1
|
Hong Y, Song Y, Wang W, Shi J, Chen X. Mitochondrial DNA editing: Key to the treatment of neurodegenerative diseases. Genes Dis 2025; 12:101437. [PMID: 40290120 PMCID: PMC12022638 DOI: 10.1016/j.gendis.2024.101437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/07/2024] [Accepted: 08/25/2024] [Indexed: 04/30/2025] Open
Abstract
Neuronal death is associated with mitochondrial dysfunction caused by mutations in mitochondrial DNA. Mitochondrial DNA becomes damaged when processes such as replication, repair, and nucleotide synthesis are compromised. This extensive accumulation of damaged mitochondrial DNA subsequently disrupts the normal function of mitochondria, leading to aging, degeneration, or even death of neurons. Mitochondrial dysfunction stands as a pivotal factor in the development of neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. Recognizing the intricate nature of their pathogenesis, there is an urgent need for more effective therapeutic interventions. In recent years, mitochondrial DNA editing tools such as zinc finger nucleases, double-stranded DNA deaminase toxin A-derived cytosine base editors, and transcription activator-like effector ligand deaminases have emerged. Their emergence will revolutionize the research and treatment of mitochondrial diseases. In this review, we summarize the advancements in mitochondrial base editing technology and anticipate its utilization in neurodegenerative diseases, offering insights that may inform preventive strategies and therapeutic interventions for disease phenotypes.
Collapse
Affiliation(s)
- Ye Hong
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Hangzhou King's Bio-pharmaceutical Technology Co., Ltd., Hangzhou, Zhejiang 310007, China
| | - Wenjun Wang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jinghui Shi
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xi Chen
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
2
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2025; 62:6827-6855. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
3
|
Fan Y, Xu W, Gao BQ, Qin H, Wu X, Wei J, Ni Q, Zhou L, Xiang J, Wu J, Yang B, Yang L, Chen J. Leveraging base excision repair for efficient adenine base editing of mitochondrial DNA. Nat Biotechnol 2025:10.1038/s41587-025-02608-w. [PMID: 40133517 DOI: 10.1038/s41587-025-02608-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Transcription activator-like effector-linked deaminases (TALEDs) use their single-stranded DNA (ssDNA)-specific adenosine deaminase TadA8e to mediate A-to-G editing in mitochondrial DNA (mtDNA). The working mechanism of this process is unknown, hindering the development of more effective TALEDs. Here we reveal that TALED-mediated A-to-G editing relies on the formation of an ssDNA region through base excision repair (BER), which is triggered by double-stranded DNA-specific cytidine deaminase (DddA)-induced C-to-U deamination. We develop a series of enhanced TALEDs (eTALED6s) with increased editing efficiency by replacing DddA with the high-activity variant DddA6 and fusing human uracil DNA glycosylase to TadA8e. By further engineering TadA8e, the resulting eTALED6Rs induces efficient on-target editing with reduced bystander editing and off-target editing at the DNA and RNA levels. Lastly, we use eTALED6 and eTALED6R to install a pathogenic mutation in mtDNA. Revealing the mechanism of TALED-mediated A-to-G editing demonstrates that enhancing BER increases editing efficiency.
Collapse
Affiliation(s)
- Yuhang Fan
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenchao Xu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bao-Qing Gao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huichao Qin
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoyi Wu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jia Wei
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qingyang Ni
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lina Zhou
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiangchao Xiang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Wu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bei Yang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
4
|
Castelluccio N, Spath K, Li D, De Coo IFM, Butterworth L, Wells D, Mertes H, Poulton J, Heindryckx B. Genetic and reproductive strategies to prevent mitochondrial diseases. Hum Reprod Update 2025:dmaf004. [PMID: 40085924 DOI: 10.1093/humupd/dmaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/28/2025] [Indexed: 03/16/2025] Open
Abstract
Mitochondrial DNA (mtDNA) diseases pose unique challenges for genetic counselling and require tailored approaches to address recurrence risks and reproductive options. The intricate dynamics of mtDNA segregation and heteroplasmy shift significantly impact the chances of having affected children. In addition to natural pregnancy, oocyte donation, and adoption, IVF-based approaches can reduce the risk of disease transmission. Prenatal diagnosis (PND) and preimplantation genetic testing (PGT) remain the standard methods for women carrying pathogenic mtDNA mutations; nevertheless, they are not suitable for every patient. Germline nuclear transfer (NT) has emerged as a novel therapeutic strategy, while mitochondrial gene editing has increasingly become a promising research area in the field. However, challenges and safety concerns associated with all these techniques remain, highlighting the need for long-term follow-up studies, an improved understanding of disease mechanisms, and personalized approaches to diagnosis and treatment. Given the inherent risks of adverse maternal and child outcomes, careful consideration of the balance between potential benefits and drawbacks is also warranted. This review will provide critical insights, identify knowledge gaps, and underscore the importance of advancing mitochondrial disease research in reproductive health.
Collapse
Affiliation(s)
- Noemi Castelluccio
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | | | - Danyang Li
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Irenaeus F M De Coo
- Department of Translational Genomics, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Lyndsey Butterworth
- FutureNeuro Research Ireland Centre for Translational Brain Science, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Dagan Wells
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
- Juno Genetics UK, Oxford, UK
| | - Heidi Mertes
- Department of Philosophy and Moral Sciences and Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Björn Heindryckx
- Ghent-Fertility And Stem cell Team (G-FaST), Department for Reproductive Medicine, Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
5
|
Li M, Wu L, Si H, Wu Y, Liu Y, Zeng Y, Shen B. Engineered mitochondria in diseases: mechanisms, strategies, and applications. Signal Transduct Target Ther 2025; 10:71. [PMID: 40025039 PMCID: PMC11873319 DOI: 10.1038/s41392-024-02081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 11/17/2024] [Indexed: 03/04/2025] Open
Abstract
Mitochondrial diseases represent one of the most prevalent and debilitating categories of hereditary disorders, characterized by significant genetic, biological, and clinical heterogeneity, which has driven the development of the field of engineered mitochondria. With the growing recognition of the pathogenic role of damaged mitochondria in aging, oxidative disorders, inflammatory diseases, and cancer, the application of engineered mitochondria has expanded to those non-hereditary contexts (sometimes referred to as mitochondria-related diseases). Due to their unique non-eukaryotic origins and endosymbiotic relationship, mitochondria are considered highly suitable for gene editing and intercellular transplantation, and remarkable progress has been achieved in two promising therapeutic strategies-mitochondrial gene editing and artificial mitochondrial transfer (collectively referred to as engineered mitochondria in this review) over the past two decades. Here, we provide a comprehensive review of the mechanisms and recent advancements in the development of engineered mitochondria for therapeutic applications, alongside a concise summary of potential clinical implications and supporting evidence from preclinical and clinical studies. Additionally, an emerging and potentially feasible approach involves ex vivo mitochondrial editing, followed by selection and transplantation, which holds the potential to overcome limitations such as reduced in vivo operability and the introduction of allogeneic mitochondrial heterogeneity, thereby broadening the applicability of engineered mitochondria.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Limin Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Haibo Si
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuangang Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Zeng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Bin Shen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
6
|
Fan X, Lei Y, Wang L, Wu X, Li D. Advancing CRISPR base editing technology through innovative strategies and ideas. SCIENCE CHINA. LIFE SCIENCES 2025; 68:610-627. [PMID: 39231901 DOI: 10.1007/s11427-024-2699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
The innovation of CRISPR/Cas gene editing technology has developed rapidly in recent years. It is widely used in the fields of disease animal model construction, biological breeding, disease diagnosis and screening, gene therapy, cell localization, cell lineage tracking, synthetic biology, information storage, etc. However, developing idealized editors in various fields is still a goal for future development. This article focuses on the development and innovation of non-DSB editors BE and PE in the platform-based CRISPR system. It first explains the application of ideas for improvement such as "substitution", "combination", "adaptation", and "adjustment" in BE and PE development and then catalogues the ingenious inversions and leaps of thought reflected in the innovations made to CRISPR technology. It will then elaborate on the efforts currently being made to develop small editors to solve the problem of AAV overload and summarize the current application status of editors for in vivo gene modification using AAV as a delivery system. Finally, it summarizes the inspiration brought by CRISPR/Cas innovation and assesses future prospects for development of an idealized editor.
Collapse
Affiliation(s)
- Xiongwei Fan
- The Center for Heart Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yang Lei
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liren Wang
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Xiushan Wu
- The Center for Heart Development, College of Life Science, Hunan Normal University, Changsha, 410081, China.
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, 510100, China.
| | - Dali Li
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
7
|
Rimskaya B, Shebanov N, Entelis N, Mazunin I. Enzymatic tools for mitochondrial genome manipulation. Biochimie 2025; 229:114-128. [PMID: 39426703 DOI: 10.1016/j.biochi.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Mutations in mitochondrial DNA (mtDNA) can manifest phenotypically as a wide range of neuromuscular and neurodegenerative pathologies that are currently only managed symptomatically without addressing the root cause. A promising approach is the development of molecular tools aimed at mtDNA cutting or editing. Unlike nuclear DNA, a cell can have hundreds or even thousands of mitochondrial genomes, and mutations can be present either in all of them or only in a subset. Consequently, the developed tools are aimed at reducing the number of copies of mutant mtDNA or editing mutant nucleotides. Despite some progress in the field of mitochondrial genome editing in human cells, working with model animals is still limited due to the complexity of their creation. Furthermore, not all existing editing systems can be easily adapted to function within mitochondria. In this review, we evaluate the mtDNA editing tools available today, with a particular focus on specific mtDNA mutations linked to hereditary mitochondrial diseases, aiming to provide an in-depth understanding of both the opportunities and hurdles to the development of mitochondrial genome editing technologies.
Collapse
Affiliation(s)
- Beatrisa Rimskaya
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation
| | - Nikita Shebanov
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France
| | - Nina Entelis
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France.
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation.
| |
Collapse
|
8
|
Tang J, Du K. Mitochondrial base editing: from principle, optimization to application. Cell Biosci 2025; 15:9. [PMID: 39856740 PMCID: PMC11762502 DOI: 10.1186/s13578-025-01351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
In recent years, mitochondrial DNA (mtDNA) base editing systems have emerged as bioengineering tools. DddA-derived cytosine base editors (DdCBEs) have been developed to specifically induce C-to-T conversion in mtDNA by the fusion of sequence-programmable transcription activator-like effector nucleases (TALENs) or zinc-finger nucleases (ZFNs), and split deaminase derived from interbacterial toxins. Similar to DdCBEs, mtDNA adenine base editors have been developed with the ability to introduce targeted A-to-G conversions into human mtDNA. In this review, we summarize the principles of mtDNA base-editing systems and elaborate on the evolution of different platforms of mtDNA base editors, including their deaminase replacement, engineering of DddAtox variants, structure optimization and editing outcomes. Finally, we highlight their applications in animal models and human embroys and discuss the future developmental direction and challenges of mtDNA base editors.
Collapse
Affiliation(s)
- Jinling Tang
- Clinical Laboratory Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Kunzhao Du
- Jinshan Hospital Center for Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
9
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
10
|
Wang Y, Liu N, Hu L, Yang J, Han M, Zhou T, Xing L, Jiang H. Nanoengineered mitochondria enable ocular mitochondrial disease therapy via the replacement of dysfunctional mitochondria. Acta Pharm Sin B 2024; 14:5435-5450. [PMID: 39807326 PMCID: PMC11725173 DOI: 10.1016/j.apsb.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 01/16/2025] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is an ocular mitochondrial disease that involves the impairment of mitochondrial complex I, which is an important contributor to blindness among young adults across the globe. However, the disorder has no available cures, since the approved drug idebenone for LHON in Europe relies on bypassing complex I defects rather than fixing them. Herein, PARKIN mRNA-loaded nanoparticle (mNP)-engineered mitochondria (mNP-Mito) were designed to replace dysfunctional mitochondria with the delivery of exogenous mitochondria, normalizing the function of complex I for treating LHON. The mNP-Mito facilitated the supplementation of healthy mitochondria containing functional complex I via mitochondrial transfer, along with the elimination of dysfunctional mitochondria with impaired complex I via an enhanced PARKIN-mediated mitophagy process. In a mouse model induced with a complex I inhibitor (rotenone, Rot), mNP-Mito enhanced the presence of healthy mitochondria and exhibited a sharp increase in complex I activity (76.5%) compared to the group exposed to Rot damage (29.5%), which greatly promoted the restoration of ATP generation and mitigation of ocular mitochondrial disease-related phenotypes. This study highlights the significance of nanoengineered mitochondria as a promising and feasible tool for the replacement of dysfunctional mitochondria and the repair of mitochondrial function in mitochondrial disease therapies.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Nahui Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lifan Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jingsong Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mengmeng Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Tianjiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hulin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- College of Pharmacy, Yanbian University, Yanji 133002, China
| |
Collapse
|
11
|
Del Arco J, Acosta J, Fernández-Lucas J. Biotechnological applications of purine and pyrimidine deaminases. Biotechnol Adv 2024; 77:108473. [PMID: 39505057 DOI: 10.1016/j.biotechadv.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024]
Abstract
Deaminases, ubiquitous enzymes found in all living organisms from bacteria to humans, serve diverse and crucial functions. Notably, purine and pyrimidine deaminases, while biologically essential for regulating nucleotide pools, exhibit exceptional versatility in biotechnology. This review systematically consolidates current knowledge on deaminases, showcasing their potential uses and relevance in the field of biotechnology. Thus, their transformative impact on pharmaceutical manufacturing is highlighted as catalysts for the synthesis of nucleic acid derivatives. Additionally, the role of deaminases in food bioprocessing and production is also explored, particularly in purine content reduction and caffeine production, showcasing their versatility in this field. The review also delves into most promising biomedical applications including deaminase-based GDEPT and genome and transcriptome editing by deaminase-based systems. All in all, illustrated with practical examples, we underscore the role of purine and pyrimidine deaminases in advancing sustainable and efficient biotechnological practices. Finally, the review highlights future challenges and prospects in deaminase-based biotechnological processes, encompassing both industrial and medical perspectives.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, E-28670 Villaviciosa de Odón, Madrid, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55-66, 080002 Barranquilla, Colombia; Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
12
|
Castillo SR, Simone BW, Clark KJ, Devaux P, Ekker SC. Unconstrained Precision Mitochondrial Genome Editing with αDdCBEs. Hum Gene Ther 2024; 35:798-813. [PMID: 39212664 PMCID: PMC11511777 DOI: 10.1089/hum.2024.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
DddA-derived cytosine base editors (DdCBEs) enable the targeted introduction of C•G-to-T•A conversions in mitochondrial DNA (mtDNA). DdCBEs work in pairs, with each arm composed of a transcription activator-like effector (TALE), a split double-stranded DNA deaminase half, and a uracil glycosylase inhibitor. This pioneering technology has helped improve our understanding of cellular processes involving mtDNA and has paved the way for the development of models and therapies for genetic disorders caused by pathogenic mtDNA variants. Nonetheless, given the intrinsic properties of TALE proteins, several target sites in human mtDNA are predicted to remain out of reach to DdCBEs and other TALE-based technologies. Specifically, due to the conventional requirement for a thymine immediately upstream of the TALE target sequences (i.e., the 5'-T constraint), over 150 loci in the human mitochondrial genome are presumed to be inaccessible to DdCBEs. Previous attempts at circumventing this requirement, either by developing monomeric DdCBEs or utilizing DNA-binding domains alternative to TALEs, have resulted in suboptimal specificity profiles with reduced therapeutic potential. Here, aiming to challenge and elucidate the relevance of the 5'-T constraint in the context of DdCBE-mediated mtDNA editing, and to expand the range of motifs that are editable by this technology, we generated DdCBEs containing TALE proteins engineered to recognize all 5' bases. These modified DdCBEs are herein referred to as αDdCBEs. Notably, 5'-T-noncompliant canonical DdCBEs efficiently edited mtDNA at diverse loci. However, they were frequently outperformed by αDdCBEs, which exhibited significant improvements in activity and specificity, regardless of the most 5' bases of their TALE binding sites. Furthermore, we showed that αDdCBEs are compatible with the enhanced DddAtox variants DddA6 and DddA11, and we validated TALE shifting with αDdCBEs as an effective approach to optimize base editing outcomes. Overall, αDdCBEs enable efficient, specific, and unconstrained mitochondrial base editing.
Collapse
Affiliation(s)
- Santiago R. Castillo
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Brandon W. Simone
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Patricia Devaux
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pediatrics and Department of Molecular Biosciences, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
13
|
Feola M, Pulicani S, Tkach D, Boyne A, Hong R, Mayer L, Duclert A, Duchateau P, Juillerat A. Comprehensive analysis of the editing window of C-to-T TALE base editors. Sci Rep 2024; 14:12870. [PMID: 38834632 PMCID: PMC11150444 DOI: 10.1038/s41598-024-63203-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
One of the most recent advances in the genome editing field has been the addition of "TALE Base Editors", an innovative platform for cell therapy that relies on the deamination of cytidines within double strand DNA, leading to the formation of an uracil (U) intermediate. These molecular tools are fusions of transcription activator-like effector domains (TALE) for specific DNA sequence binding, split-DddA deaminase halves that will, upon catalytic domain reconstitution, initiate the conversion of a cytosine (C) to a thymine (T), and an uracil glycosylase inhibitor (UGI). We developed a high throughput screening strategy capable to probe key editing parameters in a precisely defined genomic context in cellulo, excluding or minimizing biases arising from different microenvironmental and/or epigenetic contexts. Here we aimed to further explore how target composition and TALEB architecture will impact the editing outcomes. We demonstrated how the nature of the linker between TALE array and split DddAtox head allows us to fine tune the editing window, also controlling possible bystander activity. Furthermore, we showed that both the TALEB architecture and spacer length separating the two TALE DNA binding regions impact the target TC editing dependence by the surrounding bases, leading to more restrictive or permissive editing profiles.
Collapse
|
14
|
Moraes CT. Tools for editing the mammalian mitochondrial genome. Hum Mol Genet 2024; 33:R92-R99. [PMID: 38779768 PMCID: PMC12099294 DOI: 10.1093/hmg/ddae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 05/25/2024] Open
Abstract
The manipulation of animal mitochondrial genomes has long been a challenge due to the lack of an effective transformation method. With the discovery of specific gene editing enzymes, designed to target pathogenic mitochondrial DNA mutations (often heteroplasmic), the selective removal or modification of mutant variants has become a reality. Because mitochondria cannot efficiently import RNAs, CRISPR has not been the first choice for editing mitochondrial genes. However, the last few years witnessed an explosion in novel and optimized non-CRISPR approaches to promote double-strand breaks or base-edit of mtDNA in vivo. Engineered forms of specific nucleases and cytidine/adenine deaminases form the basis for these techniques. I will review the newest developments that constitute the current toolbox for animal mtDNA gene editing in vivo, bringing these approaches not only to the exploration of mitochondrial function, but also closer to clinical use.
Collapse
Affiliation(s)
- Carlos T Moraes
- Miller School of Medicine, University of Miami, 1600 NW 10th Ave, room 7044, Miami, FL 33136, United States
| |
Collapse
|
15
|
Castillo SR, Simone BW, Clark KJ, Devaux P, Ekker SC. Unconstrained Precision Mitochondrial Genome Editing with αDdCBEs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593977. [PMID: 38798498 PMCID: PMC11118498 DOI: 10.1101/2024.05.13.593977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
DddA-derived cytosine base editors (DdCBEs) enable the targeted introduction of C•G-to-T•A conversions in mitochondrial DNA (mtDNA). DdCBEs are often deployed as pairs, with each arm comprised of a transcription activator-like effector (TALE), a split double-stranded DNA deaminase half, and a uracil glycosylase inhibitor. This pioneering technology has helped improve our understanding of cellular processes involving mtDNA and has paved the way for the development of models and therapies for genetic disorders caused by pathogenic mtDNA variants. Nonetheless, given the intrinsic properties of TALE proteins, several target sites in human mtDNA remain out of reach to DdCBEs and other TALE-based technologies. Specifically, due to the conventional requirement for a thymine immediately upstream of the TALE target sequences (i.e., the 5'-T constraint), over 150 loci in the human mitochondrial genome are presumed to be inaccessible to DdCBEs. Previous attempts at circumventing this constraint, either by developing monomeric DdCBEs or utilizing DNA-binding domains alternative to TALEs, have resulted in suboptimal specificity profiles with reduced therapeutic potential. Here, aiming to challenge and elucidate the relevance of the 5'-T constraint in the context of DdCBE-mediated mtDNA editing, and to expand the range of motifs that are editable by this technology, we generated αDdCBEs that contain modified TALE proteins engineered to recognize all 5' bases. Notably, 5'-T-noncompliant, canonical DdCBEs efficiently edited mtDNA at diverse loci. However, DdCBEs were frequently outperformed by αDdCBEs, which consistently displayed significant improvements in activity and specificity, regardless of the 5'-most bases of their TALE binding sites. Furthermore, we showed that αDdCBEs are compatible with DddA tox and its derivatives DddA6, and DddA11, and we validated TALE shifting with αDdCBEs as an effective approach to optimize base editing outcomes at a single target site. Overall, αDdCBEs enable efficient, specific, and unconstrained mitochondrial base editing.
Collapse
|
16
|
Eghbalsaied S, Lawler C, Petersen B, Hajiyev RA, Bischoff SR, Frankenberg S. CRISPR/Cas9-mediated base editors and their prospects for mitochondrial genome engineering. Gene Ther 2024; 31:209-223. [PMID: 38177342 DOI: 10.1038/s41434-023-00434-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Base editors are a type of double-stranded break (DSB)-free gene editing technology that has opened up new possibilities for precise manipulation of mitochondrial DNA (mtDNA). This includes cytosine and adenosine base editors and more recently guanosine base editors. Because of having low off-target and indel rates, there is a growing interest in developing and evolving this research field. Here, we provide a detailed update on DNA base editors. While base editing has widely been used for nuclear genome engineering, the growing interest in applying this technology to mitochondrial DNA has been faced with several challenges. While Cas9 protein has been shown to enter mitochondria, use of smaller Cas proteins, such as Cas12a, has higher import efficiency. However, sgRNA transfer into mitochondria is the most challenging step. sgRNA structure and ratio of Cas protein to sgRNA are both important factors for efficient sgRNA entry into mitochondria. In conclusion, while there are still several challenges to be addressed, ongoing research in this field holds the potential for new treatments and therapies for mitochondrial disorders.
Collapse
Affiliation(s)
- Shahin Eghbalsaied
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.
- Department of Animal Science, Isfahan Branch, Islamic Azad University (IAU), Isfahan, Iran.
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.
| | - Clancy Lawler
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Björn Petersen
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), Mariensee, Germany
- eGenesis, 2706 HWY E, 53572, Mount Horeb, WI, USA
| | - Raul A Hajiyev
- Department of Genome Engineering, NovoHelix, Miami, FL, USA
- Department of Computer Science, Kent State University, Kent, OH, USA
| | - Steve R Bischoff
- Department of Genome Engineering, NovoHelix, Miami, FL, USA
- Foundry for Genome Engineering & Reproductive Medicine (FGERM), Miami, FL, USA
| | - Stephen Frankenberg
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
17
|
Zhang D, Boch J. Development of TALE-adenine base editors in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1067-1077. [PMID: 37997697 PMCID: PMC11022790 DOI: 10.1111/pbi.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Base editors enable precise nucleotide changes at targeted genomic loci without requiring double-stranded DNA breaks or repair templates. TALE-adenine base editors (TALE-ABEs) are genome editing tools, composed of a DNA-binding domain from transcription activator-like effectors (TALEs), an engineered adenosine deaminase (TadA8e), and a cytosine deaminase domain (DddA), that allow A•T-to-G•C editing in human mitochondrial DNA. However, the editing ability of TALE-ABEs in plants apart from chloroplast DNA has not been described, so far, and the functional role how DddA enhances TadA8e is still unclear. We tested a series of TALE-ABEs with different deaminase fusion architectures in Nicotiana benthamiana and rice. The results indicate that the double-stranded DNA-specific cytosine deaminase DddA can boost the activities of single-stranded DNA-specific deaminases (TadA8e or APOBEC3A) on double-stranded DNA. We analysed A•T-to-G•C editing efficiencies in a β-glucuronidase reporter system and showed precise adenine editing in genomic regions with high product purity in rice protoplasts. Furthermore, we have successfully regenerated rice plants with A•T-to-G•C mutations in the chloroplast genome using TALE-ABE. Consequently, TALE-adenine base editors provide alternatives for crop improvement and gene therapy by editing nuclear or organellar genomes.
Collapse
Affiliation(s)
- Dingbo Zhang
- Institute of Plant GeneticsLeibniz Universität HannoverHannoverGermany
| | - Jens Boch
- Institute of Plant GeneticsLeibniz Universität HannoverHannoverGermany
| |
Collapse
|
18
|
Lam BL. Leber hereditary optic neuropathy gene therapy. Curr Opin Ophthalmol 2024; 35:244-251. [PMID: 38117686 PMCID: PMC10959684 DOI: 10.1097/icu.0000000000001028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
PURPOSE OF REVIEW To discuss relevant clinical outcomes, challenges, and future opportunities of gene therapy in Leber hereditary optic neuropathy (LHON). RECENT FINDINGS Results of G11778A LHON Phase 3 randomized clinical trials with unilateral intravitreal rAAV2/2-ND4 allotopic gene therapy show good safety and unexpected bilateral partial improvements of BCVA (best-corrected visual acuity) with mean logMAR BCVA improvements of up to near ∼0.3 logMAR (3 lines) in the treated eyes and ∼0.25 logMAR (2.5 lines) in the sham-treated or placebo-treated fellow eyes. Final mean BCVA levels after gene therapy were in the range of ∼1.3 logMAR (20/400) bilaterally. SUMMARY Bilateral partial improvement with unilateral LHON gene therapy was unanticipated and may be due to treatment efficacy, natural history, learning effect, and other mediators. The overall efficacy is limited given the final BCVA levels. The sequential progressive visual loss and varied occurrence of spontaneous partial improvement in LHON confound trial results. Future clinical trials with randomization of patients to a group not receiving gene therapy in either eye would help to assess treatment effect. Promising future LHON gene therapy strategies include mitochondrially-targeted-sequence adeno-associated virus ('MTS-AAV') for direct delivery of the wild-type mitochondrial DNA into the mitochondria and CRISPR-free, RNA-free mitochondrial base editing systems. Signs of anatomical optic nerve damage and objective retinal ganglion cell dysfunction are evident in the asymptomatic eyes of LHON patients experiencing unilateral visual loss, indicating the therapeutic window is narrowing before onset of visual symptoms. Future treatment strategies utilizing mitochondrial base editing in LHON carriers without optic neuropathy holds the promise of a more advantageous approach to achieve optimal visual outcome by reducing disease penetrance and mitigating retinal ganglion cell loss when optic neuropathy develops.
Collapse
Affiliation(s)
- Byron L Lam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
19
|
Kotrys AV, Durham TJ, Guo XA, Vantaku VR, Parangi S, Mootha VK. Single-cell analysis reveals context-dependent, cell-level selection of mtDNA. Nature 2024; 629:458-466. [PMID: 38658765 PMCID: PMC11078733 DOI: 10.1038/s41586-024-07332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Heteroplasmy occurs when wild-type and mutant mitochondrial DNA (mtDNA) molecules co-exist in single cells1. Heteroplasmy levels change dynamically in development, disease and ageing2,3, but it is unclear whether these shifts are caused by selection or drift, and whether they occur at the level of cells or intracellularly. Here we investigate heteroplasmy dynamics in dividing cells by combining precise mtDNA base editing (DdCBE)4 with a new method, SCI-LITE (single-cell combinatorial indexing leveraged to interrogate targeted expression), which tracks single-cell heteroplasmy with ultra-high throughput. We engineered cells to have synonymous or nonsynonymous complex I mtDNA mutations and found that cell populations in standard culture conditions purge nonsynonymous mtDNA variants, whereas synonymous variants are maintained. This suggests that selection dominates over simple drift in shaping population heteroplasmy. We simultaneously tracked single-cell mtDNA heteroplasmy and ancestry, and found that, although the population heteroplasmy shifts, the heteroplasmy of individual cell lineages remains stable, arguing that selection acts at the level of cell fitness in dividing cells. Using these insights, we show that we can force cells to accumulate high levels of truncating complex I mtDNA heteroplasmy by placing them in environments where loss of biochemical complex I activity has been reported to benefit cell fitness. We conclude that in dividing cells, a given nonsynonymous mtDNA heteroplasmy can be harmful, neutral or even beneficial to cell fitness, but that the 'sign' of the effect is wholly dependent on the environment.
Collapse
Affiliation(s)
- Anna V Kotrys
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Timothy J Durham
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaoyan A Guo
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Venkata R Vantaku
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
20
|
Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener 2024; 13:23. [PMID: 38632601 PMCID: PMC11022390 DOI: 10.1186/s40035-024-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.
Collapse
Affiliation(s)
- Nanshan Song
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyuan Mei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangxu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
21
|
Zhang E, Neugebauer ME, Krasnow NA, Liu DR. Phage-assisted evolution of highly active cytosine base editors with enhanced selectivity and minimal sequence context preference. Nat Commun 2024; 15:1697. [PMID: 38402281 PMCID: PMC10894238 DOI: 10.1038/s41467-024-45969-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/07/2024] [Indexed: 02/26/2024] Open
Abstract
TadA-derived cytosine base editors (TadCBEs) enable programmable C•G-to-T•A editing while retaining the small size, high on-target activity, and low off-target activity of TadA deaminases. Existing TadCBEs, however, exhibit residual A•T-to-G•C editing at certain positions and lower editing efficiencies at some sequence contexts and with non-SpCas9 targeting domains. To address these limitations, we use phage-assisted evolution to evolve CBE6s from a TadA-mediated dual cytosine and adenine base editor, discovering mutations at N46 and Y73 in TadA that prevent A•T-to-G•C editing and improve C•G-to-T•A editing with expanded sequence-context compatibility, respectively. In E. coli, CBE6 variants offer high C•G-to-T•A editing and no detected A•T-to-G•C editing in any sequence context. In human cells, CBE6 variants exhibit broad Cas domain compatibility and retain low off-target editing despite exceeding BE4max and previous TadCBEs in on-target editing efficiency. Finally, we show that the high selectivity of CBE6 variants is well-suited for therapeutically relevant stop codon installation without creating unwanted missense mutations from residual A•T-to-G•C editing.
Collapse
Affiliation(s)
- Emily Zhang
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Monica E Neugebauer
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Nicholas A Krasnow
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
22
|
Fauser F, Kadam BN, Arangundy-Franklin S, Davis JE, Vaidya V, Schmidt NJ, Lew G, Xia DF, Mureli R, Ng C, Zhou Y, Scarlott NA, Eshleman J, Bendaña YR, Shivak DA, Reik A, Li P, Davis GD, Miller JC. Compact zinc finger architecture utilizing toxin-derived cytidine deaminases for highly efficient base editing in human cells. Nat Commun 2024; 15:1181. [PMID: 38360922 PMCID: PMC10869815 DOI: 10.1038/s41467-024-45100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Nucleobase editors represent an emerging technology that enables precise single-base edits to the genomes of eukaryotic cells. Most nucleobase editors use deaminase domains that act upon single-stranded DNA and require RNA-guided proteins such as Cas9 to unwind the DNA prior to editing. However, the most recent class of base editors utilizes a deaminase domain, DddAtox, that can act upon double-stranded DNA. Here, we target DddAtox fragments and a FokI-based nickase to the human CIITA gene by fusing these domains to arrays of engineered zinc fingers (ZFs). We also identify a broad variety of Toxin-Derived Deaminases (TDDs) orthologous to DddAtox that allow us to fine-tune properties such as targeting density and specificity. TDD-derived ZF base editors enable up to 73% base editing in T cells with good cell viability and favorable specificity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Garrett Lew
- Sangamo Therapeutics, Inc., Brisbane, CA, USA
| | - Danny F Xia
- Sangamo Therapeutics, Inc., Brisbane, CA, USA
| | | | - Colman Ng
- Sangamo Therapeutics, Inc., Brisbane, CA, USA
| | | | | | | | | | | | | | - Patrick Li
- Sangamo Therapeutics, Inc., Brisbane, CA, USA
| | | | | |
Collapse
|
23
|
Cho SI, Lim K, Hong S, Lee J, Kim A, Lim CJ, Ryou S, Lee JM, Mok YG, Chung E, Kim S, Han S, Cho SM, Kim J, Kim EK, Nam KH, Oh Y, Choi M, An TH, Oh KJ, Lee S, Lee H, Kim JS. Engineering TALE-linked deaminases to facilitate precision adenine base editing in mitochondrial DNA. Cell 2024; 187:95-109.e26. [PMID: 38181745 DOI: 10.1016/j.cell.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024]
Abstract
DddA-derived cytosine base editors (DdCBEs) and transcription activator-like effector (TALE)-linked deaminases (TALEDs) catalyze targeted base editing of mitochondrial DNA (mtDNA) in eukaryotic cells, a method useful for modeling of mitochondrial genetic disorders and developing novel therapeutic modalities. Here, we report that A-to-G-editing TALEDs but not C-to-T-editing DdCBEs induce tens of thousands of transcriptome-wide off-target edits in human cells. To avoid these unwanted RNA edits, we engineered the substrate-binding site in TadA8e, the deoxy-adenine deaminase in TALEDs, and created TALED variants with fine-tuned deaminase activity. Our engineered TALED variants not only reduced RNA off-target edits by >99% but also minimized off-target mtDNA mutations and bystander edits at a target site. Unlike wild-type versions, our TALED variants were not cytotoxic and did not cause developmental arrest of mouse embryos. As a result, we obtained mice with pathogenic mtDNA mutations, associated with Leigh syndrome, which showed reduced heart rates.
Collapse
Affiliation(s)
- Sung-Ik Cho
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea; Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea; Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kayeong Lim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea; Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Seongho Hong
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| | - Jaesuk Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea; Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Annie Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | | | | | - Ji Min Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea; Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Geun Mok
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea; GreenGene Inc., Seoul 08790, Republic of Korea
| | - Eugene Chung
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Sanghun Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Seunghun Han
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sang-Mi Cho
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jieun Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| | - Eun-Kyoung Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Yeji Oh
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Minkyung Choi
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Seonghyun Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon 34126, Republic of Korea; Edgene, Inc., Seoul 08790, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon, Republic of Korea; Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon, Republic of Korea.
| | - Hyunji Lee
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea; Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea.
| | - Jin-Soo Kim
- Edgene, Inc., Seoul 08790, Republic of Korea; NUS Synthetic Biology for Clinical & Technological Innovation (SynCTI) and Department of Biochemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
24
|
Lim K. Mitochondrial genome editing: strategies, challenges, and applications. BMB Rep 2024; 57:19-29. [PMID: 38178652 PMCID: PMC10828433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
Mitochondrial DNA (mtDNA), a multicopy genome found in mitochondria, is crucial for oxidative phosphorylation. Mutations in mtDNA can lead to severe mitochondrial dysfunction in tissues and organs with high energy demand. MtDNA mutations are closely associated with mitochondrial and age-related disease. To better understand the functional role of mtDNA and work toward developing therapeutics, it is essential to advance technology that is capable of manipulating the mitochondrial genome. This review discusses ongoing efforts in mitochondrial genome editing with mtDNA nucleases and base editors, including the tools, delivery strategies, and applications. Future advances in mitochondrial genome editing to address challenges regarding their efficiency and specificity can achieve the promise of therapeutic genome editing. [BMB Reports 2024; 57(1): 19-29].
Collapse
Affiliation(s)
- Kayeong Lim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
25
|
Keshavan N, Minczuk M, Viscomi C, Rahman S. Gene therapy for mitochondrial disorders. J Inherit Metab Dis 2024; 47:145-175. [PMID: 38171948 DOI: 10.1002/jimd.12699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/30/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
In this review, we detail the current state of application of gene therapy to primary mitochondrial disorders (PMDs). Recombinant adeno-associated virus-based (rAAV) gene replacement approaches for nuclear gene disorders have been undertaken successfully in more than ten preclinical mouse models of PMDs which has been made possible by the development of novel rAAV technologies that achieve more efficient organ targeting. So far, however, the greatest progress has been made for Leber Hereditary Optic Neuropathy, for which phase 3 clinical trials of lenadogene nolparvovec demonstrated efficacy and good tolerability. Other methods of treating mitochondrial DNA (mtDNA) disorders have also had traction, including refinements to nucleases that degrade mtDNA molecules with pathogenic variants, including transcription activator-like effector nucleases, zinc-finger nucleases, and meganucleases (mitoARCUS). rAAV-based approaches have been used successfully to deliver these nucleases in vivo in mice. Exciting developments in CRISPR-Cas9 gene editing technology have achieved in vivo gene editing in mouse models of PMDs due to nuclear gene defects and new CRISPR-free gene editing approaches have shown great potential for therapeutic application in mtDNA disorders. We conclude the review by discussing the challenges of translating gene therapy in patients both from the point of view of achieving adequate organ transduction as well as clinical trial design.
Collapse
Affiliation(s)
- Nandaki Keshavan
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital, London, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Shamima Rahman
- UCL Great Ormond Street Institute of Child Health, London, UK
- Great Ormond Street Hospital, London, UK
| |
Collapse
|
26
|
Wei Y, Jin M, Huang S, Yao F, Ren N, Xu K, Li S, Gao P, Zhou Y, Chen Y, Yang H, Li W, Xu C, Zhang M, Wang X. Enhanced C-To-T and A-To-G Base Editing in Mitochondrial DNA with Engineered DdCBE and TALED. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304113. [PMID: 37984866 PMCID: PMC10797475 DOI: 10.1002/advs.202304113] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/26/2023] [Indexed: 11/22/2023]
Abstract
Mitochondrial base editing with DddA-derived cytosine base editor (DdCBE) is limited in the accessible target sequences and modest activity. Here, the optimized DdCBE tools is presented with improved editing activity and expanded C-to-T targeting scope by fusing DddA11 variant with different cytosine deaminases with single-strand DNA activity. Compared to previous DdCBE based on DddA11 variant alone, fusion of the activation-induced cytidine deaminase (AID) from Xenopus laevis not only permits cytosine editing of 5'-GC-3' sequence, but also elevates editing efficiency at 5'-TC-3', 5'-CC-3', and 5'-GC-3' targets by up to 25-, 10-, and 6-fold, respectively. Furthermore, the A-to-G editing efficiency is significantly improved by fusing the evolved DddA6 variant with TALE-linked deoxyadenosine deaminase (TALED). Notably, the authors introduce the reported high-fidelity mutations in DddA and add nuclear export signal (NES) sequences in DdCBE and TALED to reduce off-target editing in the nuclear and mitochondrial genome while improving on-target editing efficiency in mitochondrial DNA (mtDNA). Finally, these engineered mitochondrial base editors are shown to be efficient in installing mtDNA mutations in human cells or mouse embryos for disease modeling. Collectively, the study shows broad implications for the basic study and therapeutic applications of optimized DdCBE and TALED.
Collapse
Affiliation(s)
- Yinghui Wei
- International Joint Agriculture Research Center for Animal Bio‐Breeding of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
- School of Future Technology on Bio‐BreedingCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Ming Jin
- Department of Neurology and Institute of Neurology of First Affiliated HospitalInstitute of Neuroscience, and Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouFujian350004China
| | - Shuhong Huang
- International Joint Agriculture Research Center for Animal Bio‐Breeding of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Fangyao Yao
- International Joint Agriculture Research Center for Animal Bio‐Breeding of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Ningxin Ren
- HuidaGene Therapeutics Co., Ltd.Shanghai200131China
| | - Kun Xu
- International Joint Agriculture Research Center for Animal Bio‐Breeding of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Shangpu Li
- International Joint Agriculture Research Center for Animal Bio‐Breeding of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Pengfei Gao
- International Joint Agriculture Research Center for Animal Bio‐Breeding of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Yingsi Zhou
- HuidaGene Therapeutics Co., Ltd.Shanghai200131China
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio‐Breeding of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
- School of Future Technology on Bio‐BreedingCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Hui Yang
- HuidaGene Therapeutics Co., Ltd.Shanghai200131China
- Shanghai Center for Brain Science and Brain‐Inspired IntelligenceShanghai201602China
| | - Wen Li
- International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
| | - Chunlong Xu
- Shanghai Center for Brain Science and Brain‐Inspired IntelligenceShanghai201602China
| | - Meiling Zhang
- International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio‐Breeding of Ministry of Agriculture and Rural AffairsCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
- School of Future Technology on Bio‐BreedingCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| |
Collapse
|
27
|
Kim JS, Chen J. Base editing of organellar DNA with programmable deaminases. Nat Rev Mol Cell Biol 2024; 25:34-45. [PMID: 37794167 DOI: 10.1038/s41580-023-00663-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/06/2023]
Abstract
Mitochondria and chloroplasts are organelles that include their own genomes, which encode key genes for ATP production and carbon dioxide fixation, respectively. Mutations in mitochondrial DNA can cause diverse genetic disorders and are also linked to ageing and age-related diseases, including cancer. Targeted editing of organellar DNA should be useful for studying organellar genes and developing novel therapeutics, but it has been hindered by lack of efficient tools in living cells. Recently, CRISPR-free, protein-only base editors, such as double-stranded DNA deaminase toxin A-derived cytosine base editors (DdCBEs) and adenine base editors (ABEs), have been developed, which enable targeted organellar DNA editing in human cell lines, animals and plants. In this Review, we present programmable deaminases developed for base editing of organellar DNA in vitro and discuss mitochondrial DNA editing in animals, and plastid genome (plastome) editing in plants. We also discuss precision and efficiency limitations of these tools and propose improvements for therapeutic, agricultural and environmental applications.
Collapse
Affiliation(s)
- Jin-Soo Kim
- NUS Synthetic Biology for Clinical & Technological Innovation (SynCTI) and Department of Biochemistry, National University of Singapore, Singapore, Singapore.
- Edgene, Seoul, South Korea.
| | - Jia Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
28
|
Ma Q, Sun Y, Lei K, Luo W. Progress in diagnosis and treatment of Leber's hereditary optic neuropathy. J Mol Med (Berl) 2024; 102:1-10. [PMID: 37982904 DOI: 10.1007/s00109-023-02389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023]
Abstract
Leber's hereditary optic neuropathy (LHON) is a mitochondrial genetic disease with central vision loss as the main symptom. It is one of the diseases that cause vision loss and optic atrophy in young and middle-aged people. The mutations of these three primary mitochondrial mutations, m.11778G>A, m.14484T>C, and m.3460G>A, are the main molecular basis, but their pathogenesis is also affected by nuclear genes, mitochondrial genetic background, and environmental factors. This article summarizes the research progress on molecular pathogenesis, clinical symptoms, and treatment of LHON in recent years, aiming to summarize the genetic pathogenesis and clinical treatment points of LHON.
Collapse
Affiliation(s)
- Qingyue Ma
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Sun
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Ke Lei
- Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Wenjuan Luo
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
29
|
Zhang M, Zhu Z, Xun G, Zhao H. To Cut or not to Cut: Next-generation Genome Editors for Precision Genome Engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 28:100489. [PMID: 37593347 PMCID: PMC10430874 DOI: 10.1016/j.cobme.2023.100489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Since the original report of repurposing the CRISPR/Cas9 system for genome engineering, the past decade has witnessed profound improvement in our ability to efficiently manipulate the mammalian genome. However, significant challenges lie ahead that hinder the translation of CRISPR-based gene editing technologies into safe and effective therapeutics. The CRISPR systems often have a limited target scope due to PAM restrictions, and the off-target activity also poses serious risks for therapeutic applications. Moreover, the first-generation genome editors typically achieve desired genomic modifications by inducing double-strand breaks (DSBs) at target site(s). Despite being highly efficient, this "cut and fix" strategy is less favorable in clinical settings due to drawbacks associated with the nuclease-induced DSBs. In this review, we focus on recent advances that help address these challenges, including the engineering and discovery of novel CRISPR/Cas systems with improved functionalities and the development of DSB-free genome editors.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhixin Zhu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Guanhua Xun
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
30
|
Nguyen J, Le Q, Win PW, Hill KA, Singh SM, Castellani CA. Decoding mitochondrial-nuclear (epi)genome interactions: the emerging role of ncRNAs. Epigenomics 2023; 15:1121-1136. [PMID: 38031736 DOI: 10.2217/epi-2023-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Bidirectional communication between the mitochondria and the nucleus is required for several physiological processes, and the nuclear epigenome is a key mediator of this relationship. ncRNAs are an emerging area of discussion for their roles in cellular function and regulation. In this review, we highlight the role of mitochondrial-encoded ncRNAs as mediators of communication between the mitochondria and the nuclear genome. We focus primarily on retrograde signaling, a process in which the mitochondrion relays ncRNAs to translate environmental stress signals to changes in nuclear gene expression, with implications on stress responses that may include disease(s). Other biological roles of mitochondrial-encoded ncRNAs, such as mitochondrial import of proteins and regulation of cell signaling, will also be discussed.
Collapse
Affiliation(s)
- Julia Nguyen
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Quinn Le
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Phyo W Win
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Kathleen A Hill
- Department of Biology, Western University, London, ON, N6A 3K7, Canada
| | - Shiva M Singh
- Department of Biology, Western University, London, ON, N6A 3K7, Canada
- Children's Health Research Institute, Lawson Research Institute, London, ON, N6C 2R5, Canada
| | - Christina A Castellani
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Department of Epidemiology & Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, ON, N6A 3K7, Canada
- Children's Health Research Institute, Lawson Research Institute, London, ON, N6C 2R5, Canada
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Plascencia-Villa G, Perry G. Exploring Molecular Targets for Mitochondrial Therapies in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:12486. [PMID: 37569861 PMCID: PMC10419704 DOI: 10.3390/ijms241512486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The progressive deterioration of function and structure of brain cells in neurodegenerative diseases is accompanied by mitochondrial dysfunction, affecting cellular metabolism, intracellular signaling, cell differentiation, morphogenesis, and the activation of programmed cell death. However, most of the efforts to develop therapies for Alzheimer's and Parkinson's disease have focused on restoring or maintaining the neurotransmitters in affected neurons, removing abnormal protein aggregates through immunotherapies, or simply treating symptomatology. However, none of these approaches to treating neurodegeneration can stop or reverse the disease other than by helping to maintain mental function and manage behavioral symptoms. Here, we discuss alternative molecular targets for neurodegeneration treatments that focus on mitochondrial functions, including regulation of calcium ion (Ca2+) transport, protein modification, regulation of glucose metabolism, antioxidants, metal chelators, vitamin supplementation, and mitochondrial transference to compromised neurons. After pre-clinical evaluation and studies in animal models, some of these therapeutic compounds have advanced to clinical trials and are expected to have positive outcomes in subjects with neurodegeneration. These mitochondria-targeted therapeutic agents are an alternative to established or conventional molecular targets that have shown limited effectiveness in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA;
| | | |
Collapse
|
32
|
Yin L, Shi K, Aihara H. Structural basis of sequence-specific cytosine deamination by double-stranded DNA deaminase toxin DddA. Nat Struct Mol Biol 2023; 30:1153-1159. [PMID: 37460895 PMCID: PMC10442228 DOI: 10.1038/s41594-023-01034-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 06/12/2023] [Indexed: 07/21/2023]
Abstract
The interbacterial deaminase toxin DddA catalyzes cytosine-to-uracil conversion in double-stranded (ds) DNA and enables CRISPR-free mitochondrial base editing, but the molecular mechanisms underlying its unique substrate selectivity have remained elusive. Here, we report crystal structures of DddA bound to a dsDNA substrate containing the 5'-TC target motif. These structures show that DddA binds to the minor groove of a sharply bent dsDNA and engages the target cytosine extruded from the double helix. DddA Phe1375 intercalates in dsDNA and displaces the 5' (-1) thymine, which in turn replaces the target (0) cytosine and forms a noncanonical T-G base pair with the juxtaposed guanine. This tandem displacement mechanism allows DddA to locate a target cytosine without flipping it into the active site. Biochemical experiments demonstrate that DNA base mismatches enhance the DddA deaminase activity and relax its sequence selectivity. On the basis of the structural information, we further identified DddA mutants that exhibit attenuated activity or altered substrate preference. Our studies may help design new tools useful in genome editing or other applications.
Collapse
Affiliation(s)
- Lulu Yin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA.
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
33
|
Liu M, Ji W, Zhao X, Liu X, Hu JF, Cui J. Therapeutic potential of engineering the mitochondrial genome. Biochim Biophys Acta Mol Basis Dis 2023:166804. [PMID: 37429560 DOI: 10.1016/j.bbadis.2023.166804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Mitochondrial diseases are a group of clinical disorders caused by mutations in the genes encoded by either the nuclear or the mitochondrial genome involved in mitochondrial oxidative phosphorylation. Disorders become evident when mitochondrial dysfunction reaches a cell-specific threshold. Similarly, the severity of disorders is related to the degree of gene mutation. Clinical treatments for mitochondrial diseases mainly rely on symptomatic management. Theoretically, replacing or repairing dysfunctional mitochondria to acquire and preserve normal physiological functions should be effective. Significant advances have been made in gene therapies, including mitochondrial replacement therapy, mitochondrial genome manipulation, nuclease programming, mitochondrial DNA editing, and mitochondrial RNA interference. In this paper, we review the recent progress in these technologies by focusing on advancements that overcome limitations.
Collapse
Affiliation(s)
- Mengmeng Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Wei Ji
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Xin Zhao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Xiaoliang Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China.
| |
Collapse
|
34
|
Abstract
DNA-editing enzymes perform chemical reactions on DNA nucleobases. These reactions can change the genetic identity of the modified base or modulate gene expression. Interest in DNA-editing enzymes has burgeoned in recent years due to the advent of clustered regularly interspaced short palindromic repeat-associated (CRISPR-Cas) systems, which can be used to direct their DNA-editing activity to specific genomic loci of interest. In this review, we showcase DNA-editing enzymes that have been repurposed or redesigned and developed into programmable base editors. These include deaminases, glycosylases, methyltransferases, and demethylases. We highlight the astounding degree to which these enzymes have been redesigned, evolved, and refined and present these collective engineering efforts as a paragon for future efforts to repurpose and engineer other families of enzymes. Collectively, base editors derived from these DNA-editing enzymes facilitate programmable point mutation introduction and gene expression modulation by targeted chemical modification of nucleobases.
Collapse
Affiliation(s)
- Kartik L Rallapalli
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA;
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
35
|
Liang Y, Chen F, Wang K, Lai L. Base editors: development and applications in biomedicine. Front Med 2023; 17:359-387. [PMID: 37434066 DOI: 10.1007/s11684-023-1013-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/19/2023] [Indexed: 07/13/2023]
Abstract
Base editor (BE) is a gene-editing tool developed by combining the CRISPR/Cas system with an individual deaminase, enabling precise single-base substitution in DNA or RNA without generating a DNA double-strand break (DSB) or requiring donor DNA templates in living cells. Base editors offer more precise and secure genome-editing effects than other conventional artificial nuclease systems, such as CRISPR/Cas9, as the DSB induced by Cas9 will cause severe damage to the genome. Thus, base editors have important applications in the field of biomedicine, including gene function investigation, directed protein evolution, genetic lineage tracing, disease modeling, and gene therapy. Since the development of the two main base editors, cytosine base editors (CBEs) and adenine base editors (ABEs), scientists have developed more than 100 optimized base editors with improved editing efficiency, precision, specificity, targeting scope, and capacity to be delivered in vivo, greatly enhancing their application potential in biomedicine. Here, we review the recent development of base editors, summarize their applications in the biomedical field, and discuss future perspectives and challenges for therapeutic applications.
Collapse
Affiliation(s)
- Yanhui Liang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
| | - Fangbing Chen
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Kepin Wang
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Liangxue Lai
- China-New Zealand Joint Laboratory on Biomedicine and Health, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, 510530, China.
- Sanya Institute of Swine Resource, Hainan Provincial Research Centre of Laboratory Animals, Sanya, 572000, China.
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
36
|
Phan HTL, Lee H, Kim K. Trends and prospects in mitochondrial genome editing. Exp Mol Med 2023:10.1038/s12276-023-00973-7. [PMID: 37121968 DOI: 10.1038/s12276-023-00973-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/20/2022] [Accepted: 01/05/2023] [Indexed: 05/02/2023] Open
Abstract
Mitochondria are of fundamental importance in programmed cell death, cellular metabolism, and intracellular calcium concentration modulation, and inheritable mitochondrial disorders via mitochondrial DNA (mtDNA) mutation cause several diseases in various organs and systems. Nevertheless, mtDNA editing, which plays an essential role in the treatment of mitochondrial disorders, still faces several challenges. Recently, programmable editing tools for mtDNA base editing, such as cytosine base editors derived from DddA (DdCBEs), transcription activator-like effector (TALE)-linked deaminase (TALED), and zinc finger deaminase (ZFD), have emerged with considerable potential for correcting pathogenic mtDNA variants. In this review, we depict recent advances in the field, including structural biology and repair mechanisms, and discuss the prospects of using base editing tools on mtDNA to broaden insight into their medical applicability for treating mitochondrial diseases.
Collapse
Affiliation(s)
- Hong Thi Lam Phan
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Hyunji Lee
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, 28116, Cheongju, Republic of Korea.
- School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| |
Collapse
|
37
|
Peñaherrera S, Ruiz C, Castañeda V, Livingston K, Barba D, Burzio VA, Caicedo A, Singh KK. Exploring the role of mitochondria transfer/transplant and their long-non-coding RNAs in regenerative therapies for skin aging. Mitochondrion 2023; 70:41-53. [PMID: 36921832 PMCID: PMC10400337 DOI: 10.1016/j.mito.2023.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Advancing age and environmental stressors lead to mitochondrial dysfunction in the skin, inducing premature aging, impaired regeneration, and greater risk of cancer. Cells rely on the communication between the mitochondria and the nucleus by tight regulation of long non-coding RNAs (lncRNAs) to avoid premature aging and maintain healthy skin. LncRNAs act as key regulators of cell proliferation, differentiation, survival, and maintenance of skin structure. However, research on how the lncRNAs are dysregulated during aging and due to stressors is needed to develop therapies to regenerate skin's function and structure. In this article, we discuss how age and environmental stressors may alter lncRNA homeodynamics, compromising cell survival and skin health, and how these factors may become inducers of skin aging. We describe skin cell types and how they depend on mitochondrial function and lncRNAs. We also provide a list of mitochondria localized and nuclear lncRNAs that can serve to better understand skin aging. Using bioinformatic prediction tools, we predict possible functions of lncRNAs based on their subcellular localization. We also search for experimentally determined protein interactions and the biological processes involved. Finally, we provide therapeutic strategies based on gene editing and mitochondria transfer/transplant (AMT/T) to restore lncRNA regulation and skin health. This article offers a unique perspective in understanding and defining the therapeutic potential of mitochondria localized lncRNAs (mt-lncRNAs) and AMT/T to treat skin aging and related diseases.
Collapse
Affiliation(s)
- Sebastian Peñaherrera
- Biotecnología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Cristina Ruiz
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica Castañeda
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Kathryn Livingston
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Purdue University, Weldon School of Biomedical Engineering, Indiana, United States
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica A Burzio
- Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Keshav K. Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
38
|
Kreitz J, Friedrich MJ, Guru A, Lash B, Saito M, Macrae RK, Zhang F. Programmable protein delivery with a bacterial contractile injection system. Nature 2023; 616:357-364. [PMID: 36991127 PMCID: PMC10097599 DOI: 10.1038/s41586-023-05870-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/21/2023] [Indexed: 03/31/2023]
Abstract
Endosymbiotic bacteria have evolved intricate delivery systems that enable these organisms to interface with host biology. One example, the extracellular contractile injection systems (eCISs), are syringe-like macromolecular complexes that inject protein payloads into eukaryotic cells by driving a spike through the cellular membrane. Recently, eCISs have been found to target mouse cells1-3, raising the possibility that these systems could be harnessed for therapeutic protein delivery. However, whether eCISs can function in human cells remains unknown, and the mechanism by which these systems recognize target cells is poorly understood. Here we show that target selection by the Photorhabdus virulence cassette (PVC)-an eCIS from the entomopathogenic bacterium Photorhabdus asymbiotica-is mediated by specific recognition of a target receptor by a distal binding element of the PVC tail fibre. Furthermore, using in silico structure-guided engineering of the tail fibre, we show that PVCs can be reprogrammed to target organisms not natively targeted by these systems-including human cells and mice-with efficiencies approaching 100%. Finally, we show that PVCs can load diverse protein payloads, including Cas9, base editors and toxins, and can functionally deliver them into human cells. Our results demonstrate that PVCs are programmable protein delivery devices with possible applications in gene therapy, cancer therapy and biocontrol.
Collapse
Affiliation(s)
- Joseph Kreitz
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mirco J Friedrich
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Akash Guru
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Blake Lash
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Makoto Saito
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rhiannon K Macrae
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Feng Zhang
- Howard Hughes Medical Institute, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
39
|
Abstract
With the advent of recombinant DNA technology in the 1970s, the idea of using gene therapies to treat human genetic diseases captured the interest and imagination of scientists around the world. Years later, enabled largely by the development of CRISPR-based genome editing tools, the field has exploded, with academic labs, startup biotechnology companies, and large pharmaceutical corporations working in concert to develop life-changing therapeutics. In this Essay, we highlight base editing technologies and their development from bench to bedside. Base editing, first reported in 2016, is capable of installing C•G to T•A and A•T to G•C point mutations, while largely circumventing some of the pitfalls of traditional CRISPR/Cas9 gene editing. Despite their youth, these technologies have been widely used by both academic labs and therapeutics-based companies. Here, we provide an overview of the mechanics of base editing and its use in clinical trials.
Collapse
Affiliation(s)
- Elizabeth M. Porto
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Alexis C. Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
40
|
Kar B, Castillo SR, Sabharwal A, Clark KJ, Ekker SC. Mitochondrial Base Editing: Recent Advances towards Therapeutic Opportunities. Int J Mol Sci 2023; 24:5798. [PMID: 36982871 PMCID: PMC10056815 DOI: 10.3390/ijms24065798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Mitochondria are critical organelles that form networks within our cells, generate energy dynamically, contribute to diverse cell and organ function, and produce a variety of critical signaling molecules, such as cortisol. This intracellular microbiome can differ between cells, tissues, and organs. Mitochondria can change with disease, age, and in response to the environment. Single nucleotide variants in the circular genomes of human mitochondrial DNA are associated with many different life-threatening diseases. Mitochondrial DNA base editing tools have established novel disease models and represent a new possibility toward personalized gene therapies for the treatment of mtDNA-based disorders.
Collapse
Affiliation(s)
- Bibekananda Kar
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Santiago R. Castillo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Virology and Gene Therapy Track, Mayo Clinic, Rochester, MN 55905, USA
| | - Ankit Sabharwal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
41
|
Anders C, Hoengenaert L, Boerjan W. Accelerating wood domestication in forest trees through genome editing: Advances and prospects. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102329. [PMID: 36586396 PMCID: PMC7614060 DOI: 10.1016/j.pbi.2022.102329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The high economic value of wood requires intensive breeding towards multipurpose biomass. However, long breeding cycles hamper the fast development of novel tree varieties that have improved biomass properties, are tolerant to biotic and abiotic stresses, and resilient to climate change. To speed up domestication, the integration of conventional breeding and new breeding techniques is needed. In this review, we discuss recent advances in genome editing and Cas-DNA-free genome engineering of forest trees, and briefly discuss how multiplex editing combined with multi-omics approaches can accelerate the genetic improvement of forest trees, with a focus on wood.
Collapse
Affiliation(s)
- Chantal Anders
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Lennart Hoengenaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
42
|
Silva-Pinheiro P, Mutti CD, Van Haute L, Powell CA, Nash PA, Turner K, Minczuk M. A library of base editors for the precise ablation of all protein-coding genes in the mouse mitochondrial genome. Nat Biomed Eng 2022; 7:692-703. [PMID: 36470976 DOI: 10.1038/s41551-022-00968-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/20/2022] [Indexed: 12/07/2022]
Abstract
The development of curative treatments for mitochondrial diseases, which are often caused by mutations in mitochondrial DNA (mtDNA) that impair energy metabolism and other aspects of cellular homoeostasis, is hindered by an incomplete understanding of the underlying biology and a scarcity of cellular and animal models. Here we report the design and application of a library of double-stranded-DNA deaminase-derived cytosine base editors optimized for the precise ablation of every mtDNA protein-coding gene in the mouse mitochondrial genome. We used the library, which we named MitoKO, to produce near-homoplasmic knockout cells in vitro and to generate a mouse knockout with high heteroplasmy levels and no off-target edits. MitoKO should facilitate systematic and comprehensive investigations of mtDNA-related pathways and their impact on organismal homoeostasis, and aid the generation of clinically meaningful in vivo models of mtDNA dysfunction.
Collapse
Affiliation(s)
| | - Christian D Mutti
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Pavel A Nash
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Keira Turner
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
43
|
Chen BS, Yu-Wai-Man P, Newman NJ. Developments in the Treatment of Leber Hereditary Optic Neuropathy. Curr Neurol Neurosci Rep 2022; 22:881-892. [PMID: 36414808 PMCID: PMC9750907 DOI: 10.1007/s11910-022-01246-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 11/24/2022]
Abstract
PURPOSEOF REVIEW To outline the current landscape of treatments for Leber hereditary optic neuropathy (LHON) along the therapeutic delivery pipeline, exploring the mechanisms of action and evidence for these therapeutic approaches. RECENT FINDINGS Treatments for LHON can be broadly classified as either mutation-specific or mutation-independent. Mutation-specific therapies aim to correct the underlying mutation through the use of a gene-editing platform or replace the faulty mitochondrial DNA-encoded protein by delivering the wild-type gene using a suitable vector. Recent gene therapy clinical trials assessing the efficacy of allotopically expressed MT-ND4 for the treatment of LHON due to the m.11778G > A mutation in MT-ND4 have shown positive results when treated within 12 months of symptom onset. Mutation-independent therapies can have various downstream targets that aim to improve mitochondrial respiration, reduce mitochondrial stress, inhibit or delay retinal ganglion cell apoptosis, and/or promote retinal ganglion cell survival. Idebenone, a synthetic hydrosoluble analogue of co-enzyme Q10 (ubiquinone), is the only approved treatment for LHON. Mutation-independent approaches to gene therapy under pre-clinical investigation for other neurodegenerative disorders may have the potential to benefit patients with LHON. Although approved treatments are presently limited, innovations in gene therapy and editing are driving the expansion of the therapeutic delivery pipeline for LHON.
Collapse
Affiliation(s)
- Benson S Chen
- John Van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK.
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK.
| | - Patrick Yu-Wai-Man
- John Van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Institute of Ophthalmology, University College London, London, UK
| | - Nancy J Newman
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Neurological Surgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
44
|
Mok YG, Hong S, Bae SJ, Cho SI, Kim JS. Targeted A-to-G base editing of chloroplast DNA in plants. NATURE PLANTS 2022; 8:1378-1384. [PMID: 36456803 PMCID: PMC9788985 DOI: 10.1038/s41477-022-01279-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
Chloroplast DNA (cpDNA) encodes up to 315 (typically, 120-130) genes1, including those for essential components in photosystems I and II and the large subunit of RuBisCo, which catalyses CO2 fixation in plants. Targeted mutagenesis in cpDNA will be broadly useful for studying the functions of these genes in molecular detail and for developing crops and other plants with desired traits. Unfortunately, CRISPR-Cas9 and CRISPR-derived base editors, which enable targeted genetic modifications in nuclear DNA, are not suitable for organellar DNA editing2, owing to the difficulty of delivering guide RNA into organelles. CRISPR-free, protein-only base editors (including DddA-derived cytosine base editors3-8 and zinc finger deaminases9), originally developed for mitochondrial DNA editing in mammalian cells, can be used for C-to-T, rather than A-to-G, editing in cpDNA10-12. Here we show that heritable homoplasmic A-to-G edits can be induced in cpDNA, leading to phenotypic changes, using transcription activator-like effector-linked deaminases13.
Collapse
Affiliation(s)
- Young Geun Mok
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
- GreenGene Inc., Seoul, Republic of Korea
| | - Sunghyun Hong
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
- GreenGene Inc., Seoul, Republic of Korea
| | - Su-Ji Bae
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Sung-Ik Cho
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea.
- GreenGene Inc., Seoul, Republic of Korea.
| |
Collapse
|
45
|
Willis JCW, Silva-Pinheiro P, Widdup L, Minczuk M, Liu DR. Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo. Nat Commun 2022; 13:7204. [PMID: 36418298 PMCID: PMC9684478 DOI: 10.1038/s41467-022-34784-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
DddA-derived cytosine base editors (DdCBEs) use programmable DNA-binding TALE repeat arrays, rather than CRISPR proteins, a split double-stranded DNA cytidine deaminase (DddA), and a uracil glycosylase inhibitor to mediate C•G-to-T•A editing in nuclear and organelle DNA. Here we report the development of zinc finger DdCBEs (ZF-DdCBEs) and the improvement of their editing performance through engineering their architectures, defining improved ZF scaffolds, and installing DddA activity-enhancing mutations. We engineer variants with improved DNA specificity by integrating four strategies to reduce off-target editing. We use optimized ZF-DdCBEs to install or correct disease-associated mutations in mitochondria and in the nucleus. Leveraging their small size, we use a single AAV9 to deliver into heart, liver, and skeletal muscle in post-natal mice ZF-DdCBEs that efficiently install disease-associated mutations. While off-target editing of ZF-DdCBEs is likely too high for therapeutic applications, these findings demonstrate a compact, all-protein base editing research tool for precise editing of organelle or nuclear DNA without double-strand DNA breaks.
Collapse
Affiliation(s)
- Julian C W Willis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | | | - Lily Widdup
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
46
|
Boyne A, Yang M, Pulicani S, Feola M, Tkach D, Hong R, Duclert A, Duchateau P, Juillerat A. Efficient multitool/multiplex gene engineering with TALE-BE. Front Bioeng Biotechnol 2022; 10:1033669. [PMID: 36440442 PMCID: PMC9684181 DOI: 10.3389/fbioe.2022.1033669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
TALE base editors are a recent addition to the genome editing toolbox. These molecular tools are fusions of a transcription activator-like effector domain (TALE), split-DddA deaminase halves, and an uracil glycosylase inhibitor (UGI) that have the distinct ability to directly edit double strand DNA, converting a cytosine (C) to a thymine (T). To dissect the editing rules of TALE-BE, we combined the screening of dozens of TALE-BE targeting nuclear genomic loci with a medium/high throughput strategy based on precise knock-in of TALE-BE target site collections into the cell genome. This latter approach allowed us to gain in depth insight of the editing rules in cellulo, while excluding confounding factors such as epigenetic and microenvironmental differences among different genomic loci. Using the knowledge gained, we designed TALE-BE targeting CD52 and achieved very high frequency of gene knock-out (up to 80% of phenotypic CD52 knock out). We further demonstrated that TALE-BE generate only insignificant levels of Indels and byproducts. Finally, we combined two molecular tools, a TALE-BE and a TALEN, for multiplex genome engineering, generating high levels of double gene knock-out (∼75%) without creation of translocations between the two targeted sites.
Collapse
Affiliation(s)
- Alex Boyne
- Cellectis Inc., New York, NY, United States
| | - Ming Yang
- Cellectis Inc., New York, NY, United States
| | | | | | | | | | | | | | - Alexandre Juillerat
- Cellectis Inc., New York, NY, United States
- *Correspondence: Alexandre Juillerat,
| |
Collapse
|
47
|
Tan J, Forner J, Karcher D, Bock R. DNA base editing in nuclear and organellar genomes. Trends Genet 2022; 38:1147-1169. [PMID: 35853769 DOI: 10.1016/j.tig.2022.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/12/2022] [Accepted: 06/24/2022] [Indexed: 01/24/2023]
Abstract
Genome editing continues to revolutionize biological research. Due to its simplicity and flexibility, CRISPR/Cas-based editing has become the preferred technology in most systems. Cas nucleases tolerate fusion to large protein domains, thus allowing combination of their DNA recognition properties with new enzymatic activities. Fusion to nucleoside deaminase or reverse transcriptase domains has produced base editors and prime editors that, instead of generating double-strand breaks in the target sequence, induce site-specific alterations of single (or a few adjacent) nucleotides. The availability of protein-only genome editing reagents based on transcription activator-like effectors has enabled the extension of base editing to the genomes of chloroplasts and mitochondria. In this review, we summarize currently available base editing methods for nuclear and organellar genomes. We highlight recent advances with improving precision, specificity, and efficiency and discuss current limitations and future challenges. We also provide a brief overview of applications in agricultural biotechnology and gene therapy.
Collapse
Affiliation(s)
- Junjie Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Innovation Center for Genome Editing and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
48
|
Lee S, Lee H, Baek G, Namgung E, Park JM, Kim S, Hong S, Kim JS. Enhanced mitochondrial DNA editing in mice using nuclear-exported TALE-linked deaminases and nucleases. Genome Biol 2022; 23:211. [PMID: 36224582 PMCID: PMC9554978 DOI: 10.1186/s13059-022-02782-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 10/03/2022] [Indexed: 11/10/2022] Open
Abstract
We present two methods for enhancing the efficiency of mitochondrial DNA (mtDNA) editing in mice with DddA-derived cytosine base editors (DdCBEs). First, we fused DdCBEs to a nuclear export signal (DdCBE-NES) to avoid off-target C-to-T conversions in the nuclear genome and improve editing efficiency in mtDNA. Second, mtDNA-targeted TALENs (mitoTALENs) are co-injected into mouse embryos to cleave unedited mtDNA. We generated a mouse model with the m.G12918A mutation in the MT-ND5 gene, associated with mitochondrial genetic disorders in humans. The mutant mice show hunched appearances, damaged mitochondria in kidney and brown adipose tissues, and hippocampal atrophy, resulting in premature death.
Collapse
Affiliation(s)
- Seonghyun Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Hyunji Lee
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
- School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gayoung Baek
- Center for Genome Engineering, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Eunji Namgung
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Sanghun Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seongho Hong
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
49
|
Cai F, Ye K, Chen M, Tian Y, Chen P, Lin H, Chen T, Ma L. High-dimensional zinc porphyrin nanoframeworks as efficient radiosensitizers for cervical cancer. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Sayed S, Sidorova OA, Hennig A, Augsburg M, Cortés Vesga CP, Abohawya M, Schmitt LT, Sürün D, Stange DE, Mircetic J, Buchholz F. Efficient Correction of Oncogenic KRAS and TP53 Mutations through CRISPR Base Editing. Cancer Res 2022; 82:3002-3015. [PMID: 35802645 PMCID: PMC9437569 DOI: 10.1158/0008-5472.can-21-2519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 06/29/2022] [Indexed: 01/07/2023]
Abstract
KRAS is the most frequently mutated oncogene in human cancer, and its activating mutations represent long-sought therapeutic targets. Programmable nucleases, particularly the CRISPR-Cas9 system, provide an attractive tool for genetically targeting KRAS mutations in cancer cells. Here, we show that cleavage of a panel of KRAS driver mutations suppresses growth in various human cancer cell lines, revealing their dependence on mutant KRAS. However, analysis of the remaining cell population after long-term Cas9 expression unmasked the occurence of oncogenic KRAS escape variants that were resistant to Cas9-cleavage. In contrast, the use of an adenine base editor to correct oncogenic KRAS mutations progressively depleted the targeted cells without the appearance of escape variants and allowed efficient and simultaneous correction of a cancer-associated TP53 mutation. Oncogenic KRAS and TP53 base editing was possible in patient-derived cancer organoids, suggesting that base editor approaches to correct oncogenic mutations could be developed for functional interrogation of vulnerabilities in a personalized manner for future precision oncology applications. SIGNIFICANCE Repairing KRAS mutations with base editors can be used for providing a better understanding of RAS biology and may lay the foundation for improved treatments for KRAS-mutant cancers.
Collapse
Affiliation(s)
- Shady Sayed
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Olga A. Sidorova
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alexander Hennig
- National Center for Tumor Diseases (NCT), Dresden, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,Mildred Scheel Early Career Center (MSNZ) P2, National Center for Tumor Diseases Dresden (NCT/UCC), Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martina Augsburg
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Catherine P. Cortés Vesga
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Moustafa Abohawya
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, Dresden, Germany
| | - Lukas T. Schmitt
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Duran Sürün
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniel E. Stange
- National Center for Tumor Diseases (NCT), Dresden, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,Mildred Scheel Early Career Center (MSNZ) P2, National Center for Tumor Diseases Dresden (NCT/UCC), Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, Dresden, Germany
| | - Jovan Mircetic
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,Mildred Scheel Early Career Center (MSNZ) P2, National Center for Tumor Diseases Dresden (NCT/UCC), Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, Dresden, Germany.,Corresponding Author: Frank Buchholz, Medical Systems Biology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. E-mail:
| |
Collapse
|