1
|
Du M, Sun C, Deng L, Zhou M, Li J, Du Y, Ye Z, Huang S, Li T, Yu J, Li C, Li C. Molecular breeding of tomato: Advances and challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:669-721. [PMID: 40098531 PMCID: PMC11951411 DOI: 10.1111/jipb.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
The modern cultivated tomato (Solanum lycopersicum) was domesticated from Solanum pimpinellifolium native to the Andes Mountains of South America through a "two-step domestication" process. It was introduced to Europe in the 16th century and later widely cultivated worldwide. Since the late 19th century, breeders, guided by modern genetics, breeding science, and statistical theory, have improved tomatoes into an important fruit and vegetable crop that serves both fresh consumption and processing needs, satisfying diverse consumer demands. Over the past three decades, advancements in modern crop molecular breeding technologies, represented by molecular marker technology, genome sequencing, and genome editing, have significantly transformed tomato breeding paradigms. This article reviews the research progress in the field of tomato molecular breeding, encompassing genome sequencing of germplasm resources, the identification of functional genes for agronomic traits, and the development of key molecular breeding technologies. Based on these advancements, we also discuss the major challenges and perspectives in this field.
Collapse
Affiliation(s)
- Minmin Du
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of HorticultureChina Agricultural UniversityBeijing100193China
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- Sanya Institute of China Agricultural UniversitySanya572025China
| | - Chuanlong Sun
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'an271018China
| | - Lei Deng
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
| | - Ming Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Junming Li
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Yongchen Du
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Sanwen Huang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120China
- State Key Laboratory of Tropical Crop BreedingChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Tianlai Li
- College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Jingquan Yu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Chang‐Bao Li
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Chuanyou Li
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
| |
Collapse
|
2
|
Shi Y, Deng C, Lu X, Wang Y, Pan Y, Su D, Lu W, Lin Y, Li R, Han J, Hao Y, Chen Y, Abid G, Pirrello J, Bouzayen M, Liu Y, Li Z, Huang B. Cutin formation in tomato is controlled by a multipartite module of synergistic and antagonistic transcription factors. Cell Rep 2025; 44:115258. [PMID: 39891905 DOI: 10.1016/j.celrep.2025.115258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/29/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025] Open
Abstract
Cuticles protect plants from water loss and pathogen attack. We address here the functional significance of SlGRAS9, SlZHD17, and SlMBP3 in regulating cutin formation in tomato fruit. The study unveils the role of the multipartite "SlGRAS9-SlZHD17-SlMBP3-SlMIXTA-like" transcription factor module in cutin biosynthesis. Plants deficient in SlGRAS9, SlZHD17, or SlMBP3 exhibit thickened cuticles and a higher accumulation of cutin monomers, conferring extended fruit shelf life and higher tolerance to postharvest fungal infection. SlGRAS9 regulation of cutin is mediated by SlZHD17, a negative regulator of SlCYP86A69. SlZHD17 acts synergistically with SlMBP3 to repress SlCYP86A69, and its interaction with SlMIXTA-like prevents the binding to the SlCYP86A69 promoter, thereby releasing the repression of cutin biosynthesis. SlZHD17 and SlMBP3 synergistically repress cutin biosynthesis, while SlMIXTA-like and SlCD2 act antagonistically to SlZHD17 and SlMBP3 on this metabolic pathway. The study defines targets for breeding strategies aimed at improving cuticle-associated traits in tomato and potentially other crops.
Collapse
Affiliation(s)
- Yuan Shi
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Changhao Deng
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Xiangyin Lu
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Yan Wang
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Yaowen Pan
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Deding Su
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Wang Lu
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Yuxiang Lin
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Rui Li
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Junnan Han
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yi Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Ghassen Abid
- Centre of Biotechnology of Borj-Cedria, Laboratory of Legumes and Sustainable Agrosystems, P.B. 901, Hammam-Lif 2050, Tunisia
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Vegetales - Genomique et Biotechnologie des Fruits - UMR5546, Toulouse-INP, CNRS, UPS, Universite de Toulouse, Toulouse, France
| | - Mondher Bouzayen
- Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China; Laboratoire de Recherche en Sciences Vegetales - Genomique et Biotechnologie des Fruits - UMR5546, Toulouse-INP, CNRS, UPS, Universite de Toulouse, Toulouse, France.
| | - Yudong Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhengguo Li
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China.
| | - Baowen Huang
- Key Laboratory of Plant Hormones Regulation and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China; Center of Plant Functional Genomics and Synthetic Biology, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
3
|
Chen Y, Wang X, Colantonio V, Gao Z, Pei Y, Fish T, Ye J, Courtney L, Thannhauser TW, Ye Z, Liu Y, Fei Z, Liu M, Giovannoni JJ. Ethylene response factor SlERF.D6 promotes ripening in part through transcription factors SlDEAR2 and SlTCP12. Proc Natl Acad Sci U S A 2025; 122:e2405894122. [PMID: 39928866 PMCID: PMC11848416 DOI: 10.1073/pnas.2405894122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/19/2024] [Indexed: 02/12/2025] Open
Abstract
Ripening is crucial for the development of fleshy fruits that release their seeds following consumption by frugivores and are important contributors to human health and nutritional security. Many genetic ripening regulators have been identified, especially in the model system tomato, yet more remain to be discovered and integrated into comprehensive regulatory models. Most tomato ripening genes have been studied in pericarp tissue, though recent evidence indicates that locule tissue is a site of early ripening-gene activities. Here, we identified and functionally characterized an Ethylene Response Factor (ERF) gene, SlERF.D6, by investigating tomato transcriptome data throughout plant development, emphasizing genes elevated in the locule during fruit development and ripening. SlERF.D6 loss-of-function mutants resulting from CRISPR/Cas9 gene editing delayed ripening initiation and carotenoid accumulation in both pericarp and locule tissues. Transcriptome analysis of lines altered in SlERF.D6 expression revealed multiple classes of altered genes including ripening regulators, in addition to carotenoid, cell wall, and ethylene pathway genes, suggesting comprehensive ripening control. Distinct regulatory patterns in pericarp versus locule tissues were observed, indicating tissue-specific activity of this transcription factor (TF). Analysis of SlERF.D6 interaction with target promoters revealed an APETALA 2/ETHYLENE RESPONSE FACTOR (AP2/ERF) TF (SlDEAR2) as a target of SlERF.D6. Furthermore, we show that a third TF gene, SlTCP12, is a target of SlDEAR2, presenting a tricomponent module of ripening control residing in the larger SlERF.D6 regulatory network.
Collapse
Affiliation(s)
- Yao Chen
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan610065, People’s Republic of China
| | - Xin Wang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Vincent Colantonio
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
- United States Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY14853
| | - Zhuo Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan610065, People’s Republic of China
| | - Yangang Pei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan610065, People’s Republic of China
| | - Tara Fish
- United States Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY14853
| | - Jie Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Lance Courtney
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | - Theodore W. Thannhauser
- United States Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY14853
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei230036, People’s Republic of China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan610065, People’s Republic of China
| | - James J. Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY14853
- United States Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY14853
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| |
Collapse
|
4
|
Yue Q, Xie Y, Yang X, Zhang Y, Li Z, Liu Y, Cheng P, Zhang R, Yu Y, Wang X, Liao L, Han Y, Zhao T, Li X, Zhang H, Ma F, Guan Q. An InDel variant in the promoter of the NAC transcription factor MdNAC18.1 plays a major role in apple fruit ripening. THE PLANT CELL 2024; 37:koaf007. [PMID: 39873675 PMCID: PMC11773814 DOI: 10.1093/plcell/koaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/15/2024] [Indexed: 01/30/2025]
Abstract
A complex regulatory network governs fruit ripening, but natural variations and functional differentiation of fruit ripening genes remain largely unknown. Utilizing a genome-wide association study (GWAS), we identified the NAC family transcription factor MdNAC18.1, whose expression is closely associated with fruit ripening in apple (Malus × domestica Borkh.). MdNAC18.1 activated the transcription of genes related to fruit softening (Polygalacturonase, PG) and ethylene biosynthesis (1-aminocyclopropane-1-carboxylic acid synthase, ACS), thereby promoting fruit ripening of apple and tomato (Solanum lycopersicum). There were two single-nucleotide polymorphisms (SNP-1,545 and SNP-2,002) and a 58-bp insertion-deletion (InDel-58) in the promoter region of MdNAC18.1. Among these, InDel-58 serves as the main effector in activating the expression of MdNAC18.1 and driving fruit ripening. InDel-58 determines the binding affinity of the class D MADS-box protein AGAMOUS-LIKE 11 (MdAGL11), a negative regulator of fruit ripening. The InDel-58 deletion in the early-ripening genotype reduces the inhibitory effect of MdAGL11 on MdNAC18.1. Moreover, MdNAC18.1 and its homologous genes originated from a common ancestor across 61 angiosperms, with functional diversification attributed to tandem replications that occurred in basal angiosperms. In summary, our study revealed how a set of natural variations influence fruit ripening and explored the functional diversification of MdNAC18.1 during evolution.
Collapse
Affiliation(s)
- Qianyu Yue
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yinpeng Xie
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xinyue Yang
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yuxin Zhang
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhongxing Li
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yunxiao Liu
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Pengda Cheng
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Ruiping Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yue Yu
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiaofei Wang
- State Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Liao Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China
| | - Tao Zhao
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xuewei Li
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Hengtao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Fengwang Ma
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qingmei Guan
- Shenzhen Research Institute, State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
5
|
Li H, Chen Z, Zhu W, Ni X, Wang J, Fu L, Chen J, Li T, Tang L, Yang Y, Zhang F, Wang J, Zhou B, Chen F, Lü P. The MaNAP1-MaMADS1 transcription factor module mediates ethylene-regulated peel softening and ripening in banana. THE PLANT CELL 2024; 37:koae282. [PMID: 39422253 DOI: 10.1093/plcell/koae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
The banana (Musa spp.) peel undergoes rapid softening during ripening, leading to finger drop and a shortened shelf life. The regulatory mechanism behind this process remains to be elucidated. In this study, we confirmed the role of peel softening in banana finger drop and uncovered the underlying transcriptional regulatory network. Cell wall-related (CWR) genes were substantially upregulated in both the peel and finger drop zone during ethylene-induced ripening. Transcriptome analysis and genome-wide profiling of chromatin accessibility and transcription factor (TF) binding revealed that two key regulators of fruit ripening, Musa acuminata NAC-like, Activated by apetala3/Pistillata1 (MaNAP1) and MaMADS1, regulate CWR genes by directly binding to their promoters or by targeting other ripening-related TFs to form a hierarchical regulatory network. Notably, MaNAP1 and MaMADS1 were directly targeted by ETHYLENE INSENSITIVE3 (MaEIN3), and MaNAP1 and MaMADS1 associated with tissue-specific histone modifications, enabling them to integrate MaEIN3-mediated ethylene signaling and undergo epigenetic regulation. Overexpression of MaNAP1, MaMADS1, or other identified regulatory TFs upregulated CWR genes and promoted peel softening. Our findings unveil a MaNAP1-MaMADS1-centered regulatory cascade governing banana peel softening and finger drop, offering potential targets for enhancing banana texture and shelf life.
Collapse
Affiliation(s)
- Hua Li
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Zhuo Chen
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjun Zhu
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xueting Ni
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junru Wang
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lufeng Fu
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jialin Chen
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianpu Li
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingxian Tang
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingjie Yang
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fukun Zhang
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiashui Wang
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Biyan Zhou
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Faxing Chen
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peitao Lü
- College of Horticulture, Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
6
|
Lin M, Sun L, Liu X, Fan X, Zhang Y, Jiang J, Liu C. Genome-Wide Association Study of Grape Texture Based on Puncture. Int J Mol Sci 2024; 25:13065. [PMID: 39684775 DOI: 10.3390/ijms252313065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Grapes are grown extensively around the world and play a crucial role in overall fruit production globally. The quality of the grape is largely determined by the texture of the flesh, making it a key focus for grape breeders. Our study was conducted on 437 grape accessions using a puncture method to analyze berry texture characteristics. The results reveal strong correlations among the five texture parameters of grape accessions. Following the GWAS analysis using 2,124,668 population SNPs, 369 significant SNP locations linked to the grape berry texture were discovered. Through the process of gene annotation and expression analysis in the localization regions, several genes potentially linked to berry texture were identified, including E13A, FIS1A, CML35, AGL2, and AGL62. E13A, FIS1A, and CML35 were identified as potentially more relevant to grape berry texture based on gene expression analysis. Further investigation through transient transformation demonstrated that overexpressing E13A and CML35 resulted in notable changes in grape pulp texture. During this study, the berry textures of 437 grape accessions were comprehensively evaluated, and several important candidate genes were screened based on GWAS and analysis of gene function. This discovery paves the way for future research and breeding initiatives related to grape berry texture.
Collapse
Affiliation(s)
- Meiling Lin
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Lei Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xuewei Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xiucai Fan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Ying Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- ZhongYuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453424, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| |
Collapse
|
7
|
Wang J, Sun Q, Ma C, Wei M, Wang C, Zhao Y, Wang W, Hu D. MdWRKY31-MdNAC7 regulatory network: orchestrating fruit softening by modulating cell wall-modifying enzyme MdXTH2 in response to ethylene signalling. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3244-3261. [PMID: 39180170 PMCID: PMC11606422 DOI: 10.1111/pbi.14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
Softening in fruit adversely impacts their edible quality and commercial value, leading to substantial economic losses during fruit ripening, long-term storage, long-distance transportation, and marketing. As the apple fruit demonstrates climacteric respiration, its firmness decreases with increasing ethylene release rate during fruit ripening and postharvest storage. However, the molecular mechanisms underlying ethylene-mediated regulation of fruit softening in apple remain poorly understood. In this study, we identified a WRKY transcription factor (TF) MdWRKY31, which is repressed by ethylene treatment. Using transgenic approaches, we found that overexpression of MdWRKY31 delays softening by negatively regulating xyloglucan endotransglucosylase/hydrolases 2 (MdXTH2) expression. Yeast one-hybrid (Y1H), electrophoretic mobility shift (EMSA), and dual-luciferase assays further suggested that MdWRKY31 directly binds to the MdXTH2 promoter via a W-box element and represses its transcription. Transient overexpression of ethylene-induced MdNAC7, a NAC TF, in apple fruit promoted softening by decreasing cellulose content and increasing water-soluble pectin content in fruit. MdNAC7 interacted with MdWRKY31 to form a protein complex, and their interaction decreased the transcriptional repression of MdWRKY31 on MdXTH2. Furthermore, MdNAC7 does not directly regulate MdXTH2 expression, but the protein complex formed with MdWRKY31 hinders MdWRKY31 from binding to the promoter of MdXTH2. Our findings underscore the significance of the regulatory complex NAC7-WRKY31 in ethylene-responsive signalling, connecting the ethylene signal to XTH2 expression to promote fruit softening. This sheds light on the intricate mechanisms governing apple fruit firmness and opens avenues for enhancing fruit quality and reducing economic losses associated with softening.
Collapse
Affiliation(s)
- Jia‐Hui Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and EngineeringShandong Agricultural UniversityTai'anShandongChina
- College of HorticultureAgricultural University of HebeiBaodingHebeiChina
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Chang‐Ning Ma
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Meng‐Meng Wei
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Chu‐Kun Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Yu‐Wen Zhao
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Wen‐Yan Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and EngineeringShandong Agricultural UniversityTai'anShandongChina
| | - Da‐Gang Hu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticultural Science and EngineeringShandong Agricultural UniversityTai'anShandongChina
| |
Collapse
|
8
|
Zamorano-Curaqueo M, Valenzuela-Riffo F, Herrera R, Moya-León MA. Characterization of FchAGL9 and FchSHP, two MADS-boxes related to softening of Fragaria chiloensis fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108985. [PMID: 39084168 DOI: 10.1016/j.plaphy.2024.108985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Fragaria chiloensis is a Chilean native species that softens intensively during its ripening. Its softening is related to cell wall disassembly due to the participation of cell wall degrading enzymes. Softening of F. chiloensis fruit can be accelerated by ABA treatment which is accompanied by the increment in the expression of key cell wall degrading genes, however the molecular machinery involved in the transcriptional regulation has not been studied until now. Therefore, the participation of two MADS-box transcription factors belonging to different subfamilies, FchAGL9 and FchSHP, was addressed. Both TFs are members of type-II MADS-box family (MIKC-type) and localized in the nucleus. FchAGL9 and FchSHP are expressed only in flower and fruit tissues, rising as the fruit softens with the highest expression level at C3-C4 stages. EMSA assays demonstrated that FchAGL9 binds to CArG sequences of RIN and SQM, meanwhile FchSHP interacts only with RIN. Bimolecular fluorescence complementation and yeast two-hybrid assays confirmed FchAGL9-FchAGL9 and FchAGL9-FchSHP interactions. Hetero-dimer structure was built through homology modeling concluding that FchSHP monomer binds to DNA. Functional validation by Luciferase-dual assays indicated that FchAGL9 transactivates FchRGL and FchPG's promoters, meanwhile FchSHP transactivates those of FchEXP2, FchRGL and FchPG. Over-expression of FchAGL9 in C2 F. chiloensis fruit rises FchEXP2 and FchEXP5 transcripts, meanwhile the over-expression of FchSHP also increments FchXTH1 and FchPL; in both cases there is a down-regulation of FchRGL and FchPG. In summary, we provided evidence of FchAGL9 and FchSHP participating in the transcription regulation associated to F. chiloensis's softening.
Collapse
Affiliation(s)
- Macarena Zamorano-Curaqueo
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, Chile
| | - Felipe Valenzuela-Riffo
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, Chile
| | - Raúl Herrera
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, Chile
| | - María A Moya-León
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, Chile.
| |
Collapse
|
9
|
Chen Y, Tang X, Fei Z, Giovannoni JJ. Fruit ripening and postharvest changes in very early-harvested tomatoes. HORTICULTURE RESEARCH 2024; 11:uhae199. [PMID: 39263630 PMCID: PMC11387008 DOI: 10.1093/hr/uhae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/10/2024] [Indexed: 09/13/2024]
Abstract
It is well known that if a fruit is harvested extremely early its development and function are interrupted, and it may never attain full maturity and optimal quality. Reports revealing insights regarding the alterations of maturation, ripening and postharvest quality in very early picked fruits are rare. We examined the effects of early harvesting on tomatoes by characterizing different accessions at the molecular, physiological, and biochemical levels. We found that even very early-harvested fruits could achieve postharvest maturation and ripening though with some defects in pigment and cuticle formation, and seeds from very early-harvested fruits could still germinate and develop as normal and healthy plants. One critical regulator of tomato cuticle integrity, SlCER1-2, was shown to contribute to cuticle defects in very early-harvested fruits. Very early fruit harvest still allowing ripening and seed development indicate that the genetic and physiological programs of later maturation and ripening are set into motion early in fruit development and are not dependent on complete fruit expansion nor attachment to the plant.
Collapse
Affiliation(s)
- Yao Chen
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853
| | - Xuemei Tang
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853
- US Department of Agriculture-Agricultural Research Service Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- US Department of Agriculture-Agricultural Research Service Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853
| |
Collapse
|
10
|
Kutyrieva-Nowak N, Leszczuk A, Denic D, Bellaidi S, Blazakis K, Gemeliari P, Lis M, Kalaitzis P, Zdunek A. In vivo and ex vivo study on cell wall components as part of the network in tomato fruit during the ripening process. HORTICULTURE RESEARCH 2024; 11:uhae145. [PMID: 38988613 PMCID: PMC11233857 DOI: 10.1093/hr/uhae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024]
Abstract
Ripening is a process involving various morphological, physiological, and biochemical changes in fruits. This process is affected by modifications in the cell wall structure, particularly in the composition of polysaccharides and proteins. The cell wall assembly is a network of polysaccharides and proteoglycans named the arabinoxylan pectin arabinogalactan protein1 (APAP1). The complex consists of the arabinogalactan protein (AGP) core with the pectin domain including arabinogalactan (AG) type II, homogalacturonan (HG), and rhamnogalacturonan I (RG-I). The present paper aims to determine the impact of a disturbance in the synthesis of one constituent on the integrity of the cell wall. Therefore, in the current work, we have tested the impact of modified expression of the SlP4H3 gene connected with proline hydroxylase (P4H) activity on AGP presence in the fruit matrix. Using an immunolabelling technique (CLSM), an immunogold method (TEM), molecular tools, and calcium mapping (SEM-EDS), we have demonstrated that disturbances in AGP synthesis affect the entire cell wall structure. Changes in the spatio-temporal AGP distribution may be related to the formation of a network between AGPs with other cell wall components. Moreover, the modified structure of the cell wall assembly induces morphological changes visible at the cellular level during the progression of the ripening process. These results support the hypothesis that AGPs and pectins are required for the proper progression of the physiological processes occurring in fruits.
Collapse
Affiliation(s)
| | - Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland
| | - Dusan Denic
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Samia Bellaidi
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Konstantinos Blazakis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Petroula Gemeliari
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Magdalena Lis
- Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, 20-290 Lublin, Poland
| |
Collapse
|
11
|
Wang Z, Zhang W, Zhou Y, Zhang Q, Kulkarni KP, Melmaiee K, Tian Y, Dong M, Gao Z, Su Y, Yu H, Xu G, Li Y, He H, Liu Q, Sun H. Genetic and epigenetic signatures for improved breeding of cultivated blueberry. HORTICULTURE RESEARCH 2024; 11:uhae138. [PMID: 38988623 PMCID: PMC11233858 DOI: 10.1093/hr/uhae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Blueberry belongs to the Vaccinium genus and is a highly popular fruit crop with significant economic importance. It was not until the early twentieth century that they began to be domesticated through extensive interspecific hybridization. Here, we collected 220 Vaccinium accessions from various geographical locations, including 154 from the United States, 14 from China, eight from Australia, and 29 from Europe and other countries, comprising 164 Vaccinium corymbosum, 15 Vaccinium ashei, 10 lowbush blueberries, seven half-high blueberries, and others. We present the whole-genome variation map of 220 accessions and reconstructed the hundred-year molecular history of interspecific hybridization of blueberry. We focused on the two major blueberry subgroups, the northern highbush blueberry (NHB) and southern highbush blueberry (SHB) and identified candidate genes that contribute to their distinct traits in climate adaptability and fruit quality. Our analysis unveiled the role of gene introgression from Vaccinium darrowii and V. ashei into SHB in driving the differentiation between SHB and NHB, potentially facilitating SHB's adaptation to subtropical environments. Assisted by genome-wide association studies, our analysis suggested VcTBL44 as a pivotal gene regulator governing fruit firmness in SHB. Additionally, we conducted whole-genome bisulfite sequencing on nine NHB and 12 SHB cultivars, and characterized regions that are differentially methylated between the two subgroups. In particular, we discovered that the β-alanine metabolic pathway genes were enriched for DNA methylation changes. Our study provides high-quality genetic and epigenetic variation maps for blueberry, which offer valuable insights and resources for future blueberry breeding.
Collapse
Affiliation(s)
- Zejia Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Wanchen Zhang
- Jilin Provincial Laboratory of Crop Germplasm Resources, College of Horticulture, Jilin Agricultural University, No. 2888 Xincheng Street, Economic Development District, Changchun 130118, China
| | - Yangyan Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Qiyan Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Krishnanand P Kulkarni
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA
| | - Kalpalatha Melmaiee
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA
| | - Youwen Tian
- Jilin Provincial Laboratory of Crop Germplasm Resources, College of Horticulture, Jilin Agricultural University, No. 2888 Xincheng Street, Economic Development District, Changchun 130118, China
| | - Mei Dong
- Jilin Provincial Laboratory of Crop Germplasm Resources, College of Horticulture, Jilin Agricultural University, No. 2888 Xincheng Street, Economic Development District, Changchun 130118, China
| | - Zhaoxu Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Yanning Su
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Hong Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Guohui Xu
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Yadong Li
- Jilin Provincial Laboratory of Crop Germplasm Resources, College of Horticulture, Jilin Agricultural University, No. 2888 Xincheng Street, Economic Development District, Changchun 130118, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Qikun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Haiyue Sun
- Jilin Provincial Laboratory of Crop Germplasm Resources, College of Horticulture, Jilin Agricultural University, No. 2888 Xincheng Street, Economic Development District, Changchun 130118, China
| |
Collapse
|
12
|
Xiao H, Verboven P, Tong S, Pedersen O, Nicolaï B. Hypoxia in tomato (Solanum lycopersicum) fruit during ripening: Biophysical elucidation by a 3D reaction-diffusion model. PLANT PHYSIOLOGY 2024; 195:1893-1905. [PMID: 38546393 DOI: 10.1093/plphys/kiae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/29/2024] [Indexed: 06/30/2024]
Abstract
Respiration provides energy, substrates, and precursors to support physiological changes of the fruit during climacteric ripening. A key substrate of respiration is oxygen that needs to be supplied to the fruit in a passive way by gas transfer from the environment. Oxygen gradients may develop within the fruit due to its bulky size and the dense fruit tissues, potentially creating hypoxia that may have a role in the spatial development of ripening. This study presents a 3D reaction-diffusion model using tomato (Solanum lycopersicum) fruit as a test subject, combining the multiscale fruit geometry generated from magnetic resonance imaging and microcomputed tomography with varying respiration kinetics and contrasting boundary resistances obtained through independent experiments. The model predicted low oxygen levels in locular tissue under atmospheric conditions, and the oxygen level was markedly lower upon scar occlusion, aligning with microsensor profiling results. The locular region was in a hypoxic state, leading to its low aerobic respiration with high CO2 accumulation by fermentative respiration, while the rest of the tissues remained well oxygenated. The model further revealed that the hypoxia is caused by a combination of diffusion resistances and respiration rates of the tissue. Collectively, this study reveals the existence of the respiratory gas gradients and its biophysical causes during tomato fruit ripening, providing richer information for future studies on localized endogenous ethylene biosynthesis and fruit ripening.
Collapse
Affiliation(s)
- Hui Xiao
- BIOSYST-MeBioS, KU Leuven, Leuven B-3001, Belgium
| | | | - Shuai Tong
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Ole Pedersen
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Bart Nicolaï
- BIOSYST-MeBioS, KU Leuven, Leuven B-3001, Belgium
- Flanders Centre of Postharvest Technology (VCBT), Leuven B-3001, Belgium
| |
Collapse
|
13
|
Gao Y, Regad F, Li Z, Pirrello J, Bouzayen M, Van Der Rest B. Class I TCP in fruit development: much more than growth. FRONTIERS IN PLANT SCIENCE 2024; 15:1411341. [PMID: 38863555 PMCID: PMC11165105 DOI: 10.3389/fpls.2024.1411341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Fruit development can be viewed as the succession of three main steps consisting of the fruit initiation, growth and ripening. These processes are orchestrated by different factors, notably the successful fertilization of flowers, the environmental conditions and the hormones whose action is coordinated by a large variety of transcription factors. Among the different transcription factor families, TEOSINTE BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTOR (TCP) family has received little attention in the frame of fruit biology despite its large effects on several developmental processes and its action as modulator of different hormonal pathways. In this respect, the comprehension of TCP functions in fruit development remains an incomplete puzzle that needs to be assembled. Building on the abundance of genomic and transcriptomic data, this review aims at collecting available TCP expression data to allow their integration in the light of the different functional genetic studies reported so far. This reveals that several Class I TCP genes, already known for their involvement in the cell proliferation and growth, display significant expression levels in developing fruit, although clear evidence supporting their functional significance in this process remains scarce. The extensive expression data compiled in our study provide convincing elements that shed light on the specific involvement of Class I TCP genes in fruit ripening, once these reproductive organs acquire their mature size. They also emphasize their putative role in the control of specific biological processes such as fruit metabolism and hormonal dialogue.
Collapse
Affiliation(s)
- Yushuo Gao
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Farid Regad
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Benoît Van Der Rest
- Laboratoire de Recherche en Sciences Veígeítales - Génomique et Biotechnologie des Fruits, Universiteí de Toulouse, Centre national de la recherche scientifique (CNRS), Université Toulouse III - Paul Sabatier (UPS), Toulouse-Institut National Polytechnique (INP), Toulouse, France
| |
Collapse
|
14
|
Pei Y, Xue Q, Shu P, Xu W, Du X, Wu M, Liu K, Pirrello J, Bouzayen M, Hong Y, Liu M. Bifunctional transcription factors SlERF.H5 and H7 activate cell wall and repress gibberellin biosynthesis genes in tomato via a conserved motif. Dev Cell 2024; 59:1345-1359.e6. [PMID: 38579721 DOI: 10.1016/j.devcel.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/31/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
The plant cell wall is a dynamic structure that plays an essential role in development, but the mechanism regulating cell wall formation remains poorly understood. We demonstrate that two transcription factors, SlERF.H5 and SlERF.H7, control cell wall formation and tomato fruit firmness in an additive manner. Knockout of SlERF.H5, SlERF.H7, or both genes decreased cell wall thickness, firmness, and cellulose contents in fruits during early development, especially in double-knockout lines. Overexpressing either gene resulted in thicker cell walls and greater fruit firmness with elevated cellulose levels in fruits but severely dwarf plants with lower gibberellin contents. We further identified that SlERF.H5 and SlERF.H7 activate the cellulose biosynthesis gene SlCESA3 but repress the gibberellin biosynthesis gene GA20ox1. Moreover, we identified a conserved LPL motif in these ERFs responsible for their activities as transcriptional activators and repressors, providing insight into how bifunctional transcription factors modulate distinct developmental processes.
Collapse
Affiliation(s)
- Yangang Pei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Qihan Xue
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Peng Shu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Weijie Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xiaofei Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Yiguo Hong
- School of Life Sciences, University of Warwick, Warwick CV4 7AL, UK; State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
| |
Collapse
|
15
|
Shen H, Luo B, Ding Y, Xiao H, Chen G, Yang Z, Hu Z, Wu T. The YABBY Transcription Factor, SlYABBY2a, Positively Regulates Fruit Septum Development and Ripening in Tomatoes. Int J Mol Sci 2024; 25:5206. [PMID: 38791245 PMCID: PMC11121019 DOI: 10.3390/ijms25105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The tomato fruit is a complex organ and is composed of various structures from the inside out, such as columella, septum, and placenta. However, our understanding of the development and function of these internal structures remains limited. In this study, we identified a plant-specific YABBY protein, SlYABBY2a, in the tomato (Solanum lycopersicum). SlYABBY2a exhibits relatively high expression levels among the nine YABBY genes in tomatoes and shows specific expression in the septum of the fruit. Through the use of a gene-editing technique performed by CRISPR/Cas9, we noticed defects in septum development in the Slyabby2a mutant fruits, leading to the inward concavity of the fruit pericarp and delayed septum ripening. Notably, the expression levels of key genes involved in auxin (SlFZY4, SlFZY5, and SlFZY6) and ethylene (SlACS2) biosynthesis were significantly downregulated in the septum of the Slalkbh10b mutants. Furthermore, the promoter activity of SlYABBY2a was regulated by the ripening regulator, SlTAGL1, in vivo. In summary, these discoveries provide insights into the positive regulation of SlYABBY2a on septum development and ripening and furnish evidence of the coordinated regulation of the auxin and ethylene signaling pathways in the ripening process, which expands our comprehension of septum development in the internal structure of the fruit.
Collapse
Affiliation(s)
- Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Y.D.); (H.X.); (Z.Y.)
| | - Baobing Luo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
| | - Yingfeng Ding
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Y.D.); (H.X.); (Z.Y.)
| | - Haojun Xiao
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Y.D.); (H.X.); (Z.Y.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
| | - Zhengan Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Y.D.); (H.X.); (Z.Y.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
| | - Ting Wu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
| |
Collapse
|
16
|
Shi Y, Hu G, Wang Y, Liang Q, Su D, Lu W, Deng W, Bouzayen M, Liu Y, Li Z, Huang B. The SlGRAS9-SlZHD17 transcriptional cascade regulates chlorophyll and carbohydrate metabolism contributing to fruit quality traits in tomato. THE NEW PHYTOLOGIST 2024; 241:2540-2557. [PMID: 38263687 DOI: 10.1111/nph.19530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024]
Abstract
Some essential components of fleshy fruits are dependent on photosynthetic activity and carbohydrate metabolism. Nevertheless, the regulatory mechanisms linking chlorophyll and carbohydrate metabolism remain partially understood. Here, we uncovered the role of SlGRAS9 and SlZHD17 transcription factors in controlling chlorophyll and carbohydrate accumulation in tomato fruit. Knockout or knockdown of SlGRAS9 or SlZHD17 resulted in marked increase in chlorophyll content, reprogrammed chloroplast biogenesis and enhanced accumulation of starch and soluble sugars. Combined genome-wide transcriptomic profiling and promoter-binding experiments unveiled a complex mechanism in which the SlGRAS9/SlZHD17 regulatory module modulates the expression of chloroplast and sugar metabolism either via a sequential transcriptional cascade or through binding of both TFs to the same gene promoters, or, alternatively, via parallel pathways where each of the TFs act on different target genes. For instance, the regulation of SlAGPaseS1 and SlSUS1 is mediated by SlZHD17 whereas that of SlVI and SlGLK1 occurs only through SlGRAS9 without the intervention of SlZHD17. Both SlGRAS9 and SlZHD17 can also directly bind the promoter of SlPOR-B to regulate its expression. Taken together, our findings uncover two important regulators acting synergistically to manipulate chlorophyll and carbohydrate accumulation and provide new potential breeding targets for improving fruit quality in fleshy fruits.
Collapse
Affiliation(s)
- Yuan Shi
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Guojian Hu
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
- Laboratoire de Recherche en Sciences Vegetales - Genomique et Biotechnologie des Fruits - UMR5546, Universite de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, 31326, France
| | - Yan Wang
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Qin Liang
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Deding Su
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Wang Lu
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Mondher Bouzayen
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
- Laboratoire de Recherche en Sciences Vegetales - Genomique et Biotechnologie des Fruits - UMR5546, Universite de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, 31326, France
| | - Yudong Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
17
|
Hua B, Wu J, Han X, Bian X, Xu Z, Sun C, Wang R, Zhang W, Liang F, Zhang H, Li S, Li Z, Wu S. Auxin homeostasis is maintained by sly-miR167-SlARF8A/B-SlGH3.4 feedback module in the development of locular and placental tissues of tomato fruits. THE NEW PHYTOLOGIST 2024; 241:1177-1192. [PMID: 37985404 DOI: 10.1111/nph.19391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 10/20/2023] [Indexed: 11/22/2023]
Abstract
The locular gel, produced by the placenta, is important for fruit flavor and seed development in tomato. However, the mechanism underlying locule and placenta development is not fully understood yet. Here, we show that two SlARF transcription factors, SlARF8B and SlARF8A (SlARF8A/B), promote the development of locular and placenta tissues. The expression of both SlARF8A and SlARF8B is repressed by sly-microRNA167 (sly-miR167), allowing for the activation of auxin downstream genes. In slarf8a, slarf8b, and slarf8a/b mutants, the auxin (IAA) levels are decreased, whereas the levels of inactive IAA conjugates including IAA-Ala, IAA-Asp, and IAA-Glu are increased. We further find that SlARF8B directly inhibits the expression of SlGH3.4, an acyl acid amino synthetase that conjugates the amino acids to IAA. Disruption of such auxin balance by the increased expression of SlGH3.4 or SlGH3.2 results in defective locular and placental tissues. Taken together, our findings reveal an important regulatory module constituted by sly-miR167-SlARF8A/B-SlGH3.4 during the development of locular and placenta tissues of tomato fruits.
Collapse
Affiliation(s)
- Bing Hua
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Junqing Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoqian Han
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinxin Bian
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhijing Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Sun
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Renyin Wang
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenyan Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Fei Liang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Huimin Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Shuang Li
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shuang Wu
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
18
|
Uranga M, Aragonés V, García A, Mirabel S, Gianoglio S, Presa S, Granell A, Pasin F, Daròs JA. RNA virus-mediated gene editing for tomato trait breeding. HORTICULTURE RESEARCH 2024; 11:uhad279. [PMID: 38895601 PMCID: PMC11184526 DOI: 10.1093/hr/uhad279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/10/2023] [Indexed: 06/21/2024]
Abstract
Virus-induced genome editing (VIGE) leverages viral vectors to deliver CRISPR-Cas components into plants for robust and flexible trait engineering. We describe here a VIGE approach applying an RNA viral vector based on potato virus X (PVX) for genome editing of tomato, a mayor horticultural crop. Viral delivery of single-guide RNA into Cas9-expressing lines resulted in efficient somatic editing with indel frequencies up to 58%. By proof-of-concept VIGE of PHYTOENE DESATURASE (PDS) and plant regeneration from edited somatic tissue, we recovered loss-of-function pds mutant progeny displaying an albino phenotype. VIGE of STAYGREEN 1 (SGR1), a gene involved in fruit color variation, generated sgr1 mutant lines with recolored red-brown fruits and high chlorophyll levels. The obtained editing events were heritable, overall confirming the successful breeding of fruit color. Altogether, our VIGE approach offers great potential for accelerated functional genomics of tomato variation, as well as for precision breeding of novel tomato traits.
Collapse
Affiliation(s)
- Mireia Uranga
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Verónica Aragonés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Arcadio García
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Sophie Mirabel
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Silvia Gianoglio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Silvia Presa
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
19
|
Xi X, Gutierrez B, Zha Q, Yin X, Sun P, Jiang A. Optimization of In Vitro Embryo Rescue and Development of a Kompetitive Allele-Specific PCR (KASP) Marker Related to Stenospermocarpic Seedlessness in Grape ( Vitis vinifera L.). Int J Mol Sci 2023; 24:17350. [PMID: 38139179 PMCID: PMC10744101 DOI: 10.3390/ijms242417350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Seedlessness is one of the highest valued agronomic traits in grapes. Embryo rescue in combination with marker-assisted selection have been widely applied in seedless grape breeding due to the advantages of increasing the ratio of seedless progenies and shortening the breeding cycle. However, the large number of deformed seedlings produced during embryo rescue and the lack of fast, efficient, and low-cost markers severely inhibit the process of seedless grape breeding. In this study, a total of eighty-three grape cultivars (51 seedless and 32 seeded) with diverse genetic backgrounds and two populations derived from embryo rescue, including 113 F1 hybrid individuals (60 seedless and 53 seeded), were utilized. We screened suitable media for converting malformed seedlings into normal seedlings, analyzed the association between the SNP in VviAGL11 and seeded/seedless phenotype, and developed a KASP marker related to stenospermocarpic seedlessness. Our results indicated that the transformation rate of 37.8% was obtained with MS medium supplemented with 2.0 mg·L-1 of 6-BA and 0.5 mg·L-1 of IBA. The presence of an A nucleotide allele at position chr18:26889437 was further confirmed to be fully associated with the stenospermocarpic seedlessness phenotype. The developed KASP marker, based on the verified SNP locus in VviAGL11, successfully distinguished the seedless and seeded genotypes with high precision and throughput. The results will contribute to enhancing the efficiency of embryo rescue and facilitate parent selection and early selection of seedless offspring with molecular markers, thereby accelerating the breeding process in seedless table grapes.
Collapse
Affiliation(s)
- Xiaojun Xi
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.X.); (Q.Z.); (X.Y.); (P.S.)
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Benjamin Gutierrez
- Plant Genetic Resources Unit, US Department of Agriculture-Agricultural Research Service, Geneva, NY 14456, USA;
| | - Qian Zha
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.X.); (Q.Z.); (X.Y.); (P.S.)
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiangjing Yin
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.X.); (Q.Z.); (X.Y.); (P.S.)
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Pengpeng Sun
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.X.); (Q.Z.); (X.Y.); (P.S.)
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Aili Jiang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.X.); (Q.Z.); (X.Y.); (P.S.)
- Shanghai Key Lab of Protected Horticultural Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
20
|
Tourdot E, Mauxion JP, Gonzalez N, Chevalier C. Endoreduplication in plant organogenesis: a means to boost fruit growth. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6269-6284. [PMID: 37343125 DOI: 10.1093/jxb/erad235] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Endoreduplication is the major source of somatic endopolyploidy in higher plants, and leads to variation in cell ploidy levels due to iterative rounds of DNA synthesis in the absence of mitosis. Despite its ubiquitous occurrence in many plant organs, tissues, and cells, the physiological meaning of endoreduplication is not fully understood, although several roles during plant development have been proposed, mostly related to cell growth, differentiation, and specialization via transcriptional and metabolic reprogramming. Here, we review recent advances in our knowledge of the molecular mechanisms and cellular characteristics of endoreduplicated cells, and provide an overview of the multi-scale effects of endoreduplication on supporting growth in plant development. In addition, the effects of endoreduplication in fruit development are discussed, since it is highly prominent during fruit organogenesis where it acts as a morphogenetic factor supporting rapid fruit growth, as illustrated by case of the model fleshy fruit, tomato (Solanum lycopersicum).
Collapse
Affiliation(s)
- Edouard Tourdot
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Jean-Philippe Mauxion
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Nathalie Gonzalez
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Christian Chevalier
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| |
Collapse
|
21
|
Zhu Q, Deng L, Chen J, Rodríguez GR, Sun C, Chang Z, Yang T, Zhai H, Jiang H, Topcu Y, Francis D, Hutton S, Sun L, Li CB, van der Knaap E, Li C. Redesigning the tomato fruit shape for mechanized production. NATURE PLANTS 2023; 9:1659-1674. [PMID: 37723204 DOI: 10.1038/s41477-023-01522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Crop breeding for mechanized harvesting has driven modern agriculture. In tomato, machine harvesting for industrial processing varieties became the norm in the 1970s. However, fresh-market varieties whose fruits are suitable for mechanical harvesting are difficult to breed because of associated reduction in flavour and nutritional qualities. Here we report the cloning and functional characterization of fs8.1, which controls the elongated fruit shape and crush resistance of machine-harvestable processing tomatoes. FS8.1 encodes a non-canonical GT-2 factor that activates the expression of cell-cycle inhibitor genes through the formation of a transcriptional module with the canonical GT-2 factor SlGT-16. The fs8.1 mutation results in a lower inhibitory effect on the cell proliferation of the ovary wall, leading to elongated fruits with enhanced compression resistance. Our study provides a potential route for introducing the beneficial allele into fresh-market tomatoes without reducing quality, thereby facilitating mechanical harvesting.
Collapse
Affiliation(s)
- Qiang Zhu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jie Chen
- College of Horticulture, China Agricultural University, Beijing, China
| | - Gustavo R Rodríguez
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Rosario, Argentina
| | - Chuanlong Sun
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zeqian Chang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Tianxia Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Huawei Zhai
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yasin Topcu
- Institute of Plant Breeding, Department of Horticulture, University of Georgia, Athens, GA, USA
- Batı Akdeniz Agricultural Research Institute, Antalya, Turkey
| | - David Francis
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA
| | - Samuel Hutton
- Gulf Coast Research and Education Center, University of Florida, Gainesville, FL, USA
| | - Liang Sun
- College of Horticulture, China Agricultural University, Beijing, China
| | - Chang-Bao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Esther van der Knaap
- Institute of Plant Breeding, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
22
|
Xu X, Huang B, Fang X, Zhang Q, Qi T, Gong M, Zheng X, Wu M, Jian Y, Deng J, Cheng Y, Li Z, Deng W. SlMYB99-mediated auxin and abscisic acid antagonistically regulate ascorbic acids biosynthesis in tomato. THE NEW PHYTOLOGIST 2023. [PMID: 37247338 DOI: 10.1111/nph.18988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Ascorbic acid (AsA) is a water-soluble antioxidant that plays important roles in plant development and human health. Understanding the regulatory mechanism underlying AsA biosynthesis is imperative to the development of high AsA plants. In this study, we reveal that the auxin response factor SlARF4 transcriptionally inhibits SlMYB99, which subsequently modulates AsA accumulation via transcriptional activation of AsA biosynthesis genes GPP, GLDH, and DHAR. The auxin-dependent transcriptional cascade of SlARF4-SlMYB99-GPP/GLDH/DHAR modulates AsA synthesis, while mitogen-activated protein kinase SlMAPK8 not only phosphorylates SlMYB99, but also activates its transcriptional activity. Both SlMYB99 and SlMYB11 proteins physically interact with each other, thereby synergistically regulating AsA biosynthesis by upregulating the expression of GPP, GLDH, and DHAR genes. Collectively, these results demonstrate that auxin and abscisic acid antagonistically regulate AsA biosynthesis during development and drought tolerance in tomato via the SlMAPK8-SlARF4-SlMYB99/11 module. These findings provide new insights into the mechanism underlying phytohormone regulation of AsA biosynthesis and provide a theoretical basis for the future development of high AsA plants via molecular breeding.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xu Fang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Qiongdan Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Tiancheng Qi
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Min Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xianzhe Zheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Mengbo Wu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yongfei Jian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Jie Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
23
|
Seedlessness Trait and Genome Editing—A Review. Int J Mol Sci 2023; 24:ijms24065660. [PMID: 36982733 PMCID: PMC10057249 DOI: 10.3390/ijms24065660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Parthenocarpy and stenospermocarpy are the two mechanisms underlying the seedless fruit set program. Seedless fruit occurs naturally and can be produced using hormone application, crossbreeding, or ploidy breeding. However, the two types of breeding are time-consuming and sometimes ineffective due to interspecies hybridization barriers or the absence of appropriate parental genotypes to use in the breeding process. The genetic engineering approach provides a better prospect, which can be explored based on an understanding of the genetic causes underlying the seedlessness trait. For instance, CRISPR/Cas is a comprehensive and precise technology. The prerequisite for using the strategy to induce seedlessness is identifying the crucial master gene or transcription factor liable for seed formation/development. In this review, we primarily explored the seedlessness mechanisms and identified the potential candidate genes underlying seed development. We also discussed the CRISPR/Cas-mediated genome editing approaches and their improvements.
Collapse
|
24
|
Chirinos X, Ying S, Rodrigues MA, Maza E, Djari A, Hu G, Liu M, Purgatto E, Fournier S, Regad F, Bouzayen M, Pirrello J. Transition to ripening in tomato requires hormone-controlled genetic reprogramming initiated in gel tissue. PLANT PHYSIOLOGY 2023; 191:610-625. [PMID: 36200876 PMCID: PMC9806557 DOI: 10.1093/plphys/kiac464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Ripening is the last stage of the developmental program in fleshy fruits. During this phase, fruits become edible and acquire their unique sensory qualities and post-harvest potential. Although our knowledge of the mechanisms that regulate fruit ripening has improved considerably over the past decades, the processes that trigger the transition to ripening remain poorly deciphered. While transcriptomic profiling of tomato (Solanum lycopersicum L.) fruit ripening to date has mainly focused on the changes occurring in pericarp tissues between the Mature Green and Breaker stages, our study addresses the changes between the Early Mature Green and Late Mature Green stages in the gel and pericarp separately. The data showed that the shift from an inability to initiate ripening to the capacity to undergo full ripening requires extensive transcriptomic reprogramming that takes place first in the locular tissues before extending to the pericarp. Genome-wide transcriptomic profiling revealed the wide diversity of transcription factor (TF) families engaged in the global reprogramming of gene expression and identified those specifically regulated at the Mature Green stage in the gel but not in the pericarp, thereby providing potential targets toward deciphering the initial factors and events that trigger the transition to ripening. The study also uncovered an extensive reformed homeostasis for most plant hormones, highlighting the multihormonal control of ripening initiation. Our data unveil the antagonistic roles of ethylene and auxin during the onset of ripening and show that auxin treatment delays fruit ripening via impairing the expression of genes required for System-2 autocatalytic ethylene production that is essential for climacteric ripening. This study unveils the detailed features of the transcriptomic reprogramming associated with the transition to ripening of tomato fruit and shows that the first changes occur in the locular gel before extending to pericarp and that a reformed auxin homeostasis is essential for the ripening to proceed.
Collapse
Affiliation(s)
| | | | - Maria Aurineide Rodrigues
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
- Institute of Biosciences, Department of Botany, Universidade de São Paulo, São Paulo, 11461 Brazil
| | - Elie Maza
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
| | - Anis Djari
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
| | - Guojian Hu
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Eduardo Purgatto
- Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sylvie Fournier
- Metatoul-AgromiX platform, LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France
| | - Farid Regad
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Végétales—Génomique et Biotechnologie des Fruits—UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
- Université de Toulouse, INRAe/INP Toulouse, Génomique et Biotechnologie des Fruits—UMR990, Castanet-Tolosan, France
| | | |
Collapse
|
25
|
Dong Y, Feng ZQ, Ye F, Li T, Li GL, Li ZS, Hao YC, Zhang XH, Liu WX, Xue JQ, Xu ST. Genome-wide association analysis for grain moisture content and dehydration rate on maize hybrids. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:5. [PMID: 37312866 PMCID: PMC10248682 DOI: 10.1007/s11032-022-01349-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/13/2022] [Indexed: 06/15/2023]
Abstract
For mechanized maize production, a low grain water content (GWC) at harvest is necessary. However, as a complex quantitative trait, understand the genetic mechanism of GWC remains a large gap, especially in hybrids. In this study, a hybrid population through two environments including 442 F1 was used for genome-wide association analysis of GWC and the grain dehydration rate (GDR), using the area under the dry down curve (AUDDC) as the index. Then, we identified 19 and 17 associated SNPs for GWC and AUDDC, including 10 co-localized SNPs, along with 64 and 77 pairs of epistatic SNPs for GWC and AUDDC, respectively. These loci could explain 11.39-68.2% of the total phenotypic variation for GWC and 41.07-67.02% for AUDDC at different stages, whose major effect was the additive and epistatic effect. By exploring the candidate genes around the significant sites, a total of 398 and 457 possible protein-coding genes were screened, including autophagy pathway and auxin regulation-related genes, and five inbred lines with the potential to reduce GWC in the combined F1 hybrid were identified. Our research not only provides a certain reference for the genetic mechanism analysis of GWC in hybrids but also provides an added reference for breeding low-GWC materials. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01349-x.
Collapse
Affiliation(s)
- Yuan Dong
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Zhi-qian Feng
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Fan Ye
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Ting Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Guo-liang Li
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Zhou-Shuai Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Yin-chuan Hao
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Xing-hua Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Wen-xin Liu
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, 100193 China
| | - Ji-quan Xue
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| | - Shu-tu Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling, Xianyang, 712100 Shaanxi China
| |
Collapse
|
26
|
Tang N, Cao Z, Wu P, Zhang X, Lou J, Liu Y, Wang Q, Hu Y, Si S, Sun X, Chen Z. Genome-wide identification, interaction of the MADS-box proteins in Zanthoxylum armatum and functional characterization of ZaMADS80 in floral development. FRONTIERS IN PLANT SCIENCE 2022; 13:1038828. [PMID: 36507394 PMCID: PMC9732391 DOI: 10.3389/fpls.2022.1038828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
As a typical dioecious species, Zanthoxylum armatum establishes apomictic reproduction, hence only female trees are cultivated. However, male and hermaphrodite flowers have recently appeared in female plants, resulting in a dramatic yield reduction. To date, the genetic basis underlying sex determination and apomixis in Z. armatum has been largely unknown. Here, we observed abortion of the stamen or carpel prior to primordium initiation, thus corroborating the potential regulation of MADS-box in sex determination. In Z. armatum, a total of 105 MADS-box genes were identified, harboring 86 MIKC-type MADSs with lack of FLC orthologues. Transcriptome analysis revealed candidate MADSs involved in floral organ identity, including ten male-biased MADSs, represented by ZaMADS92/81/75(AP3/PI-like), and twenty-six female-specified, represented by ZaMADS80/49 (STK/AGL11-like) and ZaMADS42 (AG-like). Overexpressing ZaMADS92 resulted in earlier flowering, while ZaMADS80 overexpression triggered precocious fruit set and parthenocarpy as well as dramatic modifications in floral organs. To characterize their regulatory mechanisms, a comprehensive protein-protein interaction network of the represented MADSs was constructed based on yeast two-hybrid and bimolecular fluorescence complementation assays. Compared with model plants, the protein interaction patterns in Z. armatum exhibited both conservation and divergence. ZaMADS70 (SEP3-like) interacted with ZaMADS42 and ZaMADS48 (AP3-like) but not ZaMADS40 (AP1-like), facilitating the loss of petals in Z. armatum. The ZaMADS92/ZaMADS40 heterodimer could be responsible for accelerating flowering in ZaMADS92-OX lines. Moreover, the interactions between ZaMADS80 and ZaMADS67(AGL32-like) might contribute to apomixis. This work provides new insight into the molecular mechanisms of MADS-boxes in sex organ identity in Z. armatum.
Collapse
Affiliation(s)
- Ning Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Zhengyan Cao
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Peiyin Wu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Xian Zhang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Juan Lou
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Yanni Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
- College of Biology and Food Engineering, Chongqing Three Georges University, Chongqing, China
| | - Qiyao Wang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Yang Hu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Shuo Si
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Xiaofan Sun
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| | - Zexiong Chen
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, China
| |
Collapse
|
27
|
Guo M, Yang F, Liu C, Zou J, Qi Z, Fotopoulos V, Lu G, Yu J, Zhou J. A single-nucleotide polymorphism in WRKY33 promoter is associated with the cold sensitivity in cultivated tomato. THE NEW PHYTOLOGIST 2022; 236:989-1005. [PMID: 35892173 DOI: 10.1111/nph.18403] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Natural variations in cis-regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter mutations affect gene expression and crop stress tolerance is still poorly understood. In this study, by analyzing RNA-sequencing (RNA-Seq) data and reverse transcription quantitative real-time PCR validation in the cultivated tomato and its wild relatives, we reveal that the transcripts of WRKY33 are almost unchanged in cold-sensitive cultivated tomato Solanum lycopersicum L. 'Ailsa Craig' but are significantly induced in cold-tolerant wild tomato relatives Solanum habrochaites LA1777 and Solanum pennellii LA0716 under cold stress. Overexpression of SlWRKY33 or ShWRKY33 positively regulates cold tolerance in tomato. Variant of the critical W-box in SlWRKY33 promoter results in the loss of self-transcription function of SlWRKY33 under cold stress. Analysis integrating RNA-Seq and chromatin immunoprecipitation sequencing data reveals that SlWRKY33 directly targets and induces multiple kinases, transcription factors, and molecular chaperone genes, such as CDPK11, MYBS3, and BAG6, thus enhancing cold tolerance. In addition, heat- and Botrytis-induced WRKY33s expression in both wild and cultivated tomatoes are independent of the critical W-box variation. Our findings suggest nucleotide polymorphism in cis-regulatory regions is crucial for different cold sensitivity between cultivated and wild tomato plants.
Collapse
Affiliation(s)
- Mingyue Guo
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Fengjun Yang
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Chenxu Liu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Jinping Zou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Zhenyu Qi
- Hainan Institute, Zhejiang University, Sanya, 572000, China
- Agricultural Experiment Station, Zhejiang University, Hangzhou, 310058, China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences Biotechnology and Food Science, Cyprus University of Technology, Lemesos, 999058, Cyprus
| | - Gang Lu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572000, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Sanya, 572000, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
28
|
Vignati E, Lipska M, Dunwell JM, Caccamo M, Simkin AJ. Options for the generation of seedless cherry, the ultimate snacking product. PLANTA 2022; 256:90. [PMID: 36171415 PMCID: PMC9519733 DOI: 10.1007/s00425-022-04005-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/21/2022] [Indexed: 05/09/2023]
Abstract
This manuscript identifies cherry orthologues of genes implicated in the development of pericarpic fruit and pinpoints potential options and restrictions in the use of these targets for commercial exploitation of parthenocarpic cherry fruit. Cherry fruit contain a large stone and seed, making processing of the fruit laborious and consumption by the consumer challenging, inconvenient to eat 'on the move' and potentially dangerous for children. Availability of fruit lacking the stone and seed would be potentially transformative for the cherry industry, since such fruit would be easier to process and would increase consumer demand because of the potential reduction in costs. This review will explore the background of seedless fruit, in the context of the ambition to produce the first seedless cherry, carry out an in-depth analysis of the current literature around parthenocarpy in fruit, and discuss the available technology and potential for producing seedless cherry fruit as an 'ultimate snacking product' for the twenty-first century.
Collapse
Affiliation(s)
- Edoardo Vignati
- NIAB East Malling, Department of Genetics, Genomics and Breeding, New Road, West Malling, Kent, ME19 6BJ, UK
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, Berkshire, RG6 6EU, UK
| | - Marzena Lipska
- NIAB East Malling, Department of Genetics, Genomics and Breeding, New Road, West Malling, Kent, ME19 6BJ, UK
| | - Jim M Dunwell
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading, Berkshire, RG6 6EU, UK
| | - Mario Caccamo
- NIAB, Cambridge Crop Research, Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Andrew J Simkin
- NIAB East Malling, Department of Genetics, Genomics and Breeding, New Road, West Malling, Kent, ME19 6BJ, UK.
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
29
|
Shi Y, Li BJ, Su G, Zhang M, Grierson D, Chen KS. Transcriptional regulation of fleshy fruit texture. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1649-1672. [PMID: 35731033 DOI: 10.1111/jipb.13316] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/22/2022] [Indexed: 05/24/2023]
Abstract
Fleshy fruit texture is a critically important quality characteristic of ripe fruit. Softening is an irreversible process which operates in most fleshy fruits during ripening which, together with changes in color and taste, contributes to improvements in mouthfeel and general attractiveness. Softening results mainly from the expression of genes encoding enzymes responsible for cell wall modifications but starch degradation and high levels of flavonoids can also contribute to texture change. Some fleshy fruit undergo lignification during development and post-harvest, which negatively affects eating quality. Excessive softening can also lead to physical damage and infection, particularly during transport and storage which causes severe supply chain losses. Many transcription factors (TFs) that regulate fruit texture by controlling the expression of genes involved in cell wall and starch metabolism have been characterized. Some TFs directly regulate cell wall targets, while others act as part of a broader regulatory program governing several aspects of the ripening process. In this review, we focus on advances in our understanding of the transcriptional regulatory mechanisms governing fruit textural change during fruit development, ripening and post-harvest. Potential targets for breeding and future research directions for the control of texture and quality improvement are discussed.
Collapse
Affiliation(s)
- Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Bai-Jun Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Guanqing Su
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Mengxue Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Donald Grierson
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Kun-Song Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|