1
|
Cartes-Saavedra B, Ghosh A, Hajnóczky G. The roles of mitochondria in global and local intracellular calcium signalling. Nat Rev Mol Cell Biol 2025; 26:456-475. [PMID: 39870977 DOI: 10.1038/s41580-024-00820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/29/2025]
Abstract
Activation of Ca2+ channels in Ca2+ stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca2+]c) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca2+ uptake and chelation, alongside efficient Ca2+ release mechanisms. Still, mitochondria do not store Ca2+ in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca2+]c signals. However, mitochondria take up Ca2+ at high local [Ca2+]c signals that originate from neighbouring organelles, and also during sustained global elevations of [Ca2+]c. Accumulated Ca2+ in the mitochondria stimulates oxidative metabolism and upon return to the cytoplasm, can produce spatially confined rises in [Ca2+]c to exert control over processes that are sensitive to Ca2+. Thus, the mitochondrial handling of [Ca2+]c is of physiological relevance. Furthermore, dysregulation of mitochondrial Ca2+ handling can contribute to debilitating diseases. We discuss the mechanisms and relevance of mitochondria in local and global calcium signals.
Collapse
Affiliation(s)
- Benjamín Cartes-Saavedra
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Arijita Ghosh
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Wang X, Chen C, Tian Y, Zhang QW. Dual-Channel Phosphorescence Ratiometry and Phosphorescence Lifetime Imaging of Mitochondria-Specific Methionine Sulfoxide Reductase Activity. J Am Chem Soc 2025; 147:17994-18002. [PMID: 40366085 DOI: 10.1021/jacs.5c03235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Methionine sulfoxide reductases (Msrs) are essential for preserving redox homeostasis in the nervous system, with dysregulation implicated in Alzheimer's disease (AD). Conventional fluorescence-based assays for Msrs activity sensing are hampered by background interference, limited sensitivity, and inadequate quantification. This work introduces a novel supramolecular probe exhibiting redox-responsive dual-channel room-temperature phosphorescence (RTP) in aqueous media on a microsecond time scale. Upon reduction by Msrs, the probe transitions from its oxidized to reduced state, manifested by a red-shifted phosphorescence emission and extended lifetime in the microsecond range, which enables precise quantification of mitochondria-targeted Msrs activity via phosphorescence ratiometry and phosphorescence lifetime imaging (PLIM). The probe's utility is demonstrated in visualizing neuronal Msrs activity and distribution within the mouse brain, which reveals a marked downregulation of Msrs activity in an AD model, highlighting the probe's potential in elucidating redox-related pathological mechanisms underlying neurodegenerative disorders.
Collapse
Affiliation(s)
- Xuewei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chen Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qi-Wei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
3
|
Rosen PC, Glaser A, Martínez-François JR, Lim DC, Brooks DJ, Fu P, Kim E, Kern D, Yellen G. Mechanism and application of thiol-disulfide redox biosensors with a fluorescence-lifetime readout. Proc Natl Acad Sci U S A 2025; 122:e2503978122. [PMID: 40327692 DOI: 10.1073/pnas.2503978122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Genetically encoded biosensors with changes in fluorescence lifetime (as opposed to fluorescence intensity) can quantify small molecules in complex contexts, even in vivo. However, lifetime-readout sensors are poorly understood at a molecular level, complicating their development. Although there are many sensors that have fluorescence-intensity changes, there are currently only a few with fluorescence-lifetime changes. Here, we optimized two biosensors for thiol-disulfide redox (RoTq-Off and RoTq-On) with opposite changes in fluorescence lifetime in response to oxidation. Using biophysical approaches, we showed that the high-lifetime states of these sensors lock the chromophore more firmly in place than their low-lifetime states do. Two-photon fluorescence lifetime imaging of RoTq-On fused to a glutaredoxin (Grx1) enabled robust, straightforward monitoring of cytosolic glutathione redox state in acute mouse brain slices. The motional mechanism described here is probably common and may inform the design of other lifetime-readout sensors; the Grx1-RoTq-On fusion sensor will be useful for studying glutathione redox in physiology.
Collapse
Affiliation(s)
- Paul C Rosen
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Andrew Glaser
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
- HHMI, Waltham, MA 02453
| | | | - Daniel C Lim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Daniel J Brooks
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Panhui Fu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Erica Kim
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University, Waltham, MA 02453
- HHMI, Waltham, MA 02453
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
4
|
Simonyan TR, Protasova EA, Mamontova AV, Shakhov AM, Bodunova DV, Sidorenko SV, Maksimov EG, Bogdanov AM. Fluorescent protein with environmentally-sensitive fluorescence lifetime for quantitative pH measurement. Arch Biochem Biophys 2025; 766:110350. [PMID: 39971109 DOI: 10.1016/j.abb.2025.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/16/2025] [Accepted: 02/17/2025] [Indexed: 02/21/2025]
Abstract
Intracellular pH is a key factor in cell homeostasis, regulated within specific compartments, and changes in pH can result from or affect biochemical pathways. This study explores a yellow fluorescent protein EYFP-G65T as a core for a time-resolved pH-indicator. Among the tested designs-a circular permutant, a chimeric SypHer3s-like construct, and an unmodified protein-the unmodified EYFP-G65T performed best for live-cell imaging. Upon two-photon excitation, purified EYFP-G65T exhibited a 4.5-fold increase in mean fluorescence lifetime across pH 5.5-7 and a 7-fold change in its major component's lifetime from pH 6.5-8. Using this indicator, we measured pH values ranging from 6 to 8 in various organelles, and mapped pH shifts in mitochondria and the Golgi apparatus in response to stimuli.
Collapse
Affiliation(s)
- Tatiana R Simonyan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Elena A Protasova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | | | - Aleksander M Shakhov
- Bio&Nanophotonics Lab, N.N. Semenov Federal Research Center for Chemical Physics, Moscow, 119991, Moscow, Russia
| | - Daria V Bodunova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Svetlana V Sidorenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Eugene G Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Alexey M Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia; Department of Photonics, İzmir Institute of Technology, 35430, İzmir, Turkey.
| |
Collapse
|
5
|
Jing Y, Kobayashi M, Shoulkamy MI, Zhou M, Thi Vu H, Arakawa H, Sabit H, Iwabuchi S, Quang Vu C, Kasahara A, Ueno M, Tadokoro Y, Kurayoshi K, Chen X, Yan Y, Arai S, Hashimoto S, Soga T, Todo T, Nakada M, Hirao A. Lysine-arginine imbalance overcomes therapeutic tolerance governed by the transcription factor E3-lysosome axis in glioblastoma. Nat Commun 2025; 16:2876. [PMID: 40169552 PMCID: PMC11962137 DOI: 10.1038/s41467-025-56946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/06/2025] [Indexed: 04/03/2025] Open
Abstract
Recent advances in cancer therapy have underscored the importance of targeting specific metabolic pathways. In this study, we propose a precision nutrition approach aimed at lysosomal function in glioblastoma multiforme (GBM). Using patient-derived GBM cells, we identify lysosomal activity as a unique metabolic biomarker of tumorigenesis, controlling the efficacy of temozolomide (TMZ), a standard GBM therapy. Employing combined analyses of clinical patient samples and xenograft models, we further elucidate the pivotal role of Transcription Factor Binding To IGHM Enhancer 3 (TFE3), a master regulator of lysosomal biogenesis, in modulating malignant properties, particularly TMZ tolerance, by regulating peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1α)-mediated mitochondrial activity. Notably, we find that lysine protects GBM cells from lysosomal stress by counteracting arginine's effects on nitric oxide production. The lysine restriction mimetic, homoarginine administration, significantly enhances the efficacy of anticancer therapies through lysosomal dysfunction. This study underscores the critical role of lysosomal function modulated by amino acid metabolism in GBM pathogenesis and treatment.
Collapse
Affiliation(s)
- Yongwei Jing
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masahiko Kobayashi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mahmoud I Shoulkamy
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Zoology, Faculty of Science, Minia University, Minia, Egypt
| | - Meiqi Zhou
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Ha Thi Vu
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
- Department of Medical Biology and Genetics, Hanoi Medical University, Ha Noi, Vietnam
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Cong Quang Vu
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Atsuko Kasahara
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masaya Ueno
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuko Tadokoro
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Xi Chen
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuhang Yan
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan.
- WPI Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Ishikawa, Japan.
| |
Collapse
|
6
|
D'Angelo D, Sánchez-Vázquez VH, Cartes-Saavedra B, Vecellio Reane D, Cupo RR, Delgado de la Herran H, Ghirardo G, Shorter J, Wevers RA, Wortmann SB, Perocchi F, Rizzuto R, Raffaello A, Hajnóczky G. Dependence of mitochondrial calcium signalling and dynamics on the disaggregase, CLPB. Nat Commun 2025; 16:2810. [PMID: 40118824 PMCID: PMC11928477 DOI: 10.1038/s41467-025-57641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 02/25/2025] [Indexed: 03/24/2025] Open
Abstract
Cells utilize protein disaggregases to avoid abnormal protein aggregation that causes many diseases. Among these, caseinolytic peptidase B protein homolog (CLPB) is localized in the mitochondrial intermembrane space and linked to human disease. Upon CLPB loss, MICU1 and MICU2, regulators of the mitochondrial calcium uniporter complex (mtCU), and OPA1, a main mediator of mitochondrial fusion, become insoluble but the functional outcome remains unclear. In this work we demonstrate that CLPB is required to maintain mitochondrial calcium signalling and fusion dynamics. CLPB loss results in altered mtCU composition, interfering with mitochondrial calcium uptake independently of cytosolic calcium and mitochondrial membrane potential. Additionally, OPA1 decreases, and aggregation occurs, accompanied by mitochondrial fragmentation. Disease-associated mutations in the CLPB gene present in skin fibroblasts from patients also display mitochondrial calcium and structural changes. Thus, mtCU and fusion activity are dependent on CLPB, and their impairments might contribute to the disease caused by CLPB variants.
Collapse
Affiliation(s)
- Donato D'Angelo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Víctor H Sánchez-Vázquez
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Benjamín Cartes-Saavedra
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Denis Vecellio Reane
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Ryan R Cupo
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
- Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Hilda Delgado de la Herran
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
| | - Giorgia Ghirardo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
- Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Ron A Wevers
- Translational Metabolic Laboratory, Department Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Saskia B Wortmann
- Department of Paediatrics, University Children's Hospital, Salzburger Landesklinken (SALK) and Paracelsus Medical University, Salzburg, Austria
- Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Fabiana Perocchi
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum Munich, Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
- National Center on Gene Therapy and RNA-Based Drugs, Padua, Italy.
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
- Myology Center (CIR-Myo), University of Padua, Padua, Italy.
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
7
|
Rosen PC, Horwitz SM, Brooks DJ, Kim E, Ambarian JA, Waidmann L, Davis KM, Yellen G. State-dependent motion of a genetically encoded fluorescent biosensor. Proc Natl Acad Sci U S A 2025; 122:e2426324122. [PMID: 40048274 PMCID: PMC11912384 DOI: 10.1073/pnas.2426324122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Genetically encoded biosensors can measure biochemical properties such as small-molecule concentrations with single-cell resolution, even in vivo. Despite their utility, these sensors are "black boxes": Very little is known about the structures of their low- and high-fluorescence states or what features are required to transition between them. We used LiLac, a lactate biosensor with a quantitative fluorescence-lifetime readout, as a model system to address these questions. X-ray crystal structures and engineered high-affinity metal bridges demonstrate that LiLac exhibits a large interdomain twist motion that pulls the fluorescent protein away from a "sealed," high-lifetime state in the absence of lactate to a "cracked," low-lifetime state in its presence. Understanding the structures and dynamics of LiLac will help to think about and engineer other fluorescent biosensors.
Collapse
Affiliation(s)
- Paul C. Rosen
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | | | - Daniel J. Brooks
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | - Erica Kim
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| | | | - Lidia Waidmann
- Department of Chemistry, Emory University, Atlanta, GA30322
| | | | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
8
|
Skrzypczak T, Pochylski M, Rapp M, Wojtaszek P, Kasprowicz-Maluśki A. The viscoelastic properties of Nicotiana tabacum BY-2 suspension cell lines adapted to high osmolarity. BMC PLANT BIOLOGY 2025; 25:255. [PMID: 39994523 PMCID: PMC11852555 DOI: 10.1186/s12870-025-06232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
To survive and grow, plant cells must regulate the properties of their cellular microenvironment in response to ever changing external factors. How the biomechanical balance across the cell's internal structures is established and maintained during environmental variations remains a nurturing question. To provide insight into this issue we used two micro-mechanical imaging techniques, namely Brillouin light scattering and BODIPY-based molecular rotors Fluorescence Lifetime Imaging, to study Nicotiana tabacum suspension BY-2 cells long-term adapted to high concentrations of NaCl and mannitol. The molecular crowding in cytoplasm and vacuoles was examined, as well as tension in plasma membrane. To understand how sudden changes in osmolarity affect cellular mechanics, the response of the control and the already adapted cells to further short-term osmotic stimulus was also examined. The viscoelasticity of protoplasts is altered differently during adaptation processes compared to responses to sudden hyperosmolarity stress. The applied correlative approach provides evidence that adaptation to hyperosmotic stress leads to different ratios of protoplast and environmental qualities that help to maintain cell integrity. The viscoelastic properties of protoplasts are an element of plant cells long-term adaptation to high osmolarity. Moreover, such adaptation has an impact on the response to the hyperosmolarity stress.
Collapse
Affiliation(s)
- Tomasz Skrzypczak
- Center for Advanced Technology, Adam Mickiewicz University, Poznan, Poland.
| | | | - Magdalena Rapp
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | | | | |
Collapse
|
9
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Simonyan TR, Varfolomeeva LA, Mamontova AV, Kotlobay AA, Gorokhovatsky AY, Bogdanov AM, Boyko KM. Calcium Indicators with Fluorescence Lifetime-Based Signal Readout: A Structure-Function Study. Int J Mol Sci 2024; 25:12493. [PMID: 39684209 DOI: 10.3390/ijms252312493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
The calcium cation is a crucial signaling molecule involved in numerous cellular pathways. Beyond its role as a messenger or modulator in intracellular cascades, calcium's function in excitable cells, including nerve impulse transmission, is remarkable. The central role of calcium in nervous activity has driven the rapid development of fluorescent techniques for monitoring this cation in living cells. Specifically, genetically encoded calcium indicators (GECIs) are the most in-demand molecular tools in their class. In this work, we address two issues of calcium imaging by designing indicators based on the successful GCaMP6 backbone and the fluorescent protein BrUSLEE. The first indicator variant (GCaMP6s-BrUS), with a reduced, calcium-insensitive fluorescence lifetime, has potential in monitoring calcium dynamics with a high temporal resolution in combination with advanced microscopy techniques, such as light beads microscopy, where the fluorescence lifetime limits acquisition speed. Conversely, the second variant (GCaMP6s-BrUS-145), with a flexible, calcium-sensitive fluorescence lifetime, is relevant for static measurements, particularly for determining absolute calcium concentration values using fluorescence lifetime imaging microscopy (FLIM). To identify the structural determinants of calcium sensitivity in these indicator variants, we determine their spatial structures. A comparative structural analysis allowed the optimization of the GCaMP6s-BrUS construct, resulting in an indicator variant combining calcium-sensitive behavior in the time domain and enhanced molecular brightness. Our data may serve as a starting point for further engineering efforts towards improved GECI variants with fine-tuned fluorescence lifetimes.
Collapse
Affiliation(s)
- Tatiana R Simonyan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | | | - Alexey A Kotlobay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | | | - Alexey M Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Department of Photonics, İzmir Institute of Technology, 35430 İzmir, Turkey
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
11
|
Zhong C, Arai S, Okada Y. Development of fluorescence lifetime biosensors for ATP, cAMP, citrate, and glucose using the mTurquoise2-based platform. CELL REPORTS METHODS 2024; 4:100902. [PMID: 39561716 PMCID: PMC11705765 DOI: 10.1016/j.crmeth.2024.100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024]
Abstract
Single-fluorescent protein (FP)-based FLIM (fluorescence lifetime imaging microscopy) biosensors can visualize intracellular processes quantitatively. They require a single wavelength for detection, which facilitates multi-color imaging. However, their development has been limited by the absence of a general design framework and complex screening processes. In this study, we engineered FLIM biosensors for ATP (adenosine triphosphate), cAMP (cyclic adenosine monophosphate), citrate, and glucose by inserting each sensing domain into mTurquoise2 (mTQ2) between Tyr-145 and Phe-146 using peptide linkers. Fluorescence intensity-based screening yielded FLIM biosensors with a 0.5 to 1.0 ns dynamic range upon analyte binding, demonstrating that the mTQ2(1-145)-GT-X-EF-mTQ2(146-238) backbone is a versatile platform for FLIM biosensors, allowing for simple intensity-based screening while providing dual-functional biosensors for both FLIM and intensity-based imaging. As a proof of concept, we monitored cAMP and Ca2+ dynamics simultaneously in living cells by dual-color imaging. Our results complement recent studies, establishing mTQ2 as a valuable framework for developing FLIM biosensors.
Collapse
Affiliation(s)
- Chongxia Zhong
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka 565-0874, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka 565-0874, Japan; Department of Cell Biology, Graduate School of Medicine, the University of Tokyo, Hongo, Tokyo 113-0033, Japan; Department of Physics, Graduate School of Science, the University of Tokyo, Hongo, Tokyo 113-0033, Japan; Universal Biology Institute (UBI), the University of Tokyo, Hongo, Tokyo 113-0033, Japan; Internatinonal Research Center for Neurointelligence (WPI-IRCN), the University of Tokyo, Hongo, Tokyo 113-0033, Japan.
| |
Collapse
|
12
|
Gu W, Yang Y, Wang Y, Li J, Li W, Zhang X, Dong H, Wang Y. A bright cyan fluorescence calcium indicator for mitochondrial calcium with minimal interference from physiological pH fluctuations. BIOPHYSICS REPORTS 2024; 10:315-327. [PMID: 39539283 PMCID: PMC11554577 DOI: 10.52601/bpr.2024.240001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/18/2024] [Indexed: 11/16/2024] Open
Abstract
Genetically Encoded Calcium (Ca2+) indicators (GECIs) are indispensable tools for dissecting intracellular Ca2+ signaling and monitoring cellular activities. Mitochondrion acts as a Ca2+ sink and a central player for maintaining Ca2+ homeostasis. Accurately monitoring Ca2+ transients within the mitochondrial matrix that undergo constant pH fluctuations is challenging, as signals of most currently available GECIs suffer from artifacts induced by physiological pH variations. Multiplexed monitoring of optophysiology is also hindered by the limited availability of GECIs with cyan fluorescence. Based on the bright variant of cyan fluorescence protein (CFP), mTurquoise2, we developed a GECI designated as TurCaMP. Results from molecular dynamics simulations and ab initio calculations revealed that the deprotonation of the chromophore may be responsible for the Ca2+-dependent changes in TurCaMP signals. TurCaMP sensors showed inverse response to Ca2+ transients, and their responses were not affected by pH changes within the range of pH 6-9. The high basal fluorescence and insensitivity to physiological pH fluctuations enabled TurCaMP to faithfully monitor mitochondrial Ca2+ responses with a high signal-to-noise ratio. TurCaMP sensors allow simultaneous multi-colored imaging of intracellular Ca2+ signals, expanding the possibility of multiplexed monitoring of Ca2+-dependent physiological events.
Collapse
Affiliation(s)
- Wenjia Gu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuqin Yang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Yuqing Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Jia Li
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, China
| | - Wanjie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaoyan Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), & Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Pham TA, Boquet-Pujadas A, Mondal S, Unser M, Barbastathis G. Deep-prior ODEs augment fluorescence imaging with chemical sensors. Nat Commun 2024; 15:9172. [PMID: 39448575 PMCID: PMC11502814 DOI: 10.1038/s41467-024-53232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
To study biological signalling, great effort goes into designing sensors whose fluorescence follows the concentration of chemical messengers as closely as possible. However, the binding kinetics of the sensors are often overlooked when interpreting cell signals from the resulting fluorescence measurements. We propose a method to reconstruct the spatiotemporal concentration of the underlying chemical messengers in consideration of the binding process. Our method fits fluorescence data under the constraint of the corresponding chemical reactions and with the help of a deep-neural-network prior. We test it on several GCaMP calcium sensors. The recovered concentrations concur in a common temporal waveform regardless of the sensor kinetics, whereas assuming equilibrium introduces artifacts. We also show that our method can reveal distinct spatiotemporal events in the calcium distribution of single neurons. Our work augments current chemical sensors and highlights the importance of incorporating physical constraints in computational imaging.
Collapse
Affiliation(s)
- Thanh-An Pham
- 3D Optical Systems Group, Massachusetts Institute of Technology, Mechanical Department, 3D Optical Systems Group, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA.
| | - Aleix Boquet-Pujadas
- Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Station 17, Lausanne, 1015, Switzerland.
| | - Sandip Mondal
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Michael Unser
- Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Station 17, Lausanne, 1015, Switzerland
| | - George Barbastathis
- 3D Optical Systems Group, Massachusetts Institute of Technology, Mechanical Department, 3D Optical Systems Group, 77 Massachusetts Ave, Cambridge, MA, 02139-4307, USA
- Disruptive & Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| |
Collapse
|
14
|
Farrants H, Shuai Y, Lemon WC, Monroy Hernandez C, Zhang D, Yang S, Patel R, Qiao G, Frei MS, Plutkis SE, Grimm JB, Hanson TL, Tomaska F, Turner GC, Stringer C, Keller PJ, Beyene AG, Chen Y, Liang Y, Lavis LD, Schreiter ER. A modular chemigenetic calcium indicator for multiplexed in vivo functional imaging. Nat Methods 2024; 21:1916-1925. [PMID: 39304767 PMCID: PMC11466818 DOI: 10.1038/s41592-024-02411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
Genetically encoded fluorescent calcium indicators allow cellular-resolution recording of physiology. However, bright, genetically targetable indicators that can be multiplexed with existing tools in vivo are needed for simultaneous imaging of multiple signals. Here we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several that efficiently label the brain in animals. When bound to a near-infrared dye-ligand, WHaloCaMP shows a 7× increase in fluorescence intensity and a 2.1-ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a to image Ca2+ responses in vivo in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae and to quantify Ca2+ concentration using fluorescence lifetime imaging microscopy (FLIM).
Collapse
Affiliation(s)
- Helen Farrants
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Yichun Shuai
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - William C Lemon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Deng Zhang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shang Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Guanda Qiao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle S Frei
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Sarah E Plutkis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Timothy L Hanson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Filip Tomaska
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Electrical and Computer Engineering, Center for BioEngineering, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Carsen Stringer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Abraham G Beyene
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yao Chen
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Yajie Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
15
|
Gordon GR. Neurovascular coupling during hypercapnia in cerebral blood flow regulation. Nat Commun 2024; 15:7636. [PMID: 39223137 PMCID: PMC11368962 DOI: 10.1038/s41467-024-50165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Grant R Gordon
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
16
|
Ma P, Sternson S, Chen Y. The promise and peril of comparing fluorescence lifetime in biology revealed by simulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.20.572686. [PMID: 38187652 PMCID: PMC10769356 DOI: 10.1101/2023.12.20.572686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Signaling dynamics are crucial in biological systems, and biosensor-based real-time imaging has revolutionized their analysis. Fluorescence lifetime imaging microscopy (FLIM) excels over the widely used fluorescence intensity imaging by allowing the measurement of absolute signal levels, independent of sensor concentration. This capability enables the comparison of signaling dynamics across different animals, body regions, and timeframes. However, FLIM's advantage can be compromised by factors like autofluorescence in biological experiments. To address this, we introduce FLiSimBA, a flexible computational framework for realistic F luorescence Li fetime Sim ulation for B iological A pplications. Through simulations, we analyze the signal-to-noise ratios of fluorescence lifetime data, determining measurement uncertainty and providing necessary error bars for lifetime measurements. Furthermore, we challenge the belief that fluorescence lifetime is unaffected by sensor expression and establish quantitative limits to this insensitivity in biological applications. Additionally, we propose innovations, notably multiplexed dynamic imaging that combines fluorescence intensity and lifetime measurements. This innovation can transform the number of signals that can be simultaneously monitored, thereby enabling a systems approach in studying signaling dynamics. Thus, by incorporating diverse factors into our simulation framework, we uncover surprises, identify limitations, and propose advancements for fluorescence lifetime imaging in biology. This quantitative framework supports rigorous experimental design, facilitates accurate data interpretation, and paves the way for technological advancements in fluorescence lifetime imaging.
Collapse
|
17
|
Pedre B. A guide to genetically-encoded redox biosensors: State of the art and opportunities. Arch Biochem Biophys 2024; 758:110067. [PMID: 38908743 DOI: 10.1016/j.abb.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Genetically-encoded redox biosensors have become invaluable tools for monitoring cellular redox processes with high spatiotemporal resolution, coupling the presence of the redox-active analyte with a change in fluorescence signal that can be easily recorded. This review summarizes the available fluorescence recording methods and presents an in-depth classification of the redox biosensors, organized by the analytes they respond to. In addition to the fluorescent protein-based architectures, this review also describes the recent advances on fluorescent, chemigenetic-based redox biosensors and other emerging chemigenetic strategies. This review examines how these biosensors are designed, the biosensors sensing mechanism, and their practical advantages and disadvantages.
Collapse
Affiliation(s)
- Brandán Pedre
- Biochemistry, Molecular and Structural Biology Unit, Department of Chemistry, KU Leuven, Belgium.
| |
Collapse
|
18
|
Roman B, Mastoor Y, Sun J, Villanueva HC, Hinojosa G, Springer D, Liu JC, Murphy E. MICU3 Regulates Mitochondrial Calcium and Cardiac Hypertrophy. Circ Res 2024; 135:26-40. [PMID: 38747181 PMCID: PMC11189743 DOI: 10.1161/circresaha.123.324026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/01/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Calcium (Ca2+) uptake by mitochondria occurs via the mitochondrial Ca2+ uniporter. Mitochondrial Ca2+ uniporter exists as a complex, regulated by 3 MICU (mitochondrial Ca2+ uptake) proteins localized in the intermembrane space: MICU1, MICU2, and MICU3. Although MICU3 is present in the heart, its role is largely unknown. METHODS We used CRISPR-Cas9 to generate a mouse with global deletion of MICU3 and an adeno-associated virus (AAV9) to overexpress MICU3 in wild-type mice. We examined the role of MICU3 in regulating mitochondrial calcium ([Ca2+]m) in ex vivo hearts using an optical method following adrenergic stimulation in perfused hearts loaded with a Ca2+-sensitive fluorophore. Additionally, we studied how deletion and overexpression of MICU3, respectively, impact cardiac function in vivo by echocardiography and the molecular composition of the mitochondrial Ca2+ uniporter complex via Western blot, immunoprecipitation, and Blue native-PAGE analysis. Finally, we measured MICU3 expression in failing human hearts. RESULTS MICU3 knock out hearts and cardiomyocytes exhibited a significantly smaller increase in [Ca2+]m than wild-type hearts following acute isoproterenol infusion. In contrast, heart with overexpression of MICU3 exhibited an enhanced increase in [Ca2+]m compared with control hearts. Echocardiography analysis showed no significant difference in cardiac function in knock out MICU3 mice relative to wild-type mice at baseline. However, mice with overexpression of MICU3 exhibited significantly reduced ejection fraction and fractional shortening compared with control mice. We observed a significant increase in the ratio of heart weight to tibia length in hearts with overexpression of MICU3 compared with controls, consistent with hypertrophy. We also found a significant decrease in MICU3 protein and expression in failing human hearts. CONCLUSIONS Our results indicate that increased and decreased expression of MICU3 enhances and reduces, respectively, the uptake of [Ca2+]m in the heart. We conclude that MICU3 plays an important role in regulating [Ca2+]m physiologically, and overexpression of MICU3 is sufficient to induce cardiac hypertrophy, making MICU3 a possible therapeutic target.
Collapse
Affiliation(s)
- Barbara Roman
- Cardiac Physiology Lab NHLBI, NIH, Bethesda, Maryland
| | - Yusuf Mastoor
- Cardiac Physiology Lab NHLBI, NIH, Bethesda, Maryland
| | - Junhui Sun
- Cardiac Physiology Lab NHLBI, NIH, Bethesda, Maryland
| | - Hector Chapoy Villanueva
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | | | | | - Julia C. Liu
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN
| | | |
Collapse
|
19
|
Lira RB, Dillingh LS, Schuringa JJ, Yahioglu G, Suhling K, Roos WH. Fluorescence lifetime imaging microscopy of flexible and rigid dyes probes the biophysical properties of synthetic and biological membranes. Biophys J 2024; 123:1592-1609. [PMID: 38702882 PMCID: PMC11214022 DOI: 10.1016/j.bpj.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
Sensing of the biophysical properties of membranes using molecular reporters has recently regained widespread attention. This was elicited by the development of new probes of exquisite optical properties and increased performance, combined with developments in fluorescence detection. Here, we report on fluorescence lifetime imaging of various rigid and flexible fluorescent dyes to probe the biophysical properties of synthetic and biological membranes at steady state as well as upon the action of external membrane-modifying agents. We tested the solvatochromic dyes Nile red and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (ammonium salt) (NBD), the viscosity sensor Bodipy C12, the flipper dye FliptR, as well as the dyes 3,3'-dioctadecyloxacarbocyanine perchlorate (DiO), Bodipy C16, lissamine-rhodamine, and Atto647, which are dyes with no previous reported environmental sensitivity. The performance of the fluorescent probes, many of which are commercially available, was benchmarked with well-known environmental reporters, with Nile red and Bodipy C12 being specific reporters of medium hydration and viscosity, respectively. We show that some widely used ordinary dyes with no previous report of sensing capabilities can exhibit competing performance compared to highly sensitive commercially available or custom-based solvatochromic dyes, molecular rotors, or flipper in a wide range of biophysics experiments. Compared to other methods, fluorescence lifetime imaging is a minimally invasive and nondestructive method with optical resolution. It enables biophysical mapping at steady state or assessment of the changes induced by membrane-active molecules at subcellular level in both synthetic and biological membranes when intensity measurements fail to do so. The results have important consequences for the specific choice of the sensor and take into consideration factors such as probe sensitivity, response to environmental changes, ease and speed of data analysis, and the probe's intracellular distribution, as well as potential side effects induced by labeling and imaging.
Collapse
Affiliation(s)
- Rafael B Lira
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands.
| | - Laura S Dillingh
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands; Department of Hematology, Universitair Medisch Centrum Groningen & Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Jan-Jacob Schuringa
- Department of Hematology, Universitair Medisch Centrum Groningen & Rijksuniversiteit Groningen, Groningen, the Netherlands
| | | | - Klaus Suhling
- Department of Physics, King's College London, Strand, London, UK.
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands
| |
Collapse
|
20
|
Hara Y, Ichiraku A, Matsuda T, Sakane A, Sasaki T, Nagai T, Horikawa K. High-affinity tuning of single fluorescent protein-type indicators by flexible linker length optimization in topology mutant. Commun Biol 2024; 7:705. [PMID: 38851844 PMCID: PMC11162441 DOI: 10.1038/s42003-024-06394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
Genetically encoded Ca2+ indicators (GECIs) are versatile for live imaging of cellular activities. Besides the brightness and dynamic range of signal change of GECIs, Ca2+ affinity is another critical parameter for successful Ca2+ imaging, as the concentration range of Ca2+ dynamics differs from low nanomolar to sub-millimolar depending on the celltype and organism. However, ultrahigh-affinity GECIs, particularly the single fluorescent protein (1FP)-type, are lacking. Here, we report a simple strategy that increases Ca2+ affinity through the linker length optimization in topology mutants of existing 1FP-type GECIs. The resulting ultrahigh-affinity GECIs, CaMPARI-nano, BGECO-nano, and RCaMP-nano (Kd = 17-25 nM), enable unique biological applications, including the detection of low nanomolar Ca2+ dynamics, highlighting active signaling cells, and multi-functional imaging with other second messengers. The linker length optimization in topology mutants could be applied to other 1FP-type indicators of glutamate and potassium, rendering it a widely applicable technique for modulating indicator affinity.
Collapse
Affiliation(s)
- Yusuke Hara
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Aya Ichiraku
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Tomoki Matsuda
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Ayuko Sakane
- Department of Biochemistry, Tokushima University Graduate School of Medicine, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
- Division of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics (pLED), Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University Graduate School of Medicine, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan
| | - Takeharu Nagai
- Department of Biomolecular Science and Engineering, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Kazuki Horikawa
- Department of Optical Imaging, Advanced Research Promotion Center, Tokushima University, 3-18-15 Kuramoto, Tokushima, Tokushima, 770-8503, Japan.
| |
Collapse
|
21
|
Mastoor Y, Harata M, Silva K, Liu C, Combs CA, Roman B, Murphy E. Monitoring mitochondrial calcium in cardiomyocytes during coverslip hypoxia using a fluorescent lifetime indicator. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 8:100074. [PMID: 38854449 PMCID: PMC11156168 DOI: 10.1016/j.jmccpl.2024.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 06/11/2024]
Abstract
An increase in mitochondrial calcium via the mitochondrial calcium uniporter (MCU) has been implicated in initiating cell death in the heart during ischemia-reperfusion (I/R) injury. Measurement of calcium during I/R has been challenging due to the pH sensitivity of indicators coupled with the fall in pH during I/R. The development of a pH-insensitive indicator, mitochondrial localized Turquoise Calcium fluorescence Lifetime Sensor (mito-TqFLITS), allows for quantifying mitochondrial calcium during I/R via fluorescent lifetime imaging. Mitochondrial calcium was monitored using mito-TqFLITS, in neonatal mouse ventricular myocytes (NMVM) isolated from germline MCU-KO mice and MCUfl/fl treated with CRE-recombinase to acutely knockout MCU. To simulate ischemia, a coverslip was placed on a monolayer of NMVMs to prevent access to oxygen and nutrients. Reperfusion was induced by removing the coverslip. Mitochondrial calcium increases threefold during coverslip hypoxia in MCU-WT. There is a significant increase in mitochondrial calcium during coverslip hypoxia in germline MCU-KO, but it is significantly lower than in MCU-WT. We also found that compared to WT, acute MCU-KO resulted in no difference in mitochondrial calcium during coverslip hypoxia and reoxygenation. To determine the role of mitochondrial calcium uptake via MCU in initiating cell death, we used propidium iodide to measure cell death. We found a significant increase in cell death in both the germline MCU-KO and acute MCU-KO, but this was similar to their respective WTs. These data demonstrate the utility of mito-TqFLITS to monitor mitochondrial calcium during simulated I/R and further show that germline loss of MCU attenuates the rise in mitochondrial calcium during ischemia but does not reduce cell death.
Collapse
Affiliation(s)
- Yusuf Mastoor
- Laboratory of Cardiac Physiology, Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, United States of America
| | - Mikako Harata
- Laboratory of Cardiac Physiology, Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, United States of America
| | - Kavisha Silva
- Laboratory of Cardiac Physiology, Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, United States of America
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, NIH, Bethesda 20892, United States of America
| | - Christian A. Combs
- Light Microscopy Core, National Heart, Lung, and Blood Institute, NIH, Bethesda 20892, United States of America
| | - Barbara Roman
- Laboratory of Cardiac Physiology, Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, United States of America
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, Cardiovascular Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, United States of America
| |
Collapse
|
22
|
Kapitany V, Fatima A, Zickus V, Whitelaw J, McGhee E, Insall R, Machesky L, Faccio D. Single-sample image-fusion upsampling of fluorescence lifetime images. SCIENCE ADVANCES 2024; 10:eadn0139. [PMID: 38781345 PMCID: PMC11114222 DOI: 10.1126/sciadv.adn0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) provides detailed information about molecular interactions and biological processes. A major bottleneck for FLIM is image resolution at high acquisition speeds due to the engineering and signal-processing limitations of time-resolved imaging technology. Here, we present single-sample image-fusion upsampling, a data-fusion approach to computational FLIM super-resolution that combines measurements from a low-resolution time-resolved detector (that measures photon arrival time) and a high-resolution camera (that measures intensity only). To solve this otherwise ill-posed inverse retrieval problem, we introduce statistically informed priors that encode local and global correlations between the two "single-sample" measurements. This bypasses the risk of out-of-distribution hallucination as in traditional data-driven approaches and delivers enhanced images compared, for example, to standard bilinear interpolation. The general approach laid out by single-sample image-fusion upsampling can be applied to other image super-resolution problems where two different datasets are available.
Collapse
Affiliation(s)
- Valentin Kapitany
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - Areeba Fatima
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - Vytautas Zickus
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Laser Technologies, Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | | | - Ewan McGhee
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- Cancer Research UK, Beatson Institute, Glasgow, UK
| | | | | | - Daniele Faccio
- School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
23
|
Deepa SS, Thadathil N, Corral J, Mohammed S, Pham S, Rose H, Kinter MT, Richardson A, Díaz-García CM. MLKL overexpression leads to Ca 2+ and metabolic dyshomeostasis in a neuronal cell model. Cell Calcium 2024; 119:102854. [PMID: 38430790 PMCID: PMC10990772 DOI: 10.1016/j.ceca.2024.102854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
The necroptotic effector molecule MLKL accumulates in neurons over the lifespan of mice, and its downregulation has the potential to improve cognition through neuroinflammation, and changes in the abundance of synaptic proteins and enzymes in the central nervous system. Notwithstanding, direct evidence of cell-autonomous effects of MLKL expression on neuronal physiology and metabolism are lacking. Here, we tested whether the overexpression of MLKL in the absence of cell death in the neuronal cell line Neuro-2a recapitulates some of the hallmarks of aging at the cellular level. Using genetically-encoded fluorescent biosensors, we monitored the cytosolic and mitochondrial Ca2+ levels, along with the cytosolic concentrations of several metabolites involved in energy metabolism (lactate, glucose, ATP) and oxidative stress (oxidized/reduced glutathione). We found that MLKL overexpression marginally decreased cell viability, however, it led to reduced cytosolic and mitochondrial Ca2+ elevations in response to Ca2+ influx from the extracellular space. On the contrary, Ca2+ signals were elevated after mobilizing Ca2+ from the endoplasmic reticulum. Transient elevations in cytosolic Ca2+, mimicking neuronal stimulation, lead to higher lactate levels and lower glucose concentrations in Neuro-2a cells when overexpressing MLKL, which suggest enhanced neuronal glycolysis. Despite these alterations, energy levels and glutathione redox state in the cell bodies remained largely preserved after inducing MLKL overexpression for 24-48 h. Taken together, our proof-of-concept experiments are consistent with the hypothesis that MLKL overexpression in the absence of cell death contributes to both Ca2+ and metabolic dyshomeostasis, which are cellular hallmarks of brain aging.
Collapse
Affiliation(s)
- Sathyaseelan S Deepa
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Nidheesh Thadathil
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA
| | - Jorge Corral
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA
| | - Sabira Mohammed
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sophia Pham
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA
| | - Hadyn Rose
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA
| | - Michael T Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Arlan Richardson
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, OK, USA.
| |
Collapse
|
24
|
Parry HA, Willingham TB, Giordano KA, Kim Y, Qazi S, Knutson JR, Combs CA, Glancy B. Impact of capillary and sarcolemmal proximity on mitochondrial structure and energetic function in skeletal muscle. J Physiol 2024; 602:1967-1986. [PMID: 38564214 PMCID: PMC11068488 DOI: 10.1113/jp286246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Mitochondria within skeletal muscle cells are located either between the muscle contractile apparatus (interfibrillar mitochondria, IFM) or beneath the cell membrane (subsarcolemmal mitochondria, SSM), with several structural and functional differences reported between IFM and SSM. However, recent 3D imaging studies demonstrate that mitochondria are particularly concentrated in the proximity of capillaries embedded in sarcolemmal grooves rather than in proximity to the sarcolemma itself (paravascular mitochondria, PVM). To evaluate the impact of capillary vs. sarcolemmal proximity, we compared the structure and function of skeletal muscle mitochondria located either lateral to embedded capillaries (PVM), adjacent to the sarcolemma but not in PVM pools (SSM) or interspersed between sarcomeres (IFM). Mitochondrial morphology and interactions were assessed by 3D electron microscopy coupled with machine learning segmentation, whereas mitochondrial energy conversion was assessed by two-photon microscopy of mitochondrial membrane potential, content, calcium, NADH redox and flux in live, intact cells. Structurally, although PVM and SSM were similarly larger than IFM, PVM were larger, rounder and had more physical connections to neighbouring mitochondria compared to both IFM and SSM. Functionally, PVM had similar or greater basal NADH flux compared to SSM and IFM, respectively, despite a more oxidized NADH pool and a greater membrane potential, signifying a greater activation of the electron transport chain in PVM. Together, these data indicate that proximity to capillaries has a greater impact on resting mitochondrial energy conversion and distribution in skeletal muscle than the sarcolemma alone. KEY POINTS: Capillaries have a greater impact on mitochondrial energy conversion in skeletal muscle than the sarcolemma. Paravascular mitochondria are larger, and the outer mitochondrial membrane is more connected with neighbouring mitochondria. Interfibrillar mitochondria are longer and have greater contact sites with other organelles (i.e. sarcoplasmic reticulum and lipid droplets). Paravascular mitochondria have greater activation of oxidative phosphorylation than interfibrillar mitochondria at rest, although this is not regulated by calcium.
Collapse
Affiliation(s)
- Hailey A. Parry
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
| | - T. Bradley Willingham
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
- Shephard Center’s Virginia C. Crawford Research Institute, Atlanta, GA, USA
| | | | - Yuho Kim
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
- University of Massachusetts, Lowell, MA,USA
| | - Shureed Qazi
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jay R. Knutson
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christian A. Combs
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian Glancy
- National Lung, Blood, and Heart Institute, National Institutes of Health, Bethesda, MD, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Jensen GC, Janis MK, Nguyen HN, David OW, Zastrow ML. Fluorescent Protein-Based Sensors for Detecting Essential Metal Ions across the Tree of Life. ACS Sens 2024; 9:1622-1643. [PMID: 38587931 PMCID: PMC11073808 DOI: 10.1021/acssensors.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.
Collapse
Affiliation(s)
- Gary C Jensen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Makena K Janis
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ogonna W David
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
26
|
Aggarwal A, Sunil S, Bendifallah I, Moon M, Drobizhev M, Zarowny L, Zheng J, Wu SY, Lohman AW, Tebo AG, Emiliani V, Podgorski K, Shen Y, Campbell RE. Blue-shifted genetically encoded Ca 2+ indicator with enhanced two-photon absorption. NEUROPHOTONICS 2024; 11:024207. [PMID: 38577628 PMCID: PMC10993905 DOI: 10.1117/1.nph.11.2.024207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
Significance Genetically encoded calcium ion (Ca 2 + ) indicators (GECIs) are powerful tools for monitoring intracellular Ca 2 + concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of Ca 2 + concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited. Expanding the selection of available GECIs to include new colors and distinct photophysical properties could create new opportunities for in vitro and in vivo fluorescence imaging of neuronal activity. In particular, blue-shifted variants of GECIs are expected to have enhanced two-photon brightness, which would facilitate multiphoton microscopy. Aim We describe the development and applications of T-GECO1-a high-performance blue-shifted GECI based on the Clavularia sp.-derived mTFP1. Approach We use protein engineering and extensive directed evolution to develop T-GECO1. We characterize the purified protein and assess its performance in vitro using one-photon excitation in cultured rat hippocampal neurons, in vivo using one-photon excitation fiber photometry in mice, and ex vivo using two-photon Ca 2 + imaging in hippocampal slices. Results The Ca 2 + -bound state of T-GECO1 has an excitation peak maximum of 468 nm, an emission peak maximum of 500 nm, an extinction coefficient of 49,300 M - 1 cm - 1 , a quantum yield of 0.83, and two-photon brightness approximately double that of EGFP. The Ca 2 + -dependent fluorescence increase is 15-fold, and the apparent K d for Ca 2 + is 82 nM. With two-photon excitation conditions at 850 nm, T-GECO1 consistently enabled the detection of action potentials with higher signal-to-noise (SNR) than a late generation GCaMP variant. Conclusions T-GECO1 is a high-performance blue-shifted GECI that, under two-photon excitation conditions, provides advantages relative to late generation GCaMP variants.
Collapse
Affiliation(s)
- Abhi Aggarwal
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
- Allen Institute for Neural Dynamics, Seattle, Washington, United States
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, United States
- University of Calgary, Hotchkiss Brain Institute, Department of Cell Biology and Anatomy Calgary, Alberta, Canada
| | - Smrithi Sunil
- Allen Institute for Neural Dynamics, Seattle, Washington, United States
| | | | - Michael Moon
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Mikhail Drobizhev
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, Montana, United States
| | - Landon Zarowny
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Jihong Zheng
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, United States
| | - Sheng-Yi Wu
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Alexander W. Lohman
- University of Calgary, Hotchkiss Brain Institute, Department of Cell Biology and Anatomy Calgary, Alberta, Canada
| | - Alison G. Tebo
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, United States
| | | | - Kaspar Podgorski
- Allen Institute for Neural Dynamics, Seattle, Washington, United States
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, United States
| | - Yi Shen
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Robert E. Campbell
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
- Université Laval, CERVO Brain Research Center, Department of Biochemistry, Microbiology, and Bioinformatics, Québec, Québec, Canada
- University of Tokyo, Department of Chemistry, Tokyo, Japan
| |
Collapse
|
27
|
Simpson EH, Akam T, Patriarchi T, Blanco-Pozo M, Burgeno LM, Mohebi A, Cragg SJ, Walton ME. Lights, fiber, action! A primer on in vivo fiber photometry. Neuron 2024; 112:718-739. [PMID: 38103545 PMCID: PMC10939905 DOI: 10.1016/j.neuron.2023.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Fiber photometry is a key technique for characterizing brain-behavior relationships in vivo. Initially, it was primarily used to report calcium dynamics as a proxy for neural activity via genetically encoded indicators. This generated new insights into brain functions including movement, memory, and motivation at the level of defined circuits and cell types. Recently, the opportunity for discovery with fiber photometry has exploded with the development of an extensive range of fluorescent sensors for biomolecules including neuromodulators and peptides that were previously inaccessible in vivo. This critical advance, combined with the new availability of affordable "plug-and-play" recording systems, has made monitoring molecules with high spatiotemporal precision during behavior highly accessible. However, while opening exciting new avenues for research, the rapid expansion in fiber photometry applications has occurred without coordination or consensus on best practices. Here, we provide a comprehensive guide to help end-users execute, analyze, and suitably interpret fiber photometry studies.
Collapse
Affiliation(s)
- Eleanor H Simpson
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA.
| | - Thomas Akam
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland; Neuroscience Center Zürich, University and ETH Zürich, Zürich, Switzerland.
| | - Marta Blanco-Pozo
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Lauren M Burgeno
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ali Mohebi
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephanie J Cragg
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Mark E Walton
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Rohner VL, Lamothe-Molina PJ, Patriarchi T. Engineering, applications, and future perspectives of GPCR-based genetically encoded fluorescent indicators for neuromodulators. J Neurochem 2024; 168:163-184. [PMID: 38288673 DOI: 10.1111/jnc.16045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024]
Abstract
This review explores the evolving landscape of G-protein-coupled receptor (GPCR)-based genetically encoded fluorescent indicators (GEFIs), with a focus on their development, structural components, engineering strategies, and applications. We highlight the unique features of this indicator class, emphasizing the importance of both the sensing domain (GPCR structure and activation mechanism) and the reporting domain (circularly permuted fluorescent protein (cpFP) structure and fluorescence modulation). Further, we discuss indicator engineering approaches, including the selection of suitable cpFPs and expression systems. Additionally, we showcase the diversity and flexibility of their application by presenting a summary of studies where such indicators were used. Along with all the advantages, we also focus on the current limitations as well as common misconceptions that arise when using these indicators. Finally, we discuss future directions in indicator engineering, including strategies for screening with increased throughput, optimization of the ligand-binding properties, structural insights, and spectral diversity.
Collapse
Affiliation(s)
- Valentin Lu Rohner
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Ma P, Chen P, Tilden EI, Aggarwal S, Oldenborg A, Chen Y. Fast and slow: Recording neuromodulator dynamics across both transient and chronic time scales. SCIENCE ADVANCES 2024; 10:eadi0643. [PMID: 38381826 PMCID: PMC10881037 DOI: 10.1126/sciadv.adi0643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Neuromodulators transform animal behaviors. Recent research has demonstrated the importance of both sustained and transient change in neuromodulators, likely due to tonic and phasic neuromodulator release. However, no method could simultaneously record both types of dynamics. Fluorescence lifetime of optical reporters could offer a solution because it allows high temporal resolution and is impervious to sensor expression differences across chronic periods. Nevertheless, no fluorescence lifetime change across the entire classes of neuromodulator sensors was previously known. Unexpectedly, we find that several intensity-based neuromodulator sensors also exhibit fluorescence lifetime responses. Furthermore, we show that lifetime measures in vivo neuromodulator dynamics both with high temporal resolution and with consistency across animals and time. Thus, we report a method that can simultaneously measure neuromodulator change over transient and chronic time scales, promising to reveal the roles of multi-time scale neuromodulator dynamics in diseases, in response to therapies, and across development and aging.
Collapse
Affiliation(s)
- Pingchuan Ma
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Ph.D. Program in Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Peter Chen
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Master’s Program in Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - Elizabeth I. Tilden
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Ph.D. Program in Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Samarth Aggarwal
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Anna Oldenborg
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Yao Chen
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
30
|
Ma C, Mohr JM, Lauer G, Metternich JT, Neutsch K, Ziebarth T, Reiner A, Kruss S. Ratiometric Imaging of Catecholamine Neurotransmitters with Nanosensors. NANO LETTERS 2024; 24:2400-2407. [PMID: 38345220 DOI: 10.1021/acs.nanolett.3c05082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Neurotransmitters are important signaling molecules in the brain and are relevant in many diseases. Measuring them with high spatial and temporal resolutions in biological systems is challenging. Here, we develop a ratiometric fluorescent sensor/probe for catecholamine neurotransmitters on the basis of near-infrared (NIR) semiconducting single wall carbon nanotubes (SWCNTs). Phenylboronic acid (PBA)-based quantum defects are incorporated into them to interact selectively with catechol moieties. These PBA-SWCNTs are further modified with poly(ethylene glycol) phospholipids (PEG-PL) for biocompatibility. Catecholamines, including dopamine, do not affect the intrinsic E11 fluorescence (990 nm) of these (PEG-PL-PBA-SWCNT) sensors. In contrast, the defect-related E11* emission (1130 nm) decreases by up to 35%. Furthermore, this dual functionalization allows tuning selectivity by changing the charge of the PEG polymer. These sensors are not taken up by cells, which is beneficial for extracellular imaging, and they are functional in brain slices. In summary, we use dual functionalization of SWCNTs to create a ratiometric biosensor for dopamine.
Collapse
Affiliation(s)
- Chen Ma
- Department of Chemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - Jennifer Maria Mohr
- Department of Chemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - German Lauer
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - Justus Tom Metternich
- Department of Chemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, North Rhine-Westphalia 47057, Germany
| | - Krisztian Neutsch
- Department of Chemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - Tim Ziebarth
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
| | - Sebastian Kruss
- Department of Chemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia 44801, Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, North Rhine-Westphalia 47057, Germany
| |
Collapse
|
31
|
Sekhon H, Ha JH, Presti MF, Procopio SB, Jarvis AR, Mirsky PO, John AM, Loh SN. Adaptable, turn-on maturation (ATOM) fluorescent biosensors for multiplexed detection in cells. Nat Methods 2023; 20:1920-1929. [PMID: 37945909 PMCID: PMC11080272 DOI: 10.1038/s41592-023-02065-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023]
Abstract
A grand challenge in biosensor design is to develop a single-molecule, fluorescent protein-based platform that can be easily adapted to recognize targets of choice. Here, we created a family of adaptable, turn-on maturation (ATOM) biosensors consisting of a monobody (circularly permuted at one of two positions) or a nanobody (circularly permuted at one of three positions) inserted into a fluorescent protein at one of three surface loops. Multiplexed imaging of live human cells coexpressing cyan, yellow and red ATOM sensors detected biosensor targets that were specifically localized to various subcellular compartments. Fluorescence activation involved ligand-dependent chromophore maturation with turn-on ratios of up to 62-fold in cells and 100-fold in vitro. Endoplasmic reticulum- and mitochondria-localized ATOM sensors detected ligands that were targeted to those organelles. The ATOM design was validated with three monobodies and one nanobody inserted into distinct fluorescent proteins, suggesting that customized ATOM sensors can be generated quickly.
Collapse
Affiliation(s)
- Harsimranjit Sekhon
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Maria F Presti
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Spencer B Procopio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ava R Jarvis
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Paige O Mirsky
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Anna M John
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
32
|
Ghafouri E, Bigdeli M, Khalafiyan A, Amirkhani Z, Ghanbari R, Hasan A, Khanahmad H, Boshtam M, Makvandi P. Unmasking the complex roles of hypocalcemia in cancer, COVID-19, and sepsis: Engineered nanodelivery and diagnosis. ENVIRONMENTAL RESEARCH 2023; 238:116979. [PMID: 37660871 DOI: 10.1016/j.envres.2023.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Calcium (Ca2+) homeostasis is essential for maintaining physiological processes in the body. Disruptions in Ca2+ signaling can lead to various pathological conditions including inflammation, fibrosis, impaired immune function, and accelerated senescence. Hypocalcemia, a common symptom in diseases such as acute respiratory distress syndrome (ARDS), cancer, septic shock, and COVID-19, can have both potential protective and detrimental effects. This article explores the multifaceted role of Ca2+ dysregulation in inflammation, fibrosis, impaired immune function, and accelerated senescence, contributing to disease severity. Targeting Ca2+ signaling pathways may provide opportunities to develop novel therapeutics for age-related diseases and combat viral infections. However, the role of Ca2+ in viral infections is complex, and evidence suggests that hypocalcemia may have a protective effect against certain viruses, while changes in Ca2+ homeostasis can influence susceptibility to viral infections. The effectiveness and safety of Ca2+ supplements in COVID-19 patients remain a subject of ongoing research and debate. Further investigations are needed to understand the intricate interplay between Ca2+ signaling and disease pathogenesis.
Collapse
Affiliation(s)
- Elham Ghafouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Anis Khalafiyan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohre Amirkhani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roham Ghanbari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK.
| |
Collapse
|
33
|
Vu CQ, Arai S. Quantitative Imaging of Genetically Encoded Fluorescence Lifetime Biosensors. BIOSENSORS 2023; 13:939. [PMID: 37887132 PMCID: PMC10605767 DOI: 10.3390/bios13100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Genetically encoded fluorescence lifetime biosensors have emerged as powerful tools for quantitative imaging, enabling precise measurement of cellular metabolites, molecular interactions, and dynamic cellular processes. This review provides an overview of the principles, applications, and advancements in quantitative imaging with genetically encoded fluorescence lifetime biosensors using fluorescence lifetime imaging microscopy (go-FLIM). We highlighted the distinct advantages of fluorescence lifetime-based measurements, including independence from expression levels, excitation power, and focus drift, resulting in robust and reliable measurements compared to intensity-based approaches. Specifically, we focus on two types of go-FLIM, namely Förster resonance energy transfer (FRET)-FLIM and single-fluorescent protein (FP)-based FLIM biosensors, and discuss their unique characteristics and benefits. This review serves as a valuable resource for researchers interested in leveraging fluorescence lifetime imaging to study molecular interactions and cellular metabolism with high precision and accuracy.
Collapse
Affiliation(s)
- Cong Quang Vu
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Satoshi Arai
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
34
|
Aggarwal A, Sunil S, Bendifallah I, Moon M, Drobizhev M, Zarowny L, Zheng J, Wu SY, Lohman AW, Tebo AG, Emiliani V, Podgorski K, Shen Y, Campbell RE. A blue-shifted genetically encoded Ca 2+ indicator with enhanced two-photon absorption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.562058. [PMID: 37905143 PMCID: PMC10614751 DOI: 10.1101/2023.10.12.562058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Significance Genetically encoded calcium ion (Ca2+) indicators (GECIs) are powerful tools for monitoring intracellular Ca2+ concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of Ca2+ concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited. Expanding the selection of available GECIs to include new colors and distinct photophysical properties could create new opportunities for in vitro and in vivo fluorescence imaging of neuronal activity. In particular, blue-shifted variants of GECIs are expected to have enhanced two-photon brightness, which would facilitate multiphoton microscopy. Aim We describe the development and applications of T-GECO1 - a high-performance blue-shifted GECI based on the Clavularia sp.-derived mTFP1. Approach We used protein engineering and extensive directed evolution to develop T-GECO1. We characterize the purified protein and assess its performance in vitro using one-photon excitation in cultured rat hippocampal neurons, in vivo using one-photon excitation fiber photometry in mice, and ex vivo using two-photon Ca2+ imaging in hippocampal slices. Results The Ca2+-bound state of T-GECO1 has an excitation peak maximum of 468 nm, an emission peak maximum of 500 nm, an extinction coefficient of 49,300 M-1cm-1, a quantum yield of 0.83, and two-photon brightness approximately double that of EGFP. The Ca2+-dependent fluorescence increase is 15-fold and the apparent Kd for Ca2+ is 82 nM. With two-photon excitation conditions at 850 nm, T-GECO1 consistently enabled detection of action potentials with higher signal-to-noise (SNR) than a late generation GCaMP variant. Conclusion T-GECO1 is a high performance blue-shifted GECI that, under two-photon excitation conditions, provides advantages relative to late generation GCaMP variants.
Collapse
Affiliation(s)
- Abhi Aggarwal
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
- Allen Institute for Neural Dynamics, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, United States of America
- University of Calgary, Department of Cell Biology and Anatomy and Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Smrithi Sunil
- Allen Institute for Neural Dynamics, Seattle, Washington, United States of America
| | | | - Michael Moon
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Mikhail Drobizhev
- Montana State University, Department of Microbiology and Cell Biology, Bozeman, Montana, United States of America
| | - Landon Zarowny
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Jihong Zheng
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, United States of America
| | - Sheng-Yi Wu
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Alexander W. Lohman
- University of Calgary, Department of Cell Biology and Anatomy and Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Alison G. Tebo
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, United States of America
| | | | - Kaspar Podgorski
- Allen Institute for Neural Dynamics, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, United States of America
| | - Yi Shen
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
| | - Robert E. Campbell
- University of Alberta, Department of Chemistry, Edmonton, Alberta, Canada
- Université Laval, CERVO Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Québec, Québec, Canada
- The University of Tokyo, Department of Chemistry, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
35
|
Mo Y, Zhou H, Xu J, Chen X, Li L, Zhang S. Genetically encoded fluorescence lifetime biosensors: overview, advances, and opportunities. Analyst 2023; 148:4939-4953. [PMID: 37721109 DOI: 10.1039/d3an01201h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Genetically encoded biosensors based on fluorescent proteins (FPs) are powerful tools for tracking analytes and cellular events with high spatial and temporal resolution in living cells and organisms. Compared with intensiometric readout and ratiometric readout, fluorescence lifetime readout provides absolute measurements, independent of the biosensor expression level and instruments. Thus, genetically encoded fluorescence lifetime biosensors play a vital role in facilitating accurate quantitative assessments within intricate biological systems. In this review, we first provide a concise description of the categorization and working mechanism of genetically encoded fluorescence lifetime biosensors. Subsequently, we elaborate on the combination of the fluorescence lifetime imaging technique and lifetime analysis methods with fluorescence lifetime biosensors, followed by their application in monitoring the dynamics of environment parameters, analytes and cellular events. Finally, we discuss worthwhile considerations for the design, optimization and development of fluorescence lifetime-based biosensors from three representative cases.
Collapse
Affiliation(s)
- Yidan Mo
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Huangmei Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Jinming Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Xihang Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
| | - Lei Li
- School of Science, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China.
| | - Sanjun Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, No. 500, Dongchuan Rd, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- NYU-ECNU Institute of Physics at NYU Shanghai, No. 3663, North Zhongshan Rd, Shanghai 200062, China.
| |
Collapse
|
36
|
Barroso M, Monaghan MG, Niesner R, Dmitriev RI. Probing organoid metabolism using fluorescence lifetime imaging microscopy (FLIM): The next frontier of drug discovery and disease understanding. Adv Drug Deliv Rev 2023; 201:115081. [PMID: 37647987 PMCID: PMC10543546 DOI: 10.1016/j.addr.2023.115081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Organoid models have been used to address important questions in developmental and cancer biology, tissue repair, advanced modelling of disease and therapies, among other bioengineering applications. Such 3D microenvironmental models can investigate the regulation of cell metabolism, and provide key insights into the mechanisms at the basis of cell growth, differentiation, communication, interactions with the environment and cell death. Their accessibility and complexity, based on 3D spatial and temporal heterogeneity, make organoids suitable for the application of novel, dynamic imaging microscopy methods, such as fluorescence lifetime imaging microscopy (FLIM) and related decay time-assessing readouts. Several biomarkers and assays have been proposed to study cell metabolism by FLIM in various organoid models. Herein, we present an expert-opinion discussion on the principles of FLIM and PLIM, instrumentation and data collection and analysis protocols, and general and emerging biosensor-based approaches, to highlight the pioneering work being performed in this field.
Collapse
Affiliation(s)
- Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Michael G Monaghan
- Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 02, Ireland
| | - Raluca Niesner
- Dynamic and Functional In Vivo Imaging, Freie Universität Berlin and Biophysical Analytics, German Rheumatism Research Center, Berlin, Germany
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; Ghent Light Microscopy Core, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
37
|
Xu S, Momin M, Ahmed S, Hossain A, Veeramuthu L, Pandiyan A, Kuo CC, Zhou T. Illuminating the Brain: Advances and Perspectives in Optoelectronics for Neural Activity Monitoring and Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303267. [PMID: 37726261 DOI: 10.1002/adma.202303267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Indexed: 09/21/2023]
Abstract
Optogenetic modulation of brain neural activity that combines optical and electrical modes in a unitary neural system has recently gained robust momentum. Controlling illumination spatial coverage, designing light-activated modulators, and developing wireless light delivery and data transmission are crucial for maximizing the use of optical neuromodulation. To this end, biocompatible electrodes with enhanced optoelectrical performance, device integration for multiplexed addressing, wireless transmission, and multimodal operation in soft systems have been developed. This review provides an outlook for uniformly illuminating large brain areas while spatiotemporally imaging the neural responses upon optoelectrical stimulation with little artifacts. Representative concepts and important breakthroughs, such as head-mounted illumination, multiple implanted optical fibers, and micro-light-delivery devices, are discussed. Examples of techniques that incorporate electrophysiological monitoring and optoelectrical stimulation are presented. Challenges and perspectives are posed for further research efforts toward high-density optoelectrical neural interface modulation, with the potential for nonpharmacological neurological disease treatments and wireless optoelectrical stimulation.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Marzia Momin
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Salahuddin Ahmed
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Arafat Hossain
- Department of Electrical Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Loganathan Veeramuthu
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Archana Pandiyan
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Tao Zhou
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| |
Collapse
|
38
|
Hellweg L, Edenhofer A, Barck L, Huppertz MC, Frei MS, Tarnawski M, Bergner A, Koch B, Johnsson K, Hiblot J. A general method for the development of multicolor biosensors with large dynamic ranges. Nat Chem Biol 2023; 19:1147-1157. [PMID: 37291200 PMCID: PMC10449634 DOI: 10.1038/s41589-023-01350-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/25/2023] [Indexed: 06/10/2023]
Abstract
Fluorescent biosensors enable the study of cell physiology with spatiotemporal resolution; yet, most biosensors suffer from relatively low dynamic ranges. Here, we introduce a family of designed Förster resonance energy transfer (FRET) pairs with near-quantitative FRET efficiencies based on the reversible interaction of fluorescent proteins with a fluorescently labeled HaloTag. These FRET pairs enabled the straightforward design of biosensors for calcium, ATP and NAD+ with unprecedented dynamic ranges. The color of each of these biosensors can be readily tuned by changing either the fluorescent protein or the synthetic fluorophore, which enables simultaneous monitoring of free NAD+ in different subcellular compartments following genotoxic stress. Minimal modifications of these biosensors furthermore allow their readout to be switched to fluorescence intensity, fluorescence lifetime or bioluminescence. These FRET pairs thus establish a new concept for the development of highly sensitive and tunable biosensors.
Collapse
Affiliation(s)
- Lars Hellweg
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Anna Edenhofer
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Lucas Barck
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Magnus-Carsten Huppertz
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michelle S Frei
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Miroslaw Tarnawski
- Protein Expression and Characterization Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Andrea Bergner
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Birgit Koch
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julien Hiblot
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
39
|
Farrants H, Shuai Y, Lemon WC, Hernandez CM, Yang S, Patel R, Qiao G, Frei MS, Grimm JB, Hanson TL, Tomaska F, Turner GC, Stringer C, Keller PJ, Beyene AG, Chen Y, Liang Y, Lavis LD, Schreiter ER. A modular chemigenetic calcium indicator enables in vivo functional imaging with near-infrared light. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549527. [PMID: 37503182 PMCID: PMC10370049 DOI: 10.1101/2023.07.18.549527] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Genetically encoded fluorescent calcium indicators have revolutionized neuroscience and other biological fields by allowing cellular-resolution recording of physiology during behavior. However, we currently lack bright, genetically targetable indicators in the near infrared that can be used in animals. Here, we describe WHaloCaMP, a modular chemigenetic calcium indicator built from bright dye-ligands and protein sensor domains that can be genetically targeted to specific cell populations. Fluorescence change in WHaloCaMP results from reversible quenching of the bound dye via a strategically placed tryptophan. WHaloCaMP is compatible with rhodamine dye-ligands that fluoresce from green to near-infrared, including several dye-ligands that efficiently label the central nervous system in animals. When bound to a near-infrared dye-ligand, WHaloCaMP1a is more than twice as bright as jGCaMP8s, and shows a 7× increase in fluorescence intensity and a 2.1 ns increase in fluorescence lifetime upon calcium binding. We use WHaloCaMP1a with near-infrared fluorescence emission to image Ca2+ responses in flies and mice, to perform three-color multiplexed functional imaging of hundreds of neurons and astrocytes in zebrafish larvae, and to quantitate calcium concentration using fluorescence lifetime imaging microscopy (FLIM).
Collapse
Affiliation(s)
- Helen Farrants
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yichun Shuai
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - William C Lemon
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - Shang Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Guanda Qiao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michelle S Frei
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Timothy L Hanson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Filip Tomaska
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Glenn C Turner
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Carsen Stringer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Philipp J Keller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Abraham G Beyene
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yao Chen
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yajie Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
40
|
Zheng Y, Li Y. Past, present, and future of tools for dopamine detection. Neuroscience 2023:S0306-4522(23)00295-6. [PMID: 37419404 DOI: 10.1016/j.neuroscience.2023.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Dopamine (DA) is a critical neuromodulator involved in various brain functions. To understand how DA regulates neural circuits and behaviors in the physiological and pathological conditions, it is essential to have tools that enable the direct detection of DA dynamics in vivo. Recently, genetically encoded DA sensors based on G protein-coupled receptors revolutionized this field, as it allows us to track in vivo DA dynamic with unprecedented spatial-temporal resolution, high molecular specificity, and sub-second kinetics. In this review, we first summarize traditional DA detection methods. Then we focus on the development of genetically encoded DA sensors and feature its significance to understanding dopaminergic neuromodulation across diverse behaviors and species. Finally, we present our perspectives about the future direction of the next-generation DA sensors and extend their potential applications. Overall, this review offers a comprehensive perspective on the past, present, and future of DA detection tools, with important implications for the study of DA functions in health and disease.
Collapse
Affiliation(s)
- Yu Zheng
- Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, 100871 Beijing, China; State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, 100871 Beijing, China; PKU-IDG/McGovern Institute for Brain Research, 100871 Beijing, China; National Biomedical Imaging Center, Peking University, 100871 Beijing, China.
| |
Collapse
|
41
|
Bowman AJ, Huang C, Schnitzer MJ, Kasevich MA. Wide-field fluorescence lifetime imaging of neuron spiking and subthreshold activity in vivo. Science 2023; 380:1270-1275. [PMID: 37347862 PMCID: PMC10361454 DOI: 10.1126/science.adf9725] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
The development of voltage-sensitive fluorescent probes suggests fluorescence lifetime as a promising readout for electrical activity in biological systems. Existing approaches fail to achieve the speed and sensitivity required for voltage imaging in neuroscience applications. We demonstrated that wide-field electro-optic fluorescence lifetime imaging microscopy (EO-FLIM) allows lifetime imaging at kilohertz frame-acquisition rates, spatially resolving action potential propagation and subthreshold neural activity in live adult Drosophila. Lifetime resolutions of <5 picoseconds at 1 kilohertz were achieved for single-cell voltage recordings. Lifetime readout is limited by photon shot noise, and the method provides strong rejection of motion artifacts and technical noise sources. Recordings revealed local transmembrane depolarizations, two types of spikes with distinct fluorescence lifetimes, and phase locking of spikes to an external mechanical stimulus.
Collapse
Affiliation(s)
- Adam J Bowman
- Physics Department, Stanford University, Stanford, CA 94305, USA
| | - Cheng Huang
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
| | - Mark J Schnitzer
- James H. Clark Center, Stanford University, Stanford, CA 94305, USA
- CNC Program, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Mark A Kasevich
- Physics Department, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
42
|
Olsen RH, English JG. Advancements in G protein-coupled receptor biosensors to study GPCR-G protein coupling. Br J Pharmacol 2023; 180:1433-1443. [PMID: 36166832 PMCID: PMC10511148 DOI: 10.1111/bph.15962] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Enzymatic and cellular signalling biosensors are used to decipher the activities of complex biological systems. Biosensors for monitoring G protein-coupled receptors (GPCRs), the most drugged class of proteins in the human body, are plentiful and vary in utility, form and function. Their applications have continually expanded our understanding of this important protein class. Here, we briefly summarize a subset of this field with accelerating importance: transducer biosensors measuring receptor-coupling and selectivity, with an emphasis on sensors measuring receptor association and activation of heterotrimeric signalling complexes.
Collapse
Affiliation(s)
| | - Justin G. English
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132 USA
| |
Collapse
|
43
|
Aggarwal A, Liu R, Chen Y, Ralowicz AJ, Bergerson SJ, Tomaska F, Mohar B, Hanson TL, Hasseman JP, Reep D, Tsegaye G, Yao P, Ji X, Kloos M, Walpita D, Patel R, Mohr MA, Tillberg PW, Looger LL, Marvin JS, Hoppa MB, Konnerth A, Kleinfeld D, Schreiter ER, Podgorski K. Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission. Nat Methods 2023; 20:925-934. [PMID: 37142767 PMCID: PMC10250197 DOI: 10.1038/s41592-023-01863-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/21/2023] [Indexed: 05/06/2023]
Abstract
The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.
Collapse
Affiliation(s)
- Abhi Aggarwal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Rui Liu
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Yang Chen
- Institute of Neuroscience and Cluster for Systems Neurology (SyNergy), Technical University of Munich (TUM), Munich, Germany
| | - Amelia J Ralowicz
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | | | - Filip Tomaska
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Boaz Mohar
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Timothy L Hanson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jeremy P Hasseman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Daniel Reep
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Getahun Tsegaye
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Pantong Yao
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Xiang Ji
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Marinus Kloos
- Institute of Neuroscience and Cluster for Systems Neurology (SyNergy), Technical University of Munich (TUM), Munich, Germany
| | - Deepika Walpita
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Manuel A Mohr
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH) Zurich, Basel, Switzerland
| | - Paul W Tillberg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Michael B Hoppa
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Arthur Konnerth
- Institute of Neuroscience and Cluster for Systems Neurology (SyNergy), Technical University of Munich (TUM), Munich, Germany
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
- Section of Neurobiology, University of California, San Diego, La Jolla, CA, USA
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kaspar Podgorski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
- Allen Institute for Neural Dynamics, Seattle, WA, USA.
| |
Collapse
|
44
|
Mahlandt EK, Kreider-Letterman G, Chertkova AO, Garcia-Mata R, Goedhart J. Cell-based optimization and characterization of genetically encoded location-based biosensors for Cdc42 or Rac activity. J Cell Sci 2023; 136:jcs260802. [PMID: 37226883 PMCID: PMC10234108 DOI: 10.1242/jcs.260802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Rac (herein referring to the Rac family) and Cdc42 are Rho GTPases that regulate the formation of lamellipoda and filopodia, and are therefore crucial in processes such as cell migration. Relocation-based biosensors for Rac and Cdc42 have not been characterized well in terms of their specificity or affinity. In this study, we identify relocation sensor candidates for both Rac and Cdc42. We compared their (1) ability to bind the constitutively active Rho GTPases, (2) specificity for Rac and Cdc42, and (3) relocation efficiency in cell-based assays. Subsequently, the relocation efficiency was improved by a multi-domain approach. For Rac1, we found a sensor candidate with low relocation efficiency. For Cdc42, we found several sensors with sufficient relocation efficiency and specificity. These optimized sensors enable the wider application of Rho GTPase relocation sensors, which was showcased by the detection of local endogenous Cdc42 activity at assembling invadopodia. Moreover, we tested several fluorescent proteins and HaloTag for their influence on the recruitment efficiency of the Rho location sensor, to find optimal conditions for a multiplexing experiment. This characterization and optimization of relocation sensors will broaden their application and acceptance.
Collapse
Affiliation(s)
- Eike K. Mahlandt
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | - Anna O. Chertkova
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Shi Y, Zhang W, Xue Y, Zhang J. Fluorescent Sensors for Detecting and Imaging Metal Ions in Biological Systems: Recent Advances and Future Perspectives. CHEMOSENSORS 2023; 11:226. [DOI: 10.3390/chemosensors11040226] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Metal ions play a crucial role in many biochemical processes, and when in a state of scarcity or surplus, they can lead to various diseases. Therefore, the development of a selective, sensitive, cost-effective, and fast-responding sensor to detect metal ions is critical for in vitro medical diagnostics. In recent years, fluorescent sensors have been extensively investigated as potent kits for the effective assessment of metal ions in living systems due to their high sensitivity, selectivity, ability to perform real-time, non-invasive monitoring, and versatility. This review is an overview of recent advances in fluorescent sensors for the detection and imaging of metal ions in biosystems from 2018 to date. Specifically, we discuss their application in detecting essential metal ions and non-essential metal ions for in vitro diagnostics, living cell imaging, and in vivo imaging. Finally, we summarize remaining challenges and offer a future outlook on the above topics.
Collapse
Affiliation(s)
- Yang Shi
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenxian Zhang
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Xue
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingjing Zhang
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
46
|
Sekhon H, Ha JH, Presti MF, Procopio SB, Mirsky PO, John AM, Loh SN. Adaptable, Turn-On Monobody (ATOM) Fluorescent Biosensors for Multiplexed Detection in Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534597. [PMID: 37034669 PMCID: PMC10081266 DOI: 10.1101/2023.03.28.534597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
A grand challenge in biosensor design is to develop a single molecule, fluorescent protein-based platform that can be easily adapted to recognize targets of choice. Conceptually, this can be achieved by fusing a small, antibody-like binding domain to a fluorescent protein in such a way that target binding activates fluorescence. Although this design is simple to envision, its execution is not obvious. Here, we created a family of adaptable, turn-on monobody (ATOM) biosensors consisting of a monobody, circularly permuted at one of two positions, inserted into a fluorescent protein at one of three surface loops. Multiplexed imaging of live human cells co-expressing cyan, yellow, and red ATOM sensors detected the biosensor targets (WDR5, SH2, and hRAS proteins) that were localized to the nucleus, cytoplasm, and plasma membrane, respectively, with high specificity. ER- and mitochondria-localized ATOM sensors also detected ligands that were targeted to those organelles. Fluorescence activation involved ligand-dependent chromophore maturation with fluorescence turn-on ratios of >20-fold in cells and up to 100-fold in vitro . The sensing mechanism was validated with three arbitrarily chosen monobodies inserted into jellyfish as well as anemone lineages of fluorescent proteins, suggesting that ATOM sensors with different binding specificities and additional colors can be generated relatively quickly.
Collapse
|
47
|
Van Thillo T, Van Deuren V, Dedecker P. Smart genetically-encoded biosensors for the chemical monitoring of living systems. Chem Commun (Camb) 2023; 59:520-534. [PMID: 36519509 DOI: 10.1039/d2cc05363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetically-encoded biosensors provide the all-optical and non-invasive visualization of dynamic biochemical events within living systems, which has allowed the discovery of profound new insights. Twenty-five years of biosensor development has steadily improved their performance and has provided us with an ever increasing biosensor repertoire. In this feature article, we present recent advances made in biosensor development and provide a perspective on the future direction of the field.
Collapse
Affiliation(s)
- Toon Van Thillo
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Vincent Van Deuren
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| |
Collapse
|
48
|
Mamontova AV, Simonyan TR, Bogdanov AM. Prospects of Genetically Encoded Flim Indicators for the Quantitative Assessment of Intracellular Parameters. Mol Biol 2022. [DOI: 10.1134/s0026893322050090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Vecchia MD, Conte-Daban A, Cappe B, Vandenberg W, Vandenabeele P, Riquet FB, Dedecker P. Spectrally Tunable Förster Resonance Energy Transfer-Based Biosensors Using Organic Dye Grafting. ACS Sens 2022; 7:2920-2927. [PMID: 36162130 DOI: 10.1021/acssensors.2c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biosensors based on Förster resonance energy transfer (FRET) have revolutionized cellular biology by allowing the direct measurement of biochemical processes in situ. Many genetically encoded sensors make use of fluorescent proteins that are limited in spectral versatility and that allow few ways to change the spectral properties once the construct has been created. In this work, we developed genetically encoded FRET biosensors based on the chemigenetic SNAP and HaloTag domains combined with matching organic fluorophores. We found that the resulting constructs can display comparable responses, kinetics, and reversibility compared to their fluorescent protein-based ancestors, but with the added advantage of spectral versatility, including the availability of red-shifted dye pairs. However, we also find that the introduction of these tags can alter the sensor readout, showing that careful validation is required before applying such constructs in practice. Overall, our approach delivers an innovative methodology that can readily expand the spectral variety and versatility of FRET-based biosensors.
Collapse
Affiliation(s)
- Marco Dalla Vecchia
- Lab for NanoBiology, Department of Chemistry, 3001 Leuven, Belgium.,Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | | | - Benjamin Cappe
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Wim Vandenberg
- Lab for NanoBiology, Department of Chemistry, 3001 Leuven, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Franck B Riquet
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium.,Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, 59000 Lille, France
| | - Peter Dedecker
- Lab for NanoBiology, Department of Chemistry, 3001 Leuven, Belgium
| |
Collapse
|
50
|
Mou L, Mandal K, Mecwan MM, Hernandez AL, Maity S, Sharma S, Herculano RD, Kawakita S, Jucaud V, Dokmeci MR, Khademhosseini A. Integrated biosensors for monitoring microphysiological systems. LAB ON A CHIP 2022; 22:3801-3816. [PMID: 36074812 PMCID: PMC9635816 DOI: 10.1039/d2lc00262k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microphysiological systems (MPSs), also known as organ-on-a-chip models, aim to recapitulate the functional components of human tissues or organs in vitro. Over the last decade, with the advances in biomaterials, 3D bioprinting, and microfluidics, numerous MPSs have emerged with applications to study diseased and healthy tissue models. Various organs have been modeled using MPS technology, such as the heart, liver, lung, and blood-brain barrier. An important aspect of in vitro modeling is the accurate phenotypical and functional characterization of the modeled organ. However, most conventional characterization methods are invasive and destructive and do not allow continuous monitoring of the cells in culture. On the other hand, microfluidic biosensors enable in-line, real-time sensing of target molecules with an excellent limit of detection and in a non-invasive manner, thereby effectively overcoming the limitation of the traditional techniques. Consequently, microfluidic biosensors have been increasingly integrated into MPSs and used for in-line target detection. This review discusses the state-of-the-art microfluidic biosensors by providing specific examples, detailing their main advantages in monitoring MPSs, and highlighting current developments in this field. Finally, we describe the remaining challenges and potential future developments to advance the current state-of-the-art in integrated microfluidic biosensors.
Collapse
Affiliation(s)
- Lei Mou
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong, P. R. China
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Marvin Magan Mecwan
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Ana Lopez Hernandez
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Rondinelli Donizetti Herculano
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP 14801-902, Brazil
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, California, USA.
| |
Collapse
|