1
|
Wen H, Chandrasekaran P, Jin A, Pankin J, Lu M, Liberti DC, Zepp JA, Jain R, Morrisey EE, Michki SN, Frank DB. A spatiotemporal cell atlas of cardiopulmonary progenitor cell allocation during development. Cell Rep 2025; 44:115513. [PMID: 40178979 DOI: 10.1016/j.celrep.2025.115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 01/10/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025] Open
Abstract
The heart and lung co-orchestrate their development during organogenesis. The mesoderm surrounding both the developing heart and anterior foregut endoderm provides instructive cues guiding cardiopulmonary development. Additionally, it serves as a source of cardiopulmonary progenitor cells (CPPs) expressing Wnt2 that give rise to both cardiac and lung mesodermal cell lineages. Despite the mesoderm's critical importance to both heart and lung development, mechanisms guiding CPP specification are unclear. To address this, we lineage traced Wnt2+ CPPs at E8.5 and performed single-cell RNA sequencing on collected progeny across the developmental lifespan. Using computational analyses, we created a CPP-derived cell atlas that revealed a previously underappreciated spectrum of CPP-derived cell lineages, including all lung mesodermal lineages, ventricular cardiomyocytes, and epicardial and pericardial cells. By integrating spatial mapping with computational cell trajectory analysis and transcriptional profiling, we have provided a potential molecular and cellular roadmap for cardiopulmonary development.
Collapse
Affiliation(s)
- Hongbo Wen
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Prashant Chandrasekaran
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Annabelle Jin
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Josh Pankin
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - MinQi Lu
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Derek C Liberti
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA
| | - Jarod A Zepp
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Pennsylvania, CHOP, Penn-CHOP Lung Biology Institute, Philadelphia, PA 19104, USA
| | - Rajan Jain
- Department of Medicine, Department of Cell and Developmental Biology, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Department of Cell and Developmental Biology, Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvia N Michki
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Pulmonary and Sleep Medicine, University of Pennsylvania, CHOP, Penn-CHOP Lung Biology Institute, Philadelphia, PA 19104, USA.
| | - David B Frank
- Department of Pediatrics, Division of Cardiology, University of Pennsylvania, Children's Hospital of Philadelphia (CHOP), Penn-CHOP Lung Biology Institute, Penn Cardiovascular Institute, CHOP Cardiovascular Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Torii S, Nagaharu K, Nakanishi N, Usui H, Hori Y, Hirose K, Toyosawa S, Morii E, Narushima M, Kubota Y, Nakagawa O, Imanaka-Yoshida K, Maruyama K. Embryological cellular origins and hypoxia-mediated mechanisms in PIK3CA-driven refractory vascular malformations. EMBO Mol Med 2025:10.1038/s44321-025-00235-1. [PMID: 40234712 DOI: 10.1038/s44321-025-00235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025] Open
Abstract
Congenital vascular malformations, affecting 0.5% of the population, often occur in the head and neck, complicating treatment due to the critical functions in these regions. Our previous research identified distinct developmental origins for blood and lymphatic vessels in these areas, tracing them to the cardiopharyngeal mesoderm (CPM), which contributes to the development of the head, neck, and cardiovascular system in both mouse and human embryos. In this study, we investigated the pathogenesis of these malformations by expressing Pik3caH1047R in the CPM. Mice expressing Pik3caH1047R in the CPM developed vascular abnormalities restricted to the head and neck. Single-cell RNA sequencing revealed that Pik3caH1047R upregulates Vegf-a expression in endothelial cells through HIF-mediated hypoxia signaling. Human samples supported these findings, showing elevated HIF-1α and VEGF-A in malformed vessels. Notably, inhibition of HIF-1α and VEGF-A in the mouse model significantly reduced abnormal vasculature. These results highlight the role of embryonic origins and hypoxia-driven mechanisms in vascular malformations, providing a foundation for the development of therapies targeting these difficult-to-treat conditions.
Collapse
Affiliation(s)
- Sota Torii
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Keiki Nagaharu
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, 514-8507, Japan
| | - Nanako Nakanishi
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hidehito Usui
- Department of Surgery, Kanagawa Children's Medical Center, 2-138-4, Mutsukawa, Minami-ku, Yokohama, Kanagawa, Japan
| | - Yumiko Hori
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Central Laboratory and Surgical Pathology, NHO Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka, 540-0006, Japan
| | - Katsutoshi Hirose
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoru Toyosawa
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mitsunaga Narushima
- Department of Plastic and Reconstructive Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka, 564-8565, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kazuaki Maruyama
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
3
|
Arriagada C, Lin E, Schonning M, Astrof S. Mesodermal fibronectin controls cell shape, polarity, and mechanotransduction in the second heart field during cardiac outflow tract development. Dev Cell 2025; 60:62-84.e7. [PMID: 39413783 PMCID: PMC11706711 DOI: 10.1016/j.devcel.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2024] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Failure in the elongation of the cardiac outflow tract (OFT) results in congenital heart disease due to the misalignment of the great arteries with the left and right ventricles. The OFT lengthens via the accretion of progenitors from the second heart field (SHF). SHF cells are exquisitely regionalized and organized into an epithelial-like layer, forming the dorsal pericardial wall (DPW). Tissue tension, cell polarity, and proliferation within the DPW are important for the addition of SHF-derived cells to the heart and OFT elongation. However, the genes controlling these processes are not completely characterized. Using conditional mutagenesis in the mouse, we show that fibronectin (FN1) synthesized by the mesoderm coordinates multiple cellular behaviors in the anterior DPW. FN1 is enriched in the anterior DPW and plays a role in OFT elongation by maintaining a balance between pro- and anti-adhesive cell-extracellular matrix (ECM) interactions and controlling DPW cell shape, polarity, cohesion, proliferation, and mechanotransduction.
Collapse
Affiliation(s)
- Cecilia Arriagada
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Evan Lin
- Princeton Day School, Princeton, NJ, USA
| | - Michael Schonning
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers Biomedical and Health Sciences, 185 South Orange Ave., Newark, NJ 07103, USA.
| |
Collapse
|
4
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Argiro L, Chevalier C, Choquet C, Nandkishore N, Ghata A, Baudot A, Zaffran S, Lescroart F. Gastruloids are competent to specify both cardiac and skeletal muscle lineages. Nat Commun 2024; 15:10172. [PMID: 39580459 PMCID: PMC11585638 DOI: 10.1038/s41467-024-54466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
Cardiopharyngeal mesoderm contributes to the formation of the heart and head muscles. However, the mechanisms governing cardiopharyngeal mesoderm specification remain unclear. Here, we reproduce cardiopharyngeal mesoderm specification towards cardiac and skeletal muscle lineages with gastruloids from mouse embryonic stem cells. By conducting a comprehensive temporal analysis of cardiopharyngeal mesoderm development and differentiation in gastruloids compared to mouse embryos, we present the evidence for skeletal myogenesis in gastruloids. We identify different subpopulations of cardiomyocytes and skeletal muscles, the latter of which most likely correspond to different states of myogenesis with "head-like" and "trunk-like" skeletal myoblasts. In this work, we unveil the potential of gastruloids to undergo specification into both cardiac and skeletal muscle lineages, allowing the investigation of the mechanisms of cardiopharyngeal mesoderm differentiation in development and how this could be affected in congenital diseases.
Collapse
Affiliation(s)
- Laurent Argiro
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
| | - Céline Chevalier
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
| | - Caroline Choquet
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
| | - Nitya Nandkishore
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
- Department of Biotechnology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu, India
| | - Adeline Ghata
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
| | - Anaïs Baudot
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France
| | - Stéphane Zaffran
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France.
| | - Fabienne Lescroart
- Aix-Marseille Univ, INSERM, Marseille Medical Genetics (MMG), Marseille, France.
| |
Collapse
|
6
|
Guijarro C, Song S, Aigouy B, Clément R, Villoutreix P, Kelly RG. Single-cell morphometrics reveals T-box gene-dependent patterns of epithelial tension in the Second Heart field. Nat Commun 2024; 15:9512. [PMID: 39496595 PMCID: PMC11535409 DOI: 10.1038/s41467-024-53612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
The vertebrate heart tube extends by progressive addition of epithelial second heart field (SHF) progenitor cells from the dorsal pericardial wall. The interplay between epithelial mechanics and genetic mechanisms during SHF deployment is unknown. Here, we present a quantitative single-cell morphometric analysis of SHF cells during heart tube extension, including force inference analysis of epithelial stress. Joint spatial Principal Component Analysis reveals that cell orientation and stress direction are the main parameters defining apical cell morphology and distinguishes cells adjacent to the arterial and venous poles. Cell shape and mechanical forces display a dynamic relationship during heart tube formation. Moreover, while the T-box transcription factor Tbx1 is necessary for cell orientation towards the arterial pole, activation of Tbx5 in the posterior SHF correlates with the establishment of epithelial stress and SHF deletion of Tbx5 relaxes the progenitor epithelium. Integrating findings from cell-scale feature patterning and mechanical stress provides new insights into cardiac morphogenesis.
Collapse
Affiliation(s)
- Clara Guijarro
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Turing Centre for Living Systems, Marseille, France
- Aix-Marseille Université, LIS, UMR 7020, Turing Centre for Living Systems, Marseille, France
- Aix-Marseille Université, MMG, Inserm U1251, Turing Centre for Living Systems, Marseille, France
| | - Solène Song
- Aix-Marseille Université, LIS, UMR 7020, Turing Centre for Living Systems, Marseille, France
- Aix-Marseille Université, MMG, Inserm U1251, Turing Centre for Living Systems, Marseille, France
| | - Benoit Aigouy
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Raphaël Clément
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Paul Villoutreix
- Aix-Marseille Université, LIS, UMR 7020, Turing Centre for Living Systems, Marseille, France.
- Aix-Marseille Université, MMG, Inserm U1251, Turing Centre for Living Systems, Marseille, France.
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
7
|
Kuroda S, Lalonde RL, Mansour TA, Mosimann C, Nakamura T. Multiple embryonic sources converge to form the pectoral girdle skeleton in zebrafish. Nat Commun 2024; 15:6313. [PMID: 39060278 PMCID: PMC11282072 DOI: 10.1038/s41467-024-50734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The morphological transformation of the pectoral/shoulder girdle is fundamental to the water-to-land transition in vertebrate evolution. Although previous studies have resolved the embryonic origins of tetrapod shoulder girdles, those of fish pectoral girdles remain uncharacterized, creating a gap in the understanding of girdle transformation mechanisms from fish to tetrapods. Here, we identify the embryonic origins of the zebrafish pectoral girdle, including the cleithrum as an ancestral girdle element lost in extant tetrapods. Our combinatorial approach of photoconversion and genetic lineage tracing demonstrates that cleithrum development combines four adjoining embryonic populations. A comparison of these pectoral girdle progenitors with extinct and extant vertebrates highlights that cleithrum loss, indispensable for neck evolution, is associated with the disappearance of its unique developmental environment at the head/trunk interface. Overall, our study establishes an embryological framework for pectoral/shoulder girdle formation and provides evolutionary trajectories from their origin in water to diversification on land.
Collapse
Affiliation(s)
- Shunya Kuroda
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1164, Japan.
| | - Robert L Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas A Mansour
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
8
|
Bernadskaya YY, Kuan A, Tjärnberg A, Brandenburg J, Zheng P, Wiechecki K, Kaplan N, Failla M, Bikou M, Madilian O, Wang W, Christiaen L. Cell cycle-driven transcriptome maturation confers multilineage competence to cardiopharyngeal progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604718. [PMID: 39091743 PMCID: PMC11291048 DOI: 10.1101/2024.07.23.604718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
During development, stem and progenitor cells divide and transition through germ layer- and lineage-specific multipotent states to generate the diverse cell types that compose an animal. Defined changes in biomolecular composition underlie the progressive loss of potency and acquisition of lineage-specific characteristics. For example, multipotent cardiopharyngeal progenitors display multilineage transcriptional priming, whereby both the cardiac and pharyngeal muscle programs are partially active and coexist in the same progenitor cells, while their daughter cells engage in a cardiac or pharyngeal muscle differentiation path only after cell division. Here, using the tunicate Ciona, we studied the acquisition of multilineage competence and the coupling between fate decisions and cell cycle progression. We showed that multipotent cardiopharyngeal progenitors acquire the competence to produce distinct Tbx1/10(+) and (-) daughter cells shortly before mitosis, which is necessary for Tbx1/10 activation. By combining transgene-based sample barcoding with single cell RNA-seq (scRNA-seq), we uncovered transcriptome-wide dynamics in migrating cardiopharyngeal progenitors as cells progress through G1, S and G2 phases. We termed this process "transcriptome maturation", and identified candidate "mature genes", including the Rho GAP-coding gene Depdc1, which peak in late G2. Functional assays indicated that transcriptome maturation fosters cardiopharyngeal competence, in part through multilineage priming and proper oriented and asymmetric division that influences subsequent fate decisions, illustrating the concept of "behavioral competence". Both classic feedforward circuits and coupling with cell cycle progression drive transcriptome maturation, uncovering distinct levels of coupling between cell cycle progression and fateful molecular transitions. We propose that coupling competence and fate decision with the G2 and G1 phases, respectively, ensures the timely deployment of lineage-specific programs.
Collapse
Affiliation(s)
| | - Ariel Kuan
- Department of Biology, New York University, New York, NY, USA
| | | | | | - Ping Zheng
- Fang Centre, Ocean University of China, Qingdao, China
| | - Keira Wiechecki
- Department of Biology, New York University, New York, NY, USA
| | - Nicole Kaplan
- Department of Biology, New York University, New York, NY, USA
| | - Margaux Failla
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Department of Biology, New York University, New York, NY, USA
| | - Maria Bikou
- Department of Biology, New York University, New York, NY, USA
| | - Oliver Madilian
- Department of Biology, New York University, New York, NY, USA
| | - Wei Wang
- Department of Biology, New York University, New York, NY, USA
- Fang Centre, Ocean University of China, Qingdao, China
| | - Lionel Christiaen
- Michael Sars Centre, University of Bergen, Bergen, Norway
- Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
9
|
Ramirez A, Vyzas CA, Zhao H, Eng K, Degenhardt K, Astrof S. Buffering Mechanism in Aortic Arch Artery Formation and Congenital Heart Disease. Circ Res 2024; 134:e112-e132. [PMID: 38618720 PMCID: PMC11081845 DOI: 10.1161/circresaha.123.322767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND The resiliency of embryonic development to genetic and environmental perturbations has been long appreciated; however, little is known about the mechanisms underlying the robustness of developmental processes. Aberrations resulting in neonatal lethality are exemplified by congenital heart disease arising from defective morphogenesis of pharyngeal arch arteries (PAAs) and their derivatives. METHODS Mouse genetics, lineage tracing, confocal microscopy, and quantitative image analyses were used to investigate mechanisms of PAA formation and repair. RESULTS The second heart field (SHF) gives rise to the PAA endothelium. Here, we show that the number of SHF-derived endothelial cells (ECs) is regulated by VEGFR2 (vascular endothelial growth factor receptor 2) and Tbx1. Remarkably, when the SHF-derived EC number is decreased, PAA development can be rescued by the compensatory endothelium. Blocking such compensatory response leads to embryonic demise. To determine the source of compensating ECs and mechanisms regulating their recruitment, we investigated 3-dimensional EC connectivity, EC fate, and gene expression. Our studies demonstrate that the expression of VEGFR2 by the SHF is required for the differentiation of SHF-derived cells into PAA ECs. The deletion of 1 VEGFR2 allele (VEGFR2SHF-HET) reduces SHF contribution to the PAA endothelium, while the deletion of both alleles (VEGFR2SHF-KO) abolishes it. The decrease in SHF-derived ECs in VEGFR2SHF-HET and VEGFR2SHF-KO embryos is complemented by the recruitment of ECs from the nearby veins. Compensatory ECs contribute to PAA derivatives, giving rise to the endothelium of the aortic arch and the ductus in VEGFR2SHF-KO mutants. Blocking the compensatory response in VEGFR2SHF-KO mutants results in embryonic lethality shortly after mid-gestation. The compensatory ECs are absent in Tbx1+/- embryos, a model for 22q11 deletion syndrome, leading to unpredictable arch artery morphogenesis and congenital heart disease. Tbx1 regulates the recruitment of the compensatory endothelium in an SHF-non-cell-autonomous manner. CONCLUSIONS Our studies uncover a novel buffering mechanism underlying the resiliency of PAA development and remodeling.
Collapse
Affiliation(s)
- AnnJosette Ramirez
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Christina A. Vyzas
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Huaning Zhao
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| | - Kevin Eng
- Department of Statistics, Rutgers University, School of Arts and Sciences, Piscataway, NJ 08854
| | - Karl Degenhardt
- Children's Hospital of Pennsylvania, University of Pennsylvania, Philadelphia, PA 19107
| | - Sophie Astrof
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
- Multidisciplinary Ph.D. Program in Biomedical Sciences: Cell Biology, Neuroscience and Physiology Track, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, 07103
| |
Collapse
|
10
|
Aurigemma I, Lanzetta O, Cirino A, Allegretti S, Lania G, Ferrentino R, Poondi Krishnan V, Angelini C, Illingworth E, Baldini A. Endothelial gene regulatory elements associated with cardiopharyngeal lineage differentiation. Commun Biol 2024; 7:351. [PMID: 38514806 PMCID: PMC10957928 DOI: 10.1038/s42003-024-06017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Endothelial cells (EC) differentiate from multiple sources, including the cardiopharyngeal mesoderm, which gives rise also to cardiac and branchiomeric muscles. The enhancers activated during endothelial differentiation within the cardiopharyngeal mesoderm are not completely known. Here, we use a cardiogenic mesoderm differentiation model that activates an endothelial transcription program to identify endothelial regulatory elements activated in early cardiogenic mesoderm. Integrating chromatin remodeling and gene expression data with available single-cell RNA-seq data from mouse embryos, we identify 101 putative regulatory elements of EC genes. We then apply a machine-learning strategy, trained on validated enhancers, to predict enhancers. Using this computational assay, we determine that 50% of these sequences are likely enhancers, some of which are already reported. We also identify a smaller set of regulatory elements of well-known EC genes and validate them using genetic and epigenetic perturbation. Finally, we integrate multiple data sources and computational tools to search for transcriptional factor binding motifs. In conclusion, we show EC regulatory sequences with a high likelihood to be enhancers, and we validate a subset of them using computational and cell culture models. Motif analyses show that the core EC transcription factors GATA/ETS/FOS is a likely driver of EC regulation in cardiopharyngeal mesoderm.
Collapse
Affiliation(s)
- Ilaria Aurigemma
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Olga Lanzetta
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Andrea Cirino
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Sara Allegretti
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Gabriella Lania
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Rosa Ferrentino
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Varsha Poondi Krishnan
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Claudia Angelini
- Istituto Applicazioni del Calcolo, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Elizabeth Illingworth
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Antonio Baldini
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
11
|
Guijarro C, Kelly RG. On the involvement of the second heart field in congenital heart defects. C R Biol 2024; 347:9-18. [PMID: 38488639 DOI: 10.5802/crbiol.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
Congenital heart defects (CHD) affect 1 in 100 live births and result from defects in cardiac development. Growth of the early heart tube occurs by the progressive addition of second heart field (SHF) progenitor cells to the cardiac poles. The SHF gives rise to ventricular septal, right ventricular and outflow tract myocardium at the arterial pole, and atrial, including atrial septal myocardium, at the venous pole. SHF deployment creates the template for subsequent cardiac septation and has been implicated in cardiac looping and in orchestrating outflow tract development with neural crest cells. Genetic or environmental perturbation of SHF deployment thus underlies a spectrum of common forms of CHD affecting conotruncal and septal morphogenesis. Here we review the major properties of SHF cells as well as recent insights into the developmental programs that drive normal cardiac progenitor cell addition and the origins of CHD.
Collapse
|
12
|
Padmanabhan A, de Soysa TY, Pelonero A, Sapp V, Shah PP, Wang Q, Li L, Lee CY, Sadagopan N, Nishino T, Ye L, Yang R, Karnay A, Poleshko A, Bolar N, Linares-Saldana R, Ranade SS, Alexanian M, Morton SU, Jain M, Haldar SM, Srivastava D, Jain R. A genome-wide CRISPR screen identifies BRD4 as a regulator of cardiomyocyte differentiation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:317-331. [PMID: 39196112 PMCID: PMC11361716 DOI: 10.1038/s44161-024-00431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/19/2024] [Indexed: 08/29/2024]
Abstract
Human induced pluripotent stem cell (hiPSC) to cardiomyocyte (CM) differentiation has reshaped approaches to studying cardiac development and disease. In this study, we employed a genome-wide CRISPR screen in a hiPSC to CM differentiation system and reveal here that BRD4, a member of the bromodomain and extraterminal (BET) family, regulates CM differentiation. Chemical inhibition of BET proteins in mouse embryonic stem cell (mESC)-derived or hiPSC-derived cardiac progenitor cells (CPCs) results in decreased CM differentiation and persistence of cells expressing progenitor markers. In vivo, BRD4 deletion in second heart field (SHF) CPCs results in embryonic or early postnatal lethality, with mutants demonstrating myocardial hypoplasia and an increase in CPCs. Single-cell transcriptomics identified a subpopulation of SHF CPCs that is sensitive to BRD4 loss and associated with attenuated CM lineage-specific gene programs. These results highlight a previously unrecognized role for BRD4 in CM fate determination during development and a heterogenous requirement for BRD4 among SHF CPCs.
Collapse
Affiliation(s)
- Arun Padmanabhan
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | | | | | - Valerie Sapp
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, CA, USA
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA
| | - Parisha P Shah
- Cardiovascular Institute, Epigenetics Institute, and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Qiaohong Wang
- Cardiovascular Institute, Epigenetics Institute, and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Li Li
- Cardiovascular Institute, Epigenetics Institute, and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Clara Youngna Lee
- Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Nandhini Sadagopan
- Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | | | - Lin Ye
- Gladstone Institutes, San Francisco, CA, USA
| | - Rachel Yang
- Cardiovascular Institute, Epigenetics Institute, and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley Karnay
- Cardiovascular Institute, Epigenetics Institute, and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrey Poleshko
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikhita Bolar
- Cardiovascular Institute, Epigenetics Institute, and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ricardo Linares-Saldana
- Cardiovascular Institute, Epigenetics Institute, and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Michael Alexanian
- Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Sarah U Morton
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Mohit Jain
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, CA, USA
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA
| | - Saptarsi M Haldar
- Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
- Amgen Research, Cardiometabolic Disorders, South San Francisco, CA, USA
| | - Deepak Srivastava
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Pediatrics, University of California, San Francisco, School of Medicine, San Francisco, CA, USA.
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone Institutes, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| | - Rajan Jain
- Cardiovascular Institute, Epigenetics Institute, and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Ramirez A, Vyzas CA, Zhao H, Eng K, Degenhardt K, Astrof S. Identification of novel buffering mechanisms in aortic arch artery development and congenital heart disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.02.530833. [PMID: 38370627 PMCID: PMC10871175 DOI: 10.1101/2023.03.02.530833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Rationale The resiliency of embryonic development to genetic and environmental perturbations has been long appreciated; however, little is known about the mechanisms underlying the robustness of developmental processes. Aberrations resulting in neonatal lethality are exemplified by congenital heart disease (CHD) arising from defective morphogenesis of pharyngeal arch arteries (PAA) and their derivatives. Objective To uncover mechanisms underlying the robustness of PAA morphogenesis. Methods and Results The second heart field (SHF) gives rise to the PAA endothelium. Here, we show that the number of SHF-derived ECs is regulated by VEGFR2 and Tbx1 . Remarkably, when SHF-derived EC number is decreased, PAA development can be rescued by the compensatory endothelium. Blocking such compensatory response leads to embryonic demise. To determine the source of compensating ECs and mechanisms regulating their recruitment, we investigated three-dimensional EC connectivity, EC fate, and gene expression. Our studies demonstrate that the expression of VEGFR2 by the SHF is required for the differentiation of SHF-derived cells into PAA ECs. The deletion of one VEGFR2 allele (VEGFR2 SHF-HET ) reduces SHF contribution to the PAA endothelium, while the deletion of both alleles (VEGFR2 SHF-KO ) abolishes it. The decrease in SHF-derived ECs in VEGFR2 SHF-HET and VEGFR2 SHF-KO embryos is complemented by the recruitment of ECs from the nearby veins. Compensatory ECs contribute to PAA derivatives, giving rise to the endothelium of the aortic arch and the ductus in VEGFR2 SHF-KO mutants. Blocking the compensatory response in VEGFR2 SHF-KO mutants results in embryonic lethality shortly after mid-gestation. The compensatory ECs are absent in Tbx1 +/- embryos, a model for 22q11 deletion syndrome, leading to unpredictable arch artery morphogenesis and CHD. Tbx1 regulates the recruitment of the compensatory endothelium in an SHF-non-cell-autonomous manner. Conclusions Our studies uncover a novel buffering mechanism underlying the resiliency of PAA development and remodeling. Nonstandard Abbreviations and Acronyms in Alphabetical Order CHD - congenital heart disease; ECs - endothelial cells; IAA-B - interrupted aortic arch type B; PAA - pharyngeal arch arteries; RERSA - retro-esophageal right subclavian artery; SHF - second heart field; VEGFR2 - Vascular endothelial growth factor receptor 2.
Collapse
|
14
|
Janssen R, Budd GE. New insights into mesoderm and endoderm development, and the nature of the onychophoran blastopore. Front Zool 2024; 21:2. [PMID: 38267986 PMCID: PMC10809584 DOI: 10.1186/s12983-024-00521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Early during onychophoran development and prior to the formation of the germ band, a posterior tissue thickening forms the posterior pit. Anterior to this thickening forms a groove, the embryonic slit, that marks the anterior-posterior orientation of the developing embryo. This slit is by some authors considered the blastopore, and thus the origin of the endoderm, while others argue that the posterior pit represents the blastopore. This controversy is of evolutionary significance because if the slit represents the blastopore, then this would support the amphistomy hypothesis that suggests that a slit-like blastopore in the bilaterian ancestor evolved into protostomy and deuterostomy. RESULTS In this paper, we summarize our current knowledge about endoderm and mesoderm development in onychophorans and provide additional data on early endoderm- and mesoderm-determining marker genes such as Blimp, Mox, and the T-box genes. CONCLUSION We come to the conclusion that the endoderm of onychophorans forms prior to the development of the embryonic slit, and thus that the slit is not the primary origin of the endoderm. It is thus unlikely that the embryonic slit represents the blastopore. We suggest instead that the posterior pit indeed represents the lips of the blastopore, and that the embryonic slit (and surrounding tissue) represents a morphologically superficial archenteron-like structure. We conclude further that both endoderm and mesoderm development are under control of conserved gene regulatory networks, and that many of the features found in arthropods including the model Drosophila melanogaster are likely derived.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| |
Collapse
|
15
|
Tseng KC, Crump JG. Craniofacial developmental biology in the single-cell era. Development 2023; 150:dev202077. [PMID: 37812056 PMCID: PMC10617621 DOI: 10.1242/dev.202077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The evolution of a unique craniofacial complex in vertebrates made possible new ways of breathing, eating, communicating and sensing the environment. The head and face develop through interactions of all three germ layers, the endoderm, ectoderm and mesoderm, as well as the so-called fourth germ layer, the cranial neural crest. Over a century of experimental embryology and genetics have revealed an incredible diversity of cell types derived from each germ layer, signaling pathways and genes that coordinate craniofacial development, and how changes to these underlie human disease and vertebrate evolution. Yet for many diseases and congenital anomalies, we have an incomplete picture of the causative genomic changes, in particular how alterations to the non-coding genome might affect craniofacial gene expression. Emerging genomics and single-cell technologies provide an opportunity to obtain a more holistic view of the genes and gene regulatory elements orchestrating craniofacial development across vertebrates. These single-cell studies generate novel hypotheses that can be experimentally validated in vivo. In this Review, we highlight recent advances in single-cell studies of diverse craniofacial structures, as well as potential pitfalls and the need for extensive in vivo validation. We discuss how these studies inform the developmental sources and regulation of head structures, bringing new insights into the etiology of structural birth anomalies that affect the vertebrate head.
Collapse
Affiliation(s)
- Kuo-Chang Tseng
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
16
|
Mahadevan A, Tipler A, Jones H. Shared developmental pathways of the placenta and fetal heart. Placenta 2023; 141:35-42. [PMID: 36604258 DOI: 10.1016/j.placenta.2022.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Congenital heart defects (CHD) remain the most common class of birth defect worldwide, affecting 1 in every 110 live births. A host of clinical and morphological indicators of placental dysfunction are observed in pregnancies complicated by fetal CHD and, with the recent emergence of single-cell sequencing capabilities, the molecular and physiological associations between the embryonic heart and developing placenta are increasingly evident. In CHD pregnancies, a hostile intrauterine environment may negatively influence and alter fetal development. Placental maldevelopment and dysfunction creates this hostile in-utero environment and may manifest in the development of various subtypes of CHD, with downstream perfusion and flow-related alterations leading to yet further disruption in placental structure and function. The adverse in-utero environment of CHD-complicated pregnancies is well studied, however the specific etiological role that the placenta plays in CHD development remains unclear. Many mouse and rat models have been used to characterize the relationship between CHD and placental dysfunction, but these paradigms present substantial limitations in the assessment of both the heart and placenta. Improvements in non-invasive placental assessment can mitigate these limitations and drive human-specific investigation in relation to fetal and placental development. Here, we review the clinical, structural, and molecular relationships between CHD and placental dysfunction, the CHD subtype-dependence of these changes, and the future of Placenta-Heart axis modeling and investigation.
Collapse
Affiliation(s)
- Aditya Mahadevan
- Physiology and Aging, University of Florida College of Medicine, USA; Center for Research in Perinatal Outcomes, University of Florida, USA
| | - Alyssa Tipler
- Physiology and Aging, University of Florida College of Medicine, USA; Center for Research in Perinatal Outcomes, University of Florida, USA
| | - Helen Jones
- Physiology and Aging, University of Florida College of Medicine, USA; Center for Research in Perinatal Outcomes, University of Florida, USA.
| |
Collapse
|
17
|
Chan CH, Lam YY, Wong N, Geng L, Zhang J, Ahola V, Zare A, Li RA, Lanner F, Keung W, Cheung YF. Abnormal developmental trajectory and vulnerability to cardiac arrhythmias in tetralogy of Fallot with DiGeorge syndrome. Commun Biol 2023; 6:969. [PMID: 37740059 PMCID: PMC10516936 DOI: 10.1038/s42003-023-05344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease. Ventricular dysfunction and cardiac arrhythmias are well-documented complications in patients with repaired TOF. Whether intrinsic abnormalities exist in TOF cardiomyocytes is unknown. We establish human induced pluripotent stem cells (hiPSCs) from TOF patients with and without DiGeorge (DG) syndrome, the latter being the most commonly associated syndromal association of TOF. TOF-DG hiPSC-derived cardiomyocytes (hiPSC-CMs) show impaired ventricular specification, downregulated cardiac gene expression and upregulated neural gene expression. Transcriptomic profiling of the in vitro cardiac progenitors reveals early bifurcation, as marked by ectopic RGS13 expression, in the trajectory of TOF-DG-hiPSC cardiac differentiation. Functional assessments further reveal increased arrhythmogenicity in TOF-DG-hiPSC-CMs. These findings are found only in the TOF-DG but not TOF-with no DG (ND) patient-derived hiPSC-CMs and cardiac progenitors (CPs), which have implications on the worse clinical outcomes of TOF-DG patients.
Collapse
Affiliation(s)
- Chun-Ho Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yin-Yu Lam
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nicodemus Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lin Geng
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jilin Zhang
- Ming Wai Lau Centre for Reparative Medicine, Hong Kong node, Karolinska Institutet, Units 608-613 Building 15 Science Park, Hong Kong, China
| | - Virpi Ahola
- Ming Wai Lau Centre for Reparative Medicine, Hong Kong node, Karolinska Institutet, Units 608-613 Building 15 Science Park, Hong Kong, China
| | - Aman Zare
- Ming Wai Lau Centre for Reparative Medicine, Hong Kong node, Karolinska Institutet, Units 608-613 Building 15 Science Park, Hong Kong, China
| | - Ronald Adolphus Li
- Ming Wai Lau Centre for Reparative Medicine, Hong Kong node, Karolinska Institutet, Units 608-613 Building 15 Science Park, Hong Kong, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Hong Kong, China
| | - Fredrik Lanner
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Solnavagen 9, 17165, Stockholm, Sweden
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Wendy Keung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Hong Kong, China
| | - Yiu-Fai Cheung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Ming Wai Lau Centre for Reparative Medicine, Hong Kong node, Karolinska Institutet, Units 608-613 Building 15 Science Park, Hong Kong, China.
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Watanabe Y, Wang Y, Tanaka Y, Iwase A, Kawamura T, Saga Y, Yashiro K, Kurihara H, Nakagawa O. Hey2 enhancer activity defines unipotent progenitors for left ventricular cardiomyocytes in juxta-cardiac field of early mouse embryo. Proc Natl Acad Sci U S A 2023; 120:e2307658120. [PMID: 37669370 PMCID: PMC10500178 DOI: 10.1073/pnas.2307658120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
The cardiac crescent is the first structure of the heart and contains progenitor cells of the first heart field, which primarily differentiate into left ventricular cardiomyocytes. The interface between the forming cardiac crescent and extraembryonic tissue is known as the juxta-cardiac field (JCF), and progenitor cells in this heart field contribute to the myocardium of the left ventricle and atrioventricular canal as well as the epicardium. However, it is unclear whether there are progenitor cells that differentiate specifically into left ventricular cardiomyocytes. We have previously demonstrated that an enhancer of the gene encoding the Hey2 bHLH transcriptional repressor is activated in the ventricular myocardium during mouse embryonic development. In this study, we aimed to investigate the characteristics of cardiomyocyte progenitor cells and their cell lineages by analyzing Hey2 enhancer activity at the earliest stages of heart formation. We found that the Hey2 enhancer initiated its activity prior to cardiomyocyte differentiation within the JCF. Hey2 enhancer-active cells were present rostrally to the Tbx5-expressing region at the early phase of cardiac crescent formation and differentiated exclusively into left ventricular cardiomyocytes in a lineage distinct from the Tbx5-positive lineage. By the late phase of cardiac crescent formation, Hey2 enhancer activity became significantly overlapped with Tbx5 expression in cells that contribute to the left ventricular myocardium. Our study reveals that a population of unipotent progenitor cells for left ventricular cardiomyocytes emerge in the JCF, providing further insight into the mode of cell type diversification during early cardiac development.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| | - Yunce Wang
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
- Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga525-8577, Japan
| | - Yuki Tanaka
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
- Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga525-8577, Japan
| | - Akiyasu Iwase
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Teruhisa Kawamura
- Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga525-8577, Japan
| | - Yumiko Saga
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka411-8582, Japan
| | - Kenta Yashiro
- Division of Anatomy and Developmental Biology, Department of Anatomy, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto602-8566, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka564-8565, Japan
| |
Collapse
|
19
|
Stathopoulou A, Wang P, Thellier C, Kelly RG, Zheng D, Scambler PJ. CHARGE syndrome-associated CHD7 acts at ISL1-regulated enhancers to modulate second heart field gene expression. Cardiovasc Res 2023; 119:2089-2105. [PMID: 37052590 PMCID: PMC10478754 DOI: 10.1093/cvr/cvad059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/20/2022] [Accepted: 04/12/2023] [Indexed: 04/14/2023] Open
Abstract
AIMS Haploinsufficiency of the chromo-domain protein CHD7 underlies most cases of CHARGE syndrome, a multisystem birth defect including congenital heart malformation. Context specific roles for CHD7 in various stem, progenitor, and differentiated cell lineages have been reported. Previously, we showed severe defects when Chd7 is absent from cardiopharyngeal mesoderm (CPM). Here, we investigate altered gene expression in the CPM and identify specific CHD7-bound target genes with known roles in the morphogenesis of affected structures. METHODS AND RESULTS We generated conditional KO of Chd7 in CPM and analysed cardiac progenitor cells using transcriptomic and epigenomic analyses, in vivo expression analysis, and bioinformatic comparisons with existing datasets. We show CHD7 is required for correct expression of several genes established as major players in cardiac development, especially within the second heart field (SHF). We identified CHD7 binding sites in cardiac progenitor cells and found strong association with histone marks suggestive of dynamically regulated enhancers during the mesodermal to cardiac progenitor transition of mESC differentiation. Moreover, CHD7 shares a subset of its target sites with ISL1, a pioneer transcription factor in the cardiogenic gene regulatory network, including one enhancer modulating Fgf10 expression in SHF progenitor cells vs. differentiating cardiomyocytes. CONCLUSION We show that CHD7 interacts with ISL1, binds ISL1-regulated cardiac enhancers, and modulates gene expression across the mesodermal heart fields during cardiac morphogenesis.
Collapse
Affiliation(s)
- Athanasia Stathopoulou
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | | | - Robert G Kelly
- Aix-Marseille University, CNRS UMR 7288, IBDM, Marseille, France
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Neurology and Neurosciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter J Scambler
- Developmental Biology of Birth Defects, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
20
|
Zhao Y, Wang Y, Shi L, McDonald-McGinn DM, Crowley TB, McGinn DE, Tran OT, Miller D, Lin JR, Zackai E, Johnston HR, Chow EWC, Vorstman JAS, Vingerhoets C, van Amelsvoort T, Gothelf D, Swillen A, Breckpot J, Vermeesch JR, Eliez S, Schneider M, van den Bree MBM, Owen MJ, Kates WR, Repetto GM, Shashi V, Schoch K, Bearden CE, Digilio MC, Unolt M, Putotto C, Marino B, Pontillo M, Armando M, Vicari S, Angkustsiri K, Campbell L, Busa T, Heine-Suñer D, Murphy KC, Murphy D, García-Miñaúr S, Fernández L, Zhang ZD, Goldmuntz E, Gur RE, Emanuel BS, Zheng D, Marshall CR, Bassett AS, Wang T, Morrow BE. Chromatin regulators in the TBX1 network confer risk for conotruncal heart defects in 22q11.2DS. NPJ Genom Med 2023; 8:17. [PMID: 37463940 PMCID: PMC10354062 DOI: 10.1038/s41525-023-00363-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Congenital heart disease (CHD) affecting the conotruncal region of the heart, occurs in 40-50% of patients with 22q11.2 deletion syndrome (22q11.2DS). This syndrome is a rare disorder with relative genetic homogeneity that can facilitate identification of genetic modifiers. Haploinsufficiency of TBX1, encoding a T-box transcription factor, is one of the main genes responsible for the etiology of the syndrome. We suggest that genetic modifiers of conotruncal defects in patients with 22q11.2DS may be in the TBX1 gene network. To identify genetic modifiers, we analyzed rare, predicted damaging variants in whole genome sequence of 456 cases with conotruncal defects and 537 controls, with 22q11.2DS. We then performed gene set approaches and identified chromatin regulatory genes as modifiers. Chromatin genes with recurrent damaging variants include EP400, KAT6A, KMT2C, KMT2D, NSD1, CHD7 and PHF21A. In total, we identified 37 chromatin regulatory genes, that may increase risk for conotruncal heart defects in 8.5% of 22q11.2DS cases. Many of these genes were identified as risk factors for sporadic CHD in the general population. These genes are co-expressed in cardiac progenitor cells with TBX1, suggesting that they may be in the same genetic network. The genes KAT6A, KMT2C, CHD7 and EZH2, have been previously shown to genetically interact with TBX1 in mouse models. Our findings indicate that disturbance of chromatin regulatory genes impact the TBX1 gene network serving as genetic modifiers of 22q11.2DS and sporadic CHD, suggesting that there are some shared mechanisms involving the TBX1 gene network in the etiology of CHD.
Collapse
Affiliation(s)
- Yingjie Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yujue Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Lijie Shi
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Donna M McDonald-McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - T Blaine Crowley
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Daniel E McGinn
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Oanh T Tran
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Daniella Miller
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - H Richard Johnston
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eva W C Chow
- Department of Psychiatry, University of Toronto, Ontario, M5G 0A4, Canada
| | - Jacob A S Vorstman
- Program in Genetics and Genome Biology, Research Institute and Autism Research Unit, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Claudia Vingerhoets
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, 6200, MD, the Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Psychology, Maastricht University, Maastricht, 6200, MD, the Netherlands
| | - Doron Gothelf
- The Division of Child & Adolescent Psychiatry, Edmond and Lily Sapfra Children's Hospital, Sheba Medical Center and Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Ramat Gan, 5262000, Israel
| | - Ann Swillen
- Center for Human Genetics, University Hospital Leuven, Department of Human Genetics, University of Leuven (KU Leuven), Leuven, 3000, Belgium
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospital Leuven, Department of Human Genetics, University of Leuven (KU Leuven), Leuven, 3000, Belgium
| | - Joris R Vermeesch
- Center for Human Genetics, University Hospital Leuven, Department of Human Genetics, University of Leuven (KU Leuven), Leuven, 3000, Belgium
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Marianne B M van den Bree
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Wales, CF24 4HQ, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Wales, CF24 4HQ, UK
| | - Wendy R Kates
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, 13202, USA
- Program in Neuroscience, SUNY Upstate Medical University, Syracuse, NY, 13202, USA
| | - Gabriela M Repetto
- Center for Genetics and Genomics, Facultad de Medicina Clinica Alemana-Universidad del Desarrollo, Santiago, 7710162, Chile
| | - Vandana Shashi
- Department of Pediatrics, Duke University, Durham, NC, 27710, USA
| | - Kelly Schoch
- Department of Pediatrics, Duke University, Durham, NC, 27710, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - M Cristina Digilio
- Department of Medical Genetics, Bambino Gesù Hospital, Rome, 00165, Italy
| | - Marta Unolt
- Department of Medical Genetics, Bambino Gesù Hospital, Rome, 00165, Italy
- Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome, 00185, Italy
| | - Carolina Putotto
- Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome, 00185, Italy
| | - Bruno Marino
- Department of Pediatrics, Gynecology, and Obstetrics, La Sapienza University of Rome, Rome, 00185, Italy
| | - Maria Pontillo
- Department of Neuroscience, Bambino Gesù Hospital, Rome, 00165, Italy
| | - Marco Armando
- Department of Neuroscience, Bambino Gesù Hospital, Rome, 00165, Italy
- Developmental Imaging and Psychopathology Lab, University of Geneva, Geneva, 1211, Switzerland
| | - Stefano Vicari
- Department of Life Sciences and Public Health, Catholic University and Child & Adolescent Psychiatry Unit at Bambino Gesù Hospital, Rome, 00165, Italy
| | - Kathleen Angkustsiri
- Developmental Behavioral Pediatrics, MIND Institute, University of California, Davis, CA, 95817, USA
| | - Linda Campbell
- School of Psychology, University of Newcastle, Newcastle, 2258, Australia
| | - Tiffany Busa
- Department of Medical Genetics, Aix-Marseille University, Marseille, 13284, France
| | - Damian Heine-Suñer
- Genomics of Health and Unit of Molecular Diagnosis and Clinical Genetics, Son Espases University Hospital, Balearic Islands Health Research Institute, Palma de Mallorca, 07120, Spain
| | - Kieran C Murphy
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, 505095, Ireland
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, King's College London, Institute of Psychiatry, Psychology, and Neuroscience, London, SE5 8AF, UK
- Behavioral and Developmental Psychiatry Clinical Academic Group, Behavioral Genetics Clinic, National Adult Autism and ADHD Service, South London and Maudsley Foundation National Health Service Trust, London, SE5 8AZ, UK
| | - Sixto García-Miñaúr
- Institute of Medical and Molecular Genetics, University Hospital La Paz, Madrid, 28046, Spain
| | - Luis Fernández
- Institute of Medical and Molecular Genetics, University Hospital La Paz, Madrid, 28046, Spain
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania Philadelphia, Philadelphia, PA, 19104, USA
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - Deyou Zheng
- Department of Genetics, Department of Neurology, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Christian R Marshall
- Division of Genome Diagnostics, The Hospital for Sick Children and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Anne S Bassett
- Clinical Genetics Research Program and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Dalglish Family 22q Clinic, Toronto General Hospital, and Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, M5T 1R8, Canada
| | - Tao Wang
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
21
|
Kocere A, Lalonde RL, Mosimann C, Burger A. Lateral thinking in syndromic congenital cardiovascular disease. Dis Model Mech 2023; 16:dmm049735. [PMID: 37125615 PMCID: PMC10184679 DOI: 10.1242/dmm.049735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Syndromic birth defects are rare diseases that can present with seemingly pleiotropic comorbidities. Prime examples are rare congenital heart and cardiovascular anomalies that can be accompanied by forelimb defects, kidney disorders and more. Whether such multi-organ defects share a developmental link remains a key question with relevance to the diagnosis, therapeutic intervention and long-term care of affected patients. The heart, endothelial and blood lineages develop together from the lateral plate mesoderm (LPM), which also harbors the progenitor cells for limb connective tissue, kidneys, mesothelia and smooth muscle. This developmental plasticity of the LPM, which founds on multi-lineage progenitor cells and shared transcription factor expression across different descendant lineages, has the potential to explain the seemingly disparate syndromic defects in rare congenital diseases. Combining patient genome-sequencing data with model organism studies has already provided a wealth of insights into complex LPM-associated birth defects, such as heart-hand syndromes. Here, we summarize developmental and known disease-causing mechanisms in early LPM patterning, address how defects in these processes drive multi-organ comorbidities, and outline how several cardiovascular and hematopoietic birth defects with complex comorbidities may be LPM-associated diseases. We also discuss strategies to integrate patient sequencing, data-aggregating resources and model organism studies to mechanistically decode congenital defects, including potentially LPM-associated orphan diseases. Eventually, linking complex congenital phenotypes to a common LPM origin provides a framework to discover developmental mechanisms and to anticipate comorbidities in congenital diseases affecting the cardiovascular system and beyond.
Collapse
Affiliation(s)
- Agnese Kocere
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
- Department of Molecular Life Science, University of Zurich, 8057 Zurich, Switzerland
| | - Robert L. Lalonde
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| |
Collapse
|
22
|
Ahlmann-Eltze C, Huber W. Comparison of transformations for single-cell RNA-seq data. Nat Methods 2023; 20:665-672. [PMID: 37037999 PMCID: PMC10172138 DOI: 10.1038/s41592-023-01814-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/11/2023] [Indexed: 04/12/2023]
Abstract
The count table, a numeric matrix of genes × cells, is the basic input data structure in the analysis of single-cell RNA-sequencing data. A common preprocessing step is to adjust the counts for variable sampling efficiency and to transform them so that the variance is similar across the dynamic range. These steps are intended to make subsequent application of generic statistical methods more palatable. Here, we describe four transformation approaches based on the delta method, model residuals, inferred latent expression state and factor analysis. We compare their strengths and weaknesses and find that the latter three have appealing theoretical properties; however, in benchmarks using simulated and real-world data, it turns out that a rather simple approach, namely, the logarithm with a pseudo-count followed by principal-component analysis, performs as well or better than the more sophisticated alternatives. This result highlights limitations of current theoretical analysis as assessed by bottom-line performance benchmarks.
Collapse
Affiliation(s)
- Constantin Ahlmann-Eltze
- Genome Biology Unit, EMBL, Heidelberg, Germany.
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.
| | | |
Collapse
|
23
|
Baral K, D'amato G, Kuschel B, Bogan F, Jones BW, Large CL, Whatley JD, Red-Horse K, Sharma B. APJ+ cells in the SHF contribute to the cells of aorta and pulmonary trunk through APJ signaling. Dev Biol 2023; 498:77-86. [PMID: 37037405 DOI: 10.1016/j.ydbio.2023.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023]
Abstract
Outflow tract develops from cardiac progenitor cells in the second heart field (SHF) domain. APJ, a G-Protein Coupled Receptor, is expressed by cardiac progenitor cells in the SHF. By lineage tracing APJ + SHF cells, we show that these cardiac progenitor cell contribute to the cells of outflow tract (OFT), which eventually give rise to aorta and pulmonary trunk/artery upon its morphogenesis. Furthermore, we show that early APJ + cells give rise to both aorta and pulmonary cells but late APJ + cells predominantly give rise to pulmonary cells. APJ is expressed by the outflow tract progenitors but its role in the SHF is unclear. We performed knockout studies to determine the role of APJ in SHF cell proliferation and survival. Our data suggested that APJ knockout in the SHF reduced the proliferation of SHF progenitors, while there was no significant impact on survival of the SHF progenitors. In addition, we show that ectopic overexpression of WNT in these cells disrupted aorta and pulmonary morphogenesis from outflow tract. Overall, our study have identified APJ + progenitor population within the SHF that give rise to aorta and pulmonary trunk/artery cells. Furthermore, we show that APJ signaling stimulate proliferation of these cells in the SHF.
Collapse
Affiliation(s)
- Kamal Baral
- Department of Biology, Ball State University, Muncie, IN, USA
| | - Gaetano D'amato
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Bryce Kuschel
- Department of Biology, Ball State University, Muncie, IN, USA
| | - Frank Bogan
- Department of Biology, Ball State University, Muncie, IN, USA
| | - Brendan W Jones
- Department of Biology, Ball State University, Muncie, IN, USA
| | - Colton L Large
- Department of Biology, Ball State University, Muncie, IN, USA
| | | | | | - Bikram Sharma
- Department of Biology, Ball State University, Muncie, IN, USA.
| |
Collapse
|
24
|
De Bono C, Liu Y, Ferrena A, Valentine A, Zheng D, Morrow BE. Single-cell transcriptomics uncovers a non-autonomous Tbx1-dependent genetic program controlling cardiac neural crest cell development. Nat Commun 2023; 14:1551. [PMID: 36941249 PMCID: PMC10027855 DOI: 10.1038/s41467-023-37015-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Disruption of cardiac neural crest cells (CNCCs) results in congenital heart disease, yet we do not understand the cell fate dynamics as these cells differentiate to vascular smooth muscle cells. Here we performed single-cell RNA-sequencing of NCCs from the pharyngeal apparatus with the heart in control mouse embryos and when Tbx1, the gene for 22q11.2 deletion syndrome, is inactivated. We uncover three dynamic transitions of pharyngeal NCCs expressing Tbx2 and Tbx3 through differentiated CNCCs expressing cardiac transcription factors with smooth muscle genes. These transitions are altered non-autonomously by loss of Tbx1. Further, inactivation of Tbx2 and Tbx3 in early CNCCs results in aortic arch branching defects due to failed smooth muscle differentiation. Loss of Tbx1 interrupts mesoderm to CNCC cell-cell communication with upregulation and premature activation of BMP signaling and reduced MAPK signaling, as well as alteration of other signaling, and failed dynamic transitions of CNCCs leading to disruption of aortic arch artery formation and cardiac outflow tract septation.
Collapse
Affiliation(s)
- Christopher De Bono
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexander Ferrena
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aneesa Valentine
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Departments of Obstetrics and Gynecology; and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
25
|
Kelly RG. The heart field transcriptional landscape at single-cell resolution. Dev Cell 2023; 58:257-266. [PMID: 36809764 DOI: 10.1016/j.devcel.2023.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/06/2022] [Accepted: 01/27/2023] [Indexed: 02/22/2023]
Abstract
Organogenesis requires the orchestrated development of multiple cell lineages that converge, interact, and specialize to generate coherent functional structures, exemplified by transformation of the cardiac crescent into a four-chambered heart. Cardiomyocytes originate from the first and second heart fields, which make different regional contributions to the definitive heart. In this review, a series of recent single-cell transcriptomic analyses, together with genetic tracing experiments, are discussed, providing a detailed panorama of the cardiac progenitor cell landscape. These studies reveal that first heart field cells originate in a juxtacardiac field adjacent to extraembryonic mesoderm and contribute to the ventrolateral side of the cardiac primordium. In contrast, second heart field cells are deployed dorsomedially from a multilineage-primed progenitor population via arterial and venous pole pathways. Refining our knowledge of the origin and developmental trajectories of cells that build the heart is essential to address outstanding challenges in cardiac biology and disease.
Collapse
Affiliation(s)
- Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France.
| |
Collapse
|
26
|
Ziermann JM. Overview of Head Muscles with Special Emphasis on Extraocular Muscle Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:57-80. [PMID: 37955771 DOI: 10.1007/978-3-031-38215-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The head is often considered the most complex part of the vertebrate body as many different cell types contribute to a huge variation of structures in a very limited space. Most of these cell types also interact with each other to ensure the proper development of skull, brain, muscles, nerves, connective tissue, and blood vessels. While there are general mechanisms that are true for muscle development all over the body, the head and postcranial muscle development differ from each other. In the head, specific gene regulatory networks underlie the differentiation in subgroups, which include extraocular muscles, muscles of mastication, muscles of facial expression, laryngeal and pharyngeal muscles, as well as cranial nerve innervated neck muscles. Here, I provide an overview of the difference between head and trunk muscle development. This is followed by a short excursion to the cardiopharyngeal field which gives rise to heart and head musculature and a summary of pharyngeal arch muscle development, including interactions between neural crest cells, mesodermal cells, and endodermal signals. Lastly, a more detailed description of the eye development, tissue interactions, and involved genes is provided.
Collapse
|
27
|
Wang J. Old Rivals in a New Track. Circ Res 2022; 131:859-861. [PMID: 36302053 PMCID: PMC9627637 DOI: 10.1161/circresaha.122.321986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jianbo Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham
| |
Collapse
|
28
|
Mansfield C, Zhao MT, Basu M. Translational potential of hiPSCs in predictive modeling of heart development and disease. Birth Defects Res 2022; 114:926-947. [PMID: 35261209 PMCID: PMC9458775 DOI: 10.1002/bdr2.1999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Abstract
Congenital heart disease (CHD) represents a major class of birth defects worldwide and is associated with cardiac malformations that often require surgical intervention immediately after birth. Despite the intense efforts from multicentric genome/exome sequencing studies that have identified several genetic variants, the etiology of CHD remains diverse and often unknown. Genetically modified animal models with candidate gene deficiencies continue to provide novel molecular insights that are responsible for fetal cardiac development. However, the past decade has seen remarkable advances in the field of human induced pluripotent stem cell (hiPSC)-based disease modeling approaches to better understand the development of CHD and discover novel preventative therapies. The iPSCs are derived from reprogramming of differentiated somatic cells to an embryonic-like pluripotent state via overexpression of key transcription factors. In this review, we describe how differentiation of hiPSCs to specialized cardiac cellular identities facilitates our understanding of the development and pathogenesis of CHD subtypes. We summarize the molecular and functional characterization of hiPSC-derived differentiated cells in support of normal cardiogenesis, those that go awry in CHD and other heart diseases. We illustrate how stem cell-based disease modeling enables scientists to dissect the molecular mechanisms of cell-cell interactions underlying CHD. We highlight the current state of hiPSC-based studies that are in the verge of translating into clinical trials. We also address limitations including hiPSC-model reproducibility and scalability and differentiation methods leading to cellular heterogeneity. Last, we provide future perspective on exploiting the potential of hiPSC technology as a predictive model for patient-specific CHD, screening pharmaceuticals, and provide a source for cell-based personalized medicine. In combination with existing clinical and animal model studies, data obtained from hiPSCs will yield further understanding of oligogenic, gene-environment interaction, pathophysiology, and management for CHD and other genetic cardiac disorders.
Collapse
Affiliation(s)
- Corrin Mansfield
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Madhumita Basu
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
| |
Collapse
|
29
|
Lania G, Franzese M, Noritaka A, Bilio M, Flore G, Russo A, D'Agostino E, Angelini C, Kelly RG, Baldini A. A phenotypic rescue approach identifies lineage regionalization defects in a mouse model of DiGeorge syndrome. Dis Model Mech 2022; 15:276264. [PMID: 35946435 PMCID: PMC9555768 DOI: 10.1242/dmm.049415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
TBX1 is a key regulator of pharyngeal apparatus (PhAp) development. Vitamin B12 (vB12) treatment partially rescues aortic arch patterning defects of Tbx1+/− embryos. Here, we show that it also improves cardiac outflow tract septation and branchiomeric muscle anomalies of Tbx1 hypomorphic mutants. At the molecular level, in vivo vB12 treatment enabled us to identify genes that were dysregulated by Tbx1 haploinsufficiency and rescued by treatment. We found that SNAI2, also known as SLUG, encoded by the rescued gene Snai2, identified a population of mesodermal cells that was partially overlapping with, but distinct from, ISL1+ and TBX1+ populations. In addition, SNAI2+ cells were mislocalized and had a greater tendency to aggregate in Tbx1+/− and Tbx1−/− embryos, and vB12 treatment restored cellular distribution. Adjacent neural crest-derived mesenchymal cells, which do not express TBX1, were also affected, showing enhanced segregation from cardiopharyngeal mesodermal cells. We propose that TBX1 regulates cell distribution in the core mesoderm and the arrangement of multiple lineages within the PhAp.
Collapse
Affiliation(s)
- Gabriella Lania
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Monica Franzese
- Istituto per le Applicazione del Calcolo, National Research Council (CNR), Naples, Italy.,IRCCS SDN, Naples, Italy
| | - Adachi Noritaka
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Marchesa Bilio
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Gemma Flore
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Annalaura Russo
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Erika D'Agostino
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy
| | - Claudia Angelini
- Istituto per le Applicazione del Calcolo, National Research Council (CNR), Naples, Italy
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Marseille, France
| | - Antonio Baldini
- Institute of Genetics and Biophysics, National Research Council (CNR), Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| |
Collapse
|
30
|
Lescroart F, Dumas CE, Adachi N, Kelly RG. Emergence of heart and branchiomeric muscles in cardiopharyngeal mesoderm. Exp Cell Res 2021; 410:112931. [PMID: 34798131 DOI: 10.1016/j.yexcr.2021.112931] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/27/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022]
Abstract
Branchiomeric muscles of the head and neck originate in a population of cranial mesoderm termed cardiopharyngeal mesoderm that also contains progenitor cells contributing to growth of the embryonic heart. Retrospective lineage analysis has shown that branchiomeric muscles share a clonal origin with parts of the heart, indicating the presence of common heart and head muscle progenitor cells in the early embryo. Genetic lineage tracing and functional studies in the mouse, as well as in Ciona and zebrafish, together with recent experiments using single cell transcriptomics and multipotent stem cells, have provided further support for the existence of bipotent head and heart muscle progenitor cells. Current challenges concern defining where and when such common progenitor cells exist in mammalian embryos and how alternative myogenic derivatives emerge in cardiopharyngeal mesoderm. Addressing these questions will provide insights into mechanisms of cell fate acquisition and the evolution of vertebrate musculature, as well as clinical insights into the origins of muscle restricted myopathies and congenital defects affecting craniofacial and cardiac development.
Collapse
Affiliation(s)
| | - Camille E Dumas
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009, Marseille, France
| | - Noritaka Adachi
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009, Marseille, France
| | - Robert G Kelly
- Aix-Marseille Université, CNRS UMR 7288, IBDM, 13009, Marseille, France.
| |
Collapse
|