1
|
Hempel M, Warren JD, Liang J, Hughes C, Tu Z. Mosquito sex determination: recent advances and applications. CURRENT OPINION IN INSECT SCIENCE 2025:101385. [PMID: 40368280 DOI: 10.1016/j.cois.2025.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025]
Abstract
Mosquitoes have evolved divergent sex-determining chromosomes and they employ diverse primary signals for sex-determination. As only females feed on vertebrate blood, manipulating genes involved in sex determination can facilitate genetic control measures for mosquito-borne infectious diseases such as dengue and malaria. We highlight new advances in mosquito sex determination, describe innovative applications, and discuss relevant evolutionary insights and future directions.
Collapse
Affiliation(s)
- Melanie Hempel
- Department of Biochemistry and the Fralin Life Sciences Institute Virginia Tech, Blacksburg, VA 24061.
| | - Joseph D Warren
- Department of Biochemistry and the Fralin Life Sciences Institute Virginia Tech, Blacksburg, VA 24061
| | - Jiangtao Liang
- Department of Biochemistry and the Fralin Life Sciences Institute Virginia Tech, Blacksburg, VA 24061
| | - Christen Hughes
- Department of Biochemistry and the Fralin Life Sciences Institute Virginia Tech, Blacksburg, VA 24061
| | - Zhijian Tu
- Department of Biochemistry and the Fralin Life Sciences Institute Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
2
|
Wu-Chuang A, Laukaitis-Yousey HJ, Butnaru M, Mohr SE, Perrimon N, Pedra JHF. Decoding arthropod vector immunology through bona fide pathogens. Trends Parasitol 2025; 41:351-360. [PMID: 40133119 PMCID: PMC12064392 DOI: 10.1016/j.pt.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/20/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025]
Abstract
The interrelationship between the microbiota, metabolism, and the arthropod immune system has evolved to maintain physiological equilibrium. Arthropods rely on this delicate balance when encountering fitness challenges. The understanding of life history traits in arthropod vectors has been hampered by technological difficulties compounded by limited scientific knowledge compared to established model organisms. Here, we posit that using emerging technologies to study environmental pathogens that cause greater fitness disadvantages to disease vectors (i.e., bona fide pathogens) in contrast to coevolved microbes will enable meaningful insights into arthropod immunophysiology. We propose a conceptual framework whereby understanding immunophysiology through the lens of bona fide pathogens, as opposed to coevolved microbes, should be useful for the management of vector-borne illnesses.
Collapse
Affiliation(s)
- Alejandra Wu-Chuang
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanna J Laukaitis-Yousey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Matthew Butnaru
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Walsh E, Torres TZB, Prince BC, Rückert C. Generation of Cas9 Knock-In Culex quinquefasciatus Mosquito Cells. DNA 2025; 5:1. [PMID: 39958709 PMCID: PMC11823230 DOI: 10.3390/dna5010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Background/Objectives Culex species mosquitoes are globally distributed and transmit several pathogens that impact animal and public health, including West Nile virus, Usutu virus, and Plasmodium relictum. Despite their relevance, Culex species are less widely studied than Aedes and Anopheles mosquitoes. To expand the genetic tools used to study Culex mosquitoes, we previously developed an optimized plasmid for transient Cas9 and single-guide RNA (sgRNA) expression in Culex quinquefasciatus cells to generate gene knockouts. Here, we established a monoclonal cell line that consistently expresses Cas9 and can be used for screens to determine gene function or antiviral activity. Methods We used this system to perform the successful gene editing of seven genes and subsequent testing for potential antiviral effects, using a simple single-guide RNA (sgRNA) transfection and subsequent virus infection. Results We were able to show antiviral effects for the Cx. quinquefasciatus genes dicer-2, argonaute-2b, vago, piwi5, piwi6a, and cullin4a. In comparison to the RNAi-mediated gene silencing of dicer-2, argonaute-2b, and piwi5, our Cas9/sgRNA approach showed an enhanced ability to detect antiviral effects. Conclusions We propose that this cell line offers a new tool for studying gene function in Cx. quinquefasciatus mosquitoes that avoids the use of RNAi. This short study also serves as a proof-of-concept for future gene knock-ins in these cells. Our cell line expands the molecular resources available for vector competence research and will support the design of future research strategies to reduce the transmission of mosquito-borne diseases.
Collapse
Affiliation(s)
- Elizabeth Walsh
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Tran Zen B. Torres
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Brian C. Prince
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
4
|
Dong Z, Wu Q, Zhang P, Fang W, Lei X, Deng B, Hu N, Chen P, Huang X, Lu C, Pan M. Development of a novel anti-microsporidia strategy by inhibiting parasite and host glucose metabolism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106276. [PMID: 40015868 DOI: 10.1016/j.pestbp.2024.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 03/01/2025]
Abstract
Microsporidia are obligate intracellular parasites that infect most types of animals. Exploring how microsporidia utilize energy substrates in infected host cells is important for human health and the development of the agricultural economy. In this study, transcriptomics was used to systematically analyze the enriched pathways involving ATP/ADP transporters and energy metabolism during the schizont proliferation period of Nosema bombycis. A Nosema bombycis ADP/ATP carrier 1 (NbAAC1) protein function characteristics of the adenine nucleotide translocase family were identified after infection with N. bombycis. NbAAC1 could inhibit ATP production and affect Nosema bombycis proliferation based on RNA interference in vivo and in vitro. Meanwhile, an effective gene-edited line targeted editing of the Bombyx mori hexokinase (BmHXK) gene of the host glycolytic metabolism pathway could inhibit N. bombycis infection was established. These findings provide new therapeutic approaches to controlling microsporidia infections by inhibiting intracellular parasitic fungi and host energy metabolism.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Qin Wu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Pengcheng Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Wenxuan Fang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Xiaocui Lei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Boyuan Deng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Nan Hu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Xuhua Huang
- The General Extension Station of Sericulture Technology of Guangxi Zhuang Autonomous Region, Nanning 530007, China
| | - Cheng Lu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| | - Minhui Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| |
Collapse
|
5
|
Hu Y, Comjean A, Rodiger J, Chen W, Kim AR, Qadiri M, Gao C, Zirin J, Mohr S, Perrimon N. FlyRNAi.org 2025 update-expanded resources for new technologies and species. Nucleic Acids Res 2025; 53:D958-D965. [PMID: 39435987 PMCID: PMC11701652 DOI: 10.1093/nar/gkae917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
The design, analysis and mining of large-scale 'omics studies with the goal of advancing biological and biomedical understanding require use of a range of bioinformatics tools, including approaches tailored to needs specific to a given species and/or technology. The FlyRNAi database at the Drosophila RNAi Screening Center and Transgenic RNAi Project (DRSC/TRiP) Functional Genomics Resources (https://fgr.hms.harvard.edu/tools) supports an increasingly broad group of technologies and species. Recently, for example, we expanded the database to include additional new data-centric resources that facilitate mining and analysis of single-cell transcriptomics. In addition, we have applied our approaches to CRISPR reagent and gene-centric bioinformatics approaches in Drosophila to arthropod vectors of infectious diseases. Building on our previous comprehensive reports on the FlyRNAi database, here we focus on new and updated resources with a primary focus on data-centric tools. Altogether, our suite of online resources supports various stages of functional genomics studies for Drosophila and other arthropods, and facilitate a wide range of reagent design, analysis, data mining and analysis approaches by biologists and biomedical experts studying Drosophila, other common genetic model species, arthropod vectors and/or human biology.
Collapse
Affiliation(s)
- Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Rodiger
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- LifeMine Therapeutics, 30 Acorn Park Dr, Cambridge, MA 02140, USA
| | - Weihang Chen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ah-Ram Kim
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Mujeeb Qadiri
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Chenxi Gao
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jonathan Zirin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
6
|
Chan SW. CRISPR-editing of the virus vector Aedes albopictus cell line C6/36, illustrated by prohibitin 2 gene knockout. MethodsX 2024; 13:102817. [PMID: 39049926 PMCID: PMC11267050 DOI: 10.1016/j.mex.2024.102817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Aedes mosquitoes are important virus vectors. We provide a toolkit for CRISPR-Cas9-editing of difficult-to-knockdown gene previously shown to be refractory to siRNA silencing in mosquito cells, which is pivotal in understanding vector biology, vector competence, host-pathogen interactions and in gene annotations. Starting from database searches of Ae. albopictus and the C6/36 cell line whole genome shotgun sequences for the prohibitin 2 (PHB2) gene, primers were designed to confirm the gene sequence in our laboratory-passaged C6/36 cell line for the correct design and cloning of CRISPR RNA into an insect plasmid vector to create a single guide RNA for the PHB2 gene target. After transfection of this plasmid vector into the C6/36 cells, cell clones selected by puromycin and/or limiting dilution were analyzed for insertions and deletions (INDELs) using PCR, sequencing and computational sequence decomposition. From this, we have identified mono-allelic and bi-allelic knockout cell clones. Using a mono-allelic knockout cell clone as an example, we characterized its INDELs by molecular cloning and computational analysis. Importantly, mono-allelic knockout was sufficient to reduce >80 % of PHB2 expression, which led to phenotypic switching and the propensity to form foci but was insufficient to affect growth rate or to inhibit Zika virus infection.•We provide a toolkit for CRISPR-Cas9-editing of the virus vector, Aedes albopictus C6/36 cell line•We validate this using a difficult-to-knockdown gene prohibitin 2•This toolkit is pivotal in understanding vector biology, vector competence, host-pathogen interactions and in gene annotations.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| |
Collapse
|
7
|
Viswanatha R, Entwisle S, Hu C, Reap K, Butnaru M, Mohr SE, Perrimon N. Higher resolution pooled genome-wide CRISPR knockout screening in Drosophila cells using Integration and Anti-CRISPR (IntAC). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613976. [PMID: 39345359 PMCID: PMC11429967 DOI: 10.1101/2024.09.19.613976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
CRISPR screens enable systematic, scalable genotype-to-phenotype mapping. We previously developed a pooled CRISPR screening method for Drosophila melanogaster and mosquito cell lines using plasmid transfection and site-specific integration to introduce single guide (sgRNA) libraries, followed by PCR and sequencing of integrated sgRNAs. While effective, the method relies on early constitutive Cas9 activity that potentially can lead to discrepancies between genome edits and sgRNAs detected by PCR, reducing screen accuracy. To address this issue, we introduce a new method to co-transfect a plasmid expressing the anti-CRISPR protein AcrIIa4 to suppress Cas9 activity during early sgRNA expression, which we term "IntAC" (integrase with anti-CRISPR). IntAC allowed us to construct a new CRISPR screening approach driven by the high strength dU6:3 promoter. This new library dramatically improved precision-recall of fitness genes across the genome, retrieving 90-95% of essential gene groups within 5% error, allowing us to generate the most comprehensive list of cell fitness genes yet assembled for Drosophila. Our analysis determined that elevated sgRNA levels, made permissible by the IntAC approach, drove much of the improvement. The Drosophila fitness genes show strong correlation with human fitness genes and underscore the effects of paralogs on gene essentiality. We further demonstrate that IntAC combined with a targeted sgRNA sub-library enabled precise positive selection of a transporter under solute overload. IntAC represents a straightforward enhancement to existing Drosophila CRISPR screening methods, dramatically increasing accuracy, and might also be broadly applicable to virus-free CRISPR screens in other cell types, including mosquito, lepidopteran, tick, and mammalian cells.
Collapse
Affiliation(s)
| | - Samuel Entwisle
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Claire Hu
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Kelly Reap
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Matthew Butnaru
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Stephanie E Mohr
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, MA 02115
| |
Collapse
|
8
|
Mameli E, Samantsidis GR, Viswanatha R, Kwon H, Hall DR, Butnaru M, Hu Y, Mohr SE, Perrimon N, Smith RC. A genome-wide CRISPR screen in Anopheles mosquito cells identifies essential genes and required components of clodronate liposome function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614595. [PMID: 39386635 PMCID: PMC11463579 DOI: 10.1101/2024.09.24.614595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Anopheles mosquitoes are the sole vector of human malaria, the most burdensome vector-borne disease worldwide. Strategies aimed at reducing mosquito populations and limiting their ability to transmit disease show the most promise for disease control. Therefore, gaining an improved understanding of mosquito biology, and specifically that of the immune response, can aid efforts to develop new approaches that limit malaria transmission. Here, we use a genome-wide CRISPR screening approach for the first time in mosquito cells to identify essential genes in Anopheles and identify genes for which knockout confers resistance to clodronate liposomes, which have been widely used in mammals and arthropods to ablate immune cells. In the essential gene screen, we identified a set of 1280 Anopheles genes that are highly enriched for genes involved in fundamental cell processes. For the clodronate liposome screen, we identified several candidate resistance factors and confirm their roles in the uptake and processing of clodronate liposomes through in vivo validation in Anopheles gambiae, providing new mechanistic detail of phagolysosome formation and clodronate liposome function. In summary, we demonstrate the application of a genome-wide CRISPR knockout platform in a major malaria vector and the identification of genes that are important for fitness and immune-related processes.
Collapse
Affiliation(s)
- Enzo Mameli
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - George-Rafael Samantsidis
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Raghuvir Viswanatha
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Hyeogsun Kwon
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - David R. Hall
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Matthew Butnaru
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephanie E. Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
- HHMI, Harvard Medical School, Boston, MA, 02115, USA
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
9
|
Collier TC, Lee Y, Mathias DK, López Del Amo V. CRISPR-Cas9 and Cas12a target site richness reflects genomic diversity in natural populations of Anopheles gambiae and Aedes aegypti mosquitoes. BMC Genomics 2024; 25:700. [PMID: 39020310 PMCID: PMC11253549 DOI: 10.1186/s12864-024-10597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024] Open
Abstract
Due to limitations in conventional disease vector control strategies including the rise of insecticide resistance in natural populations of mosquitoes, genetic control strategies using CRISPR gene drive systems have been under serious consideration. The identification of CRISPR target sites in mosquito populations is a key aspect for developing efficient genetic vector control strategies. While genome-wide Cas9 target sites have been explored in mosquitoes, a precise evaluation of target sites focused on coding sequence (CDS) is lacking. Additionally, target site polymorphisms have not been characterized for other nucleases such as Cas12a, which require a different DNA recognition site (PAM) and would expand the accessibility of mosquito genomes for genetic engineering. We undertook a comprehensive analysis of potential target sites for both Cas9 and Cas12a nucleases within the genomes of natural populations of Anopheles gambiae and Aedes aegypti from multiple continents. We demonstrate that using two nucleases increases the number of targets per gene. Also, we identified differences in nucleotide diversity between North American and African Aedes populations, impacting the abundance of good target sites with a minimal degree of polymorphisms that can affect the binding of gRNA. Lastly, we screened for gRNAs targeting sex-determination genes that could be widely applicable for developing field genetic control strategies. Overall, this work highlights the utility of employing both Cas9 and Cas12a nucleases and underscores the importance of designing universal genetic strategies adaptable to diverse mosquito populations.
Collapse
Affiliation(s)
| | - Yoosook Lee
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32962, USA
| | - Derrick K Mathias
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32962, USA
| | - Víctor López Del Amo
- Center for Infectious Diseases, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, TX, 77030, USA.
| |
Collapse
|
10
|
Lau NC, Macias VM. Transposon and Transgene Tribulations in Mosquitoes: A Perspective of piRNA Proportions. DNA 2024; 4:104-128. [PMID: 39076684 PMCID: PMC11286205 DOI: 10.3390/dna4020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Mosquitoes, like Drosophila, are dipterans, the order of "true flies" characterized by a single set of two wings. Drosophila are prime model organisms for biomedical research, while mosquito researchers struggle to establish robust molecular biology in these that are arguably the most dangerous vectors of human pathogens. Both insects utilize the RNA interference (RNAi) pathway to generate small RNAs to silence transposons and viruses, yet details are emerging that several RNAi features are unique to each insect family, such as how culicine mosquitoes have evolved extreme genomic feature differences connected to their unique RNAi features. A major technical difference in the molecular genetic studies of these insects is that generating stable transgenic animals are routine in Drosophila but still variable in stability in mosquitoes, despite genomic DNA-editing advances. By comparing and contrasting the differences in the RNAi pathways of Drosophila and mosquitoes, in this review we propose a hypothesis that transgene DNAs are possibly more intensely targeted by mosquito RNAi pathways and chromatin regulatory pathways than in Drosophila. We review the latest findings on mosquito RNAi pathways, which are still much less well understood than in Drosophila, and we speculate that deeper study into how mosquitoes modulate transposons and viruses with Piwi-interacting RNAs (piRNAs) will yield clues to improving transgene DNA expression stability in transgenic mosquitoes.
Collapse
Affiliation(s)
- Nelson C. Lau
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Genome Science Institute and National Emerging Infectious Disease Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vanessa M. Macias
- Department of Biology, University of North Texas, Denton, TX 76205, USA
- Advanced Environmental Research Institute, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
11
|
Mohr SE, Kim AR, Hu Y, Perrimon N. Finding information about uncharacterized Drosophila melanogaster genes. Genetics 2023; 225:iyad187. [PMID: 37933691 PMCID: PMC10697813 DOI: 10.1093/genetics/iyad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 11/08/2023] Open
Abstract
Genes that have been identified in the genome but remain uncharacterized with regards to function offer an opportunity to uncover novel biological information. Novelty is exciting but can also be a barrier. If nothing is known, how does one start planning and executing experiments? Here, we provide a recommended information-mining workflow and a corresponding guide to accessing information about uncharacterized Drosophila melanogaster genes, such as those assigned only a systematic coding gene identifier. The available information can provide insights into where and when the gene is expressed, what the function of the gene might be, whether there are similar genes in other species, whether there are known relationships to other genes, and whether any other features have already been determined. In addition, available information about relevant reagents can inspire and facilitate experimental studies. Altogether, mining available information can help prioritize genes for further study, as well as provide starting points for experimental assays and other analyses.
Collapse
Affiliation(s)
- Stephanie E Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ah-Ram Kim
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
12
|
CRISPR screens in Drosophila cells identify Vsg as a Tc toxin receptor. Nature 2022; 610:349-355. [PMID: 36171290 PMCID: PMC9631961 DOI: 10.1038/s41586-022-05250-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 08/18/2022] [Indexed: 11/08/2022]
Abstract
Entomopathogenic nematodes are widely used as biopesticides1,2. Their insecticidal activity depends on symbiotic bacteria such as Photorhabdus luminescens, which produces toxin complex (Tc) toxins as major virulence factors3-6. No protein receptors are known for any Tc toxins, which limits our understanding of their specificity and pathogenesis. Here we use genome-wide CRISPR-Cas9-mediated knockout screening in Drosophila melanogaster S2R+ cells and identify Visgun (Vsg) as a receptor for an archetypal P. luminescens Tc toxin (pTc). The toxin recognizes the extracellular O-glycosylated mucin-like domain of Vsg that contains high-density repeats of proline, threonine and serine (HD-PTS). Vsg orthologues in mosquitoes and beetles contain HD-PTS and can function as pTc receptors, whereas orthologues without HD-PTS, such as moth and human versions, are not pTc receptors. Vsg is expressed in immune cells, including haemocytes and fat body cells. Haemocytes from Vsg knockout Drosophila are resistant to pTc and maintain phagocytosis in the presence of pTc, and their sensitivity to pTc is restored through the transgenic expression of mosquito Vsg. Last, Vsg knockout Drosophila show reduced bacterial loads and lethality from P. luminescens infection. Our findings identify a proteinaceous Tc toxin receptor, reveal how Tc toxins contribute to P. luminescens pathogenesis, and establish a genome-wide CRISPR screening approach for investigating insecticidal toxins and pathogens.
Collapse
|
13
|
Torres TZB, Prince BC, Robison A, Rückert C. Optimized In Vitro CRISPR/Cas9 Gene Editing Tool in the West Nile Virus Mosquito Vector, Culex quinquefasciatus. INSECTS 2022; 13:856. [PMID: 36135557 PMCID: PMC9502113 DOI: 10.3390/insects13090856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Culex quinquefasciatus mosquitoes are a globally widespread vector of multiple human and animal pathogens, including West Nile virus, Saint Louis encephalitis virus, and lymphatic filariasis. Since the introduction of West Nile virus to the United States in 1999, a cumulative 52,532 cases have been reported to the CDC, including 25,849 (49.2%) neuroinvasive cases and 2456 (5%) deaths. Viral infections elicit immune responses in their mosquito vectors, including the RNA interference (RNAi) pathway considered to be the cornerstone antiviral response in insects. To investigate mosquito host genes involved in pathogen interactions, CRISPR/Cas9-mediated gene-editing can be used for functional studies of mosquito-derived cell lines. Yet, the tools available for the study of Cx. quinquefasciatus-derived (Hsu) cell lines remain largely underdeveloped compared to other mosquito species. In this study, we constructed and characterized a Culex-optimized CRISPR/Cas9 plasmid for use in Hsu cell cultures. By comparing it to the original Drosophila melanogaster CRISPR/Cas9 plasmid, we showed that the Culex-optimized plasmid demonstrated highly efficient editing of the genomic loci of the RNAi proteins Dicer-2 and PIWI4 in Hsu cells. These new tools support our ability to investigate gene targets involved in mosquito antiviral response, and thus the future development of gene-based vector control strategies.
Collapse
|