: 10.1016/j.ijbiomac.2023.126194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/22/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Three-Dimensional bioprinting has recently gained more attraction among researchers for its wide variety of applicability. This technology involving in developing structures that mimic the natural anatomy, and also aims in developing novel biomaterials, bioinks which have a better printable ability. Different hydrogels (cross-linked polysaccharides) can be used and optimized for good adhesion and cell proliferation. Manufacturing hydrogels with adjustable characteristics allows for fine-tuning of the cellular microenvironment. Different printing technologies can be used to create hydrogels on a micro-scale which will allow regular, patterned integration of cells into hydrogels. Controlling tissue constructions' structural architecture is the important key to ensuring its function as it is designed. The designed tiny hydrogels will be useful in investigating the cellular behaviour within the environments. Three-Dimensional designs can be constructed by modifying their shape and behaviour analogous concerning pressure, heat, electricity, ultraviolet radiation or other environmental elements. Yet, its application in in vitro infection models needs more research and practical study. Microbial bioprinting has become an advancing field with promising potential to develop various biomedical as well as environmental applications. This review elucidates the properties and usage of different hydrogels for Three-Dimensional bioprinting.
Collapse
Affiliation(s)
- Yamini Sharma
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore - 14, India
| | - Vijayalakshmi Shankar
- CO(2) Research and Green Technologies Centre, Vellore Institute of Technology, Vellore - 14, India.
| |
Collapse
|
35
|
Xie Q, On Lee S, Vissamsetti N, Guo S, Johnson ME, Fried SD. Secretion-Catalyzed Assembly of Protein Biomaterials on a Bacterial Membrane Surface. Angew Chem Int Ed Engl 2023; 62:e202305178. [PMID: 37469298 PMCID: PMC11619767 DOI: 10.1002/anie.202305178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
Protein-based biomaterials have played a key role in tissue engineering, and additional exciting applications as self-healing materials and sustainable polymers are emerging. Over the past few decades, recombinant expression and production of various fibrous proteins from microbes have been demonstrated; however, the resulting proteins typically must then be purified and processed by humans to form usable fibers and materials. Here, we show that the Gram-positive bacterium Bacillus subtilis can be programmed to secrete silk through its translocon via an orthogonal signal peptide/peptidase pair. Surprisingly, we discover that this translocation mechanism drives the silk proteins to assemble into fibers spontaneously on the cell surface, in a process we call secretion-catalyzed assembly (SCA). Secreted silk fibers form self-healing hydrogels with minimal processing. Alternatively, the fibers retained on the membrane provide a facile route to create engineered living materials from Bacillus cells. This work provides a blueprint to achieve autonomous assembly of protein biomaterials in useful morphologies directly from microbial factories.
Collapse
Affiliation(s)
- Qi Xie
- Department of Chemistry, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Sea On Lee
- Department of Chemistry, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Nitya Vissamsetti
- Department of Chemistry, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Sikao Guo
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Margaret E Johnson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, 21218, Baltimore, MD, USA
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 21218, Baltimore, MD, USA
| |
Collapse
|
36
|
Charlton SG, Bible AN, Secchi E, Morrell‐Falvey JL, Retterer ST, Curtis TP, Chen J, Jana S. Microstructural and Rheological Transitions in Bacterial Biofilms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207373. [PMID: 37522628 PMCID: PMC10520682 DOI: 10.1002/advs.202207373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/20/2023] [Indexed: 08/01/2023]
Abstract
Biofilms are aggregated bacterial communities structured within an extracellular matrix (ECM). ECM controls biofilm architecture and confers mechanical resistance against shear forces. From a physical perspective, biofilms can be described as colloidal gels, where bacterial cells are analogous to colloidal particles distributed in the polymeric ECM. However, the influence of the ECM in altering the cellular packing fraction (ϕ) and the resulting viscoelastic behavior of biofilm remains unexplored. Using biofilms of Pantoea sp. (WT) and its mutant (ΔUDP), the correlation between biofilm structure and its viscoelastic response is investigated. Experiments show that the reduction of exopolysaccharide production in ΔUDP biofilms corresponds with a seven-fold increase in ϕ, resulting in a colloidal glass-like structure. Consequently, the rheological signatures become altered, with the WT behaving like a weak gel, whilst the ΔUDP displayed a glass-like rheological signature. By co-culturing the two strains, biofilm ϕ is modulated which allows us to explore the structural changes and capture a change in viscoelastic response from a weak to a strong gel, and to a colloidal glass-like state. The results reveal the role of exopolysaccharide in mediating a structural transition in biofilms and demonstrate a correlation between biofilm structure and viscoelastic response.
Collapse
Affiliation(s)
- Samuel G.V. Charlton
- Department of Civil, Environmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurich8049Switzerland
- School of EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUK
| | - Amber N. Bible
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN37830USA
| | - Eleonora Secchi
- Department of Civil, Environmental and Geomatic EngineeringInstitute of Environmental EngineeringETH ZurichZurich8049Switzerland
| | | | - Scott T. Retterer
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTN37830USA
- Center for Nanophase Material SciencesOak Ridge National LaboratoryOak RidgeTN37830USA
| | - Thomas P. Curtis
- School of EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUK
| | - Jinju Chen
- School of EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUK
| | - Saikat Jana
- School of EngineeringNewcastle UniversityNewcastle Upon TyneNE1 7RUUK
- School of EngineeringUlster UniversityBelfastBT15 1APUK
| |
Collapse
|
37
|
Altin-Yavuzarslan G, Brooks SM, Yuan SF, Park JO, Alper HS, Nelson A. Additive Manufacturing of Engineered Living Materials with Bio-augmented Mechanical Properties and Resistance to Degradation. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2300332. [PMID: 37810281 PMCID: PMC10553028 DOI: 10.1002/adfm.202300332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 10/10/2023]
Abstract
Engineered living materials (ELMs) combine living cells with polymeric matrices to yield unique materials with programmable functions. While the cellular platform and the polymer network determine the material properties and applications, there are still gaps in our ability to seamlessly integrate the biotic (cellular) and abiotic (polymer) components into singular material, then assemble them into devices and machines. Herein, we demonstrated the additive-manufacturing of ELMs wherein bioproduction of metabolites from the encapsulated cells enhanced the properties of the surrounding matrix. First, we developed aqueous resins comprising bovine serum albumin (BSA) and poly(ethylene glycol diacrylate) (PEGDA) with engineered microbes for vat photopolymerization to create objects with a wide array of 3D form factors. The BSA-PEGDA matrix afforded hydrogels that were mechanically stiff and tough for use in load-bearing applications. Second, we demonstrated the continuous in situ production of L-DOPA, naringenin, and betaxanthins from the engineered cells encapsulated within the BSA-PEGDA matrix. These microbial metabolites bioaugmented the properties of the BSA-PEGDA matrix by enhancing the stiffness (L-DOPA) or resistance to enzymatic degradation (betaxanthin). Finally, we demonstrated the assembly of the 3D printed ELM components into mechanically functional bolts and gears to showcase the potential to create functional ELMs for synthetic living machines.
Collapse
Affiliation(s)
- Gokce Altin-Yavuzarslan
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, USA
| | - Sierra M. Brooks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Shuo-Fu Yuan
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - James O. Park
- Department of Surgery, University of Washington, Seattle, Washington 98195, United States
| | - Hal S. Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Alshakim Nelson
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA, USA
| |
Collapse
|
38
|
Wu L, Dong Z. Interfacial Regulation for 3D Printing based on Slice-Based Photopolymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300903. [PMID: 37147788 DOI: 10.1002/adma.202300903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Indexed: 05/07/2023]
Abstract
3D printing, also known as additive manufacturing, can turn computer-aided designs into delicate structures directly and on demand by eliminating expensive molds, dies, or lithographic masks. Among the various technical forms, light-based 3D printing mainly involved the control of polymer-based matter fabrication and realized a field of manufacturing with high tunability of printing format, speed, and precision. Emerging slice- and light-based 3D-printing methods have prosperously advanced in recent years but still present challenges to the versatility of printing continuity, printing process, and printing details control. Herein, the field of slice- and light-based 3D printing is discussed and summarized from the view of interfacial regulation strategies to improve the printing continuity, printing process control, and the character of printed results, and several potential strategies to construct complex 3D structures of distinct characteristics with extra external fields, which are favorable for the further improvement and development of 3D printing, are proposed.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
39
|
Kyser AJ, Masigol M, Mahmoud MY, Ryan M, Lewis WG, Lewis AL, Frieboes HB, Steinbach-Rankins JM. Fabrication and characterization of bioprints with Lactobacillus crispatus for vaginal application. J Control Release 2023; 357:545-560. [PMID: 37076014 PMCID: PMC10696519 DOI: 10.1016/j.jconrel.2023.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Bacterial vaginosis (BV) is characterized by low levels of lactobacilli and overgrowth of potential pathogens in the female genital tract. Current antibiotic treatments often fail to treat BV in a sustained manner, and > 50% of women experience recurrence within 6 months post-treatment. Recently, lactobacilli have shown promise for acting as probiotics by offering health benefits in BV. However, as with other active agents, probiotics often require intensive administration schedules incurring difficult user adherence. Three-dimensional (3D)-bioprinting enables fabrication of well-defined architectures with tunable release of active agents, including live mammalian cells, offering the potential for long-acting probiotic delivery. One promising bioink, gelatin alginate has been previously shown to provide structural stability, host compatibility, viable probiotic incorporation, and cellular nutrient diffusion. This study formulates and characterizes 3D-bioprinted Lactobacillus crispatus-containing gelatin alginate scaffolds for gynecologic applications. Different weight to volume (w/v) ratios of gelatin alginate were bioprinted to determine formulations with highest printing resolution, and different crosslinking reagents were evaluated for effect on scaffold integrity via mass loss and swelling measurements. Post-print viability, sustained-release, and vaginal keratinocyte cytotoxicity assays were conducted. A 10:2 (w/v) gelatin alginate formulation was selected based on line continuity and resolution, while degradation and swelling experiments demonstrated greatest structural stability with dual genipin and calcium crosslinking, showing minimal mass loss and swelling over 28 days. 3D-bioprinted L. crispatus-containing scaffolds demonstrated sustained release and proliferation of live bacteria over 28 days, without impacting viability of vaginal epithelial cells. This study provides in vitro evidence for 3D-bioprinted scaffolds as a novel strategy to sustain probiotic delivery with the ultimate goal of restoring vaginal lactobacilli following microbiological disturbances.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohammadali Masigol
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Mark Ryan
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Warren G Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
40
|
An B, Wang Y, Huang Y, Wang X, Liu Y, Xun D, Church GM, Dai Z, Yi X, Tang TC, Zhong C. Engineered Living Materials For Sustainability. Chem Rev 2023; 123:2349-2419. [PMID: 36512650 DOI: 10.1021/acs.chemrev.2c00512] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.
Collapse
Affiliation(s)
- Bolin An
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan Huang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuzhu Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongmin Xun
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - George M Church
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Zhuojun Dai
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiao Yi
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tzu-Chieh Tang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
41
|
Liu Y, Xia X, Liu Z, Dong M. The Next Frontier of 3D Bioprinting: Bioactive Materials Functionalized by Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205949. [PMID: 36549677 DOI: 10.1002/smll.202205949] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
3D bioprinting has become a flexible technical means used in many fields. Currently, research on 3D bioprinting is mainly focused on the use of mammalian cells to print organ and tissue models, which has greatly promoted progress in the fields of tissue engineering, regenerative medicine, and pharmaceuticals. In recent years, bacterial bioprinting has gradually become a rapidly developing research fields, with a wide range of potential applications in basic research, biomedicine, bioremediation, and other field. Here, this works reviews new research on bacterial bioprinting, and discuss its future research direction.
Collapse
Affiliation(s)
- Yifei Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xiudong Xia
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P. R. China
| | - Zhen Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
42
|
Krishna Kumar R, Foster KR. 3D printing of microbial communities: A new platform for understanding and engineering microbiomes. Microb Biotechnol 2023; 16:489-493. [PMID: 36511313 PMCID: PMC9948180 DOI: 10.1111/1751-7915.14168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022] Open
Abstract
3D printing has emerged as a powerful way to produce complex materials on-demand. These printing technologies are now being applied in microbiology, with many recent examples where microbes and matrices are co-printed to create bespoke living materials. Here, we propose a new paradigm for microbial printing. In addition to its importance for materials, we argue that printing can be used to understand and engineer microbiome communities, analogous to its use in human tissue engineering. Many microbes naturally live in diverse, spatially structured communities that are challenging to study and manipulate. 3D printing offers an exciting new solution to these challenges, as it can precisely arrange microbes in 3D space, allowing one to build custom microbial communities for a wide range of purposes in research, medicine, and industry.
Collapse
Affiliation(s)
- Ravinash Krishna Kumar
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, UK.,Department of Chemistry, University of Oxford, Oxford, UK
| | - Kevin R Foster
- Department of Biochemistry, University of Oxford, Oxford, UK.,Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Ou Y, Cao S, Zhang Y, Zhu H, Guo C, Yan W, Xin F, Dong W, Zhang Y, Narita M, Yu Z, Knowles TPJ. Bioprinting microporous functional living materials from protein-based core-shell microgels. Nat Commun 2023; 14:322. [PMID: 36658120 PMCID: PMC9852579 DOI: 10.1038/s41467-022-35140-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/21/2022] [Indexed: 01/20/2023] Open
Abstract
Living materials bring together material science and biology to allow the engineering and augmenting of living systems with novel functionalities. Bioprinting promises accurate control over the formation of such complex materials through programmable deposition of cells in soft materials, but current approaches had limited success in fine-tuning cell microenvironments while generating robust macroscopic morphologies. Here, we address this challenge through the use of core-shell microgel ink to decouple cell microenvironments from the structural shell for further processing. Cells are microfluidically immobilized in the viscous core that can promote the formation of both microbial populations and mammalian cellular spheroids, followed by interparticle annealing to give covalently stabilized functional scaffolds with controlled microporosity. The results show that the core-shell strategy mitigates cell leakage while affording a favorable environment for cell culture. Furthermore, we demonstrate that different microbial consortia can be printed into scaffolds for a range of applications. By compartmentalizing microbial consortia in separate microgels, the collective bioprocessing capability of the scaffold is significantly enhanced, shedding light on strategies to augment living materials with bioprocessing capabilities.
Collapse
Affiliation(s)
- Yangteng Ou
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Cambridge University-Nanjing Centre of Technology and Innovation, 126 Dingshan Street, Nanjing, 210046, P. R. China
| | - Shixiang Cao
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Yang Zhang
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Hongjia Zhu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Chengzhi Guo
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Wei Yan
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Yanli Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Ziyi Yu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China.
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
44
|
Usai F, Loi G, Scocozza F, Bellato M, Castagliuolo I, Conti M, Pasotti L. Design and biofabrication of bacterial living materials with robust and multiplexed biosensing capabilities. Mater Today Bio 2022; 18:100526. [PMID: 36632629 PMCID: PMC9826803 DOI: 10.1016/j.mtbio.2022.100526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
The intertwined adoption of synthetic biology and 3D bioprinting has the potential to improve different application fields by fabricating engineered living materials (ELMs) with unnatural genetically-encoded sense & response capabilities. However, efforts are still needed to streamline the fabrication of sensing ELMs compatible with field use and improving their functional complexity. To investigate these two unmet needs, we adopted a workflow to reproducibly construct bacterial ELMs with synthetic biosensing circuits that provide red pigmentation as visible readout in response to different proof-of-concept chemical inducers. We first fabricated single-input/single-output ELMs and we demonstrated their robust performance in terms of longevity (cell viability and evolutionary stability >15 days, and long-term storage >1 month), sensing in harsh, non-sterile or nutrient-free conditions compatible with field use (soil, water, and clinical samples, including real samples from Pseudomonas aeruginosa infected patients). Then, we fabricated ELMs including multiple spatially-separated biosensor strains to engineer: level-bar materials detecting molecule concentration ranges, multi-input/multi-output devices with multiplexed sensing and information processing capabilities, and materials with cell-cell communication enabling on-demand pattern formation. Overall, we showed successful field use and multiplexed functioning of reproducibly fabricated ELMs, paving the way to a future automation of the prototyping process and boosting applications of such devices as in-situ monitoring tools or easy-to-use sensing kits.
Collapse
Affiliation(s)
- Francesca Usai
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy
| | - Giada Loi
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Franca Scocozza
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Massimo Bellato
- Department of Information Engineering, University of Padua, Via Gradenigo 6b, 35131 Padua, Italy
| | - Ignazio Castagliuolo
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Michele Conti
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy,Corresponding author.
| | - Lorenzo Pasotti
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy,Corresponding author.
| |
Collapse
|
45
|
Engineering Ag43 Signal Peptides with Bacterial Display and Selection. Methods Protoc 2022; 6:mps6010001. [PMID: 36648950 PMCID: PMC9844295 DOI: 10.3390/mps6010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Protein display, secretion, and export in prokaryotes are essential for utilizing microbial systems as engineered living materials, medicines, biocatalysts, and protein factories. To select for improved signal peptides for Escherichia coli protein display, we utilized error-prone polymerase chain reaction (epPCR) coupled with single-cell sorting and microplate titer to generate, select, and detect improved Ag43 signal peptides. Through just three rounds of mutagenesis and selection using green fluorescence from the 56 kDa sfGFP-beta-lactamase, we isolated clones that modestly increased surface display from 1.4- to 3-fold as detected by the microplate plate-reader and native SDS-PAGE assays. To establish that the functional protein was displayed extracellularly, we trypsinized the bacterial cells to release the surface displayed proteins for analysis. This workflow demonstrated a fast and high-throughput method leveraging epPCR and single-cell sorting to augment bacterial surface display rapidly that could be applied to other bacterial proteins.
Collapse
|
46
|
Wang Y, Sun L, Chen G, Chen H, Zhao Y. Structural Color Ionic Hydrogel Patches for Wound Management. ACS NANO 2022; 17:1437-1447. [PMID: 36512760 DOI: 10.1021/acsnano.2c10142] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ionic hydrogels have attracted extensive attention because of their wide applicability in electronic skins, biosensors, and other biomedical areas. Tremendous effort is dedicated to developing ionic hydrogels with improved detection accuracy and multifunctionality. Herein, we present an inverse opal scaffold-based structural color ionic hydrogel with the desired features as intelligent patches for wound management. The patches were composed of a polyacrylamide-poly(vinyl alcohol)-polyethylenimine-lithium chloride (PAM-PVA-PEI-LiCl) inverse opal scaffold and a vascular endothelial growth factor (VEGF) mixed methacrylated gelatin (GelMA) hydrogel filler surface. The scaffold imparted the composite patches with brilliant structural color, conductive property, and freezing resistance, while the VEGF-GelMA surface could not only prevent the ionic hydrogel from the interference of complex wound conditions but also contribute to the cell proliferation and tissue repair in the wounds. Thus, the hydrogel patches could serve as electronic skins for in vivo wound healing and monitoring with high accuracy and reliability. These features indicate that the proposed structural color ionic hydrogel patches have great potential for clinical applications.
Collapse
Affiliation(s)
- Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Guopu Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Hanxu Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325001, China
| |
Collapse
|
47
|
Seoane-Viaño I, Ong JJ, Basit AW, Goyanes A. To infinity and beyond: Strategies for fabricating medicines in outer space. Int J Pharm X 2022; 4:100121. [PMID: 35782363 PMCID: PMC9240807 DOI: 10.1016/j.ijpx.2022.100121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Recent advancements in next generation spacecrafts have reignited public excitement over life beyond Earth. However, to safeguard the health and safety of humans in the hostile environment of space, innovation in pharmaceutical manufacturing and drug delivery deserves urgent attention. In this review/commentary, the current state of medicines provision in space is explored, accompanied by a forward look on the future of pharmaceutical manufacturing in outer space. The hazards associated with spaceflight, and their corresponding medical problems, are first briefly discussed. Subsequently, the infeasibility of present-day medicines provision systems for supporting deep space exploration is examined. The existing knowledge gaps on the altered clinical effects of medicines in space are evaluated, and suggestions are provided on how clinical trials in space might be conducted. An envisioned model of on-site production and delivery of medicines in space is proposed, referencing emerging technologies (e.g. Chemputing, synthetic biology, and 3D printing) being developed on Earth that may be adapted for extra-terrestrial use. This review concludes with a critical analysis on the regulatory considerations necessary to facilitate the adoption of these technologies and proposes a framework by which these may be enforced. In doing so, this commentary aims to instigate discussions on the pharmaceutical needs of deep space exploration, and strategies on how these may be met. Space is a hostile environment that threatens human health and drug stability. Data on the behaviour of medicines in space is critical but lacking. Novel drug manufacturing and delivery strategies are needed to safeguard crewmembers’ safety. Chemputing, synthetic biology, and 3D printing are examples of such emerging technologies. A regulatory framework for space medicines must be implemented to assure quality.
Collapse
Affiliation(s)
- Iria Seoane-Viaño
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Paraquasil Group (GI-2109), Faculty of Pharmacy, Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
- Corresponding authors at: Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, The Institute of Materials (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, 15782, Spain
- Corresponding authors at: Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
48
|
Su Y, Yrastorza JT, Matis M, Cusick J, Zhao S, Wang G, Xie J. Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203291. [PMID: 36031384 PMCID: PMC9561771 DOI: 10.1002/advs.202203291] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/31/2022] [Indexed: 05/28/2023]
Abstract
Due to the continuous rise in biofilm-related infections, biofilms seriously threaten human health. The formation of biofilms makes conventional antibiotics ineffective and dampens immune clearance. Therefore, it is important to understand the mechanisms of biofilm formation and develop novel strategies to treat biofilms more effectively. This review article begins with an introduction to biofilm formation in various clinical scenarios and their corresponding therapy. Established biofilm models used in research are then summarized. The potential targets which may assist in the development of new strategies for combating biofilms are further discussed. The novel technologies developed recently for the prevention and treatment of biofilms including antimicrobial surface coatings, physical removal of biofilms, development of new antimicrobial molecules, and delivery of antimicrobial agents are subsequently presented. Finally, directions for future studies are pointed out.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jaime T. Yrastorza
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mitchell Matis
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jenna Cusick
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Siwei Zhao
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Guangshun Wang
- Department of Pathology and MicrobiologyCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Jingwei Xie
- Department of Surgery‐Transplant and Mary & Dick Holland Regenerative Medicine ProgramCollege of MedicineUniversity of Nebraska Medical CenterOmahaNE68198USA
- Department of Mechanical and Materials EngineeringCollege of EngineeringUniversity of Nebraska‐LincolnLincolnNE68588USA
| |
Collapse
|
49
|
A de novo matrix for macroscopic living materials from bacteria. Nat Commun 2022; 13:5544. [PMID: 36130968 PMCID: PMC9492681 DOI: 10.1038/s41467-022-33191-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Engineered living materials (ELMs) embed living cells in a biopolymer matrix to create materials with tailored functions. While bottom-up assembly of macroscopic ELMs with a de novo matrix would offer the greatest control over material properties, we lack the ability to genetically encode a protein matrix that leads to collective self-organization. Here we report growth of ELMs from Caulobacter crescentus cells that display and secrete a self-interacting protein. This protein formed a de novo matrix and assembled cells into centimeter-scale ELMs. Discovery of design and assembly principles allowed us to tune the composition, mechanical properties, and catalytic function of these ELMs. This work provides genetic tools, design and assembly rules, and a platform for growing ELMs with control over both matrix and cellular structure and function. Engineered living materials (ELMs) embed living cells in a biopolymer matrix to create novel materials with tailored functions. In this work, the authors engineered bacteria to grow novel macroscopic materials that can be reshaped, functionalized, and used to filter contaminated water while also showing that the stiffness of these materials can be tuned through genetic changes.
Collapse
|
50
|
Özkul G, Kehribar EŞ, Ahan RE, Köksaldı İÇ, Özkul A, Dinç B, Aydoğan S, Şeker UÖŞ. A Genetically Engineered Biofilm Material for SARS-CoV-2 Capturing and Isolation. ADVANCED MATERIALS INTERFACES 2022; 9:2201126. [PMID: 36248312 PMCID: PMC9538133 DOI: 10.1002/admi.202201126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously infecting people all around the world since its outbreak in 2019. Studies for numerous infection detection strategies are continuing. The sensitivity of detection methods is crucial to separate people with mild infections from people who are asymptomatic. In this sense, a strategy that would help to capture and isolate the SARS-CoV-2 virus prior to tests can be effective and beneficial. To this extent, genetically engineered biomaterials grounding from the biofilm protein of Escherichia coli are beneficial due to their robustness and adaptability to various application areas. Through functionalizing the E. coli biofilm protein, diverse properties can be attained such as enzyme display, nanoparticle production, and medical implant structures. Here, E. coli species are employed to express major curli protein CsgA and Griffithsin (GRFT) as fusion proteins, through a complex formation using SpyTag and SpyCatcher domains. In this study, a complex system with a CsgA scaffold harboring the affinity of GRFT against Spike protein to capture and isolate SARS-CoV-2 virus is successfully developed. It is shown that the hybrid recombinant protein can dramatically increase the sensitivity of currently available lateral flow assays for Sars-CoV-2 diagnostics.
Collapse
Affiliation(s)
- Gökçe Özkul
- UNAM ‐ Institute of Materials Science and NanotechnologyBilkent UniversityAnkara06800Turkey
| | - Ebru Şahin Kehribar
- UNAM ‐ Institute of Materials Science and NanotechnologyBilkent UniversityAnkara06800Turkey
| | - Recep Erdem Ahan
- UNAM ‐ Institute of Materials Science and NanotechnologyBilkent UniversityAnkara06800Turkey
| | - İlkay Çisil Köksaldı
- UNAM ‐ Institute of Materials Science and NanotechnologyBilkent UniversityAnkara06800Turkey
| | - Aykut Özkul
- Department of VirologyFaculty of Veterinary MedicineAnkara UniversityDışkapıAnkara06110Turkey
| | - Bedia Dinç
- Medical Microbiology Laboratory and Department of Clinical Microbiology and Infectious DiseasesAnkara Bilkent City HospitalHealth Sciences UniversityAnkara06800Turkey
| | - Sibel Aydoğan
- Medical Microbiology Laboratory and Department of Clinical Microbiology and Infectious DiseasesAnkara Bilkent City HospitalHealth Sciences UniversityAnkara06800Turkey
| | | |
Collapse
|