1
|
Grata A, Levayer R. Epithelial cell extrusion at a glance. J Cell Sci 2025; 138:jcs263786. [PMID: 40270445 DOI: 10.1242/jcs.263786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
The robustness and plasticity of epithelial tissues rely on the capacity of such tissues to eliminate cells without affecting their sealing. This is achieved by epithelial cell extrusion - a well-orchestrated series of remodelling steps involving the eliminated cell and its neighbours - which ensures the constant maintenance of mechanical and chemical barrier properties while allowing cell expulsion. In this Cell Science at a Glance and the accompanying poster, we describe the remodelling steps that take place within dying or extruding cells, as well as neighbouring cells, outlining the commonalities and variations between tissues and organisms. These steps include reorganization of the cytoskeleton and remodelling of cell-cell junctions that alters their contribution to mechanical coupling and mechanotransduction. We also discuss larger-scale coordination between cells and the contribution of cell extrusion to tissue morphogenesis, epithelial surveillance mechanisms, and pathologies such as cancer and chronic inflammation. Altogether, we outline the complexity and plasticity of this minimalist morphogenetic process.
Collapse
Affiliation(s)
- Aline Grata
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
2
|
Faure LM, Venturini V, Roca-Cusachs P. Cell compression - relevance, mechanotransduction mechanisms and tools. J Cell Sci 2025; 138:jcs263704. [PMID: 40145202 DOI: 10.1242/jcs.263704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025] Open
Abstract
From border cell migration during Drosophila embryogenesis to solid stresses inside tumors, cells are often compressed during physiological and pathological processes, triggering major cell responses. Cell compression can be observed in vivo but also controlled in vitro through tools such as micro-channels or planar confinement assays. Such tools have recently become commercially available, allowing a broad research community to tackle the role of cell compression in a variety of contexts. This has led to the discovery of conserved compression-triggered migration modes, cell fate determinants and mechanosensitive pathways, among others. In this Review, we will first address the different ways in which cells can be compressed and their biological contexts. Then, we will discuss the distinct mechanosensing and mechanotransducing pathways that cells activate in response to compression. Finally, we will describe the different in vitro systems that have been engineered to compress cells.
Collapse
Affiliation(s)
- Laura M Faure
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Valeria Venturini
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- University of Barcelona (UB), 08036 Barcelona, Spain
| |
Collapse
|
3
|
Martin P, Pardo-Pastor C, Jenkins RG, Rosenblatt J. Imperfect wound healing sets the stage for chronic diseases. Science 2024; 386:eadp2974. [PMID: 39636982 PMCID: PMC7617408 DOI: 10.1126/science.adp2974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Although the age of the genome gave us much insight about how our organs fail with disease, it also suggested that diseases do not arise from mutations alone; rather, they develop as we age. In this Review, we examine how wound healing might act to ignite disease. Wound healing works well when we are younger, repairing damage from accidents, environmental assaults, and battles with pathogens. Yet, with age and accumulation of mutations and tissue damage, the repair process can devolve, leading to inflammation, fibrosis, and neoplastic signaling. We discuss healthy wound responses and how our bodies might misappropriate these pathways in disease. Although we focus predominantly on epithelial-based (lung and skin) diseases, similar pathways might operate in cardiac, muscle, and neuronal diseases.
Collapse
Affiliation(s)
- Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Carlos Pardo-Pastor
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - R Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart & Lung Institute, NIHR Imperial Biomedical Research Centre, Imperial College London, London, UK
| | - Jody Rosenblatt
- The Randall and Cancer Centres King's College London, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
4
|
Vialat M, Baabdaty E, Trousson A, Kocer A, Lobaccaro JMA, Baron S, Morel L, de Joussineau C. Cholesterol Dietary Intake and Tumor Cell Homeostasis Drive Early Epithelial Tumorigenesis: A Potential Modelization of Early Prostate Tumorigenesis. Cancers (Basel) 2024; 16:2153. [PMID: 38893271 PMCID: PMC11172085 DOI: 10.3390/cancers16112153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Epidemiological studies point to cholesterol as a possible key factor for both prostate cancer incidence and progression. It could represent a targetable metabolite as the most aggressive tumors also appear to be sensitive to therapies designed to decrease hypercholesterolemia, such as statins. However, it remains unknown whether and how cholesterol, through its dietary uptake and its metabolism, could be important for early tumorigenesis. Oncogene clonal induction in the Drosophila melanogaster accessory gland allows us to reproduce tumorigenesis from initiation to early progression, where tumor cells undergo basal extrusion to form extra-epithelial tumors. Here we show that these tumors accumulate lipids, and especially esterified cholesterol, as in human late carcinogenesis. Interestingly, a high-cholesterol diet has a limited effect on accessory gland tumorigenesis. On the contrary, cell-specific downregulation of cholesterol uptake, intracellular transport, or metabolic response impairs the formation of such tumors. Furthermore, in this context, a high-cholesterol diet suppresses this impairment. Interestingly, expression data from primary prostate cancer tissues indicate an early signature of redirection from cholesterol de novo synthesis to uptake. Taken together, these results reveal that during early tumorigenesis, tumor cells strongly increase their uptake and use of dietary cholesterol to specifically promote the step of basal extrusion. Hence, these results suggest the mechanism by which a reduction in dietary cholesterol could lower the risk and slow down the progression of prostate cancer.
Collapse
Affiliation(s)
- Marine Vialat
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Elissa Baabdaty
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Amalia Trousson
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Ayhan Kocer
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Jean-Marc A. Lobaccaro
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Silvère Baron
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Laurent Morel
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| | - Cyrille de Joussineau
- GReD, CNRS UMR6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, BP38, F63001 Clermont-Ferrand, France; (M.V.); (E.B.); (A.T.); (A.K.); (J.-M.A.L.); (S.B.); (L.M.)
- Groupe Cancer Clermont Auvergne, F63000 Clermont-Ferrand, France
| |
Collapse
|
5
|
Carlin CR, Ngalula S. Loss of EGF receptor polarity enables homeostatic imbalance in epithelial-cell models. Mol Biol Cell 2023; 34:ar116. [PMID: 37647145 PMCID: PMC10846618 DOI: 10.1091/mbc.e23-04-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/26/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
The polarized distribution of membrane proteins into apical and basolateral domains provides the basis for specialized functions of epithelial tissues. The EGF receptor (EGFR) plays important roles in embryonic development, adult-epithelial tissue homeostasis, and growth and survival of many carcinomas. Typically targeted to basolateral domains, there is also considerable evidence of EGFR sorting plasticity but very limited knowledge regarding domain-specific EGFR substrates. Here we have investigated effects of selective EGFR mistargeting because of inactive-basolateral sorting signals on epithelial-cell homeostatic responses to growth-induced stress in MDCK cell models. Aberrant EGFR localization was associated with multilayer formation, anchorage-independent growth, and upregulated expression of the intermediate filament-protein vimentin characteristically seen in cells undergoing epithelial-to-mesenchymal transition. EGFRs were selectively retained following their internalization from apical membranes, and a signaling pathway involving the signaling adaptor Gab1 protein and extracellular signal-regulated kinase ERK5 had an essential role integrating multiple responses to growth-induced stress. Our studies highlight the potential importance of cellular machinery specifying EGFR polarity in epithelial pathologies associated with homeostatic imbalance.
Collapse
Affiliation(s)
- Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106-4970
- Case Western Reserve University Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4970
| | - Syntyche Ngalula
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH 44106-4970
| |
Collapse
|
6
|
Ventrella R, Kim SK, Sheridan J, Grata A, Bresteau E, Hassan OA, Suva EE, Walentek P, Mitchell BJ. Bidirectional multiciliated cell extrusion is controlled by Notch-driven basal extrusion and Piezo1-driven apical extrusion. Development 2023; 150:dev201612. [PMID: 37602491 PMCID: PMC10482390 DOI: 10.1242/dev.201612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Xenopus embryos are covered with a complex epithelium containing numerous multiciliated cells (MCCs). During late-stage development, there is a dramatic remodeling of the epithelium that involves the complete loss of MCCs. Cell extrusion is a well-characterized process for driving cell loss while maintaining epithelial barrier function. Normal cell extrusion is typically unidirectional, whereas bidirectional extrusion is often associated with disease (e.g. cancer). We describe two distinct mechanisms for MCC extrusion, a basal extrusion driven by Notch signaling and an apical extrusion driven by Piezo1. Early in the process there is a strong bias towards basal extrusion, but as development continues there is a shift towards apical extrusion. Importantly, response to the Notch signal is age dependent and governed by the maintenance of the MCC transcriptional program such that extension of this program is protective against cell loss. In contrast, later apical extrusion is regulated by Piezo1, such that premature activation of Piezo1 leads to early extrusion while blocking Piezo1 leads to MCC maintenance. Distinct mechanisms for MCC loss underlie the importance of their removal during epithelial remodeling.
Collapse
Affiliation(s)
- Rosa Ventrella
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
- Precision Medicine Program, Midwestern University, Downers Grove, IL 60515, USA
| | - Sun K. Kim
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Jennifer Sheridan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Aline Grata
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Enzo Bresteau
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Osama A. Hassan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Eve E. Suva
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
| | - Peter Walentek
- University of Freiburg, Renal Division, Internal Medicine IV, Medical Center and CIBSS Centre for Integrative Biological Signalling Studies, 79104 Freiburg im Breisgau, Germany
| | - Brian J. Mitchell
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology, Chicago, IL 60611, USA
- Northwestern University, Lurie Cancer Center, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Kira A, Tatsutomi I, Saito K, Murata M, Hattori I, Kajita H, Muraki N, Oda Y, Satoh S, Tsukamoto Y, Kimura S, Onoue K, Yonemura S, Arakawa S, Kato H, Hirashima T, Kawane K. Apoptotic extracellular vesicle formation via local phosphatidylserine exposure drives efficient cell extrusion. Dev Cell 2023:S1534-5807(23)00241-1. [PMID: 37315563 DOI: 10.1016/j.devcel.2023.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 01/29/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Cell extrusion is a universal mode of cell removal from tissues, and it plays an important role in regulating cell numbers and eliminating unwanted cells. However, the underlying mechanisms of cell delamination from the cell layer are unclear. Here, we report a conserved execution mechanism of apoptotic cell extrusion. We found extracellular vesicle (EV) formation in extruding mammalian and Drosophila cells at a site opposite to the extrusion direction. Lipid-scramblase-mediated local exposure of phosphatidylserine is responsible for EV formation and is crucial for executing cell extrusion. Inhibition of this process disrupts prompt cell delamination and tissue homeostasis. Although the EV has hallmarks of an apoptotic body, its formation is governed by the mechanism of microvesicle formation. Experimental and mathematical modeling analysis illustrated that EV formation promotes neighboring cells' invasion. This study showed that membrane dynamics play a crucial role in cell exit by connecting the actions of the extruding cell and neighboring cells.
Collapse
Affiliation(s)
- Akihito Kira
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Ichiko Tatsutomi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Keisuke Saito
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Machiko Murata
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Izumi Hattori
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Haruna Kajita
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Naoko Muraki
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Yukako Oda
- Department of Cell Growth and Differentiation, Center for iPS Cell Research & Application, Kyoto University, Kyoto 606-8507, Japan
| | - Saya Satoh
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Yuta Tsukamoto
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Seisuke Kimura
- Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan; Center for Plant Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Kenta Onoue
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Shigenobu Yonemura
- Laboratory for Ultrastructural Research, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan; Department of Cell Biology, Tokushima University Graduate School of Medicine, Tokushima 770-8503, Japan
| | - Satoko Arakawa
- Research Core, Institute of Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; Japan Science and Technology Agency, PRESTO, Saitama 332-0012, Japan.
| | - Kohki Kawane
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| |
Collapse
|
8
|
Prasad D, Illek K, Fischer F, Holstein K, Classen AK. Bilateral JNK activation is a hallmark of interface surveillance and promotes elimination of aberrant cells. eLife 2023; 12:e80809. [PMID: 36744859 PMCID: PMC9917460 DOI: 10.7554/elife.80809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 02/03/2023] [Indexed: 02/07/2023] Open
Abstract
Tissue-intrinsic defense mechanisms eliminate aberrant cells from epithelia and thereby maintain the health of developing tissues or adult organisms. 'Interface surveillance' comprises one such distinct mechanism that specifically guards against aberrant cells which undergo inappropriate cell fate and differentiation programs. The cellular mechanisms which facilitate detection and elimination of these aberrant cells are currently unknown. We find that in Drosophila imaginal discs, clones of cells with inappropriate activation of cell fate programs induce bilateral JNK activation at clonal interfaces, where wild type and aberrant cells make contact. JNK activation is required to drive apoptotic elimination of interface cells. Importantly, JNK activity and apoptosis are highest in interface cells within small aberrant clones, which likely supports the successful elimination of aberrant cells when they arise. Our findings are consistent with a model where clone size affects the topology of interface contacts and thereby the strength of JNK activation in wild type and aberrant interface cells. Bilateral JNK activation is unique to 'interface surveillance' and is not observed in other tissue-intrinsic defense mechanisms, such as classical 'cell-cell competition'. Thus, bilateral JNK interface signaling provides an independent tissue-level mechanism to eliminate cells with inappropriate developmental fate but normal cellular fitness. Finally, oncogenic Ras-expressing clones activate 'interface surveillance' but evade elimination by bilateral JNK activation. Combined, our work establishes bilateral JNK interface signaling and interface apoptosis as a new hallmark of interface surveillance and highlights how oncogenic mutations evade tumor suppressor function encoded by this tissue-intrinsic surveillance system.
Collapse
Affiliation(s)
- Deepti Prasad
- Hilde-Mangold-Haus, University of FreiburgFreiburgGermany
- Spemann Graduate School of Biology and Medicine (SGBM), University of FreiburgFreiburgGermany
- Faculty of Biology, University of FreiburgFreiburgGermany
| | | | - Friedericke Fischer
- Hilde-Mangold-Haus, University of FreiburgFreiburgGermany
- Faculty of Biology, University of FreiburgFreiburgGermany
- International Max Planck Research School for Immunobiology, Epigenetics, and MetabolismFreiburgGermany
| | | | - Anne-Kathrin Classen
- Hilde-Mangold-Haus, University of FreiburgFreiburgGermany
- Faculty of Biology, University of FreiburgFreiburgGermany
- CIBSS Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
- BIOSS Centre for Biological Signalling Studies, University of FreiburgFreiburgGermany
| |
Collapse
|
9
|
Ventrella R, Kim SK, Sheridan J, Grata A, Bresteau E, Hassan O, Suva EE, Walentek P, Mitchell B. Bidirectional multiciliated cell extrusion is controlled by Notch driven basal extrusion and Piezo 1 driven apical extrusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523838. [PMID: 36711534 PMCID: PMC9882179 DOI: 10.1101/2023.01.12.523838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Xenopus embryos are covered with a complex epithelium containing numerous multiciliated cells (MCCs). During late stage development there is a dramatic remodeling of the epithelium that involves the complete loss of MCCs. Cell extrusion is a well-characterized process for driving cell loss while maintaining epithelial barrier function. Normal cell extrusion is typically unidirectional whereas bidirectional extrusion is often associated with disease (e.g. cancer). We describe two distinct mechanisms for MCC extrusion, a basal extrusion driven by Notch signaling and an apical extrusion driven by Piezo1. Early in the process there is a strong bias towards basal extrusion, but as development continues there is a shift towards apical extrusion. Importantly, receptivity to the Notch signal is age-dependent and governed by the maintenance of the MCC transcriptional program such that extension of this program is protective against cell loss. In contrast, later apical extrusion is regulated by Piezo 1 such that premature activation of Piezo 1 leads to early extrusion while blocking Piezo 1 leads to MCC maintenance. Distinct mechansms for MCC loss underlie the importance of their removal during epithelial remodeling. Summay Statement Cell extrusion typically occurs unidirectionally. We have identified a single population of multiciliated cells that extrudes bidirectionally: Notch-driven basal extrusion and Piezo 1-mediated apical extrusion.
Collapse
Affiliation(s)
- Rosa Ventrella
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
- Current position; Assistant professor, Precision Medicine Program, Midwestern University
| | - Sun K. Kim
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Jennifer Sheridan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Aline Grata
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Enzo Bresteau
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Osama Hassan
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Eve E. Suva
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
| | - Peter Walentek
- University of Freiburg, Renal Division, Internal Medicine IV, Medical Center and CIBSS Centre for Integrative Biological Signalling Studies
| | - Brian Mitchell
- Northwestern University, Feinberg School of Medicine, Department of Cell and Developmental Biology
- Northwestern University, Lurie Cancer Center
| |
Collapse
|
10
|
The role of RAS oncogenes in controlling epithelial mechanics. Trends Cell Biol 2023; 33:60-69. [PMID: 36175301 PMCID: PMC9850021 DOI: 10.1016/j.tcb.2022.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/27/2023]
Abstract
Mutations in RAS are key oncogenic drivers and therapeutic targets. Oncogenic Ras proteins activate a network of downstream signalling pathways, including extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3K), promoting cell proliferation and survival. However, there is increasing evidence that RAS oncogenes also alter the mechanical properties of both individual malignant cells and transformed tissues. Here we discuss the role of oncogenic RAS in controlling mechanical cell phenotypes and how these mechanical changes promote oncogenic transformation in single cells and tissues. RAS activation alters actin organisation and actomyosin contractility. These changes alter cell rheology and impact mechanosensing through changes in substrate adhesion and YAP/TAZ-dependent mechanotransduction. We then discuss how these changes play out in cell collectives and epithelial tissues by driving large-scale tissue deformations and the expansion of malignant cells. Uncovering how RAS oncogenes alter cell mechanics will lead to a better understanding of the morphogenetic processes that underlie tumour formation in RAS-mutant cancers.
Collapse
|
11
|
Cell polarity and extrusion: How to polarize extrusion and extrude misspolarized cells? Curr Top Dev Biol 2023; 154:131-167. [PMID: 37100516 DOI: 10.1016/bs.ctdb.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The barrier function of epithelia is one of the cornerstones of the body plan organization of metazoans. It relies on the polarity of epithelial cells which organizes along the apico-basal axis the mechanical properties, signaling as well as transport. This barrier function is however constantly challenged by the fast turnover of epithelia occurring during morphogenesis or adult tissue homeostasis. Yet, the sealing property of the tissue can be maintained thanks to cell extrusion: a series of remodeling steps involving the dying cell and its neighbors leading to seamless cell expulsion. Alternatively, the tissue architecture can also be challenged by local damages or the emergence of mutant cells that may alter its organization. This includes mutants of the polarity complexes which can generate neoplastic overgrowths or be eliminated by cell competition when surrounded by wild type cells. In this review, we will provide an overview of the regulation of cell extrusion in various tissues focusing on the relationship between cell polarity, cell organization and the direction of cell expulsion. We will then describe how local perturbations of polarity can also trigger cell elimination either by apoptosis or by cell exclusion, focusing specifically on how polarity defects can be directly causal to cell elimination. Overall, we propose a general framework connecting the influence of polarity on cell extrusion and its contribution to aberrant cell elimination.
Collapse
|
12
|
Buhe H, Ma JX, Ye FZ, Song CY, Chen XY, Liu Y, Lin H, Han X, Ma LX, Saiyin H. IDO-1 inhibitor INCB24360 elicits distant metastasis of basal extruded cancer cells in pancreatic ductal adenocarcinoma. Acta Pharmacol Sin 2022; 44:1277-1289. [PMID: 36517670 DOI: 10.1038/s41401-022-01035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/20/2022] [Indexed: 12/15/2022]
Abstract
AbstractNeoplastic cells of non-immunogenic pancreatic ductal adenocarcinoma (PDAC) express indoleamine 2,3-dioxygenase 1 (IDO-1), an immunosuppressive enzyme. The metabolites of IDO-1 in cancers provide one-carbon units that annihilate effector T cells, and recruit immunosuppressive cells. In this study we investigated how IDO-1 affected the neoplastic cell behaviors in PDACs. Using multiple markers co-labeling method in 45-µm-thick tissue sections, we showed that IDO-1 expression was uniquely increased in the neoplastic cells extruded from ducts’ apical or basal domain, but decreased in lymph metastatic cells. IDO-1+ extruding neoplastic cells displayed increased vimentin expression and decreased cytokeratin expression in PDACs, characteristics of epithelial-mesenchymal transition (EMT). However, IDO-1 expression was uncorrelated with immunosuppressive infiltrates and clinicopathological characteristics of grim outcome. We replicated basal extrusion with EMT in murine KPIC PDAC organoids by long-term IFN-γ induction; application of IDO-1 inhibitor INCB24360 or 1-MT partially reversed basal extrusion coupled EMT. Ido-1 deletion in KPIC cells deprived its tumorigenicity in immunocompetent mice, decreased cellular proliferation and macropinocytic ability, and increased immunogenicity. KPIC organoids with IFN-γ-induced basal extrusion did not accelerate distant metastasis, whereas inhibition IFN-γ-induced IDO-1 with INB24360 but not 1-MT in KPIC organoids elicited liver metastasis of subcutaneous KPIC organoid tumors, suggesting that lower IDO-1 activity accelerated distant metastasis, whereas IDO-1 was indispensable for tumorigenicity of PDAC cells and supports the survival of extruding cells.
Collapse
|
13
|
Zulueta-Coarasa T, Fadul J, Ahmed M, Rosenblatt J. Physical confinement promotes mesenchymal trans-differentiation of invading transformed cells in vivo. iScience 2022; 25:105330. [PMID: 36325066 PMCID: PMC9618776 DOI: 10.1016/j.isci.2022.105330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022] Open
Abstract
Metastasis is tightly linked with poor cancer prognosis, yet it is not clear how transformed cells become invasive carcinomas. We previously discovered that single KRasV12-transformed cells can invade directly from the epithelium by basal cell extrusion. During this process, cells de-differentiate by mechanically pinching off their epithelial determinants, but how they trans-differentiate into a migratory, mesenchymal phenotype is not known. Here, we demonstrate that basally extruded KRasV12-expressing cells become significantly deformed as they invade the zebrafish body. Decreasing the confinement that cells experience after they invade reduces the percentage of KRasV12 cells that trans-differentiate into mesenchymal cell types, while higher confinement increases this percentage. Additionally, increased confinement promotes accumulation of internal masses over time. Altogether, our results suggest that mechanical forces drive not only de-differentiation of KRasV12-transformed epithelial cells as they invade but also their re-differentiation into mesenchymal phenotypes that contribute to distant metastases.
Collapse
Affiliation(s)
- Teresa Zulueta-Coarasa
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King’s College London, London, SE1 1UL, UK
| | - John Fadul
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King’s College London, London, SE1 1UL, UK
| | - Marjana Ahmed
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King’s College London, London, SE1 1UL, UK
| | - Jody Rosenblatt
- The Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, School of Cancer and Pharmaceutical Sciences, King’s College London, London, SE1 1UL, UK
| |
Collapse
|
14
|
Non-Melanoma Skin Cancer: A Genetic Update and Future Perspectives. Cancers (Basel) 2022; 14:cancers14102371. [PMID: 35625975 PMCID: PMC9139429 DOI: 10.3390/cancers14102371] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Non-melanoma skin cancer (NMSC) is the main type of cancer in the Caucasian population, and the number of cases continues to rise. Research mostly focuses on clinical characteristics analysis, but genetic features are crucial to malignancies’ establishment and advance. We aim to explore the genetic basics of skin cancer, surrounding microenvironment interactions, and regulation mechanisms to provide a broader perspective for new therapies’ development. Abstract Skin cancer is one of the main types of cancer worldwide, and non-melanoma skin cancer (NMSC) is the most frequent within this group. Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common types. Multifactorial features are well-known for cancer development, and new hallmarks are gaining relevance. Genetics and epigenetic regulation play an essential role in cancer susceptibility and progression, as well as the variety of cells and molecules that interact in the tumor microenvironment. In this review, we provide an update on the genetic features of NMSC, candidate genes, and new therapies, considering diverse perspectives of skin carcinogenesis. The global health situation and the pandemic have been challenging for health care systems, especially in the diagnosis and treatment of patients with cancer. We provide innovative approaches to overcome the difficulties in the current clinical dynamics.
Collapse
|
15
|
Ngo PA, Neurath MF, López-Posadas R. Impact of Epithelial Cell Shedding on Intestinal Homeostasis. Int J Mol Sci 2022; 23:ijms23084160. [PMID: 35456978 PMCID: PMC9027054 DOI: 10.3390/ijms23084160] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
The gut barrier acts as a first line of defense in the body, and plays a vital role in nutrition and immunoregulation. A layer of epithelial cells bound together via intercellular junction proteins maintains intestinal barrier integrity. Based on a tight equilibrium between cell extrusion and cell restitution, the renewal of the epithelium (epithelial turnover) permits the preservation of cell numbers. As the last step within the epithelial turnover, cell shedding occurs due to the pressure of cell division and migration from the base of the crypt. During this process, redistribution of tight junction proteins enables the sealing of the epithelial gap left by the extruded cell, and thereby maintains barrier function. Disturbance in cell shedding can create transient gaps (leaky gut) or cell accumulation in the epithelial layer. In fact, numerous studies have described the association between dysregulated cell shedding and infection, inflammation, and cancer; thus epithelial cell extrusion is considered a key defense mechanism. In the gastrointestinal tract, altered cell shedding has been observed in mouse models of intestinal inflammation and appears as a potential cause of barrier loss in human inflammatory bowel disease (IBD). Despite the relevance of this process, there are many unanswered questions regarding cell shedding. The investigation of those mechanisms controlling cell extrusion in the gut will definitely contribute to our understanding of intestinal homeostasis. In this review, we summarized the current knowledge about intestinal cell shedding under both physiological and pathological circumstances.
Collapse
Affiliation(s)
- Phuong A. Ngo
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
16
|
Almagro J, Messal HA, Elosegui-Artola A, van Rheenen J, Behrens A. Tissue architecture in tumor initiation and progression. Trends Cancer 2022; 8:494-505. [PMID: 35300951 DOI: 10.1016/j.trecan.2022.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/13/2023]
Abstract
The 3D architecture of tissues bearing tumors impacts on the mechanical microenvironment of cancer, the accessibility of stromal cells, and the routes of invasion. A myriad of intrinsic and extrinsic forces exerted by the cancer cells, the host tissue, and the molecular and cellular microenvironment modulate the morphology of the tumor and its malignant potential through mechanical, biochemical, genetic, and epigenetic cues. Recent studies have investigated how tissue architecture influences cancer biology from tumor initiation and progression to distant metastatic seeding and response to therapy. With a focus on carcinoma, the most common type of cancer, this review discusses the latest discoveries on how tumor architecture is built and how tissue morphology affects the biology and progression of cancer cells.
Collapse
Affiliation(s)
- Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK; Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Hendrik A Messal
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK; Department of Physics, King's College London, London, UK
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK; Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK; Convergence Science Centre, Imperial College London, London, UK; Division of Cancer, Imperial College London, London, UK.
| |
Collapse
|
17
|
Su Y, Gu X, Zheng Q, Zhu L, Lu J, Li L. LncRNA PCGEM1 in Human Cancers: Functions, Mechanisms and Promising Clinical Utility. Front Oncol 2022; 12:847745. [PMID: 35265529 PMCID: PMC8898824 DOI: 10.3389/fonc.2022.847745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
As novel members of the noncoding RNA family, long noncoding RNAs (lncRNAs) have been widely reported to function as powerful regulators in gene expression processes, including chromosome remodeling, transcription interference and posttranscriptional modification. With the rapid development of metagenomic sequencing, numerous studies have indicated that the dysregulation of lncRNAs is closely associated with diverse human diseases, especially cancers. Prostate Gene Expression Marker 1 (PCGEM1), a recently identified lncRNA, has been reported to play a crucial role in the initiation and progression of multiple tumors by interacting with pivotal regulators of tumor-related signaling pathways. In this review, we will retrospectively review the recent studies of the expression of lncRNA PCGEM1 in human cancers and comprehensively describe the underlying regulatory mechanism by which PCGEM1 functions in tumors. More importantly, based on the relationship between PCGEM1 and cancers, the potential application of PCGEM1 in clinical diagnosis, prognosis and therapeutic treatment will also be highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Juan Lu
- *Correspondence: Lanjuan Li, ; Juan Lu,
| | | |
Collapse
|