1
|
Centurión A, Omokungbe B, Stiehler S, Vilcinskas A, Hardes K. Inhibition of Semliki Forest virus replication with long double-stranded RNA in Aedes albopictus cells. Virus Res 2025; 357:199584. [PMID: 40389163 DOI: 10.1016/j.virusres.2025.199584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/21/2025]
Abstract
Arthropod-borne viruses represent an increasing threat to the global health system, requiring the development of novel and sustainable control strategies to reduce the risk of arboviral infections. RNA interference (RNAi) offers a potential approach to directly prevent viral replication within vectors due to its specificity in gene silencing. In this study, we evaluated the efficacy of long double-stranded RNAs (dsRNAs) targeting six regions of the Semliki Forest virus (SFV) genome in Aedes albopictus U4.4 cells. The antiviral efficiency of dsRNA alone is low, therefore we evaluated its use after complexing with the K4 Transfection System (K4). A cytotoxicity assay based on ATP quantification showed that both uncomplexed and complexed dsRNA had no cytotoxic effects on U4.4 cells at a concentration up to 2 ng/µL. Complexed dsRNA achieved higher antiviral efficacy, significantly reducing viral replication compared to uncomplexed dsRNA. We found that complexed dsRNA retained its antiviral activity when challenged with SFV up to 72 h post-transfection. Among our synthesized dsRNA constructs, nsP4-dsRNA in complex with K4 led to an 80 % reduction in viral replication at 72 h post-infection at 0.5 ng/µL. Using RT-qPCR, we confirmed a significant 32.2 % reduction of nsP4 mRNA after transfection of complexed nsP4-dsRNA. Dose response assays showed that complexed dsRNAs with a concentration of 0.5 ng/µL are effective for viral reduction. Our results highlight the importance of efficient dsRNA delivery and selection of critical viral targets, such as nsP4, for successful RNAi-mediated viral suppression. This work elucidates the potential of dsRNAs to target Semliki Forest virus replication, highlighting viral gene targeting as a viable strategy for RNAi-based suppression of arboviral replication.
Collapse
Affiliation(s)
- Alejandra Centurión
- Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Bodunrin Omokungbe
- Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Sabrina Stiehler
- Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Kornelia Hardes
- Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany; BMBF Junior Research Group in Infection Research "ASCRIBE", Ohlebergsweg 12, 35392, Giessen, Germany.
| |
Collapse
|
2
|
Rousseau C, Morand T, Haas G, Lauret E, Kuhn L, Chicher J, Hammann P, Meignin C. In vivo Dicer-2 interactome during viral infection reveals novel pro and antiviral factors in Drosophila melanogaster. PLoS Pathog 2025; 21:e1013093. [PMID: 40334246 PMCID: PMC12058146 DOI: 10.1371/journal.ppat.1013093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/01/2025] [Indexed: 05/09/2025] Open
Abstract
RNA interference has a major role in the control of viral infection in insects. It is initialized by the sensing of double stranded RNA (dsRNA) by the RNAse III enzyme Dicer-2. Many in vitro studies have helped understand how Dicer-2 discriminates between different dsRNA substrate termini, however it is unclear whether the same mechanisms are at work in vivo, and notably during recognition of viral dsRNA. Indeed, although Dicer-2 associates with several dsRNA-binding proteins (dsRBPs) that can modify its specificity for a substrate, it remains unknown how Dicer-2 is able to recognize the protected termini of viral dsRNAs. In order to study how the ribonucleoprotein network of Dicer-2 impacts antiviral immunity, we used an IP-MS approach to identify in vivo interactants of different versions of GFP::Dicer-2 in transgenic lines. We provide a global overview of the partners of Dicer-2 in vivo, and reveal how this interactome is modulated by different factors such as viral infection and/or different point mutations inactivating the helicase or RNase III domains of GFP::Dicer-2. Our analysis uncovers several previously unknown Dicer-2 interactants associated with RNA granules, i.e., Me31B, Rump, eIF4E1, eIF4G1, Rin and Syncrip. Functional characterization of the candidates, both in cells and in vivo, reveals pro- and antiviral factors in the context of an infection by the picorna-like DCV virus. This work highlights protein complexes assembled around Dicer-2 in vivo, and provides a resource to investigate their contribution to antiviral RNAi and related pathways.
Collapse
Affiliation(s)
- Claire Rousseau
- Université de Strasbourg, M3i CNRS UPR9022, Strasbourg, France
| | - Thomas Morand
- Université de Strasbourg, M3i CNRS UPR9022, Strasbourg, France
| | - Gabrielle Haas
- Université de Strasbourg, M3i CNRS UPR9022, Strasbourg, France
| | - Emilie Lauret
- Université de Strasbourg, M3i CNRS UPR9022, Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg-Esplanade, Université de Strasbourg, CNRS UAR1589, Strasbourg, France
| | - Johana Chicher
- Plateforme Protéomique Strasbourg-Esplanade, Université de Strasbourg, CNRS UAR1589, Strasbourg, France
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg-Esplanade, Université de Strasbourg, CNRS UAR1589, Strasbourg, France
| | - Carine Meignin
- Université de Strasbourg, M3i CNRS UPR9022, Strasbourg, France
| |
Collapse
|
3
|
Gérardin P, Medina-Santos R, Le Clerc S, Bruneau L, Maillot A, Labib T, Rahmouni M, Spadoni JL, Meyniel JP, Cornet C, Lefebvre C, El Jahrani N, Savara J, Mathew MJ, Fontaine C, Payet C, Ah-You N, Chabert C, Mussard C, Porcherat S, Medjane S, Noirel J, Marimoutou C, Hocini H, Zagury JF. Transcriptomic analysis of chronic chikungunya in the Reunionese CHIKGene cohort uncovers a shift in gene expression more than 10 years after infection. Travel Med Infect Dis 2025; 65:102825. [PMID: 39999933 DOI: 10.1016/j.tmaid.2025.102825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
AIM In 2005-2006, a chikungunya epidemic of unprecedented magnitude hit Reunion Island, which raised a public health concern through the substantial proportions of long-lasting manifestations. To understand the pathophysiology underlying chronic chikungunya (CC), we designed the CHIKGene cohort study and collected blood samples from 133 subjects diagnosed with CC and from 86 control individuals that had recovered within 3 months, 12-to-15 years after exposure. METHODS We conducted bulk RNAseq analysis on peripheral blood mononuclear cells to find differentially expressed genes (DEGs), gene set enrichment analysis (GSEA) and gene ontologies to uncover top-level enriched terms associated with DEGs, and weighted gene correlation network analysis (WGCNA) to elucidate underlying cellular processes. RESULTS Among 1549 DEGs, gene expression analysis identified 10 top genes including NR4A2 and TRIM58 (upregulated in CC), IGHG3 and IGHV3-49 (downregulated in CC) linked to immune regulation, OSBP2 (upregulated in CC) and SEMA6B (downregulated in CC) linked to neuronal homeostasis and axon guidance, respectively. GSEA and WGCNA unveiled cellular processes such as "Metabolism of RNA" and "Cell Cycle". CONCLUSIONS This study uncovers a shift in gene expression of CC subjects. IGHG3 and IGHV3-49 gene shut-offs spotlight the importance of neutralizing antibodies against chikungunya virus in the progression to chronic disease. Human diseases associations highlight connections to rheumatoid arthritis, nervous and cardiac systems. GSEA and WGCNA bounce the hypotheses of a persistent viral reservoir or an increased susceptibility to RNA viral pathogens with new onset infections. Together, our findings might offer potential targets for therapeutic options aimed at alleviating chronic chikungunya.
Collapse
Affiliation(s)
- Patrick Gérardin
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France; Platform for Clinical and Translational Research, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France.
| | - Raissa Medina-Santos
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France.
| | - Sigrid Le Clerc
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Léa Bruneau
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France; Department of Public Health and Research Support, Centre Hospitalier Universitaire de La Réunion, Saint-Denis, Réunion, France
| | - Adrien Maillot
- Department of Public Health and Research Support, Centre Hospitalier Universitaire de La Réunion, Saint-Denis, Réunion, France
| | - Taoufik Labib
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Myriam Rahmouni
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Jean-Louis Spadoni
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | | | - Clémence Cornet
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France; AdvanThink, Saint-Aubin, France
| | - Cécile Lefebvre
- INSERM U955, Equipe 16, Vaccine Research Institute, AP-HP, Groupe Henri Mondor Albert Chenevrier, Créteil, France
| | - Nora El Jahrani
- INSERM U955, Equipe 16, Vaccine Research Institute, AP-HP, Groupe Henri Mondor Albert Chenevrier, Créteil, France
| | - Jakub Savara
- École d'Ingénieurs Généraliste du Numérique, EFREI, Paris, France; Department of Immunology, Palacky University and University Hospital Olomouc, Czech Republic; Department of Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic
| | - Mano Joseph Mathew
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France; École d'Ingénieurs Généraliste du Numérique, EFREI, Paris, France
| | - Christine Fontaine
- Biological Resources Center (CRB), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, Saint-Denis, France
| | - Christine Payet
- Biological Resources Center (CRB), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, Saint-Denis, France
| | - Nathalie Ah-You
- Biological Resources Center (CRB), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, Saint-Denis, France
| | - Cécile Chabert
- Biological Resources Center (CRB), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, Saint-Denis, France
| | - Corinne Mussard
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France
| | - Sylvaine Porcherat
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France
| | - Samir Medjane
- Direction of Clinical Research and Innovation (DRCI), Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France
| | - Josselin Noirel
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Catherine Marimoutou
- Clinical Investigation Center, INSERM CIC1410, Centre Hospitalier Universitaire de La Réunion, Saint-Pierre, Réunion, France; Department of Public Health and Research Support, Centre Hospitalier Universitaire de La Réunion, Saint-Denis, Réunion, France
| | - Hakim Hocini
- INSERM U955, Equipe 16, Vaccine Research Institute, AP-HP, Groupe Henri Mondor Albert Chenevrier, Créteil, France
| | - Jean-François Zagury
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France.
| |
Collapse
|
4
|
Jiang N, Yang H, Lei Y, Qin W, Xiong H, Chen K, Mei K, Li G, Mu X, Chen R. Characterization of dsRNA binding proteins through solubility analysis identifies ZNF385A as a dsRNA homeostasis regulator. Nat Commun 2025; 16:3433. [PMID: 40210660 PMCID: PMC11985509 DOI: 10.1038/s41467-025-58704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Double-stranded RNA (dsRNA) binding proteins (dsRBPs) play crucial roles in various cellular processes, especially in the innate immune response. Comprehensive characterization of dsRBPs is essential to understand the intricate mechanisms for dsRNA sensing and response. Traditional methods have predominantly relied on affinity purification, favoring the isolation of strong dsRNA binders. Here, we adopt the proteome integral solubility alteration (PISA) workflow for characterizing dsRBPs, resulting in the observation of 18 known dsRBPs and the identification of 200 potential dsRBPs. Next, we focus on zinc finger protein 385 A (ZNF385A) and discover that its knockout activates the transcription of interferon-β in the absence of immunogenic stimuli. The knockout of ZNF385A elevates the level of endogenous dsRNAs, especially transcripts associated with retroelements, such as short interspersed nuclear element (SINE), long interspersed nuclear element (LINE), and long terminal repeat (LTR). Moreover, loss of ZNF385A enhances the bioactivity of 5-Aza-2'-deoxycytidine (5-AZA-CdR) and tumor-killing effect of NK cells. Our findings greatly expand the dsRBP reservoir and contribute to the understanding of cellular dsRNA homeostasis.
Collapse
Affiliation(s)
- Na Jiang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Hekun Yang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Yi Lei
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
- Jinnan Hospital, Tianjin University (Tianjin Jinnan Hospital), Tianjin, China
| | - Weida Qin
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Huifang Xiong
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Kuan Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Gongyu Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China.
- Jinnan Hospital, Tianjin University (Tianjin Jinnan Hospital), Tianjin, China.
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China.
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China.
| |
Collapse
|
5
|
Busnadiego I, Lork M, Fernbach S, Schiefer S, Tsolakos N, Hale BG. An atlas of protein phosphorylation dynamics during interferon signaling. Proc Natl Acad Sci U S A 2025; 122:e2412990122. [PMID: 40138345 PMCID: PMC12002234 DOI: 10.1073/pnas.2412990122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Interferons (IFNs, types I-III) have pleiotropic functions in promoting antiviral and antitumor responses, as well as in modulating inflammation. Dissecting the signaling mechanisms elicited by different IFNs is therefore critical to understand their phenotypes. Here, we use mass spectrometry to investigate the early temporal dynamics of cellular protein phosphorylation in a human lung epithelial cell-line as it responds to stimulation with IFNα2, IFNβ, IFNω, IFNγ, or IFNλ1, representing all IFN types. We report an atlas of over 700 common or unique phosphorylation events reprogrammed by these different IFNs, revealing both previously known and uncharacterized modifications. While the proteins differentially phosphorylated following IFN stimulation have diverse roles, there is an enrichment of factors involved in chromatin remodeling, transcription, and RNA splicing. Functional screening and mechanistic studies identify that several proteins modified in response to IFNs contribute to host antiviral responses, either directly or by supporting IFN-stimulated gene or protein production. Among these, phosphorylation of PLEKHG3 at serine-1081 creates a phospho-regulated binding motif for the docking of 14-3-3 proteins, and together these factors contribute to coordinating efficient IFN-stimulated gene expression independent of early Janus kinase/signal transducer and activator of transcription signaling. Our findings map the global phosphorylation landscapes regulated by IFN types I, II, and III, and provide a key resource to explore their functional consequences.
Collapse
Affiliation(s)
- Idoia Busnadiego
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Marie Lork
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Sonja Fernbach
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Samira Schiefer
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Nikos Tsolakos
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Benjamin G. Hale
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| |
Collapse
|
6
|
D'Aiuto L, Caldwell JK, Edwards TG, Zhou C, McDonald ML, Di Maio R, Joel WA, Hyde VR, Wallace CT, Watkins SC, Wesesky MA, Shemesh OA, Nimgaonkar VL, Bloom DC. Phosphorylated-tau associates with HSV-1 chromatin and correlates with nuclear speckles decondensation in low-density host chromatin regions. Neurobiol Dis 2025; 206:106804. [PMID: 39818277 PMCID: PMC12001802 DOI: 10.1016/j.nbd.2025.106804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025] Open
Abstract
Abnormal tau phosphorylation is a key mechanism in neurodegenerative diseases. Evidence implicates infectious agents, such as Herpes Simplex Virus 1 (HSV-1), as co-factors in the onset or the progression of neurodegenerative diseases, including Alzheimer's disease. This has led to divergence in the field regarding the contribution of viruses in the etiology of neurodegenerative diseases. Research indicates that viruses may function as risk factors driving neurodegenerative disease rather than playing a causative role. Investigating HSV-1 in abnormal tau phosphorylation is important for understanding the role of infectious agents in neurodegeneration. We generated cellular models of HSV-1 acute, latent infection, and viral reactivation from latency in cortical brain organoids and investigated the interplay between tau phosphorylation and HSV-1 infection by employing human induced pluripotent stem cell (iPSC)-derived monolayer neuronal cultures and brain organoids. Acute infection with HSV-1 strains 17syn+ and KOS caused nuclear accumulation of phosphorylated tau (p-tau) in neurons and neural precursor cells. Antivirals prevented nuclear accumulation of p-tau. Viral reactivation was accompanied by the nuclear translocation of p-tau. Chromatin immunoprecipitation analysis indicated an interaction of p-tau with the viral chromatin. A reduction in abundance of component of nuclear speckles and their loss of organized morphology in low-denisty host chromatin regions was observed, with strain-specific differences. HSV-1 infection was followed by an increase in the abundance of BRSKs and TAOKs, kinases known to phosphorylate tau. These findings show interaction between p-tau and HSV-1 chromatin and demonstrate the ability of HSV-1 to activate mechanisms that are observed in Alzheimer's disease.
Collapse
Affiliation(s)
- Leonardo D'Aiuto
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America.
| | - Jill K Caldwell
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - Terri G Edwards
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32611, United States of America
| | - Chaoming Zhou
- Department of Neurobiology, University of Pittsburgh School of Medicine, 4074 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, United States of America
| | - Matthew L McDonald
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - Roberto Di Maio
- Department of Neurology, University of Pittsburgh School of Medicine, 3501 Fifth Ave, Biological Science Tower 3, Pittsburgh, PA 15260, United States of America
| | - Wood A Joel
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - Vanesa R Hyde
- Department of Neurobiology, University of Pittsburgh School of Medicine, 4074 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, United States of America
| | - Callen T Wallace
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, S362 Biomedical Science Tower (South), Pittsburgh, PA 15261, United States of America
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh, 3500 Terrace Street, S362 Biomedical Science Tower (South), Pittsburgh, PA 15261, United States of America
| | - Maribeth A Wesesky
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - Or A Shemesh
- Department of Neurobiology, University of Pittsburgh School of Medicine, 4074 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15213, United States of America
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, 3811 O'Hara Street, Pittsburgh, PA 15213, United States of America
| | - David C Bloom
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32611, United States of America
| |
Collapse
|
7
|
Huang Y, Bergant V, Grass V, Emslander Q, Hamad MS, Hubel P, Mergner J, Piras A, Krey K, Henrici A, Öllinger R, Tesfamariam YM, Dalla Rosa I, Bunse T, Sutter G, Ebert G, Schmidt FI, Way M, Rad R, Bowie AG, Protzer U, Pichlmair A. Multi-omics characterization of the monkeypox virus infection. Nat Commun 2024; 15:6778. [PMID: 39117661 PMCID: PMC11310467 DOI: 10.1038/s41467-024-51074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Multiple omics analyzes of Vaccinia virus (VACV) infection have defined molecular characteristics of poxvirus biology. However, little is known about the monkeypox (mpox) virus (MPXV) in humans, which has a different disease manifestation despite its high sequence similarity to VACV. Here, we perform an in-depth multi-omics analysis of the transcriptome, proteome, and phosphoproteome signatures of MPXV-infected primary human fibroblasts to gain insights into the virus-host interplay. In addition to expected perturbations of immune-related pathways, we uncover regulation of the HIPPO and TGF-β pathways. We identify dynamic phosphorylation of both host and viral proteins, which suggests that MAPKs are key regulators of differential phosphorylation in MPXV-infected cells. Among the viral proteins, we find dynamic phosphorylation of H5 that influenced the binding of H5 to dsDNA. Our extensive dataset highlights signaling events and hotspots perturbed by MPXV, extending the current knowledge on poxviruses. We use integrated pathway analysis and drug-target prediction approaches to identify potential drug targets that affect virus growth. Functionally, we exemplify the utility of this approach by identifying inhibitors of MTOR, CHUK/IKBKB, and splicing factor kinases with potent antiviral efficacy against MPXV and VACV.
Collapse
Affiliation(s)
- Yiqi Huang
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Valter Bergant
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Vincent Grass
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Quirin Emslander
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - M Sabri Hamad
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Philipp Hubel
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Munich, Germany
- Core Facility Hohenheim, Universität Hohenheim, Stuttgart, Germany
| | - Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at University Hospital rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany
| | - Antonio Piras
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Karsten Krey
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Alexander Henrici
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Yonas M Tesfamariam
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ilaria Dalla Rosa
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Till Bunse
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, LMU Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Gregor Ebert
- Institute of Virology, Technical University of Munich, School of Medicine/Helmholtz Munich, Munich, Germany
| | - Florian I Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michael Way
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Infectious Disease, Imperial College, London, UK
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics and Department of Medicine II, School of Medicine, Technical University of Munich, Munich, Germany
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ulrike Protzer
- German Centre for Infection Research (DZIF), Partner site Munich, Munich, Germany
- Institute of Virology, Technical University of Munich, School of Medicine/Helmholtz Munich, Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany.
- German Centre for Infection Research (DZIF), Partner site Munich, Munich, Germany.
| |
Collapse
|
8
|
Chamrád I, Simerský R, Lenobel R, Novák O. Exploring affinity chromatography in proteomics: A comprehensive review. Anal Chim Acta 2024; 1306:342513. [PMID: 38692783 DOI: 10.1016/j.aca.2024.342513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Over the past decades, the proteomics field has undergone rapid growth. Progress in mass spectrometry and bioinformatics, together with separation methods, has brought many innovative approaches to the study of the molecular biology of the cell. The potential of affinity chromatography was recognized immediately after its first application in proteomics, and since that time, it has become one of the cornerstones of many proteomic protocols. Indeed, this chromatographic technique exploiting the specific binding between two molecules has been employed for numerous purposes, from selective removal of interfering (over)abundant proteins or enrichment of scarce biomarkers in complex biological samples to mapping the post-translational modifications and protein interactions with other proteins, nucleic acids or biologically active small molecules. This review presents a comprehensive survey of this versatile analytical tool in current proteomics. To navigate the reader, the haphazard space of affinity separations is classified according to the experiment's aims and the separated molecule's nature. Different types of available ligands and experimental strategies are discussed in further detail for each of the mentioned procedures.
Collapse
Affiliation(s)
- Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic.
| | - Radim Simerský
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| |
Collapse
|
9
|
Henis M, Rücker T, Scharrenberg R, Richter M, Baltussen L, Hong S, Meka DP, Schwanke B, Neelagandan N, Daaboul D, Murtaza N, Krisp C, Harder S, Schlüter H, Kneussel M, Hermans-Borgmeyer I, de Wit J, Singh KK, Duncan KE, de Anda FC. The autism susceptibility kinase, TAOK2, phosphorylates eEF2 and modulates translation. SCIENCE ADVANCES 2024; 10:eadf7001. [PMID: 38608030 PMCID: PMC11014455 DOI: 10.1126/sciadv.adf7001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
Genes implicated in translation control have been associated with autism spectrum disorders (ASDs). However, some important genetic causes of autism, including the 16p11.2 microdeletion, bear no obvious connection to translation. Here, we use proteomics, genetics, and translation assays in cultured cells and mouse brain to reveal altered translation mediated by loss of the kinase TAOK2 in 16p11.2 deletion models. We show that TAOK2 associates with the translational machinery and functions as a translational brake by phosphorylating eukaryotic elongation factor 2 (eEF2). Previously, all signal-mediated regulation of translation elongation via eEF2 phosphorylation was believed to be mediated by a single kinase, eEF2K. However, we show that TAOK2 can directly phosphorylate eEF2 on the same regulatory site, but functions independently of eEF2K signaling. Collectively, our results reveal an eEF2K-independent signaling pathway for control of translation elongation and suggest altered translation as a molecular component in the etiology of some forms of ASD.
Collapse
Affiliation(s)
- Melad Henis
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, New Valley University, 72511 El-Kharga, Egypt
| | - Tabitha Rücker
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Robin Scharrenberg
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Melanie Richter
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lucas Baltussen
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Shuai Hong
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Durga Praveen Meka
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Birgit Schwanke
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Nagammal Neelagandan
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Danie Daaboul
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Nadeem Murtaza
- Krembil Research Institute, Donald K. Johnson Eye Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario M5T 0S8, Canada
- Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario L8S 4A9, Canada
| | - Christoph Krisp
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Sönke Harder
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Institute for Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics Group, Campus Forschung, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Matthias Kneussel
- Institute of Neurogenetics, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Service Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Karun K. Singh
- Krembil Research Institute, Donald K. Johnson Eye Institute, University Health Network, 60 Leonard Ave, Toronto, Ontario M5T 0S8, Canada
- Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Cir, Toronto, Ontario M5S 1 A8, Canada
| | - Kent E. Duncan
- Neuronal Translational Control Group, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251 Hamburg, Germany
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Froylan Calderón de Anda
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
10
|
van der Horst D, Kurmasheva N, Marqvorsen MHS, Assil S, Rahimic AHF, Kollmann CF, Silva da Costa L, Wu Q, Zhao J, Cesari E, Iversen MB, Ren F, Jensen TI, Narita R, Schack VR, Zhang BC, Bak RO, Sette C, Fenton RA, Mikkelsen JG, Paludan SR, Olagnier D. SAM68 directs STING signaling to apoptosis in macrophages. Commun Biol 2024; 7:283. [PMID: 38454028 PMCID: PMC10920828 DOI: 10.1038/s42003-024-05969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
DNA is a danger signal sensed by cGAS to engage signaling through STING to activate innate immune functions. The best-studied downstream responses to STING activation include expression of type I interferon and inflammatory genes, but STING also activates other pathways, including apoptosis. Here, we report that STING-dependent induction of apoptosis in macrophages occurs through the intrinsic mitochondrial pathway and is mediated via IRF3 but acts independently of gene transcription. By intersecting four mass spectrometry datasets, we identify SAM68 as crucial for the induction of apoptosis downstream of STING activation. SAM68 is essential for the full activation of apoptosis. Still, it is not required for STING-mediated activation of IFN expression or activation of NF-κB. Mechanistic studies reveal that protein trafficking is required and involves SAM68 recruitment to STING upon activation, with the two proteins associating at the Golgi or a post-Golgi compartment. Collectively, our work identifies SAM68 as a STING-interacting protein enabling induction of apoptosis through this DNA-activated innate immune pathway.
Collapse
Affiliation(s)
- Demi van der Horst
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Naziia Kurmasheva
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Mikkel H S Marqvorsen
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Sonia Assil
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Anna H F Rahimic
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Christoph F Kollmann
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Leandro Silva da Costa
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Qi Wu
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Jian Zhao
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Eleonora Cesari
- GSTEP-Organoids Core Facility, IRCCS Fondazione Policlinico Agostino Gemelli, 00168, Rome, Italy
| | - Marie B Iversen
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Fanghui Ren
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Trine I Jensen
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Ryo Narita
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Vivien R Schack
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Bao-Cun Zhang
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Claudio Sette
- GSTEP-Organoids Core Facility, IRCCS Fondazione Policlinico Agostino Gemelli, 00168, Rome, Italy
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168, Rome, Italy
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Jacob G Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark.
| | - David Olagnier
- Department of Biomedicine, Aarhus University, Høegh Guldbergsgade 10, 8000, Aarhus C, Denmark.
| |
Collapse
|
11
|
Tharshan Jeyakanesh J, Nadarajapillai K, Tharanga EMT, Park C, Jo Y, Jeong T, Wan Q, Lee J. Amphiprion clarkii DDX41 modulates fish immune responses: Characterization by expression profiling, antiviral assay, and macrophage polarization analysis. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109365. [PMID: 38199263 DOI: 10.1016/j.fsi.2024.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/30/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
DDX41, a member of the DEAD-box helicase family, serves as a vital cytosolic DNA sensor and plays a pivotal role in controlling the activation of type I interferon responses in mammals. However, the functional aspects of fish DDX41 remain relatively unexplored. In this study, we identified and characterized the DDX41 gene in Amphiprion clarkii transcriptomes and designated the gene as AcDDX41. The complete open reading frame of AcDDX41 encoded a putative protein comprising 617 amino acids. Notably, the predicted AcDDX41 protein shared several structural features that are conserved in DDX41, including DEXDc, HELICc, and zinc finger domains, as well as conserved sequence "Asp-Glu-Ala-Asp (D-E-A-D)." AcDDX41 exhibited the highest sequence homology (99.68 % similarity) with DDX41 from Acanthochromis polyacanthus. Phylogenetic analysis revealed that DDX41s from fish formed a branch distinct from that in other animals. All investigated tissues were shown to express AcDDX41 constitutively, with blood showing the highest expression levels, followed by the brain. Furthermore, AcDDX41 expression was significantly induced upon stimulation with poly I:C, lipopolysaccharide, and Vibrio harveyi, indicating its responsiveness to immune stimuli. We confirmed the antiviral function of AcDDX41 by analyzing gene expression and viral replication during viral hemorrhagic septicemia virus infection. Additionally, using a luciferase reporter assay, we validated the ability of AcDDX41 to activate the NF-κB signaling pathway upon stimulation with poly I:C. Finally, AcDDX41 influenced cytokine gene expression and played a regulatory role in macrophage M1 polarization in RAW 264.7 cells. Collectively, these results highlight the significance of AcDDX41 as an immune-related gene that contributes substantially to antiviral defense and regulation of NF-κB activity.
Collapse
Affiliation(s)
- Jeganathan Tharshan Jeyakanesh
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - E M T Tharanga
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Cheonguk Park
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yuhwan Jo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju, 63333, Republic of Korea.
| |
Collapse
|
12
|
Byeon S, Yadav S. Pleiotropic functions of TAO kinases and their dysregulation in neurological disorders. Sci Signal 2024; 17:eadg0876. [PMID: 38166033 PMCID: PMC11810052 DOI: 10.1126/scisignal.adg0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/07/2023] [Indexed: 01/04/2024]
Abstract
Thousand and one amino acid kinases (TAOKs) are relatively understudied and functionally pleiotropic protein kinases that have emerged as important regulators of neurodevelopment. Through their conserved amino-terminal catalytic domain, TAOKs mediate phosphorylation at serine/threonine residues in their substrates, but it is their divergent regulatory carboxyl-terminal domains that confer both exquisite functional specification and cellular localization. In this Review, we discuss the physiological roles of TAOKs and the intricate signaling pathways, molecular interactions, and cellular behaviors they modulate-from cell stress responses, division, and motility to tissue homeostasis, immunity, and neurodevelopment. These insights are then integrated into an analysis of the known and potential impacts of disease-associated variants of TAOKs, with a focus on neurodevelopmental disorders, pain and addiction, and neurodegenerative diseases. Translating this foundation into clinical benefits for patients will require greater structural and functional differentiation of the TAOKs afforded by their individually specialized domains.
Collapse
Affiliation(s)
- Sujin Byeon
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Ma X, Mandausch FJ, Wu Y, Sahoo VK, Ma W, Leoni G, Hostiuc M, Wintgens JP, Qiu J, Kannaiyan N, Rossner MJ, Wehr MC. Comprehensive split TEV based protein-protein interaction screening reveals TAOK2 as a key modulator of Hippo signalling to limit growth. Cell Signal 2024; 113:110917. [PMID: 37813295 DOI: 10.1016/j.cellsig.2023.110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
The conserved Hippo signalling pathway plays a crucial role in tumour formation by limiting tissue growth and proliferation. At the core of this pathway are tumour suppressor kinases STK3/4 and LATS1/2, which limit the activity of the oncogene YAP1, the primary downstream effector. Here, we employed a split TEV-based protein-protein interaction screen to assess the physical interactions among 28 key Hippo pathway components and potential upstream modulators. This screen led us to the discovery of TAOK2 as pivotal modulator of Hippo signalling, as it binds to the pathway's core kinases, STK3/4 and LATS1/2, and leads to their phosphorylation. Specifically, our findings revealed that TAOK2 binds to and phosphorylates LATS1, resulting in the reduction of YAP1 phosphorylation and subsequent transcription of oncogenes. Consequently, this decrease led to a decrease in cell proliferation and migration. Interestingly, a correlation was observed between reduced TAOK2 expression and decreased patient survival time in certain types of human cancers, including lung and kidney cancer as well as glioma. Moreover, in cellular models corresponding to these cancer types the downregulation of TAOK2 by CRISPR inhibition led to reduced phosphorylation of LATS1 and increased proliferation rates, supporting TAOK2's role as tumour suppressor gene. By contrast, overexpression of TAOK2 in these cellular models lead to increased phospho-LATS1 but reduced cell proliferation. As TAOK2 is a druggable kinase, targeting TAOK2 could serve as an attractive pharmacological approach to modulate cell growth and potentially offer strategies for combating cancer.
Collapse
Affiliation(s)
- Xiao Ma
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Fiona J Mandausch
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Vivek K Sahoo
- Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany
| | - Wenbo Ma
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Giovanna Leoni
- Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany
| | - Madalina Hostiuc
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Jan P Wintgens
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Jiajun Qiu
- Department of Otolaryngology Head & Neck Surgery, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | | | - Moritz J Rossner
- Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany; Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Michael C Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany; Systasy Bioscience GmbH, Balanstr. 6, 81669, Munich, Germany.
| |
Collapse
|
14
|
Cheng H, Zhang H, Song J, Jiang J, Chen S, Chen F, Wang L. GERDH: an interactive multi-omics database for cross-species data mining in horticultural crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1018-1029. [PMID: 37310261 DOI: 10.1111/tpj.16350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Horticultural plants contribute immensely to the quality of human's life. The rapid development of omics studies on horticultural plants has resulted in large volumes of valuable growth- and development-related data. Genes that are essential for growth and development are highly conserved in evolution. Cross-species data mining reduces the impact of species heterogeneity and has been extensively used for conserved gene identification. Owing to the lack of a comprehensive database for cross-species data mining using multi-omics data from all horticultural plant species, the current resources in this field are far from satisfactory. Here, we introduce GERDH (https://dphdatabase.com), a database platform for cross-species data mining among horticultural plants, based on 12 961 uniformly processed publicly available omics libraries from more than 150 horticultural plant accessions, including fruits, vegetables and ornamental plants. Important and conserved genes that are essential for a specific biological process can be obtained by cross-species analysis module with interactive web-based data analysis and visualization. Moreover, GERDH is equipped with seven online analysis tools, including gene expression, in-species analysis, epigenetic regulation, gene co-expression, enrichment/pathway and phylogenetic analysis. By interactive cross-species analysis, we identified key genes contributing to postharvest storage. By gene expression analysis, we explored new functions of CmEIN3 in flower development, which was validated by transgenic chrysanthemum analysis. We believe that GERDH will be a useful resource for key gene identification and will allow for omics big data to be more available and accessible to horticultural plant community members.
Collapse
Affiliation(s)
- Hua Cheng
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hua Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Song
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiafu Jiang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sumei Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fadi Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Likai Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
15
|
Govande AA, Babnis AW, Urban C, Habjan M, Hartmann R, Kranzusch PJ, Pichlmair A. RNase L-activating 2'-5' oligoadenylates bind ABCF1, ABCF3 and Decr-1. J Gen Virol 2023; 104. [PMID: 37676257 DOI: 10.1099/jgv.0.001890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
A notable signalling mechanism employed by mammalian innate immune signalling pathways uses nucleotide-based second messengers such as 2'3'-cGAMP and 2'-5'-oligoadenylates (OAs), which bind and activate STING and RNase L, respectively. Interestingly, the involvement of nucleotide second messengers to activate antiviral responses is evolutionarily conserved, as evidenced by the identification of an antiviral cGAMP-dependent pathway in Drosophila. Using a mass spectrometry approach, we identified several members of the ABCF family in human, mouse and Drosophila cell lysates as 2'-5' OA-binding proteins, suggesting an evolutionarily conserved function. Biochemical characterization of these interactions demonstrates high-affinity binding of 2'-5' OA to ABCF1, dependent on phosphorylated 2'-5' OA and an intact Walker A/B motif of the ABC cassette of ABCF1. As further support for species-specific interactions with 2'-5' OA, we additionally identified that the metabolic enzyme Decr1 from mouse, but not human or Drosophila cells, forms a high-affinity complex with 2'-5' OA. A 1.4 Å co-crystal structure of the mouse Decr1-2'-5' OA complex explains high-affinity recognition of 2'-5' OA and the mechanism of species specificity. Despite clear evidence of physical interactions, we could not identify profound antiviral functions of ABCF1, ABCF3 or Decr1 or 2'-5' OA-dependent regulation of cellular translation rates, as suggested by the engagement of ABCF proteins. Thus, although the biological consequences of the here identified interactions need to be further studied, our data suggest that 2'-5' OA can serve as a signalling hub to distribute a signal to different recipient proteins.
Collapse
Affiliation(s)
- Apurva A Govande
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Christian Urban
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Matthias Habjan
- Institute of Virology, Technical University of Munich, Munich, Germany
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany
| |
Collapse
|
16
|
Bergant V, Schnepf D, de Andrade Krätzig N, Hubel P, Urban C, Engleitner T, Dijkman R, Ryffel B, Steiger K, Knolle PA, Kochs G, Rad R, Staeheli P, Pichlmair A. mRNA 3'UTR lengthening by alternative polyadenylation attenuates inflammatory responses and correlates with virulence of Influenza A virus. Nat Commun 2023; 14:4906. [PMID: 37582777 PMCID: PMC10427651 DOI: 10.1038/s41467-023-40469-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023] Open
Abstract
Changes of mRNA 3'UTRs by alternative polyadenylation (APA) have been associated to numerous pathologies, but the mechanisms and consequences often remain enigmatic. By combining transcriptomics, proteomics and recombinant viruses we show that all tested strains of IAV, including A/PR/8/34(H1N1) (PR8) and A/Cal/07/2009 (H1N1) (Cal09), cause APA. We mapped the effect to the highly conserved glycine residue at position 184 (G184) of the viral non-structural protein 1 (NS1). Unbiased mass spectrometry-based analyses indicate that NS1 causes APA by perturbing the function of CPSF4 and that this function is unrelated to virus-induced transcriptional shutoff. Accordingly, IAV strain PR8, expressing an NS1 variant with weak CPSF binding, does not induce host shutoff but only APA. However, recombinant IAV (PR8) expressing NS1(G184R) lacks binding to CPSF4 and thereby also the ability to cause APA. Functionally, the impaired ability to induce APA leads to an increased inflammatory cytokine production and an attenuated phenotype in a mouse infection model. Investigating diverse viral infection models showed that APA induction is a frequent ability of many pathogens. Collectively, we propose that targeting of the CPSF complex, leading to widespread alternative polyadenylation of host transcripts, constitutes a general immunevasion mechanism employed by a variety of pathogenic viruses.
Collapse
Affiliation(s)
- Valter Bergant
- Institute of Virology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Max Planck Institute of Biochemistry, Munich, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Immunoregulation Laboratory, The Francis Crick Institute, London, UK
| | - Niklas de Andrade Krätzig
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Philipp Hubel
- Max Planck Institute of Biochemistry, Munich, Germany
| | - Christian Urban
- Institute of Virology, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Max Planck Institute of Biochemistry, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland
- Department of Infectious diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Bernhard Ryffel
- CNRS, UMR7355, Orleans, France
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
| | - Katja Steiger
- Institut für allgemeine Pathologie und Pathologische Anatomie, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technical University of Munich, Munich, Germany
- Department of Medicine II, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Staeheli
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Andreas Pichlmair
- Institute of Virology, TUM School of Medicine, Technical University of Munich, Munich, Germany.
- Max Planck Institute of Biochemistry, Munich, Germany.
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany.
| |
Collapse
|
17
|
Horlacher M, Oleshko S, Hu Y, Ghanbari M, Cantini G, Schinke P, Vergara EE, Bittner F, Mueller NS, Ohler U, Moyon L, Marsico A. A computational map of the human-SARS-CoV-2 protein-RNA interactome predicted at single-nucleotide resolution. NAR Genom Bioinform 2023; 5:lqad010. [PMID: 36814457 PMCID: PMC9940458 DOI: 10.1093/nargab/lqad010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/10/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
RNA-binding proteins (RBPs) are critical host factors for viral infection, however, large scale experimental investigation of the binding landscape of human RBPs to viral RNAs is costly and further complicated due to sequence variation between viral strains. To fill this gap, we investigated the role of RBPs in the context of SARS-CoV-2 by constructing the first in silico map of human RBP-viral RNA interactions at nucleotide-resolution using two deep learning methods (pysster and DeepRiPe) trained on data from CLIP-seq experiments on more than 100 human RBPs. We evaluated conservation of RBP binding between six other human pathogenic coronaviruses and identified sites of conserved and differential binding in the UTRs of SARS-CoV-1, SARS-CoV-2 and MERS. We scored the impact of mutations from 11 variants of concern on protein-RNA interaction, identifying a set of gain- and loss-of-binding events, as well as predicted the regulatory impact of putative future mutations. Lastly, we linked RBPs to functional, OMICs and COVID-19 patient data from other studies, and identified MBNL1, FTO and FXR2 RBPs as potential clinical biomarkers. Our results contribute towards a deeper understanding of how viruses hijack host cellular pathways and open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Marc Horlacher
- Computational Health Center, Helmholtz Center Munich, Munich, Germany
| | - Svitlana Oleshko
- Computational Health Center, Helmholtz Center Munich, Munich, Germany
| | - Yue Hu
- Computational Health Center, Helmholtz Center Munich, Munich, Germany
- Informatics 12 Chair of Bioinformatics, Technical University Munich, Garching, Germany
| | - Mahsa Ghanbari
- Institutes of Biology and Computer Science, Humboldt University, Berlin, Germany
- Max Delbruck Center, Computational Regulatory Genomics, Berlin, Germany
| | - Giulia Cantini
- Computational Health Center, Helmholtz Center Munich, Munich, Germany
| | - Patrick Schinke
- Computational Health Center, Helmholtz Center Munich, Munich, Germany
| | | | | | | | - Uwe Ohler
- Institutes of Biology and Computer Science, Humboldt University, Berlin, Germany
- Max Delbruck Center, Computational Regulatory Genomics, Berlin, Germany
| | - Lambert Moyon
- Computational Health Center, Helmholtz Center Munich, Munich, Germany
| | - Annalisa Marsico
- Computational Health Center, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
18
|
Girardi E, Messmer M, Lopez P, Fender A, Chicher J, Chane-Woon-Ming B, Hammann P, Pfeffer S. Proteomics-based determination of double-stranded RNA interactome reveals known and new factors involved in Sindbis virus infection. RNA (NEW YORK, N.Y.) 2023; 29:361-375. [PMID: 36617674 PMCID: PMC9945444 DOI: 10.1261/rna.079270.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Viruses are obligate intracellular parasites, which depend on the host cellular machineries to replicate their genome and complete their infectious cycle. Long double-stranded (ds)RNA is a common viral by-product originating during RNA virus replication and is universally sensed as a danger signal to trigger the antiviral response. As a result, viruses hide dsRNA intermediates into viral replication factories and have evolved strategies to hijack cellular proteins for their benefit. The characterization of the host factors associated with viral dsRNA and involved in viral replication remains a major challenge to develop new antiviral drugs against RNA viruses. Here, we performed anti-dsRNA immunoprecipitation followed by mass spectrometry analysis to fully characterize the dsRNA interactome in Sindbis virus (SINV) infected human cells. Among the identified proteins, we characterized SFPQ (splicing factor, proline-glutamine rich) as a new dsRNA-associated proviral factor upon SINV infection. We showed that SFPQ depletion reduces SINV infection in human HCT116 and SK-N-BE(2) cells, suggesting that SFPQ enhances viral production. We demonstrated that the cytoplasmic fraction of SFPQ partially colocalizes with dsRNA upon SINV infection. In agreement, we proved by RNA-IP that SFPQ can bind dsRNA and viral RNA. Furthermore, we showed that overexpression of a wild-type, but not an RNA binding mutant SFPQ, increased viral infection, suggesting that RNA binding is essential for its positive effect on the virus. Overall, this study provides the community with a compendium of dsRNA-associated factors during viral infection and identifies SFPQ as a new proviral dsRNA binding protein.
Collapse
Affiliation(s)
- Erika Girardi
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg France
| | - Mélanie Messmer
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg France
| | - Paula Lopez
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg France
| | - Aurélie Fender
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg France
| | - Johana Chicher
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Plateforme Protéomique Strasbourg-Esplanade, 67084 Strasbourg France
| | - Béatrice Chane-Woon-Ming
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg France
| | - Philippe Hammann
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Plateforme Protéomique Strasbourg-Esplanade, 67084 Strasbourg France
| | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg France
| |
Collapse
|
19
|
Albarnaz JD, Weekes MP. Proteomic analysis of antiviral innate immunity. Curr Opin Virol 2023; 58:101291. [PMID: 36529073 DOI: 10.1016/j.coviro.2022.101291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/03/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
The capacity of host cells to detect and restrict an infecting virus rests on an array of cell-autonomous antiviral effectors and innate immune receptors that can trigger inflammatory processes at tissue and organismal levels. Dynamic changes in protein abundance, subcellular localisation, post-translational modifications and interactions with other biomolecules govern these processes. Proteomics is therefore an ideal experimental tool to discover novel mechanisms of host antiviral immunity. Additional information can be gleaned both about host and virus by systematic analysis of viral immune evasion strategies. In this review, we summarise recent advances in proteomic technologies and their application to antiviral innate immunity.
Collapse
Affiliation(s)
- Jonas D Albarnaz
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, CB2 0XY Cambridge, UK.
| |
Collapse
|
20
|
Luo X, Ji R, Liu Q, Xiao X, Song W, An H, Li Y, Zhou J. Ste20-Like Kinase TAOK1 Positively Regulates Antiviral Responses by Controlling the TBK1-IRF3 Signaling Axis. J Innate Immun 2023; 15:380-396. [PMID: 36649698 PMCID: PMC10015707 DOI: 10.1159/000526324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/29/2022] [Indexed: 01/19/2023] Open
Abstract
The cytosolic viral nucleic acid-sensing pathways converge on the protein kinase TANK-binding kinase 1 (TBK1) and the transcription factor interferon (IFN)-regulatory factor 3 (IRF3) to induce type I IFN production and antiviral immune responses. However, the mechanism that triggers the binding of TBK1 and IRF3 after virus infection remains not fully understood. Here, we identified that thousand and one kinase 1 (TAOK1), a Ste20-like kinase, positively regulated virus-induced antiviral immune responses by controlling the TBK1-IRF3 signaling axis. Virus invasion downregulated the expression of TAOK1. TAOK1 deficiency resulted in decreased nucleic acid-mediated type I IFN production and increased susceptibility to virus infection. TAOK1 was constitutively associated with TBK1 independently of the mitochondrial antiviral signaling protein MAVS. TAOK1 promoted IRF3 activation by enhancing TBK1-IRF3 complex formation. TAOK1 enhanced virus-induced type I IFN production in a kinase activity-dependent manner. Viral infection induced TAOK1 to bind with dynein instead of microtubule-associated protein 4 (MAP4), leading to the trafficking of TBK1 to the perinuclear region to bind IRF3. Thus, the depolymerization of microtubule impaired virus-mediated IRF3 activation. Our results revealed that TAOK1 functioned as a new interaction partner and regulated antiviral signaling via trafficking TBK1 along microtubules to bind IRF3. These findings provided novel insights into the function of TAOK1 in the antiviral innate immune response and its related clinical significance.
Collapse
Affiliation(s)
- Xiaogang Luo
- School of Basic Medical Sciences, The Key Laboratory of Reproductive Genetics (Zhejiang University), Zhejiang University, Hangzhou, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, China
| | - Ruihua Ji
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Qianru Liu
- School of Basic Medical Sciences, The Key Laboratory of Reproductive Genetics (Zhejiang University), Zhejiang University, Hangzhou, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, China
| | - Xiaoxue Xiao
- School of Basic Medical Sciences, The Key Laboratory of Reproductive Genetics (Zhejiang University), Zhejiang University, Hangzhou, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, China
| | - Wengang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Huazhang An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yingke Li
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun Zhou
- School of Basic Medical Sciences, The Key Laboratory of Reproductive Genetics (Zhejiang University), Zhejiang University, Hangzhou, China
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
21
|
Zhang H, Ma W, Liu H, Tang W, Shu J, Zhou J, Zheng H, Xiao H, Yang X, Liu D, Liang H, Yang X. Systematic analysis of lysine crotonylation in human macrophages responding to MRSA infection. Front Cell Infect Microbiol 2023; 13:1126350. [PMID: 36844408 PMCID: PMC9945341 DOI: 10.3389/fcimb.2023.1126350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most commonly encountered bacteria found in healthcare clinics and has been ranked a priority 2 pathogen. Research is urgently needed to develop new therapeutic approaches to combat the pathogen. Variations in the pattern of protein posttranslational modifications (PTMs) of host cells affect physiological and pathological events, as well as therapeutic effectiveness. However, the role of crotonylation in MRSA-infected THP1 cells remains unknown. In this study, we found that crotonylation profiles of THP1 cells were altered after MRSA infection. It was then confirmed that lysine crotonylation profiles of THP1 cells and bacteria were different; MRSA infection inhibited global lysine crotonylation (Kcro) modification but partially elevated Kcro of host proteins. We obtained a proteome-wide crotonylation profile of THP1 cells infected by MRSA further treated by vancomycin, leading to the identification of 899 proteins, 1384 sites of which were down-regulated, and 160 proteins with 193 sites up-regulated. The crotonylated down-regulated proteins were mainly located in cytoplasm and were enriched in spliceosome, RNA degradation, protein posttranslational modification, and metabolism. However, the crotonylated up-regulated proteins were mainly located in nucleus and significantly involved in nuclear body, chromosome, ribonucleoprotein complex, and RNA processing. The domains of these proteins were significantly enriched on RNA recognition motif, and linker histone H1 and H5 families. Some proteins related to protecting against bacterial infection were also found to be targets of crotonylation. The present findings point to a comprehensive understanding of the biological functions of lysine crotonylation in human macrophages, thereby providing a certain research basis for the mechanism and targeted therapy on the immune response of host cells against MRSA infection.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Deparment of Critical Care Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Ma
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Haoru Liu
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wanqi Tang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junjie Shu
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jianping Zhou
- College of Basic Medical Sciences, Panzihua University, Panzihua, China
| | - Hongsheng Zheng
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongyan Xiao
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xue Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Daoyan Liu
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huaping Liang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Huaping Liang, ; Xia Yang,
| | - Xia Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Huaping Liang, ; Xia Yang,
| |
Collapse
|
22
|
Roles of RNA-binding proteins in neurological disorders, COVID-19, and cancer. Hum Cell 2023; 36:493-514. [PMID: 36528839 PMCID: PMC9760055 DOI: 10.1007/s13577-022-00843-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding proteins (RBPs) have emerged as important players in multiple biological processes including transcription regulation, splicing, R-loop homeostasis, DNA rearrangement, miRNA function, biogenesis, and ribosome biogenesis. A large number of RBPs had already been identified by different approaches in various organisms and exhibited regulatory functions on RNAs' fate. RBPs can either directly or indirectly interact with their target RNAs or mRNAs to assume a key biological function whose outcome may trigger disease or normal biological events. They also exert distinct functions related to their canonical and non-canonical forms. This review summarizes the current understanding of a wide range of RBPs' functions and highlights their emerging roles in the regulation of diverse pathways, different physiological processes, and their molecular links with diseases. Various types of diseases, encompassing colorectal carcinoma, non-small cell lung carcinoma, amyotrophic lateral sclerosis, and Severe acute respiratory syndrome coronavirus 2, aberrantly express RBPs. We also highlight some recent advances in the field that could prompt the development of RBPs-based therapeutic interventions.
Collapse
|
23
|
Murtaza N, Cheng AA, Brown CO, Meka DP, Hong S, Uy JA, El-Hajjar J, Pipko N, Unda BK, Schwanke B, Xing S, Thiruvahindrapuram B, Engchuan W, Trost B, Deneault E, Calderon de Anda F, Doble BW, Ellis J, Anagnostou E, Bader GD, Scherer SW, Lu Y, Singh KK. Neuron-specific protein network mapping of autism risk genes identifies shared biological mechanisms and disease-relevant pathologies. Cell Rep 2022; 41:111678. [DOI: 10.1016/j.celrep.2022.111678] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
|
24
|
Bonaventure B, Rebendenne A, Chaves Valadão AL, Arnaud‐Arnould M, Gracias S, Garcia de Gracia F, McKellar J, Labaronne E, Tauziet M, Vivet‐Boudou V, Bernard E, Briant L, Gros N, Djilli W, Courgnaud V, Parrinello H, Rialle S, Blaise M, Lacroix L, Lavigne M, Paillart J, Ricci EP, Schulz R, Jouvenet N, Moncorgé O, Goujon C. The
DEAD
box
RNA
helicase
DDX42
is an intrinsic inhibitor of positive‐strand
RNA
viruses. EMBO Rep 2022; 23:e54061. [PMID: 36161446 PMCID: PMC9638865 DOI: 10.15252/embr.202154061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Genome‐wide screens are powerful approaches to unravel regulators of viral infections. Here, a CRISPR screen identifies the RNA helicase DDX42 as an intrinsic antiviral inhibitor of HIV‐1. Depletion of endogenous DDX42 increases HIV‐1 DNA accumulation and infection in cell lines and primary cells. DDX42 overexpression inhibits HIV‐1 infection, whereas expression of a dominant‐negative mutant increases infection. Importantly, DDX42 also restricts LINE‐1 retrotransposition and infection with other retroviruses and positive‐strand RNA viruses, including CHIKV and SARS‐CoV‐2. However, DDX42 does not impact the replication of several negative‐strand RNA viruses, arguing against an unspecific effect on target cells, which is confirmed by RNA‐seq analysis. Proximity ligation assays show DDX42 in the vicinity of viral elements, and cross‐linking RNA immunoprecipitation confirms a specific interaction of DDX42 with RNAs from sensitive viruses. Moreover, recombinant DDX42 inhibits HIV‐1 reverse transcription in vitro. Together, our data strongly suggest a direct mode of action of DDX42 on viral ribonucleoprotein complexes. Our results identify DDX42 as an intrinsic viral inhibitor, opening new perspectives to target the life cycle of numerous RNA viruses.
Collapse
Affiliation(s)
| | | | | | | | - Ségolène Gracias
- Virus Sensing and Signaling Unit, Department of Virology, Institut Pasteur Université de Paris Cité, CNRS UMR 3569 Paris France
| | | | | | | | | | - Valérie Vivet‐Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002 Strasbourg France
| | | | | | - Nathalie Gros
- CEMIPAI, CNRS Université de Montpellier Montpellier France
| | | | | | - Hugues Parrinello
- Montpellier GenomiX (MGX), Biocampus, CNRS, INSERM Université de Montpellier Montpellier France
| | - Stéphanie Rialle
- Montpellier GenomiX (MGX), Biocampus, CNRS, INSERM Université de Montpellier Montpellier France
| | | | - Laurent Lacroix
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM Université PSL Paris France
| | - Marc Lavigne
- Department of Virology Institut Pasteur Paris France
| | | | | | - Reiner Schulz
- Department of Medical & Molecular Genetics King's College London London UK
| | - Nolwenn Jouvenet
- Virus Sensing and Signaling Unit, Department of Virology, Institut Pasteur Université de Paris Cité, CNRS UMR 3569 Paris France
| | | | | |
Collapse
|
25
|
Bonaventure B, Goujon C. DExH/D-box helicases at the frontline of intrinsic and innate immunity against viral infections. J Gen Virol 2022; 103. [PMID: 36006669 DOI: 10.1099/jgv.0.001766] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
DExH/D-box helicases are essential nucleic acid and ribonucleoprotein remodelers involved in all aspects of nucleic acid metabolism including replication, gene expression and post-transcriptional modifications. In parallel to their importance in basic cellular functions, DExH/D-box helicases play multiple roles in viral life cycles, with some of them highjacked by viruses or negatively regulating innate immune activation. However, other DExH/D-box helicases have recurrently been highlighted as direct antiviral effectors or as positive regulators of innate immune activation. Innate immunity relies on the ability of Pathogen Recognition Receptors to recognize viral signatures and trigger the production of interferons (IFNs) and pro-inflammatory cytokines. Secreted IFNs interact with their receptors to establish antiviral cellular reprogramming via expression regulation of the interferon-stimulated genes (ISGs). Several DExH/D-box helicases have been reported to act as viral sensors (DDX3, DDX41, DHX9, DDX1/DDX21/DHX36 complex), and others to play roles in innate immune activation (DDX60, DDX60L, DDX23). In contrast, the DDX39A, DDX46, DDX5 and DDX24 helicases act as negative regulators and impede IFN production upon viral infection. Beyond their role in viral sensing, the ISGs DDX60 and DDX60L act as viral inhibitors. Interestingly, the constitutively expressed DEAD-box helicases DDX56, DDX17, DDX42 intrinsically restrict viral replication. Hence, DExH/D-box helicases appear to form a multilayer network of primary and secondary factors involved in both intrinsic and innate antiviral immunity. In this review, we highlight recent findings on the extent of antiviral defences played by helicases and emphasize the need to better understand their immune functions as well as their complex interplay.
Collapse
Affiliation(s)
- Boris Bonaventure
- IRIM, CNRS, Montpellier University, France.,Present address: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
26
|
Liu W, Xia L, Xia Z, Chen L. Comprehensive Analysis of Innate Immunophenotyping Based on Immune Score Predicting Immune Alterations and Prognosis in Breast Cancer Patients. Genes (Basel) 2021; 13:88. [PMID: 35052427 PMCID: PMC8774675 DOI: 10.3390/genes13010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most common cancer, with the highest mortality rate and the most diagnosed cancer type in women worldwide. To identify the effect innate immune checkpoint for breast cancer immunotherapy, the innate immune prognostic biomarkers were selected through the ICI score model and the risk model in breast cancer patients. Moreover, the reliability and accuracy of the ICI score model and the risk model were further examined through the analysis of breast cancer prognosis and immune cell infiltration. The pan cancer analysis further confirmed and selected CXCL9 as the key innate immune checkpoint for breast cancer immunotherapy and identified three small molecular drugs for target CXCL9 through molecular docking analysis. In summary, CXCL9 significantly correlated with the prognostic of breast cancer and immune cell infiltration and could be innate immune checkpoint for breast cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Liming Chen
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (W.L.); (L.X.); (Z.X.)
| |
Collapse
|