1
|
Cai MZ, Wen Z, Li HZ, Yang Y, Liang JX, Liao YS, Wang JY, Wang LY, Zhang NY, Kamei KI, An HW, Wang H. Peptide-based fluorescent probes for the diagnosis of tumor and image-guided surgery. Biosens Bioelectron 2025; 276:117255. [PMID: 39965418 DOI: 10.1016/j.bios.2025.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/12/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Fluorescent contrast agents are instrumental in amplifying signals, thereby enhancing the sensitivity and accuracy of live optical imaging. However, a significant proportion of traditional fluorescent contrast agents exhibit drawbacks such as short half-life, suboptimal biocompatibility, and inadequate tumor targeting, all of which impede effective imaging guidance. Peptides, derived from natural structures, offer a flexible modular design that can be precisely engineered and adjusted using synthetic methods to achieve specific biological activity and pharmacokinetic properties. They bind with designated receptors to exert their effects, demonstrating high specificity. The development of fluorescent probes based on peptides significantly overcomes the limitations of conventional contrast agents, offering superior performance. This article provides a comprehensive review of three strategies for constructing peptide-based fluorescent probes, delving into their distinct design concepts, mechanisms of action, and innovative aspects. It also highlights the potential applications of peptide-based fluorescent probes in tumor diagnosis and image-guided surgery, offering insights into their future clinical transformation.
Collapse
Affiliation(s)
- Ming-Ze Cai
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Zhuan Wen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Hao-Ze Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Yang Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Jian-Xiao Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu-Si Liao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Jing-Yao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Li-Ying Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Ni-Yuan Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan; Programs of Biology and Bioengineering, Divisions of Science and Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
2
|
Zhao H, Du F, Huang J, Guo R, Feng Z, Wang Z, Qiu L. Biomimetic liposomal nanovesicles remodel the tumor immune microenvironment to augment sono-immunotherapy. J Control Release 2025; 383:113830. [PMID: 40355046 DOI: 10.1016/j.jconrel.2025.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Sonodynamic therapy (SDT)-mediated immunogenic cell death and immune checkpoint blockade offer new opportunities for tumor treatment. However, challenges including immunosuppression, hypoxic tumor microenvironments, and inadequate drug delivery hinder therapeutic efficacy. Therefore, we developed a multifunctional biomimetic liposome microbubble named H-R@Lip@M, which is coated with melanoma cell membranes, contains perfluoropentane as its core, and is loaded with the sonosensitizer hematoporphyrin monomethyl ether and the immune adjuvant resiquimod. The targeting properties of melanoma cell membranes enable effective accumulation of nanoparticles (NPs) at tumor sites. Equipped with ultrasonic/photoacoustic imaging capabilities, these NPs allow precise control over the release of drugs and oxygen upon ultrasound stimulation. In vitro and in vivo results consistently showed that the NPs enhanced anti-tumor efficacy, halting primary tumor progression and preventing lung metastasis. Moreover, SDT increased reactive oxygen species levels within tumors, preferentially inducing apoptosis while maximizing immunogenic cell death. When combined with PD-L1 blockade, this synergy promotes dendritic cell maturation and alters various immune populations, boosting T-cell infiltration while enhancing M1 macrophage polarization and reducing regulatory T-cell presence. In summary, the proposed combination has the potential to synergistically enhance the efficacy of sono-immunotherapy by remodeling the immunosuppressive microenvironment, providing valuable insights for addressing challenges associated with SDT-based cancer therapy.
Collapse
Affiliation(s)
- Hongxin Zhao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fangxue Du
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianbo Huang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruiqian Guo
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyan Feng
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyao Wang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Qiu
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Pei S, Liu Z, Jiao Q, Jin Q, Luo X, Liu Y, Zhou S, Pang S, Wu X, Xu K, Zhong W. Self-Reporting Ratiometric AIEgen-Peptide Nanoprobes for Activatable Chemotherapy and Noninvasive Imaging of Therapeutic Outcomes. J Med Chem 2025; 68:7767-7779. [PMID: 40170557 DOI: 10.1021/acs.jmedchem.5c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Efficacious chemotherapy and real-time therapeutic monitoring remain major challenges in cancer treatment. Traditional systems often lack tumor specificity, limiting efficacy, and hindering therapy optimization. Moreover, the absence of real-time monitoring can lead to missed opportunities and increased risks of side effects. Herein, we designed a self-reporting ratiometric AIEgen-peptide nanoprobe (TPE-1(Hyd-DOX)-DEVD) for activatable chemotherapy and noninvasive imaging of therapeutic outcomes. When doxorubicin (DOX) in the nanoprobe is selectively activated in the acidic tumor microenvironment, the ensuing caspase-3 cascade triggers a morphological transformation of the nanoprobe that amplifies the TPE fluorescence. This enhancement allows the TPE/DOX fluorescence ratio to serve as an indicator for monitoring DOX activation and for providing therapeutic feedback. Both in vitro and in vivo studies demonstrated that TPE-1(Hyd-DOX)-DEVD exhibited an impressive tumor suppression efficacy and excellent biocompatibility. This study highlights the strong potential of this nanoprobe as a valuable tool for cancer theranostics, offering hope for more effective and personalized treatment strategies.
Collapse
Affiliation(s)
- Shicheng Pei
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhaohan Liu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qishu Jiao
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qiling Jin
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xuan Luo
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Liu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shuyao Zhou
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shuqin Pang
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 210009, China
| | - Keming Xu
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Zhong
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Jia F, Mao Q, Liu J, Jiao H, Chen M, Wu X, Cui J. Long-Term and Real-Time Post-External Radiotherapy Assessment Based on an In Situ Activatable Radiolabeled Platform. ACS APPLIED BIO MATERIALS 2025; 8:2429-2439. [PMID: 39928911 DOI: 10.1021/acsabm.4c01913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Long-term monitoring in postoperative assessment is essential for clinicians to assess the effectiveness of therapies and establish subsequent clinical pharmacotherapeutic plans. However, precise and real-time postoperative assessment is often overlooked, relying instead on various clinical histopathological and cytological assays or the experience of physicians. Therefore, it is urgent to develop a general strategy for long-term, real-time, and accurate postoperative assessment. Herein, we present a facile method utilizing radiolabeled probes for postradiotherapy assessment. The probe consists of a tumor-specific targeting group, an external radiotherapy-activated peptide sequence (DEVD), and a 177Lu-1,4,7,10-tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid (DOTA)-decorated tetraphenyl ethylene. This design not only avoids photobleaching and the limitations associated with traditional organic ligands for long-term monitoring but also achieves in situ aggregation at the lesion site, allowing for prolonged tumor retention over 96 h. This work serves as a glance at utilizing radiolabeled probes for postoperative assessment, broadening the possibilities for the design, application, and clinical translation of radionuclide-labeled probes.
Collapse
Affiliation(s)
- Fang Jia
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Qiulian Mao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Jing Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Haorong Jiao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Mei Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Xinyue Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| | - Jiabin Cui
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
5
|
Hou DY, Zhang NY, Zhang P, Li XP, Wu JC, Lv MY, Wang ZJ, Hu XJ, Liang JX, Wang HL, Wang YZ, You HH, An HW, Wang H, Xu W. In vivo self-assembled bispecific fluorescence probe for early detection of bladder cancer and metastasis. Sci Bull (Beijing) 2025; 70:407-418. [PMID: 39537458 DOI: 10.1016/j.scib.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Tumor metastasis accounts for over 90% of tumor-related deaths, prompting the development of fluorescently labeled tumor-specific molecular imaging agents for differentiating tumors from normal tissues. However, early detection of metastasis lesions by tracking tumor markers alone has proven to be challenging. Herein, we reported a glycopeptide-based bispecific fluorescence probe (bsProbe) for earlier detection of bladder cancer and metastasis. By simultaneously recognition (tumor & tumor microenvironment) and in vivo self-assembly, the tumor accumulation of bsProbe (12.3% ID/g) was obviously increased by ∼6 fold compared with that in CXCR4 specific fluorescence probe (sProbe), indicating the obvious advantages of bsProbe over existing tumor metastasis detection probes. Additionally, bsProbe substantially broadens the tumor diagnosis window and enhances the detection signal to noise ratio (SNR: approximately 9.5), permitting early diagnosis of lung micro-metastasis (∼1 mm), precise identifying of tumor boundaries and micro-tumors in orthotopic tumor models. More importantly, bsProbe was demonstrated to distinguish malignant from benign specimen with a specificity of 90.48% and sensitivity of 92.22% in 195 clinical specimens of bladder cancer patients. Taken together, this novel synergetic targeting (CD206 × CXCR4) strategy provides an attractive method for earlier detection of bladder cancer and metastasis, which might be further extended to the imaging-guided surgery of clinical invisible tumors.
Collapse
Affiliation(s)
- Da-Yong Hou
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China; Department of PET-CT/MRI, Harbin Medical University Cancer Hospital, Harbin 150001, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Ni-Yuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Peng Zhang
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Xiang-Peng Li
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Jiong-Cheng Wu
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Mei-Yu Lv
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Zhi-Jia Wang
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Xing-Jie Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Jian-Xiao Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hong-Lei Wang
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Yue-Ze Wang
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Hui-Hui You
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Wanhai Xu
- NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
6
|
Feng R, Xu W, Ning J, Ma Q, Wang H, Li L, Xu S, Wang L. Design of Fluorinated Peptides as Biotransformed Urinalysis Biomarkers for Non-Invasive Diagnosis and Treatment of Liver Injury through Enzyme Directed Kinetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413571. [PMID: 39817848 DOI: 10.1002/adma.202413571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/29/2024] [Indexed: 01/18/2025]
Abstract
Urinalysis, as a non-invasive and efficient diagnostic method, is very important but faces great challenges due to the complex compositions of urine and limited naturally occurring biomarkers for diseases. Herein, by leveraging the intrinsic absence of endogenous fluorinated interference, a strategy with the enzymatically activated assembly of synthetic fluorinated peptide for cholestatic liver injury (CLI) diagnosis and treatment through 19F nuclear magnetic resonance (NMR) urinalysis and efficient drug retention is developed. Specifically, alkaline phosphatase (ALP), overexpressed in the liver of CLI mice, triggers the assembly of fluorinated peptide, thus, directing the traffic and dynamic distribution of the synthetic biomarkers after administration, whereas CLI mice display much slower clearance of peptides through urine as compared with healthy counterparts. As such, it enables to transform pathophysiological information into exogenous signals via noninvasive urinary monitoring. Moreover, as a proof-of-concept, by grafting different functional groups to peptides, the theranostic platforms can be established to provide a new paradigm for the design of multifunctional peptides.
Collapse
Affiliation(s)
- Ruxin Feng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Weilu Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinhui Ning
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qian Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hui Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liangyu Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Sun X, Qiao T, Zhang Z, Wang X, Gao Z, Ding D. A near-infrared fluorescent probe with assembly/aggregation-induced retention effect for specific diagnosis of metastasis and image-guided surgery in breast cancer. Biosens Bioelectron 2025; 267:116801. [PMID: 39357494 DOI: 10.1016/j.bios.2024.116801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Image-guided surgery is crucial for achieving complete tumor resection, reducing postoperative recurrence and improving patient survival. However, current clinical near-infrared fluorescent probes, such as indocyanine green (ICG), face two main limitations: 1) lack of active tumor targeting, and 2) short retention time in tumors, which restricts real-time imaging during surgery. To address these issues, we developed a near-infrared fluorescent probe capable of in situ nanofiber formation within tumor lesions. This probe actively targets the integrin αvβ3 receptors overexpressed on breast cancer cells and exhibits assembly/aggregation-induced retention effects at the tumor site, significantly extending the imaging time window. Additionally, we found that the probe's fluorescence intensity can be enhanced under receptor induction. Due to its excellent tumor specificity and sensitivity, 1FCG-FFGRGD not only identifies primary breast cancer but also precisely locates smaller lymph node metastases and detects sub-millimeter peritoneal metastases. In summary, this near-infrared probe, leveraging assembly/aggregation-induced retention effects, holds substantial potential for various biomedical applications.
Collapse
Affiliation(s)
- Xuan Sun
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Tianhe Qiao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Zuyuan Zhang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| | - Zhiyuan Gao
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300350, China.
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
8
|
Li P, Li Y, Yao J, Li LL. Peptide-Induced Hydrogelation with Ordered Metal-Organic Framework Nanoparticles Generating Reactive Oxygen Species for Integrated Wound Repair. Adv Healthc Mater 2025; 14:e2403292. [PMID: 39639393 DOI: 10.1002/adhm.202403292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Hydrogels, with their high water content and flexible nature, are a promising class of medical dressings for combating bacterial wound infections. However, their development has been hindered by low sterilization efficiency. Here, this issue is addressed by designing a peptide hydrogel that assembles ordered metal-organic framework (MOF) nanoparticles with photocatalytic bactericidal activity. Specifically, a short peptide, Nap-Gly-Phe-Phe-His (Nap-GFFH), is used to induce the assembly of zinc-imidazolate MOF (ZIF-8) into a hydrogel (NHZ gel). This innovative structure integrates three key features: 1) ZIF-8 nanoparticles are encapsulated within the hydrogel, overcoming their inherent brittleness, insolubility, and limited moldability; 2) the ordered ZIF-8 structure enhances charge transfer, enabling efficient generation of reactive oxygen species (ROS); and 3) ZIF-8 simultaneously improves the photocatalytic bactericidal efficiency and mechanical properties of the hydrogel. The NHZ gel demonstrates remarkable antibacterial performance, achieving >99.9% and 99.99% inactivation of Escherichia coli and Staphylococcus aureus, respectively, within 15 min of simulated solar radiation. Additionally, the NHZ gel exhibits excellent biocompatibility, water retention, and exudate absorption, highlighting its broad potential for wound healing.
Collapse
Affiliation(s)
- Ping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Yiying Li
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities, New Energy and Material College, China University of Petroleum-Beijing, Beijing, 102249, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Jiahui Yao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Li-Li Li
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| |
Collapse
|
9
|
Ma K, Jiang Q, Yang Y, Zhang F. Recent advances of versatile fluorophores for multifunctional biomedical imaging in the NIR-II region. J Mater Chem B 2024; 13:15-36. [PMID: 39534990 DOI: 10.1039/d4tb01957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Fluorescence imaging in the second near-infrared region (NIR-II, 1000-1700 nm) enables high-resolution visualization of deep-tissue biological architecture and physiopathological events, due to the reduced light absorption, scattering and tissue autofluorescence. Numerous versatile NIR-II fluorescent probes have been reported over the past decades. In this review, we first provide a detailed account of the advantages of fluorescence imaging in the NIR-II region. Following this, the classification, design and performance optimization strategies of NIR-II fluorescent probes are systematically discussed, along with a broad range of biomedical applications in vivo. Finally, the discussion extends to the next generation of fluorescent probes for in vivo imaging and the challenges and perspectives for the clinical translation of fluorescence imaging technology in the NIR-II region.
Collapse
Affiliation(s)
- Kaiming Ma
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Qunying Jiang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Yang Yang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Fan Zhang
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
10
|
Zou P, Huang L, Li Y, Liu D, Che J, Zhao T, Li H, Li J, Cui YN, Yang G, Li Z, Li LL, Gao C. Phase-Separated Nano-Antibiotics Enhanced Survival in Multidrug-Resistant Escherichia coli Sepsis by Precise Periplasmic EcDsbA Targeting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407152. [PMID: 39279551 DOI: 10.1002/adma.202407152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/27/2024] [Indexed: 09/18/2024]
Abstract
Disulfide bond (Dsb) proteins, especially DsbA, represent a promising but as-yet-unrealized target in combating multidrug-resistant (MDR) bacteria because their precise subcellular targeting through multibarrier remains a significant challenge. Here, a novel heterogenization-phase-separated nano-antibiotics (NCefoTs) is proposed, through the co-assembly of enzyme-inhibiting lipopeptides (ELp component), membrane-recognizing and disrupting lipopeptides (MLp component), and cefoperazone. The self-sorting components of MLp "concentrated island-liked clusters" on the surface of NCefoTs promote the efficient penetration of NCefoTs through the outer membrane. Triggered by the DsbA, the precisely spatiotemporal engineered NCefoTs transform to nanofibers in situ and further significantly enhance the inhibition of DsbA. The hydrolytic activity of β-lactamase and the motility function of flagella are thereby impeded, confirming the efficacy of NCefoTs in restoring susceptibility to antibiotics and inhibiting infection dissemination. By these synergistic effects of NCefoTs, the minimum inhibitory concentration of antibiotics decreases from over 300 µM to 1.56 µM for clinically isolated E. coli MDR. The survival rate of sepsis-inflicted mice is significantly enhanced from 0% to 92% upon encapsulation of cefoperazone in NCefoTs, which rapidly eliminates invading pathogens and mitigates inflammation. The universally applicable delivery system, based on an "on demands" strategy, presents a promising prospect for undruggable antibiotic targets in the periplasm to combat MDR bacteria.
Collapse
Affiliation(s)
- Pengfei Zou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Huang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Yi Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Dan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China
| | - Junwei Che
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Te Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei, 050018, China
| | - Hui Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, 100083, China
| | - Jiaxin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Nan Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Guobao Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Li-Li Li
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|
11
|
Wang Y, Liao Y, Zhang YJ, Wu XH, Qiao ZY, Wang H. Self-Assembled Peptide with Morphological Structure for Bioapplication. Biomacromolecules 2024; 25:6367-6394. [PMID: 39297513 DOI: 10.1021/acs.biomac.4c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Peptide materials, such as self-assembled peptide materials, are very important biomaterials. Driven by multiple interaction forces, peptide molecules can self-assemble into a variety of different macroscopic forms with different properties and functions. In recent years, the research on self-assembled peptides has made great progress from laboratory design to clinical application. This review focuses on the different morphologies, including nanoparticles, nanovesicles, nanotubes, nanofibers, and others, formed by self-assembled peptide. The mechanisms and applications of the morphology transformation are also discussed in this paper, and the future direction of self-assembled nanomaterials is envisioned.
Collapse
Affiliation(s)
- Yu Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Yusi Liao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, P. R. China
| | - Ying-Jin Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Xiu-Hai Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
- Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin150081, P. R. China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Hao Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, P. R. China
| |
Collapse
|
12
|
Meng Z, Ouyang H, Hu Y, Chen B, Dong X, Wang T, Wu M, Yu N, Lou X, Wang S, Xia F, Dai J. Surface-engineered erythrocyte membrane-camouflage fluorescent bioprobe for precision ovarian cancer surgery. Eur J Nucl Med Mol Imaging 2024; 51:3532-3544. [PMID: 38867107 DOI: 10.1007/s00259-024-06793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Fluorescence imaging-guided surgery has been used in oncology. However, for tiny tumors, the current imaging probes are still difficult to achieve high-contrast imaging, leading to incomplete resection. In this study, we achieved precise surgical resection of tiny metastatic cancers by constructing an engineering erythrocyte membrane-camouflaged bioprobe (AR-M@HMSN@P). METHODS AR-M@HMSN@P combined the properties of aggregation-induced emission luminogens (AIEgens) named PF3-PPh3 (P), with functional erythrocyte membrane modified by a modular peptide (AR). Interestingly, AR was composed of an asymmetric tripodal pentapeptide scaffold (GGKGG) with three appended modulars: KPSSPPEE (A6) peptide, RRRR (R4) peptide and cholesterol. To verify the specificity of the probe in vitro, SKOV3 cells with overexpression of CD44 were used as the positive group, and HLF cells with low expression of CD44 were devoted as the control group. The AR-M@HMSN@P fluorescence imaging was utilized to provide surgical guidance for the removal of micro-metastatic lesions. RESULTS In vivo, the clearance of AR-M@HMSN@P by the immune system was reduced due to the natural properties inherited from erythrocytes. Meanwhile, the A6 peptide on AR-M@HMSN@P was able to specifically target CD44 on ovarian cancer cells, and the electrostatic attraction between the R4 peptide and the cell membrane enhanced the firmness of this targeting. Benefiting from these multiple effects, AR-M@HMSN@P achieved ultra-precise tumor imaging with a signal-to-noise ratio (SNR) of 15.2, making it possible to surgical resection of tumors < 1 mm by imaging guidance. CONCLUSION We have successfully designed an engineered fluorescent imaging bioprobe (AR-M@HMSN@P), which can target CD44-overexpressing ovarian cancers for precise imaging and guide the resection of minor tumors. Notably, this work holds significant promise for developing biomimetic probes for clinical imaging-guided precision cancer surgery by exploiting their externally specified functional modifications.
Collapse
Affiliation(s)
- Zijuan Meng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Hanzhi Ouyang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yuxin Hu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Tingting Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Nan Yu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| |
Collapse
|
13
|
Li P, Lian H, Zhang Y, Yi L, Yao J, Liu P, Li LL, Liu X, Wang H. Peptide-Guided Metal-Organic Frameworks Spatial Assembly Sustain Long-Lived Charge-Separated State to Improve Photocatalytic Performance. ACS NANO 2024. [PMID: 39276094 DOI: 10.1021/acsnano.4c05370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
The controlled fabrication of spatial architectures using metal-organic framework (MOF)-based particles offers opportunities for enhancing photocatalytic performances. The understanding of the contribution of assembly to a precise photocatalytic mechanism, particularly from the perspective of charge separation and extraction dynamics, still poses challenges. The present report presents a facile approach for the spatial assembly of zinc imidazolate MOF (ZIF-8), guided by β-turn peptides (SAZH). We investigated the dynamics of photoinduced carriers using transient absorption spectroscopy. The presence of a long-lived internal charge-separated state in SAZH confirms its role as an intersystem crossing state. The formation of an assembly interface facilitates efficient electron transfer from SAZH to O2, resulting in approximately 2.6 and 2 times higher concentrations of superoxide (·O2-) and hydrogen peroxide (H2O2), respectively, compared to those achieved with ZIF-8. The medical dressing fabricated from SAZH demonstrated exceptional biocompatibility and exhibited an outstanding performance in promoting wound restoration. It rapidly achieved hemostasis during the bleeding phase, followed by a nearly 100% photocatalytic killing efficiency against the infected site during the subsequent inflammatory phase. Our findings reveal a pivotal dynamic mechanism underlying the photocatalytic activity of control-assembled ZIF-8, providing valuable guidelines for the design of highly efficient MOF photocatalysts.
Collapse
Affiliation(s)
- Ping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hao Lian
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yutong Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Li Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Jiahui Yao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Penghui Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Li-Li Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| |
Collapse
|
14
|
Wirtz BM, Yun AG, Wick C, Gao XJ, Mai DJ. Protease-Driven Phase Separation of Elastin-Like Polypeptides. Biomacromolecules 2024; 25:4898-4904. [PMID: 38980747 DOI: 10.1021/acs.biomac.4c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Elastin-like polypeptides (ELPs) are a promising material platform for engineering stimuli-responsive biomaterials, as ELPs undergo phase separation above a tunable transition temperature. ELPs with phase behavior that is isothermally regulated by biological stimuli remain attractive for applications in biological systems. Herein, we report protease-driven phase separation of ELPs. Protease-responsive "cleavable" ELPs comprise a hydrophobic ELP block connected to a hydrophilic ELP block by a protease cleavage site linker. The hydrophilic ELP block acts as a solubility tag for the hydrophobic ELP block, creating a temperature window in which the cleavable ELP reactant is soluble and the proteolytically generated hydrophobic ELP block is insoluble. Within this temperature window, isothermal, protease-driven phase separation occurs when a critical concentration of hydrophobic cleavage product accumulates. Furthermore, protease-driven phase separation is generalizable to four compatible protease-cleavable ELP pairings. This work presents exciting opportunities to regulate ELP phase behavior in biological systems using proteases.
Collapse
Affiliation(s)
- Brendan M Wirtz
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Allison G Yun
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Chloe Wick
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xiaojing J Gao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Danielle J Mai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
15
|
Wang ZQ, Qu TR, Zhang ZS, Zeng FS, Song HJ, Zhang K, Guo P, Tong Z, Hou DY, Liu X, Wang L, Wang H, Xu W. A Transformable Specific-Responsive Peptide for One-Step Synergistic Therapy of Bladder Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310416. [PMID: 38660815 DOI: 10.1002/smll.202310416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/07/2024] [Indexed: 04/26/2024]
Abstract
Synergistic therapy has shown greater advantages compared with monotherapy. However, the complex multiple-administration plan and potential side effects limit its clinical application. A transformable specific-responsive peptide (TSRP) is utilized to one-step achieve synergistic therapy integrating anti-tumor, anti-angiogenesis and immune response. The TSRP is composed of: i) Recognition unit could specifically target and inhibit the biological function of FGFR-1; ii) Transformable unit could self-assembly and trigger nanofibers formation; iii) Reactive unit could specifically cleaved by MMP-2/9 in tumor micro-environment; iv) Immune unit, stimulate the release of immune cells when LTX-315 (Immune-associated oncolytic peptide) exposed. Once its binding to FGFR-1, the TSRP could cleaved by MMP-2/9 to form the nanofibers on the cell membrane, with a retention time of up to 12 h. Through suppressing the phosphorylation levels of ERK 1/2 and PI3K/AKT signaling pathways downstream of FGFR-1, the TSRP significant inhibit the growth of tumor cells and the formation of angioginesis. Furthermore, LTX-315 is exposed after TSRP cleavage, resulting in Calreticulin activation and CD8+ T cells infiltration. All above processes together contribute to the increasing survival rate of tumor-bearing mice by nearly 4-folds. This work presented a unique design for the biological application of one-step synergistic therapy of bladder cancer.
Collapse
Affiliation(s)
- Zi-Qi Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Tian-Rui Qu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhi-Shuai Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Fan-Shu Zeng
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hong-Jian Song
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Kuo Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Pengyu Guo
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhichao Tong
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, 150001, China
| | - Da-Yong Hou
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xiao Liu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Lu Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, 150001, China
| | - Hao Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| |
Collapse
|
16
|
Ouyang Q, Wang C, Sang T, Tong Y, Zhang J, Chen Y, Wang X, Wu L, Wang X, Liu R, Chen P, Liu J, Shen W, Feng Z, Zhang L, Sun X, Cai G, Li LL, Chen X. Depleting profibrotic macrophages using bioactivated in vivo assembly peptides ameliorates kidney fibrosis. Cell Mol Immunol 2024; 21:826-841. [PMID: 38871810 PMCID: PMC11291639 DOI: 10.1038/s41423-024-01190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Managing renal fibrosis is challenging owing to the complex cell signaling redundancy in diseased kidneys. Renal fibrosis involves an immune response dominated by macrophages, which activates myofibroblasts in fibrotic niches. However, macrophages exhibit high heterogeneity, hindering their potential as therapeutic cell targets. Herein, we aimed to eliminate specific macrophage subsets that drive the profibrotic immune response in the kidney both temporally and spatially. We identified the major profibrotic macrophage subset (Fn1+Spp1+Arg1+) in the kidney and then constructed a 12-mer glycopeptide that was designated as bioactivated in vivo assembly PK (BIVA-PK) to deplete these cells. BIVA-PK specifically binds to and is internalized by profibrotic macrophages. By inducing macrophage cell death, BIVA-PK reshaped the renal microenvironment and suppressed profibrotic immune responses. The robust efficacy of BIVA-PK in ameliorating renal fibrosis and preserving kidney function highlights the value of targeting macrophage subsets as a potential therapy for patients with CKD.
Collapse
Affiliation(s)
- Qing Ouyang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| | - Chao Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
- Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tian Sang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Yan Tong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Jian Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Yulan Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xue Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Lingling Wu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xu Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Ran Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Pu Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Jiaona Liu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Wanjun Shen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Zhe Feng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Li Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xuefeng Sun
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| | - Li-Li Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| |
Collapse
|
17
|
Zhang W, Zeng Y, Xiao Q, Wu Y, Liu J, Wang H, Luo Y, Zhan J, Liao N, Cai Y. An in-situ peptide-antibody self-assembly to block CD47 and CD24 signaling enhances macrophage-mediated phagocytosis and anti-tumor immune responses. Nat Commun 2024; 15:5670. [PMID: 38971872 PMCID: PMC11227529 DOI: 10.1038/s41467-024-49825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
Targeted immunomodulation for reactivating innate cells, especially macrophages, holds great promise to complement current adaptive immunotherapy. Nevertheless, there is still a lack of high-performance therapeutics for blocking macrophage phagocytosis checkpoint inhibitors in solid tumors. Herein, a peptide-antibody combo-supramolecular in situ assembled CD47 and CD24 bi-target inhibitor (PAC-SABI) is described, which undergoes biomimetic surface propagation on cancer cell membranes through ligand-receptor binding and enzyme-triggered reactions. By simultaneously blocking CD47 and CD24 signaling, PAC-SABI enhances the phagocytic ability of macrophages in vitro and in vivo, promoting anti-tumor responses in breast and pancreatic cancer mouse models. Moreover, building on the foundation of PAC-SABI-induced macrophage repolarization and increased CD8+ T cell tumor infiltration, sequential anti-PD-1 therapy further suppresses 4T1 tumor progression, prolonging survival rate. The in vivo construction of PAC-SABI-based nano-architectonics provides an efficient platform for bridging innate and adaptive immunity to maximize therapeutic potency.
Collapse
Affiliation(s)
- Weiqi Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yinghua Zeng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuqun Xiao
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanyuan Wu
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiale Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haocheng Wang
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuting Luo
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jie Zhan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Ning Liao
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
18
|
Luo H, Tian L, Zhang Y, Wu Y, Li B, Liu J. Recent advances in molecular and nanoparticle probes for fluorescent bioanalysis. NANO RESEARCH 2024; 17:6443-6474. [DOI: 10.1007/s12274-024-6659-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 01/06/2025]
|
19
|
Tang Z, Zhang J, Li W, Wen K, Gu Z, Zhou D, Su H. Supramolecular assembly of isomeric SN-38 prodrugs regulated by conjugation sites. J Mater Chem B 2024; 12:6146-6154. [PMID: 38842181 DOI: 10.1039/d4tb00717d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Supramolecular polymers (SPs) are an emerging class of drug transporters employed to improve drug therapy. Through the rational design of self-assembling monomers, one can optimize the properties of the resulting supramolecular nanostructures, such as size, shape, surface chemistry, release, and, therefore, biological fates. This study highlights the design of isomeric SN38 prodrugs through the conjugation of hydrophilic oligo(ethylene glycol) (OEG) with hydroxyls at positions 10 and 20 on hydrophobic SN-38. Self-assembling prodrug (SAPD) isomers 10-OEG-SN38 and 20-OEG-SN38 can self-assemble into giant nanotubes and filamentous assemblies, respectively, via aromatic associations that dominate self-assembly. Our study reveales the influence of modification sites on the assembly behavior and ability of the SN38 SAPDs, as well as drug release and subsequent in vitro and in vivo antitumor effects. The SAPD modified at position 20 exhibits stronger π-π interactions among SN38 units, leading to more compact packing and enhanced assembly capability, whereas OEG at position 10 poses steric hindrance for aromatic associations. Importantly, owing to its higher chemical and supramolecular stability, 20-OEG-SN38 outperforms 10-OEG-SN38 and irinotecan, a clinically used prodrug of SN38, in a CT26 tumor model, demonstrating enhanced tumor growth inhibition and prolonged animal survival. This study presents a new strategy of using interactions among drug molecules as dominating features to create supramolecular assemblies. It also brings some insights into creating effective supramolecular drug assemblies via the engineering of self-assembling building blocks, which could contribute to the optimization of design principles for supramolecular drug delivery systems.
Collapse
Affiliation(s)
- Zhenhai Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianhua Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenting Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Kaiying Wen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
20
|
Liu H, Wang H. From cells to subcellular organelles: Next-generation cancer therapy based on peptide self-assembly. Adv Drug Deliv Rev 2024; 209:115327. [PMID: 38703895 DOI: 10.1016/j.addr.2024.115327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Due to the editability, functionality, and excellent biocompatibility of peptides, in situ self-assembly of peptides in cells is a powerful strategy for biomedical applications. Subcellular organelle targeting of peptides assemblies enables more precise drug delivery, enhances selectivity to disease cells, and mitigates drug resistance, providing an effective strategy for disease diagnosis and therapy. This reviewer first introduces the triggering conditions, morphological changes, and intracellular locations of self-assembling peptides. Then, the functions of peptide assemblies are summarized, followed by a comprehensive understanding of the interactions between peptide assemblies and subcellular organelles. Finally, we provide a brief outlook and the remaining challenges in this field.
Collapse
Affiliation(s)
- Huayang Liu
- Department of Chemistry, School of Science, Westlake University, No. 600 Dunyu Road, Sandun Town, Hangzhou 310024, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Huaimin Wang
- Department of Chemistry, School of Science, Westlake University, No. 600 Dunyu Road, Sandun Town, Hangzhou 310024, Zhejiang Province, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
21
|
Ghafoor MH, Song BL, Zhou L, Qiao ZY, Wang H. Self-Assembly of Peptides as an Alluring Approach toward Cancer Treatment and Imaging. ACS Biomater Sci Eng 2024; 10:2841-2862. [PMID: 38644736 DOI: 10.1021/acsbiomaterials.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cancer is a severe threat to humans, as it is the second leading cause of death after cardiovascular diseases and still poses the biggest challenge in the world of medicine. Due to its higher mortality rates and resistance, it requires a more focused and productive approach to provide the solution for it. Many therapies promising to deliver favorable results, such as chemotherapy and radiotherapy, have come up with more negatives than positives. Therefore, a new class of medicinal solutions and a more targeted approach is of the essence. This review highlights the alluring properties, configurations, and self-assembly of peptide molecules which benefit the traditional approach toward cancer therapy while sparing the healthy cells in the process. As targeted drug delivery systems, self-assembled peptides offer a wide spectrum of conjugation, biocompatibility, degradability-controlled responsiveness, and biomedical applications, including cancer treatment and cancer imaging.
Collapse
Affiliation(s)
- Muhammad Hamza Ghafoor
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
22
|
Yi Y, An HW, Wang H. Intelligent Biomaterialomics: Molecular Design, Manufacturing, and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305099. [PMID: 37490938 DOI: 10.1002/adma.202305099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Materialomics integrates experiment, theory, and computation in a high-throughput manner, and has changed the paradigm for the research and development of new functional materials. Recently, with the rapid development of high-throughput characterization and machine-learning technologies, the establishment of biomaterialomics that tackles complex physiological behaviors has become accessible. Breakthroughs in the clinical translation of nanoparticle-based therapeutics and vaccines have been observed. Herein, recent advances in biomaterials, including polymers, lipid-like materials, and peptides/proteins, discovered through high-throughput screening or machine learning-assisted methods, are summarized. The molecular design of structure-diversified libraries; high-throughput characterization, screening, and preparation; and, their applications in drug delivery and clinical translation are discussed in detail. Furthermore, the prospects and main challenges in future biomaterialomics and high-throughput screening development are highlighted.
Collapse
Affiliation(s)
- Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
23
|
Wu X, Hu JJ, Yoon J. Cell Membrane as A Promising Therapeutic Target: From Materials Design to Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202400249. [PMID: 38372669 DOI: 10.1002/anie.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 02/20/2024]
Abstract
The cell membrane is a crucial component of cells, protecting their integrity and stability while facilitating signal transduction and information exchange. Therefore, disrupting its structure or impairing its functions can potentially cause irreversible cell damage. Presently, the tumor cell membrane is recognized as a promising therapeutic target for various treatment methods. Given the extensive research focused on cell membranes, it is both necessary and timely to discuss these developments, from materials design to specific biomedical applications. This review covers treatments based on functional materials targeting the cell membrane, ranging from well-known membrane-anchoring photodynamic therapy to recent lysosome-targeting chimaeras for protein degradation. The diverse therapeutic mechanisms are introduced in the following sections: membrane-anchoring phototherapy, self-assembly on the membrane, in situ biosynthesis on the membrane, and degradation of cell membrane proteins by chimeras. In each section, we outline the conceptual design or general structure derived from numerous studies, emphasizing representative examples to understand advancements and draw inspiration. Finally, we discuss some challenges and future directions in membrane-targeted therapy from our perspective. This review aims to engage multidisciplinary readers and encourage researchers in related fields to advance the fundamental theories and practical applications of membrane-targeting therapeutic agents.
Collapse
Affiliation(s)
- Xiaofeng Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, 210096, Nanjing, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 430074, Wuhan, China
- Department of Chemistry and Nanoscience, Ewha Womans University, 03706, Seoul, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 03706, Seoul, Republic of Korea
| |
Collapse
|
24
|
Hou DY, Zhang NY, Wang L, Lv MY, Li XP, Zhang P, Wang YZ, Shen L, Wu XH, Fu B, Guo PY, Wang ZQ, Cheng DB, Wang H, Xu W. Inducing mitochondriopathy-like damages by transformable nucleopeptide nanoparticles for targeted therapy of bladder cancer. Natl Sci Rev 2024; 11:nwae028. [PMID: 38425424 PMCID: PMC10903983 DOI: 10.1093/nsr/nwae028] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/02/2024] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Mitochondriopathy inspired adenosine triphosphate (ATP) depletions have been recognized as a powerful way for controlling tumor growth. Nevertheless, selective sequestration or exhaustion of ATP under complex biological environments remains a prodigious challenge. Harnessing the advantages of in vivo self-assembled nanomaterials, we designed an Intracellular ATP Sequestration (IAS) system to specifically construct nanofibrous nanostructures on the surface of tumor nuclei with exposed ATP binding sites, leading to highly efficient suppression of bladder cancer by induction of mitochondriopathy-like damages. Briefly, the reported transformable nucleopeptide (NLS-FF-T) self-assembled into nuclear-targeted nanoparticles with ATP binding sites encapsulated inside under aqueous conditions. By interaction with KPNA2, the NLS-FF-T transformed into a nanofibrous-based ATP trapper on the surface of tumor nuclei, which prevented the production of intracellular energy. As a result, multiple bladder tumor cell lines (T24, EJ and RT-112) revealed that the half-maximal inhibitory concentration (IC50) of NLS-FF-T was reduced by approximately 4-fold when compared to NLS-T. Following intravenous administration, NLS-FF-T was found to be dose-dependently accumulated at the tumor site of T24 xenograft mice. More significantly, this IAS system exhibited an extremely antitumor efficacy according to the deterioration of T24 tumors and simultaneously prolonged the overall survival of T24 orthotopic xenograft mice. Together, our findings clearly demonstrated the therapeutic advantages of intracellular ATP sequestration-induced mitochondriopathy-like damages, which provides a potential treatment strategy for malignancies.
Collapse
Affiliation(s)
- Da-Yong Hou
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Ni-Yuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Lu Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Mei-Yu Lv
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
| | - Xiang-Peng Li
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Peng Zhang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Yue-Ze Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Lei Shen
- School of Chemistry, Chemical Engineering & Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, Wuhan 430070, China
| | - Xiu-Hai Wu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Bo Fu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Peng-Yu Guo
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Zi-Qi Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, Wuhan 430070, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, Harbin 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin 150001, China
| |
Collapse
|
25
|
Dai M, Qi S, Zhao X, Zhou L, Luo Q, Teng X, Cheng W, Zhou N, Liu H, Chen K. JS-K Combined with a Melanin-Based Theranostic Agent: A Novel Sequential Delivery Strategy to Enhance the Near-Infrared Fluorescence Imaging of Pancreatic Ductal Adenocarcinoma. Anal Chem 2024; 96:4103-4110. [PMID: 38427614 DOI: 10.1021/acs.analchem.3c04914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a 5 year survival rate less than 12%. This malignancy is closely related to the unique tumor microenvironment (TME), which is characterized by a hypovascular and hyperdense extracellular matrix, making it difficult for drugs to permeate the tumor center. Near-infrared fluorescence (NIRF) imaging, which has high sensitivity and resolution, may improve the survival rate of PDAC patients. In this study, we first used JS-K (O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazine-1-yl] diazene-1-ium-1,2-diolate) to specifically dilate blood vessels within the TME of PDAC patients and subsequently injected IR820-PEG-MNPs (IPM NPs) to diagnose and treat orthotopic PDAC. We found that JS-K promoted the accumulation of IPM NPs in orthotopic Pan02 tumor-bearing mice and was able to increase the tumor signal-to-background ratio (SBR) in the orthotopic PDAC area by 41.5%. In addition, surgical navigation in orthotopic Pan02 tumor-bearing mice and complete tumor resection based on fluorescence imaging were achieved with a detection sensitivity of 81.0%. Moreover, we verified the feasibility of the combination of laparoscopy and photothermal ablation (PTA) for the treatment of PDAC. Finally, we demonstrated that IPM NPs had greater affinity for human PDAC tissues than for normal pancreatic tissues ex vivo, preliminarily highlighting the potential for clinical translation of these NPs. In conclusion, we developed and validated a novel sequential delivery strategy that promotes the accumulation of nanoagents in the tumor area and can be used for the diagnosis and treatment of PDAC.
Collapse
Affiliation(s)
- Manxiong Dai
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province 410005, P.R. China
| | - Shuo Qi
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province 410005, P.R. China
| | - Xingyang Zhao
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province 410005, P.R. China
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510280, P.R. China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province 410005, P.R. China
| | - Quanneng Luo
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province 410005, P.R. China
| | - Xiong Teng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province 410005, P.R. China
| | - Wei Cheng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province 410005, P.R. China
| | - Ning Zhou
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province 410005, P.R. China
| | - Hongwen Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province 410005, P.R. China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan Province 410005, P.R. China
| | - Kang Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province 410005, P.R. China
| |
Collapse
|
26
|
Hu JJ, Lin N, Zhang Y, Xia F, Lou X. Nanofibers in Organelles: From Structure Design to Biomedical Applications. Angew Chem Int Ed Engl 2024; 63:e202313139. [PMID: 37889872 DOI: 10.1002/anie.202313139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023]
Abstract
Nanofibers are one of the most important morphologies of molecular self-assemblies, the formation of which relies on the diverse intermolecular interactions of fibrous-forming units. In the past decade, rapid advances have been made in the biomedical application of nanofibers, such as bioimaging and tumor treatment. An important topic to be focused on is not only the nanofiber formation mechanism but also where it forms, because different destinations could have different influences on cells and its formation could be triggered by unique stimuli in organelles. It is therefore necessary and timely to summarize the nanofibers assembled in organelles. This minireview discusses the formation mechanism, triggering strategies, and biomedical applications of nanofibers, which may facilitate the rational design of nanofibers, improve our understanding of the relationship between nanofiber properties and organelle characteristics, allow a comprehensive recognition of organelles affected by materials, and enhance the therapeutic efficiency of nanofibers.
Collapse
Affiliation(s)
- Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Niya Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yunfan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
27
|
Huang W, Wang S, Zhang X, Kang Y, Zhang H, Deng N, Liang Y, Pang H. Universal F4-Modified Strategy on Metal-Organic Framework to Chemical Stabilize PVDF-HFP as Quasi-Solid-State Electrolyte. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2310147. [PMID: 37983856 DOI: 10.1002/adma.202310147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Solid-state electrolytes (SSEs) based on metal organic framework (MOF) and polymer mixed matrix membranes (MMMs) have shown great promotions in both lithium-ion conduction and interfacial resistance in lithium metal batteries (LMBs). However, the unwanted structural evolution and the and the obscure electrochemical reaction mechanism among two phases limit their further optimization and commercial application. Herein, fluorine-modified zirconium MOF with diverse F-quantities is synthesized, denoted as Zr-BDC-Fx (x = 0, 2, 4), to assemble high performance quais-solid-state electrolytes (QSSEs) with PVDF-HFP. The chemical complexation of F-sites in Zr-BDC-F4 stabilized PVDF-HFP chains in β-phase and disordered oscillation with enhanced charge transfer and Li transmit property. Besides, the porous confinement and electronegativity of F-groups enhanced the capture and dissociation of TFSI- anions and the homogeneous deposition of LiF solid electrolyte interphase (SEI), promoting the high-efficient transport of Li+ ions and inhibiting the growth of Li dendrites. The superb specific capacities in high-loaded Li.
Collapse
Affiliation(s)
- Wenhuan Huang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Shun Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xingxing Zhang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yifan Kang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Huabin Zhang
- Chemistry Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Nan Deng
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yan Liang
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou, 225002, P. R. China
| |
Collapse
|
28
|
Hu XJ, Zhang NY, Hou DY, Wang ZJ, Wang MD, Yi L, Song ZZ, Liang JX, Li XP, An HW, Xu W, Wang H. An In Vivo Self-Assembled Bispecific Nanoblocker for Enhancing Tumor Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303831. [PMID: 37462447 DOI: 10.1002/adma.202303831] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/24/2023] [Accepted: 07/17/2023] [Indexed: 10/11/2023]
Abstract
Anti-PD-L1 monoclonal antibody has achieved substantial success in tumor immunotherapy by T-cells activation. However, the excessive accumulation of extracellular matrix components induced by unsatisfactory T-cells infiltration and poor tumor penetration of antibodies make it challenging to realize efficient tumor immunotherapy. Herein, a peptide-based bispecific nanoblocker (BNB) strategy is reported for in situ construction of CXCR4/PD-L1 targeted nanoclusters on the surface of tumor cells that are capable of boosting T-cells infiltration through CXCR4 blockage and enhancing T-cells activation by PD-L1 occupancy, ultimately realizing high-performance tumor immunotherapy. Briefly, the BNB strategy selectively recognizes and bonds CXCR4/PD-L1 with deep tumor penetration, which rapidly self-assembles into nanoclusters on the surface of tumor cells. Compared to the traditional bispecific antibody, BNB exhibits an intriguing metabolic behavior, that is, the elimination half-life (t1/2 ) of BNB in the tumor is 69.3 h which is ≈50 times longer than that in the plasma (1.4 h). The higher tumor accumulation and rapid systemic clearance overcome potential systemic side effects. Moreover, the solid tumor stress generated by excessive extracellular matrix components is substantially reduced to 44%, which promotes T-cells infiltration and activation for immunotherapy efficacy. Finally, these findings substantially strengthen and extend clinical applications of PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Xing-Jie Hu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Ni-Yuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da-Yong Hou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Zhi-Jia Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Man-Di Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Li Yi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhang-Zhi Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Jian-Xiao Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Peng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, 150001, China
- Department of Urology, Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin, 150001, China
| | - Hao Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Wu H, Fang Y, Tian L, Liu X, Zhou X, Chen X, Gao H, Qin H, Liu Y. AIE Nanozyme-Based Long Persistent Chemiluminescence and Fluorescence for POCT of Pathogenic Bacteria. ACS Sens 2023; 8:3205-3214. [PMID: 37552936 DOI: 10.1021/acssensors.3c00918] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Pathogenic bacteria are widely distributed in diverse environments and significantly threaten human health. Point-of-care testing (POCT) is a valuable way for early warnings of bacteria threat. Herein, a chemiluminescence (CL)-based ratiometric sensing platform was constructed for sensitive POCT of bacteria according to a newly designed aggregation-induced emission (AIE) molecule. The new AIE molecule presents oxidase-like properties (named as AIEzyme) and can trigger long persistent CL of luminol (LUM) with strong intensity in the absence of H2O2. The CL emission can be monitored with the naked eye for over 2 h. The emission mechanism is explored and may be attributed to the persistent reactive oxygen species generation of the AIEzyme according to the cyclic energy transfer between the AIEzyme and luminol, which catalyzes CL of luminol. Based on the CL resonance energy transfer mechanism, an afterglow luminescence system is further developed, which is used to construct a ratiometric biosensor for detection of pathogenic bacteria. With a homemade holder as a detection room and a smartphone as an analyzer, the portable biosensing platform is used for quantitative POCT of bacteria in real samples with good recovery. The detection is free of H2O2 and an external excitation source, which not only simplifies the operation but reduces interference. Specifically, the long persistent luminescence and the ratiometric strategy can significantly improve accuracy, providing an instructive way for point-of-need analysis, for example, SARS-CoV-2 detection and bioimaging analysis.
Collapse
Affiliation(s)
- Haotian Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li Tian
- China Resources Biopharmaceutical Co., Ltd., Beijing 100120, China
| | - Xin Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiao Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiying Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Heqi Gao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, China
| | - Haijuan Qin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
30
|
Zhang Z, Chen P, Sun Y. Enzyme-Instructed Aggregation/Dispersion of Fluorophores for Near-Infrared Fluorescence Imaging In Vivo. Molecules 2023; 28:5360. [PMID: 37513233 PMCID: PMC10385274 DOI: 10.3390/molecules28145360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Near-infrared (NIR) fluorescence is a noninvasive, highly sensitive, and high-resolution modality with great potential for in vivo imaging. Compared with "Always-On" probes, activatable NIR fluorescent probes with "Turn-Off/On" or "Ratiometric" fluorescent signals at target sites exhibit better signal-to-noise ratio (SNR), wherein enzymes are one of the ideal triggers for probe activation, which play vital roles in a variety of biological processes. In this review, we provide an overview of enzyme-activatable NIR fluorescent probes and concentrate on the design strategies and sensing mechanisms. We focus on the aggregation/dispersion state of fluorophores after the interaction of probes and enzymes and finally discuss the current challenges and provide some perspective ideas for the construction of enzyme-activatable NIR fluorescent probes.
Collapse
Affiliation(s)
- Zhipeng Zhang
- Xianning Medical College, Hubei University of Science & Technology, Xianning 437000, China
| | - Peiyao Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
31
|
Controlled sequential in situ self-assembly and disassembly of a fluorogenic cisplatin prodrug for cancer theranostics. Nat Commun 2023; 14:800. [PMID: 36781887 PMCID: PMC9925730 DOI: 10.1038/s41467-023-36469-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Temporal control of delivery and release of drugs in tumors are important in improving therapeutic outcomes to patients. Here, we report a sequential stimuli-triggered in situ self-assembly and disassembly strategy to direct delivery and release of theranostic drugs in vivo. Using cisplatin as a model anticancer drug, we design a stimuli-responsive small-molecule cisplatin prodrug (P-CyPt), which undergoes extracellular alkaline phosphatase-triggered in situ self-assembly and succeeding intracellular glutathione-triggered disassembly process, allowing to enhance accumulation and elicit burst release of cisplatin in tumor cells. Compared with cisplatin, P-CyPt greatly improves antitumor efficacy while mitigates off-target toxicity in mice with subcutaneous HeLa tumors and orthotopic HepG2 liver tumors after systemic administration. Moreover, P-CyPt also produces activated near-infrared fluorescence (at 710 nm) and dual photoacoustic imaging signals (at 700 and 750 nm), permitting high sensitivity and spatial-resolution delineation of tumor foci and real-time monitoring of drug delivery and release in vivo. This strategy leverages the advantages offered by in situ self-assembly with those of intracellular disassembly, which may act as a general platform for the design of prodrugs capable of improving drug delivery for cancer theranostics.
Collapse
|
32
|
Cossu J, Thoreau F, Boturyn D. Multimeric RGD-Based Strategies for Selective Drug Delivery to Tumor Tissues. Pharmaceutics 2023; 15:pharmaceutics15020525. [PMID: 36839846 PMCID: PMC9961187 DOI: 10.3390/pharmaceutics15020525] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
RGD peptides have received a lot of attention over the two last decades, in particular to improve tumor therapy through the targeting of the αVβ3 integrin receptor. This review focuses on the molecular design of multimeric RGD compounds, as well as the design of suitable linkers for drug delivery. Many examples of RGD-drug conjugates have been developed, and we show the importance of RGD constructs to enhance binding affinity to tumor cells, as well as their drug uptake. Further, we also highlight the use of RGD peptides as theranostic systems, promising tools offering dual modality, such as tumor diagnosis and therapy. In conclusion, we address the challenging issues, as well as ongoing and future development, in comparison with large molecules, such as monoclonal antibodies.
Collapse
Affiliation(s)
- Jordan Cossu
- University Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Fabien Thoreau
- University Poitiers, Inst Chim Milieux & Mat Poitiers IC2MP, UMR CNRS 7285, F-86073 Poitiers, France
| | - Didier Boturyn
- University Grenoble Alpes, CNRS, DCM UMR 5250, F-38000 Grenoble, France
- Correspondence:
| |
Collapse
|
33
|
Guo X, Tu P, Zhu L, Cheng C, Jiang W, Du C, Wang X, Qiu X, Luo Y, Wan L, Tang R, Ran H, Wang Z, Ren J. Nanoenabled Tumor Energy Metabolism Disorder via Sonodynamic Therapy for Multidrug Resistance Reversal and Metastasis Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:309-326. [PMID: 36576435 DOI: 10.1021/acsami.2c16278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cancer multidrug resistance (MDR) is an important reason that results in chemotherapy failure. As a main mechanism of MDR, overexpressed P-glycoprotein (P-gp) utilizes adenosine triphosphate (ATP) to actively pump chemotherapy drugs out of cells. In addition, metabolic reprogramming of drug-resistant tumor cells (DRTCs) exacerbates the specific hypoxic microenvironment and promotes tumor metastasis and recurrence. Therefore, we propose a novel sonodynamic therapy (SDT) paradigm to induce energy metabolism disorder and drug resistance change of DRTCs. A US-controlled "Nanoenabled Energy Metabolism Jammer" (TL@HPN) is designed using perfluoropentane (PFP) adsorbing oxygen in the core, and a targeting peptide (CGNKRTR) is attached to the liposome as the delivery carrier shell to incorporate hematoporphyrin monomethyl ether (HMME) and paclitaxel (PTX). The TL@HPN with ultrasonic/photoacoustic imaging (PAI/USI) precisely controlled the release of drugs and oxygen after being triggered by ultrasound (US), which attenuated the hypoxic microenvironment. SDT boosted the reactive oxygen species (ROS) content in tumor tissues, preferentially inducing mitochondrial apoptosis and maximizing immunogenic cell death (ICD). Persistently elevated oxidative stress levels inhibited ATP production and downregulated P-gp expression by disrupting the redox balance and electron transfer of the respiratory chain. We varied the effect of TL@HPN combined with PD-1/PD-L1 to activate autoimmunity and inhibit tumor metastasis, providing a practical strategy for expanding the use of SDT-mediated tumor energy metabolism.
Collapse
Affiliation(s)
- Xun Guo
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Peng Tu
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Leilei Zhu
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Department of Ultrasound, Chongqing General Hospital, Chongqing 401147, P. R. China
| | - Chen Cheng
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Department of Ultrasound, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing 402760, P. R. China
| | - Weixi Jiang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Chier Du
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xiaoting Wang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Xiaoling Qiu
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Department of Intensive Care Unit, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Yuanli Luo
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Li Wan
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
- Health Management Center & Physical Examination Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Rui Tang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Haitao Ran
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Zhigang Wang
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| | - Jianli Ren
- Department of Ultrasound and Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P. R. China
| |
Collapse
|
34
|
Zou P, Liu J, Li X, Yaseen M, Yao J, Liu L, Luo L, Wang H, Shi X, Li Z, Sun T, Gao Y, Gao C, Li LL. A Membrane Curvature Modulated Lipopeptide to Broadly Combat Multidrug-Resistant Bacterial Pneumonia with Low Resistance Risk. ACS NANO 2022; 16:20545-20558. [PMID: 36375012 DOI: 10.1021/acsnano.2c07251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The extensive spread of multidrug resistance to Gram-negative bacteria has become a huge threat to human health, where peptide-based antibacterial agents have emerged as a powerful star weapon. Here we report a lipopeptide (LP-20) constructed nanomicelle with a different antibacterial mechanism of membrane curvature modulation, which induced dynamic membrane fission resulting in acceleration and enhancement of antibacterial activity to clinically isolated ESKAPE strains, including multidrug-resistant (MDR) pathogens. The minimum inhibitory concentration was reduced to 2-10 μM, and the minimum duration for killing was shortened to less than an hour by LP-20. This is an improvement over antimicrobial peptides and traditional antibiotics, such as ciprofloxacin and tetracycline, significantly enhancing antibacterial activity for MDR, and we observed no acquisition of resistance for one month. This accelerated germicidal mechanism was attributed to multitargeting with lipopolysaccharides, phosphoethanolamine, phosphatidylglycerol, and cardiolipin, and the synergetic interactions induced a high curvature of the bacterial membrane, which facilitated simultaneously efficient damage to both inner and outer membrane. The LP-20 effectively prolonged the lifetime of myositis mice with Escherichia coli MDR and pneumonia mice with Klebsiella pneumoniae through a hepatic metabolism with ignorable toxicity. This study provides critical information for the fabrication of lipopeptide-based nano-antibiotics for the efficient control of intractable MDR caused by Gram-negative pathogens.
Collapse
Affiliation(s)
- Pengfei Zou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100190, China
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing100850, China
- School of Pharmacy, Weifang Medical University, Weifang261053, China
| | - Jiao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100190, China
- School of Pharmacy, Weifang Medical University, Weifang261053, China
| | - Xinyu Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100190, China
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar25120, KP, Pakistan
| | - Jiahui Yao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100190, China
- Department of Pharmacy, PLA General Hospital, Center of Medicine Clinical Research, Beijing100853, China
| | - Lingling Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100190, China
- Department of Pharmacy, PLA General Hospital, Center of Medicine Clinical Research, Beijing100853, China
| | - Lujun Luo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100190, China
| | - Hui Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing100190, China
| | - Zhiping Li
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing100850, China
| | - Tongyi Sun
- School of Life Science and Technology, Shandong Key Laboratory of Proteins and Peptides Pharmaceutical Engineering, Shandong Universities Key Laboratory of Biopharmaceuticals, Weifang Medical University, Weifang261053, China
| | - Yuanyuan Gao
- School of Pharmacy, Weifang Medical University, Weifang261053, China
| | - Chunsheng Gao
- State key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing100850, China
| | - Li Li Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
35
|
Cheng Y, Clark AE, Zhou J, He T, Li Y, Borum RM, Creyer MN, Xu M, Jin Z, Zhou J, Yim W, Wu Z, Fajtová P, O’Donoghue AJ, Carlin AF, Jokerst JV. Protease-Responsive Peptide-Conjugated Mitochondrial-Targeting AIEgens for Selective Imaging and Inhibition of SARS-CoV-2-Infected Cells. ACS NANO 2022; 16:12305-12317. [PMID: 35878004 PMCID: PMC9344892 DOI: 10.1021/acsnano.2c03219] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/11/2022] [Indexed: 05/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious threat to human health and lacks an effective treatment. There is an urgent need for both real-time tracking and precise treatment of the SARS-CoV-2-infected cells to mitigate and ultimately prevent viral transmission. However, selective triggering and tracking of the therapeutic process in the infected cells remains challenging. Here, we report a main protease (Mpro)-responsive, mitochondrial-targeting, and modular-peptide-conjugated probe (PSGMR) for selective imaging and inhibition of SARS-CoV-2-infected cells via enzyme-instructed self-assembly and aggregation-induced emission (AIE) effect. The amphiphilic PSGMR was constructed with tunable structure and responsive efficiency and validated with recombinant proteins, cells transfected with Mpro plasmid or infected by SARS-CoV-2, and a Mpro inhibitor. By rational construction of AIE luminogen (AIEgen) with modular peptides and Mpro, we verified that the cleavage of PSGMR yielded gradual aggregation with bright fluorescence and enhanced cytotoxicity to induce mitochondrial interference of the infected cells. This strategy may have value for selective detection and treatment of SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Yong Cheng
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alex E. Clark
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jiajing Zhou
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tengyu He
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yi Li
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Raina M. Borum
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew N. Creyer
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ming Xu
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jingcheng Zhou
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhuohong Wu
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aaron F. Carlin
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
36
|
Wang X, Li C, Wang Y, Chen H, Zhang X, Luo C, Zhou W, Li L, Teng L, Yu H, Wang J. Smart drug delivery systems for precise cancer therapy. Acta Pharm Sin B 2022; 12:4098-4121. [DOI: 10.1016/j.apsb.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
|
37
|
In situ self-assembled peptide enables effective cancer immunotherapy by blockage of CD47. Colloids Surf B Biointerfaces 2022; 217:112655. [PMID: 35785715 DOI: 10.1016/j.colsurfb.2022.112655] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022]
Abstract
Treatment of late-stage lung cancer has witnessed limited advances. In contrast to the tremendous efforts toward improving adaptive immunity, approaches to modulating innate immunity are relatively immature. As important innate immune cells, tumor-associated macrophages (TAMs) account for a substantial fraction of tumor-infiltrating lymphocytes, which not only reverses the immune-suppressive tumor microenvironment but also facilitates an adaptive immune response. In this study, we developed a tumor-specific MMP-2-responsive CD47 blockage (TMCB) strategy to enable effective cancer immunotherapy. Briefly, the matrix metalloproteinase-2 (MMP-2)-responsive self-assembly peptide specifically recognizes CD47, which is highly expressed in lung tumor cells. Second, the MMP-2-responsive self-assembly peptide is efficiently cleaved by MMP-2, which is overexpressed in the tumor microenvironment. Finally, the generated residual peptide naturally self-assembles into peptide-based nanofibers. The in situ constructed nanofibers inhibit the canonical CD47 "Do not eat me" signal expressed on tumor cells to promote phagocytosis of tumor cells by macrophages, which further induces effective antigen presentation and initiates T cell-mediated adaptive immune responses to inhibit tumor growth. Thus, we described a peptide-based TMCB strategy that induces both innate and adaptive immune systems to inhibit tumor growth.
Collapse
|
38
|
Tuguntaev RG, Hussain A, Fu C, Chen H, Tao Y, Huang Y, Liu L, Liang XJ, Guo W. Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. J Nanobiotechnology 2022; 20:236. [PMID: 35590412 PMCID: PMC9118863 DOI: 10.1186/s12951-022-01451-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Nanomedicines (NMs) have emerged as an efficient approach for developing novel treatment strategies against a variety of diseases. Over the past few decades, NM formulations have received great attention, and a large number of studies have been performed in this field. Despite this, only about 60 nano-formulations have received industrial acceptance and are currently available for clinical use. Their in vivo pharmaceutical behavior is considered one of the main challenges and hurdles for the effective clinical translation of NMs, because it is difficult to monitor the pharmaceutic fate of NMs in the biological environment using conventional pharmaceutical evaluations. In this context, non-invasive imaging modalities offer attractive solutions, providing the direct monitoring and quantification of the pharmacokinetic and pharmacodynamic behavior of labeled NMs in a real-time manner. Imaging evaluations have great potential for revealing the relationship between the physicochemical properties of NMs and their pharmaceutical profiles in living subjects. In this review, we introduced imaging techniques that can be used for in vivo NM evaluations. We also provided an overview of various studies on the influence of key parameters on the in vivo pharmaceutical behavior of NMs that had been visualized in a non-invasive and real-time manner.
Collapse
Affiliation(s)
- Ruslan G Tuguntaev
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Abid Hussain
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecular Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chenxing Fu
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Haoting Chen
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Ying Tao
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Lu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China.
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
39
|
Lin H, Bai H, Yang Z, Shen Q, Li M, Huang Y, Lv F, Wang S. Conjugated Polymers for Biomedical Applications. Chem Commun (Camb) 2022; 58:7232-7244. [DOI: 10.1039/d2cc02177c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Conjugated polymers (CPs) are a series of organic semiconductor materials with large π-conjugated backbones and delocalized electronic structures. Due to their specific photophysical properties and photoelectric effects, plenty of CPs...
Collapse
|