1
|
Hu W, Tate GL, Iglesia E. A Mechanism-Based Strategy for Controlling CH 4 and CO Selectivities in CO 2-H 2 Reactions on Dispersed Ru, Co, and Ni Nanoparticles. J Am Chem Soc 2025. [PMID: 40419421 DOI: 10.1021/jacs.5c04698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
The formation of CO as an intermediate in the conversion of CO2-H2 to CH4 and its strong binding on dispersed Ru, Co, and Ni nanoparticles inhibit rates of CO and CH4 formation but to different extents. CO2 conversion rates decrease and CH4 selectivities increase as CO concentration gradients evolve axially along the catalyst bed and radially within diffusion-limited porous aggregates. These trends and their interpretation in terms of the identity and kinetic relevance of surface-catalyzed elementary steps enable mechanism-based strategies for selectivity control through the purposeful introduction of CO pressures into inlet CO2-H2 streams. This strategy exploits the stronger CO inhibition of its formation (from CO2) than its conversion (to CH4), which causes the selective inhibition of CO2 conversion relative to CH4 formation. The presence of CO at levels accurately prescribed by the mechanism-derived rate equations, similar in functional form on Ru, Co, and Ni nanoparticles, and by diffusion-convection-reaction models that account for CO gradients at the bed and aggregate scales led to the exclusive formation of CH4 and to the elimination of CO gradients at both scales, as evident from measured rates and selectivities for CO2-H2 reactions on Ru, Co, and Ni nanoparticles over a broad and practical range of temperature (483-573 K), reactant pressures (4-1100 kPa CO2; 8-820 kPa H2), and nanoparticle diameter (2-30 nm). This mechanism-based strategy enables the exclusive formation of CH4 from CO2-H2 reactants, irrespective of reaction conditions or nanoparticle composition (Ru, Co, Ni) and size, without requiring complex catalyst architectures or intricate synthesis protocols.
Collapse
Affiliation(s)
- Wenshuo Hu
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Gregory L Tate
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Enrique Iglesia
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, United States
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Deng K, Wang Y, Pérez-Bailac P, Xu W, Llorca J, Martinez-Arias A, Zakharov DN, Rodriguez JA. Visualizing Size-Dependent Dynamics of CeO 2-δ{100}-Supported CoO x Nanoparticles Under CO 2 Hydrogenation Conditions. J Am Chem Soc 2025. [PMID: 40397042 DOI: 10.1021/jacs.5c04901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Carbon dioxide is a major greenhouse gas. In order to optimize processes focused on its chemical valorization, one needs detailed information about the effects of CO2 and/or CO2/H2 mixtures on the structure and morphology of metal/oxide catalysts. In this study, the evolution of a catalyst with cobalt supported on CeO2-cube nanostructures under CO2 hydrogenation conditions was investigated by using a set of in situ characterization techniques (X-ray absorption fine structure, X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, and environmental transmission electron microscopy (TEM)). The {100} facets of the ceria support displayed an unexpectedly high stability due to strong interactions with the aggregates of cobalt oxide. A significant influence of interfacial bonding between CoOx and CeO2-δ {100} is evident through a clear preference in the orientation of CoOx nanoparticles (NPs) with respect to the substrate. For initially reduced Co/CeO2-cube nanostructures, a kinetically controlled oxidation of cobalt upon the introduction of CO2 was observed during the early stages of CO2 hydrogenation. Environmental TEM revealed the size-dependent morphological behavior of cobalt oxide NPs due to strong interactions with the CeO2 {100} surface. When the environment was switched from H2 to a mixture of H2 and CO2 at 250 °C, small CoOx NPs (in the largest dimension < 2.5 nm) rapidly transformed from a pyramidal three-dimensional (3D) form to a planar, monatomic layer attached to the concurrently oxidized CeO2-δ {100} surface. This maximizes the number of sites available for the binding of CO2 or reaction intermediates. The shape transformation reflected the oxophilic character of cobalt and strong metal-support interactions. The removal of CO2 from the gas phase led to a reduction of the cobalt oxide NPs by hydrogen and a reversible two-dimensional → 3D transformation. In contrast, no significant morphological changes, apart from further oxidation, were observed for big CoOx NPs (in the largest dimension > 3 nm). These trends are not seen for nanoparticles of noble metals. The observed morphological and structural changes in the small CoOx NPs affected the stability of reaction intermediates and modified the selectivity of the CoOx/CeO2 catalyst system for methane production.
Collapse
Affiliation(s)
- Kaixi Deng
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Yuxi Wang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, New York 11794, United States
| | - Patricia Pérez-Bailac
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, Madrid 28049, Spain
| | - Wenqian Xu
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jordi Llorca
- Department of Chemical Engineering and Center for Research in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, UPC-EEBE, Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Arturo Martinez-Arias
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, Madrid 28049, Spain
| | - Dmitri N Zakharov
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - José A Rodriguez
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
3
|
Yang T, Yan Y, Liu R, Huang K, Xu R, Chen J, Tu J, Liu S, Kang L, Wang Z, Cao J, Qi J. Engineering Twins within Lattice-Matched Co/CoO Heterostructure Enables Efficient Hydrogen Evolution Reactions. NANO LETTERS 2025; 25:7707-7715. [PMID: 40263710 DOI: 10.1021/acs.nanolett.5c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Twinning, as an effective strain engineering strategy, has demonstrated significant potential in modifying cost-effective transition metal electrocatalysts. However, controllable construction and structure-activity relationships of twinning in electrocatalysts remain formidable challenges. Here, we engineered a lattice-matched Co/CoO heterostructure with enriched twin boundaries through flash Joule heating, where the twins form via lattice matching within homogeneous space groups. XAFS analysis reveals significantly reduced Co coordination numbers in the heterostructure, indicating substantial atomic displacement from the equilibrium positions. The coherent twinning interfaces induce trapped strain, downshifting the d-band center by 0.4 eV and flattening bands near the Fermi level, optimizing the electronic structure for the hydrogen evolution reaction. Consequently, the engineered heterostructure exhibits exceptional performance with an ultralow overpotential of 49 mV at 10 mA cm-2 in alkaline media and remarkable stability over 500 h. Notably, the water splitting can be driven with an ultralow cell voltage of 2.05 V at 1 A cm-2.
Collapse
Affiliation(s)
- Taili Yang
- State Key Laboratory of Precision Welding and Joining of Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Yaotian Yan
- State Key Laboratory of Precision Welding and Joining of Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Ruonan Liu
- State Key Laboratory of Precision Welding and Joining of Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Keke Huang
- State Key Laboratory of Precision Welding and Joining of Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Rongrong Xu
- State Key Laboratory of Precision Welding and Joining of Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Jiping Chen
- State Key Laboratory of Precision Welding and Joining of Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Shude Liu
- Engineering Research Center of Technical Textile, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ling Kang
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Zixuan Wang
- Institute of Intelligent Ocean Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jian Cao
- State Key Laboratory of Precision Welding and Joining of Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| | - Junlei Qi
- State Key Laboratory of Precision Welding and Joining of Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
4
|
Sanjaya AS, Hakmi Y, Sanhoob MA, Nasser G, Rinaldi A, Muraza O, Mohamed AT, Benamor A, Khaled M, Salih KSM, Al-Hajri R, Wibowo AC. Synthesis of the NiO-Faujasite Nanocatalyst for Dry Reforming of Methane: The Effect of the Aniline Additive. ACS OMEGA 2025; 10:16102-16113. [PMID: 40321534 PMCID: PMC12044478 DOI: 10.1021/acsomega.4c09539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 05/08/2025]
Abstract
Dry reforming of methane (DRM) using a heterogeneous catalyst presents one of the CO2 mitigation pathways to address global warming and climate change challenges. Such a suitable DRM catalyst with optimum activity and stability is still under intense research. We herein present a facile, slightly modified version of the conventional wet impregnation method to synthesize a NiO-faujasite nanocatalyst for DRM with the help of aniline, judiciously chosen based on the hard-soft acid-base (HSAB) principle. The resulting catalyst was characterized by the N2 adsorption isotherm, PXRD, SEM/TEM, XPS, 29Si solid-state NMR, H2-TPR, NH3-TPD, and DRM reaction, and its results were compared with those without aniline assistance. A smaller NiO nanoparticle with better dispersion was observed for our aniline-assisted sample resulting in a significant increase in activity (peaking at 86% CH4 conversion with a H2/CO ratio of 0.93) and stability for a 12 h time on stream. We hope that this work would pave the way to utilize the HSAB principle to synthesize more nanocatalysts with optimum overall performance.
Collapse
Affiliation(s)
- Ari Susandy Sanjaya
- Department
of Chemical Engineering, Mulawarman University, Samarinda, East Kalimantan 75119, Indonesia
| | - Yahia Hakmi
- Department
of Chemistry, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Mohammed A. Sanhoob
- Interdisciplinary
Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Galal Nasser
- Interdisciplinary
Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Ali Rinaldi
- Department
of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, Garching 85747, Germany
| | - Oki Muraza
- Research
& Technology Innovation, PT. Pertamina
(Persero), Jakarta 13920, Indonesia
| | - Assem T. Mohamed
- Gas Processing
Center, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Abdelbaki Benamor
- Gas Processing
Center, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mazen Khaled
- Department
of Chemistry and Earth Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Kifah S. M. Salih
- Department
of Chemistry and Earth Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Rashid Al-Hajri
- Department
of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al Khoudh, Muscat PC 123, Oman
| | - Arief C. Wibowo
- Department
of Chemistry, College of Sciences, Sultan
Qaboos University, P.O. Box 36,
Al Khoudh, Muscat PC 123, Oman
| |
Collapse
|
5
|
Chen F, Cheng C, Wang J, Han Y, Zhao BH, Zhang B. Potassium-stabilized metastable carbides and chalcogenides via surface chemical potential modulation. Nat Commun 2025; 16:3869. [PMID: 40274890 PMCID: PMC12022162 DOI: 10.1038/s41467-025-59124-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Metastable carbides and chalcogenides are attractive candidates for wide and promising applications. However, their inherent instability leads to synthetic difficulty and poor durability. Thus, the development of facile strategies for the controllable synthesis and stabilization of metastable carbides is still a great challenge. Here, taking metastable ɛ-Fe2C as a case study, potassium ions (K+) are theoretically predicted and experimentally reported to control the synthesis of metastable ɛ-Fe2C from an Fe2N precursor by increasing the surface carbon chemical potential (μC). The controllable synthesis and improved stability are attributed to the better-matched denitriding and carburizing rates and the impeded spillover of carbon atoms in metastable ɛ-Fe2C with high carbon contents due to the enhanced surface μC. In addition, this strategy is suitable for synthesizing metastable γ'-MoC, MoN, 1T-MoS2, 1T-MoSe2, 1T-MoSe2xTe2(1-x), and 1T-Mo1-xWxSe2, highlighting the universality of the methodology. Impressively, gram-level scalable metastable ɛ-Fe2C remains stable for more than 398 days in air. Furthermore, ɛ-Fe2C exhibits remarkable olefin selectivity and durability for more than 36 h of continuous testing. This work not only demonstrates a facile, easily scalable, and general strategy for accessing various metastable carbides and chalcogenides but also addresses the synthetic difficulty and poor durability challenge of metastable materials.
Collapse
Affiliation(s)
- Fanpeng Chen
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China
| | - Chuanqi Cheng
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China
| | - Jiajun Wang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China
| | - Yanran Han
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China
| | - Bo-Hang Zhao
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China.
| | - Bin Zhang
- Department of Chemistry, Institute of Molecular Plus, School of Science, Tianjin University, Tianjin, China.
| |
Collapse
|
6
|
Dong C, Li R, Qu Z, Fan Y, Wang J, Du X, Liu C, Feng X, Ning Y, Mu R, Fu Q, Bao X. Oxide Support Inert in Its Interaction with Metal but Active in Its Interaction with Oxide and Vice Versa. J Am Chem Soc 2025; 147:13210-13219. [PMID: 40202778 DOI: 10.1021/jacs.4c17075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Supported metal or oxide nanostructures catalyze many industrial reactions, where the interaction of metal or oxide overlayer with its support can have a substantial influence on catalytic performance. In this work, we show that small Pt species can be well stabilized on CeO2 under both H2-containing and O2-containing atmospheres but sintering happens on SiO2, indicating that CeO2 is active whereas SiO2 is inert in Pt-support interaction. On the other hand, Co oxide (CoOx) supported on SiO2 can maintain a low-valence Co2+ state both in air and during CO2 hydrogenation to CO, indicating a strong interaction of CoOx with SiO2. However, the CoOx overlayer has a weak interaction with CeO2 and is easily reduced to metallic Co during the CO2 hydrogenation reaction producing CH4. Thus, SiO2 is active, but CeO2 is inert for CoOx-support interaction, which is counter to the common sense from the Pt/oxide systems. Systematic studies in stability behaviors of Pt and CoOx nanocatalysts supported on various oxides show that the reducibility of the oxide supports can be used to describe the catalyst-support interaction. Oxide supports with high reducibility or low metal-oxygen bond strength interact strongly with Pt and other metals, showing high metalphilicity. Conversely, oxide supports with low reducibility or high metal-oxygen bond strength have strong interaction with CoOx and other oxides, having high oxidephilicity.
Collapse
Affiliation(s)
- Cui Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenping Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yamei Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jianyang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiangze Du
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chengxiang Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Xiaohui Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yanxiao Ning
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
7
|
Feng Z, Zhang LH, Guo Y, Guo J, Li F, Yu F. Charge Polarization Boosting Electrochemical Urea Synthesis by Co-Reduction of CO 2 and Nitrite in Dilute Concentrations with a Unity Carbon Selectivity. Angew Chem Int Ed Engl 2025; 64:e202500262. [PMID: 39956777 DOI: 10.1002/anie.202500262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
Synthesis of urea through electrocatalytic coupling reaction of CO2 with nitrite (NO2 -) represents a sustainable means to substitute the conventional energy-intensive urea synthetic protocol. The direct conversion of dilute NO2 - in real wastewaters to urea with high efficiency is still a significant challenge, as C-intermediates tend to go through an extensive reduction achieving mostly C-containing productions due to the lack of N-intermediates, originating from slow diffusion rate of NO2 -. Herein, we report the charge-polarized Feδ--Cuδ+ dual sites in metal/carbon heterojunction material (Cu@Fe-N-C) for co-reduction of CO2 and dilute NO2 - solution (100 ppm NO2 --N). The electron-rich single Fe atoms dispersed N-doped carbon (Fe-N-C) restrain *CO desorption, and the electron-deficient Cu nanoparticles (Cu) promote the deep reduction of NO2 - to *NH2. As a result, the obtained Cu@Fe-N-C exhibits a high Faradaic efficiency for urea of 50.05 % with a yield of 850.57 mg h-1 g-1 at -0.35 V (vs. RHE) in a flow cell. Moreover, Curea-selectivity reaches to 100 % and a near-unity selectivity for the value-added urea and NH3 is realized. The present results provide a valuable reference for the design of new catalysts for efficient synthesis of C-N compounds in dilute NO2 - solution.
Collapse
Affiliation(s)
- Zhihao Feng
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Lu-Hua Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yabo Guo
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jiangyi Guo
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fengshou Yu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
8
|
Zheng Y, Lu Z, Shi Z, Wang L, Yang S, Cao R, Wa G, Zhou X, Yang Y, Sheng C, Zhou Y, Zou Z. Unique NiCo bimetal boosting 98% CH 4 selectivity and high catalysis stability for photothermal CO 2 hydrogenation. NANOSCALE 2025; 17:5770-5777. [PMID: 39931817 DOI: 10.1039/d4nr05471g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
A highly dispersed NiCo alloy catalyst derived from NiCo bimetallic-organic framework nanosheets was synthesized for efficient photothermal catalysis for CO2 hydrogenation to methane. The NiCo bimetal catalyst achieves a CH4 production rate of 55.60 mmol g-1 h-1 with only a 18.82% decline in performance after 86 hours under atmospheric pressure at selected 290 °C and continuous flow reaction. In situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) reveals the synergistic and complementary roles of light and heat in photothermal catalysis. The thermochemical process drives the reverse water-gas shift reaction to form a *CO intermediate, a key intermediate for the formation of CH4, and light irradiation-generating strong near field from the surface plasma resonance of NiCo bimetals promotes the subsequent *CO hydrogenation step to form *CHO, the rate-determining step for the hydrogenation of CO2 into CH4. Meanwhile, density functional theory (DFT) calculations suggest that the NiCo bimetallic catalyst can also lower the energy barrier of *CO hydrogenation, facilitating the formation of *CHO.
Collapse
Affiliation(s)
- Yubin Zheng
- Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.
| | - Zhe Lu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Zhisheng Shi
- School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu, Anhui, 241000, P. R. China.
| | - Lu Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Shuyuan Yang
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, P. R. China
| | - Runzhi Cao
- Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.
| | - Gao Wa
- School of Physical Science and Technology, Tiangong University, Tianjin 300387, P.R. China.
| | - Xin Zhou
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, P. R. China
- Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yong Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Chong Sheng
- Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.
| | - Yong Zhou
- Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| | - Zhigang Zou
- Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid-State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, P. R. China.
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, P. R. China
| |
Collapse
|
9
|
Das S, Yadav GD. Tailored design of novel Co 0-Co δ+ dual phase nanoparticles for selective CO 2 hydrogenation to ethanol. J Environ Sci (China) 2025; 149:598-615. [PMID: 39181671 DOI: 10.1016/j.jes.2024.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 08/27/2024]
Abstract
Catalytic hydrogenation of CO2 to ethanol is a promising solution to address the greenhouse gas (GHG) emissions, but many current catalysts face efficiency and cost challenges. Cobalt based catalysts are frequently examined due to their abundance, cost-efficiency, and effectiveness in the reaction, where managing the Co0 to Coδ+ ratio is essential. In this study, we adjusted support nature (Al2O3, MgO-MgAl2O4, and MgO) and reduction conditions to optimize this balance of Co0 to Coδ+ sites on the catalyst surface, enhancing ethanol production. The selectivity of ethanol reached 17.9% in a continuous flow fixed bed micro-reactor over 20 mol% Co@MgO-MgAl2O4 (CoMgAl) catalyst at 270 °C and 3.0 MPa, when reduced at 400 °C for 8 h. Characterisation results coupled with activity analysis confirmed that mild reduction condition (400 °C, 10% H2 balance N2, 8 h) with intermediate metal support interaction favoured the generation of partially reduced Co sites (Coδ+ and Co0 sites in single atom) over MgO-MgAl2O4 surface, which promoted ethanol synthesis by coupling of dissociative (CHx*)/non-dissociative (CHxO*) intermediates, as confirmed by density functional theory analysis. Additionally, the CoMgAl, affordably prepared through the coprecipitation method, offers a potential alternative for CO2 hydrogenation to yield valuable chemicals.
Collapse
Affiliation(s)
- Subhasis Das
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga 400019, Mumbai, India
| | - Ganapati D Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga 400019, Mumbai, India.
| |
Collapse
|
10
|
Tang MH, Wang YC, Fang Z, Duan LH, Han JZ, Jing SH, Zhou M, Ren FY, Zhao J, Xu H, Zhao B. Cobalt-Cluster-Based Metal-Organic-Framework-Catalyzed Carboxylative Cyclization of Propargylic Amines with CO 2 from Flue Gas. Inorg Chem 2025; 64:2537-2544. [PMID: 39871476 DOI: 10.1021/acs.inorgchem.4c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The fixation of carbon dioxide (CO2) directly from flue gas into valuable chemicals like 2-oxazolidinones is of great significance for economic and environmental benefits, which is typically catalyzed by noble-metal catalysts and under harsh conditions. Herein, a novel 2-fold interpenetrated framework {[Co3(μ2-O)(TCA)2(HDPTA)2]·2H2O·2DMF}n [Co(II)-based metal-organic framework (Co-MOF)] containing [Co3] clusters and highly dense amino groups (-NH2) dispersed in the channel was prepared, exhibiting high solvent/pH stability and CO2 adsorption capacity (24.9 cm3·g-1). Catalytic experiments demonstrated that Co-MOF could catalyze the carboxylative cyclization of propargylic amines to generate 2-oxazolidinones with yields of up to 98% under mild conditions with CO2 directly from flue gas. In addition, Co-MOF retained its structure and catalytic activity after five-cycle catalytic experiments, showing the promising practical application. Density functional theory (DFT) calculation suggested that the [Co3] centers in the MOF activated the C≡C of propargylic amines with much more binding energy than Co(NO3)2, partly accounting for the high catalytic activity of Co-MOF. This work demonstrates the first Co-based MOF material that is highly efficient for carboxylative cyclization of propargylic amines with flue gas as the CO2 source, inspiring further rational design of porous catalysts for efficient CO2 utilization.
Collapse
Affiliation(s)
- Meng-Hua Tang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue-Chuan Wang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhi Fang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ling-Hao Duan
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jin-Zhai Han
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Si-Han Jing
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Min Zhou
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fang-Yu Ren
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian Zhao
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hang Xu
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin Zhao
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
11
|
Liu Y, Chen Y, Li Q, Shi J, Liu B. Electrocatalysis of Co/Co xO y nanofilms supported by synchronously nitrogen-doped Ketjenblack carbon towards oxygen reduction reaction. J Colloid Interface Sci 2025; 679:253-261. [PMID: 39362150 DOI: 10.1016/j.jcis.2024.09.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Developing a highly active and stable non-precious metal catalyst for oxygen reduction reaction (ORR) is of great practical significance for advancing fuel cell technology. In this work, a continuous two-step hydrothermal reaction followed by high temperature pyrolysis were employed to achieve in situ N-doping preferentially into Ketjenblack carbon (KB-N) and composite of KB-N and Co/CoxOy nanofilms (Co/CoxOy-NFs) as Co/CoxOy-NFs@KB-N. The N-doped state strongly affects the ORR activity of catalyst. All prepared Co/CoxOy-NFs@KB-N catalysts exhibit observably improved ORR activity compared with the basal KB-N and N-doped Co/CoxOy-NFs, in which the optimal Co/CoxOy-NFs@KB-N catalyst demonstrate the positive Eonset (0.864 V) and E1/2 (0.788 V) vs. RHE, the low Tafel slope (69.27 mV dec-1), implying quick ORR kinetics. And, the Co/CoxOy-NFs@KB-N catalyst exhibits highly electrochemical durability. The KB-N substrate can purify Co valence in CoO component, promote amorphization of CoO crystalline structure and enhance the interaction between Co/CoxOy-NFs and KB-N in Co/CoxOy-NFs@KB-N catalyst. Thus electronic effect, structural effect and synergistic effect can strengthen O2 adsorption, provide enough adsorbed sites and accelerate electron transfer, resulting in prominent ORR performance of Co/CoxOy-NFs@KB-N catalyst.
Collapse
Affiliation(s)
- Yong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Yumei Chen
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China.
| | - Qing Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Jianchao Shi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, PR China; State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo 454003, PR China.
| |
Collapse
|
12
|
Li XC, Wang JH, Huang TT, Hu Y, Li X, Wang DJ, Wang WW, Xu K, Jia CJ, Dong H, Li G, Li C, Zhang YW. Tunning valence state of cobalt centers in Cu/Co-CoO 1-x for significantly boosting water-gas shift reaction. Nat Commun 2025; 16:736. [PMID: 39820052 PMCID: PMC11739592 DOI: 10.1038/s41467-025-56161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Dual active sites with synergistic valence state regulation under oxidizing and reducing conditions are essential for catalytic reactions with step-wise mechanisms to modulate the complex adsorption sites of reactant molecules on the surfaces of heterogeneous catalysts with maximized catalytic performances, but it has been rarely explored. In this work, uniformly dispersed CuCo alloy and CoO nanosheet composite catalysts with dual active sites are constructed, which shows huge boost in activity for catalyzing water-gas shift reaction (WGSR), with a record high reaction rate reaching 204.2 μmolCO gcat.-1 s-1 at 300 °C for Cu1Co9Ox amongst the reported Cu-based and Co-based catalysts. A synergistic mechanism is proposed that Coδ+ species can be easily reduced by CO adsorbed on Cu and Co0 can be oxidized by H2O. Systematic in situ characterization results reveal that the addition of Cu can regulate the redox properties of Co species and thus modulate the adsorption properties of catalysts. Particularly, doping of Cu0 sites weakens the affinity of the surface to CO or CO2 to a moderate level. Moreover, it also promotes the oxidation of *CO to *COOH and the desorption of the product CO2, reducing the carbon poisoning of the catalyst and thus increasing the reactivity. The results would provide guidance for the construction of novel heterogeneous catalyst with dual active sites and clarify its underlying reactivity enhancement mechanism induced by the tunning of valence state of metal centers for heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Xing-Chi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jun-Hao Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Tao-Tao Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Yang Hu
- School of Materials and Energy, Lanzhou University, Lanzhou, China
| | - Xin Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - De-Jiu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Kai Xu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Hao Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Guangshe Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China.
| | - Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
13
|
Yang F, Liu X, Xing C, Chen Z, Zhao L, Liu X, Gao W, Zhu L, Liu H, Zhou W. RuCo/ZrO 2 Tandem Catalysts with Photothermal Confinement Effect for Enhanced CO 2 Methanation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406828. [PMID: 38984724 PMCID: PMC11425663 DOI: 10.1002/advs.202406828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Photothermal CO2 methanation reaction represents a promising strategy for addressing CO2-related environmental issues. The presence of efficient tandem catalytic sites with a localized high-temperature is an effective pathway to enhance the performance of CO2 methanation. Here the bimetallic RuCo nanoparticles anchored on ZrO2 fiber cotton (RuCo/ZrO2) as a photothermal catalyst for CO2 methanation are prepared. A significant photothermal CO2 methanation performance with optimal CH4 selectivity (99%) and rate (169.93 mmol gcat -1 h-1) is achieved. The photothermal energy of the RuCo bimetallic nanoparticles, confined by the infrared insulation and low thermal conductivity of the ZrO2 fiber cotton (ZrO2 FC), provides a localized high-temperature. In situ spectroscopic experiments on RuCo/ZrO2, Ru/ZrO2, and Co/ZrO2 indicate that the construction of tandem catalytic sites, where the Co site favors CO2 conversion to CO while incorporating Ru enhances CO* adsorption for subsequent hydrogenation, results in a higher selectivity toward CH4. This work opens a new insight into designing tandem catalysts with a photothermal confinement effect in CO2 methanation reaction.
Collapse
Affiliation(s)
- Fan Yang
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Xiaoyu Liu
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Chuanshun Xing
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Zizheng Chen
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Lili Zhao
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Xingwu Liu
- Synfuels China Technology Co. Ltd.Leyuan Second South Street Yanqi Development Zone HuairouBeijing101407P. R. China
| | - Wenqiang Gao
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Luyi Zhu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| |
Collapse
|
14
|
Song Y, Tüysüz H. CO 2 Fixation to Prebiotic Intermediates over Heterogeneous Catalysts. Acc Chem Res 2024; 57:2038-2047. [PMID: 39024180 PMCID: PMC11308370 DOI: 10.1021/acs.accounts.4c00151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
ConspectusThe study of the origin of life requires a multifaceted approach to understanding where and how life arose on Earth. One of the most compelling hypotheses is the chemosynthetic origin of life at hydrothermal vents, as this condition has been considered viable for early forms of life. The continuous production of H2 and heat by serpentinization generates reductive conditions at hydrothermal vents, in which CO2 can be used to build large biomolecules. Although this involves surface catalysis and an autocatalytic process, in which solid minerals act as catalysts in the conversion of CO2 to metabolically important organic molecules, the systematic investigation of heterogeneous catalysis to comprehend prebiotic chemistry at hydrothermal vents has not been undertaken.In this Account, we discuss geochemical CO2 fixation to metabolic intermediates by synthetic minerals at hydrothermal vents from the perspective of heterogeneous catalysis. Ni and Fe are the most abundant transition metals at hydrothermal vents and occur in the active site of the enzymes carbon monoxide dehydrogenases/acetyl coenzyme A synthases (CODH/ACS). Synthetic free-standing NiFe alloy nanoparticles can convert CO2 to acetyl coenzyme A pathway intermediates such as formate, acetate, and pyruvate. The same alloy can further convert pyruvate to citramalate, which is essential in the biological citramalate pathway. Thermal treatment of Ni3Fe nanoparticles under NH3, which can occur in hydrothermal vents, results in Ni3FeN/Ni3Fe heterostructures. This catalyst has been demonstrated to produce prebiotic formamide and acetamide from CO2 and H2O using Ni3FeN/Ni3Fe as both substrate and catalyst. In the process of serpentinization, Co can be reduced in the vicinity of olivine, a Mg-Fe silicate mineral. This produces CoFe and CoFe2 with serpentine in nature, representing SiO2-supported CoFe alloys. In mimicking these natural minerals, synthetic SiO2-supported CoFe alloys demonstrate the same liquid products as NiFe alloys, namely, formate, acetate, and pyruvate under mild hydrothermal vent conditions. In contrast to the NiFe system, hydrocarbons up to C6 were detected in the gas phase, which is also present in hydrothermal vents. The addition of alkali and alkaline-earth metals to the catalysts results in enhanced formate concentration, playing a promotional role in CO2 reduction. Finally, Co was loaded onto ordered mesoporous SiO2 after modification with cations to simulate the minerals found in hydrothermal vents. These catalysts were then investigated under diminished H2O concentration, revealing the conversion of CO2 to CO, CH4, methanol, and acetate. Notably, the selectivity to metabolically relevant methanol was enhanced in the presence of cations that could generate and stabilize the methoxy intermediate. Calculation using the machine learning approach revealed the possibility of predicting the selectivity of CO2 fixation when modifying mesoporous SiO2 supports with heterocations. Our research demonstrates that minerals at hydrothermal vents can convert CO2 into metabolites under a variety of prebiotic conditions, potentially paving the way for modern biological CO2 fixation processes.
Collapse
Affiliation(s)
- Youngdong Song
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Harun Tüysüz
- Department of Heterogeneous
Catalysis, Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
15
|
Hong X, Zhao Q, Chen Y, Yu Z, Zhou M, Chen Y, Luo W, Wang C, Ta N, Li H, Ye R, Zu X, Liu W, Liu J. Visualizing Phase Evolution of Co 2C for Efficient Fischer-Tropsch to Olefins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404046. [PMID: 38842820 DOI: 10.1002/adma.202404046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Cobalt carbide (Co2C) possesses high catalytic efficiency Fischer-Tropsch synthesis (FTS), while the products selectivity appears sensitive to crystallography geometry. Since the Anderson-Schulz-Flory (ASF) distribution in FTS is broken through fabricating facetted Co2C nanocrystals, yet the underlying mechanism of Co2C crystallization remains unclarified suffering from sophisticated catalyst composition involving promoter agents. Herein, the synthesis of high-purity single-crystal nanoprisms (Co2C-p) for highly efficient FTS is reported to lower olefins. Through comprehensive microstructure analysis, e.g., high-resolution TEM, in situ TEM and electron diffraction, as well as finite element simulation of gas flow field, for the first time the full roadmap of forming catalytic active cobalt carbides is disclosed, starting from reduction of Co3O4 precursor to CoO intermediate, then carburization into Co2C-s and subsequent ripening growth into Co2C-p. This gas-induced engineering of crystal phase provides a new synthesis strategy, with many new possibilities for precise design of metal-based catalyst for diverse catalytic applications.
Collapse
Affiliation(s)
- Xiaoling Hong
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Qiao Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanping Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Zhibin Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Mengzhen Zhou
- School of Environment and Energy, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yan Chen
- School of Environment and Energy, State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Wenhao Luo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China
| | - Chang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Na Ta
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Haitao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Xiaotao Zu
- School of Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Wei Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China
- DICP-Surrey Joint Centre for Future Materials, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, UK
| |
Collapse
|
16
|
Voeten RC, Hendriks F, Bezemer GL. Fischer-Tropsch Synthesis for the Production of Sustainable Aviation Fuel: Formation of Tertiary Amines from Ammonia Contaminants. ACS OMEGA 2024; 9:31974-31985. [PMID: 39072076 PMCID: PMC11270693 DOI: 10.1021/acsomega.4c03734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Fischer-Tropsch synthesis combined with product workup is a promising route toward synthetic aviation fuel from renewable hydrogen and carbon sources like biomass, CO2, and waste. Cost savings can be achieved by reducing the number of gas treatment steps in new plants, but the consequence of contaminants in the feed needs investigation. While feeding 2.6 ppmV ammonia to a Fischer-Tropsch reactor, it was shown that ammonia was predominantly chemically converted into organic amines, with most nitrogen found in the water phase (89%), followed by heavy wax (7%) and light wax (1%). The concentration difference between water and light wax was shown to be due to the post-condensation separation of amines on polarity. Amines up to a chain length of 120 were detected in the heavy wax with MALDI-FT-ICR-MS, which, in combination with the high nitrogen content, suggests that amines have a similar chain growth probability compared to the main hydrocarbon products. Detailed product analysis with three independent analytical techniques showed that tertiary N,N-dimethylalkylamines were by far the most abundant amine class. This suggests that ammonia is decomposed on the cobalt surface and, potentially as a dimethylamine fragment, incorporated in the growing chain. Further evidence was obtained from the abundance of trimethylamine and from the reconciled nitrogen product analysis up to C100, which showed that the amine product distribution followed from naphtha onward the same ASF kinetics as alkanes and oxygenates while being distinctively different from the alkene distribution. The presented findings provide further avenues for studies of the Fischer-Tropsch reaction mechanism and indicate the opportunity of cost saving on gas treatment, while further validation is required to assess the impact on hydrocracking and product quality.
Collapse
Affiliation(s)
| | | | - G. Leendert Bezemer
- Energy Transition Campus
Amsterdam, Shell Global Solutions International
B.V., Grasweg 31, 1031 HW Amsterdam, The Netherlands
| |
Collapse
|
17
|
Wang R, Wang ZY, Zhang Y, Shaheer ARM, Liu TF, Cao R. Bridging Atom Engineering for Low-Temperature Oxygen Activation in a Robust Metal-Organic Framework. Angew Chem Int Ed Engl 2024; 63:e202400160. [PMID: 38523066 DOI: 10.1002/anie.202400160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Achieving active site engineering at the atomic level poses a significant challenge in the design and optimization of catalysts for energy-efficient catalytic processes, especially for a reaction with two reactants competitively absorbed on catalytic active sites. Herein, we show an example that tailoring the local environment of cobalt sites in a robust metal-organic framework through substituting the bridging atom from -Cl to -OH group leads to a highly active catalyst for oxygen activation in an oxidation reaction. Comprehensive characterizations reveal that this variation imparts drastic changes on the electronic structure of metal centers, the competitive reactant adsorption behavior, and the intermediate formation. As a result, exceptional low-temperature CO oxidation performance was achieved with T25(Temperature for 25 % conversion)=35 °C and T100 (Temperature for 100 % conversion)=150 °C, which stands out from existing MOF-based catalysts and even rivals many noble metal catalysts. This work provides a guidance for the rational design of catalysts for efficient oxygen activation for an oxidation reaction.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, P. R. China
- Department of Chemistry School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zi-Yu Wang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, P. R. China
| | - A R Mahammed Shaheer
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, P. R. China
| | - Tian-Fu Liu
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rong Cao
- State Key Laboratory of Structure Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, P. R. China
- Department of Chemistry School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
18
|
Belthle KS, Martin WF, Tüysüz H. Synergistic Effects of Silica-Supported Iron-Cobalt Catalysts for CO 2 Reduction to Prebiotic Organics. ChemCatChem 2024; 16:cctc.202301218. [PMID: 39363906 PMCID: PMC7616659 DOI: 10.1002/cctc.202301218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 10/05/2024]
Abstract
To test the ability of geochemical surfaces in serpentinizing hydrothermal systems to catalyze reactions from which metabolism arose, we investigated H2-dependent CO2 reduction toward metabolic intermediates over silica-supported Co-Fe catalysts. Supported catalysts converted CO2 to various products at 180 °C and 2.0 MPa. The liquid product phase included formate, acetate, and ethanol, while the gaseous product phase consisted of CH4, CO, methanol, and C2-C7 linear hydrocarbons. The 1/1 ratio CoFe alloy with the same composition as the natural mineral wairauite yielded the highest concentrations of formate (6.0 mM) and acetate (0.8 mM), which are key intermediates in the acetyl-coenzyme A (acetyl-CoA) pathway of CO2 fixation. While Co-rich catalysts were proficient at hydrogenation, yielding mostly CH4, Fe-rich catalysts favored the formation of CO and methanol. Mechanistic studies indicated intermediate hydrogenation and C-C coupling activities of alloyed CoFe, in contrast to physical mixtures of both metals. Co in the active site of Co-Fe catalysts performed a similar reaction as tetrapyrrole-coordinated Co in the corrinoid iron-sulfur (CoFeS) methyl transferase in the acetyl-CoA pathway. In a temperature range characteristic for deeper regions of serpentinizing systems, oxygenate product formation was favored at lower, more biocompatible temperatures.
Collapse
Affiliation(s)
- Kendra S Belthle
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - William F Martin
- Institute of Molecular Evolution, University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
19
|
Karadaghi L, Williamson EM, To AT, Forsberg AP, Crans KD, Perkins CL, Hayden SC, LiBretto NJ, Baddour FG, Ruddy DA, Malmstadt N, Habas SE, Brutchey RL. Multivariate Bayesian Optimization of CoO Nanoparticles for CO 2 Hydrogenation Catalysis. J Am Chem Soc 2024; 146:14246-14259. [PMID: 38728108 PMCID: PMC11117399 DOI: 10.1021/jacs.4c03789] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
The hydrogenation of CO2 holds promise for transforming the production of renewable fuels and chemicals. However, the challenge lies in developing robust and selective catalysts for this process. Transition metal oxide catalysts, particularly cobalt oxide, have shown potential for CO2 hydrogenation, with performance heavily reliant on crystal phase and morphology. Achieving precise control over these catalyst attributes through colloidal nanoparticle synthesis could pave the way for catalyst and process advancement. Yet, navigating the complexities of colloidal nanoparticle syntheses, governed by numerous input variables, poses a significant challenge in systematically controlling resultant catalyst features. We present a multivariate Bayesian optimization, coupled with a data-driven classifier, to map the synthetic design space for colloidal CoO nanoparticles and simultaneously optimize them for multiple catalytically relevant features within a target crystalline phase. The optimized experimental conditions yielded small, phase-pure rock salt CoO nanoparticles of uniform size and shape. These optimized nanoparticles were then supported on SiO2 and assessed for thermocatalytic CO2 hydrogenation against larger, polydisperse CoO nanoparticles on SiO2 and a conventionally prepared catalyst. The optimized CoO/SiO2 catalyst consistently exhibited higher activity and CH4 selectivity (ca. 98%) across various pretreatment reduction temperatures as compared to the other catalysts. This remarkable performance was attributed to particle stability and consistent H* surface coverage, even after undergoing the highest temperature reduction, achieving a more stable catalytic species that resists sintering and carbon occlusion.
Collapse
Affiliation(s)
- Lanja
R. Karadaghi
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Emily M. Williamson
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Anh T. To
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Allison P. Forsberg
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Kyle D. Crans
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Craig L. Perkins
- Materials
Science Center, National Renewable Energy
Laboratory, Golden, Colorado 80401, United States
| | - Steven C. Hayden
- Materials
Science Center, National Renewable Energy
Laboratory, Golden, Colorado 80401, United States
| | - Nicole J. LiBretto
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Frederick G. Baddour
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Daniel A. Ruddy
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Noah Malmstadt
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department
of Biomedical Engineering, University of
Southern California, Los Angeles, California 90089, United States
- USC Norris
Comprehensive Cancer Center, University
of Southern California, 1441 Eastlake Avenue, Los Angeles, California 90033, United States
| | - Susan E. Habas
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Richard L. Brutchey
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
20
|
Mohammadpour N, Kierzkowska-Pawlak H, Balcerzak J, Tyczkowski J. Tailoring the active phase of CoO-based thin-film catalysts in order to tune selectivity in CO 2 hydrogenation. RSC Adv 2024; 14:16758-16764. [PMID: 38784413 PMCID: PMC11113006 DOI: 10.1039/d4ra02355b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
In this study, we prepared CoO-based thin films deposited on Kanthal steel wire gauze meshes by plasma-enhanced chemical vapor deposition. X-ray photoelectron spectroscopy (XPS) analysis revealed a structure characterized by a combination of cobalt oxide and metallic cobalt embedded within a carbon matrix. Our primary objective was to gain insights into the roles of Co0 and CoO in CO2 hydrogenation reactions. To achieve this, the performance of the thin-film CoO-based catalyst with an initial atomic ratio of CoO/Co0 at 10.2 was compared with two series of the thin-film catalysts that underwent pre-reduction processes at 350 °C for durations of 30 and 60 minutes, resulting in atomic ratios of CoO/Co0 at 3.1 and 1.1, respectively. Subsequently, catalytic tests were conducted in a continuous flow stirred tank reactor operating at temperatures ranging from 250 °C to 400 °C. Our findings indicate that CoO plays a significant role in activating the CO2 methanation reaction which can be due to the high hydrogen coverage of CoO, while Co0 is the active phase in the reverse water-gas shift reaction. Results highlight the importance of oxidized cobalt for hydrogen adsorption and dissociation in CO2 hydrogenation for CH4 formation.
Collapse
Affiliation(s)
- Niloofar Mohammadpour
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology Wolczanska 213 93-005 Lodz Poland
| | - Hanna Kierzkowska-Pawlak
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology Wolczanska 213 93-005 Lodz Poland
| | - Jacek Balcerzak
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology Wolczanska 213 93-005 Lodz Poland
| | - Jacek Tyczkowski
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology Wolczanska 213 93-005 Lodz Poland
| |
Collapse
|
21
|
Miyazaki R, Belthle KS, Tüysüz H, Foppa L, Scheffler M. Materials Genes of CO 2 Hydrogenation on Supported Cobalt Catalysts: An Artificial Intelligence Approach Integrating Theoretical and Experimental Data. J Am Chem Soc 2024; 146:5433-5444. [PMID: 38374731 PMCID: PMC10910553 DOI: 10.1021/jacs.3c12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
Designing materials for catalysis is challenging because the performance is governed by an intricate interplay of various multiscale phenomena, such as the chemical reactions on surfaces and the materials' restructuring during the catalytic process. In the case of supported catalysts, the role of the support material can be also crucial. Here, we address this intricacy challenge by a symbolic-regression artificial intelligence (AI) approach. We identify the key physicochemical parameters correlated with the measured performance, out of many offered candidate parameters characterizing the materials, reaction environment, and possibly relevant underlying phenomena. Importantly, these parameters are obtained by both experiments and ab initio simulations. The identified key parameters might be called "materials genes", in analogy to genes in biology: they correlate with the property or function of interest, but the explicit physical relationship is not (necessarily) known. To demonstrate the approach, we investigate the CO2 hydrogenation catalyzed by cobalt nanoparticles supported on silica. Crucially, the silica support is modified with the additive metals magnesium, calcium, titanium, aluminum, or zirconium, which results in six materials with significantly different performances. These systems mimic hydrothermal vents, which might have produced the first organic molecules on Earth. The key parameters correlated with the CH3OH selectivity reflect the reducibility of cobalt species, the adsorption strength of reaction intermediates, and the chemical nature of the additive metal. By using an AI model trained on basic elemental properties of the additive metals (e.g., ionization potential) as physicochemical parameters, new additives are suggested. The predicted CH3OH selectivity of cobalt catalysts supported on silica modified with vanadium and zinc is confirmed by new experiments.
Collapse
Affiliation(s)
- Ray Miyazaki
- The
NOMAD Laboratory at the Fritz-Haber-Institut of the Max-Planck-Gesellschaft
and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, Berlin 14195, Germany
| | - Kendra S Belthle
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Harun Tüysüz
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an
der Ruhr 45470, Germany
| | - Lucas Foppa
- The
NOMAD Laboratory at the Fritz-Haber-Institut of the Max-Planck-Gesellschaft
and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, Berlin 14195, Germany
| | - Matthias Scheffler
- The
NOMAD Laboratory at the Fritz-Haber-Institut of the Max-Planck-Gesellschaft
and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, Berlin 14195, Germany
| |
Collapse
|
22
|
Weyel J, Hess C. Refining the mechanism of CO 2 and H 2 activation over gold-ceria catalysts by IR modulation excitation spectroscopy. Phys Chem Chem Phys 2024; 26:6608-6615. [PMID: 38333955 DOI: 10.1039/d3cp05102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The activation and utilization of the greenhouse gas CO2 is of great interest for the energy transition as a fossil-free carbon source for mitigating climate change. CO2 hydrogenation via the reverse water-gas shift reaction (RWGSR) converts CO2 to CO, a crucial component of syngas, enabling further transformation by means of the Fischer-Tropsch process. In this study, we unravel the detailed mechanism of the RWGSR on low-loaded Au/CeO2 catalysts using IR modulation excitation spectroscopy (MES), by periodically modulating the concentration of the reactants, followed by phase-sensitive detection (PSD). Applying such a MES-PSD approach to Au/CeO2 catalysts during RWGSR gives direct spectroscopic evidence for the active role of gold hydride, bidentate carbonate and hydroxyl species in the reaction mechanism, while disproving the participation of other species such as formate. Our results highlight the potential of modulation excitation spectroscopy combined with phase-sensitive detection to provide new mechanistic insight into catalytic reactions not accessible by steady-state techniques, including a profound understanding of the sequence of reaction steps.
Collapse
Affiliation(s)
- Jakob Weyel
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 8, 64287 Darmstadt, Germany.
| | - Christian Hess
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 8, 64287 Darmstadt, Germany.
| |
Collapse
|
23
|
Carrasco-García A, Vali SA, Ben-Abbou Z, Moral-Vico J, Abo Markeb A, Sánchez A. Synthesis of Cobalt-Based Nanoparticles as Catalysts for Methanol Synthesis from CO 2 Hydrogenation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:697. [PMID: 38591534 PMCID: PMC10856404 DOI: 10.3390/ma17030697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 04/10/2024]
Abstract
The increasing emission of carbon dioxide into the atmosphere has urged the scientific community to investigate alternatives to alleviate such emissions, being that they are the principal contributor to the greenhouse gas effect. One major alternative is carbon capture and utilization (CCU) toward the production of value-added chemicals using diverse technologies. This work aims at the study of the catalytic potential of different cobalt-derived nanoparticles for methanol synthesis from carbon dioxide hydrogenation. Thanks to its abundance and cost efficacy, cobalt can serve as an economical catalyst compared to noble metal-based catalysts. In this work, we present a systematic comparison among different cobalt and cobalt oxide nanocomposites in terms of their efficiency as catalysts for carbon dioxide hydrogenation to methanol as well as how different supports, zeolites, MnO2, and CeO2, can enhance their catalytic capacity. The oxygen vacancies in the cerium oxide act as carbon dioxide adsorption and activation sites, which facilitates a higher methanol production yield.
Collapse
Affiliation(s)
- Anna Carrasco-García
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Seyed Alireza Vali
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Zahra Ben-Abbou
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Javier Moral-Vico
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Ahmad Abo Markeb
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Antoni Sánchez
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
24
|
Zhou X, Price GA, Sunley GJ, Copéret C. Small Cobalt Nanoparticles Favor Reverse Water-Gas Shift Reaction Over Methanation Under CO 2 Hydrogenation Conditions. Angew Chem Int Ed Engl 2023; 62:e202314274. [PMID: 37955591 DOI: 10.1002/anie.202314274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/14/2023]
Abstract
Cobalt-based catalysts are well-known to convert syngas into a variety of Fischer-Tropsch (FTS) products depending on the various reaction parameters, in particular particle size. In contrast, the reactivity of these particles has been much less investigated in the context of CO2 hydrogenation. In that context, Surface organometallic chemistry (SOMC) was employed to synthesize highly dispersed cobalt nanoparticles (Co-NPs) with particle sizes ranging from 1.6 to 3.0 nm. These SOMC-derived Co-NPs display significantly different catalytic performances under CO2 hydrogenation conditions: while the smallest cobalt nanoparticles (1.6 nm) catalyze mainly the reverse water-gas shift (rWGS) reaction, the larger nanoparticles (2.1-3.0 nm) favor the expected methanation activity. Operando X-ray absorption spectroscopy shows that the smaller cobalt particles are fully oxidized under CO2 hydrogenation conditions, while the larger ones remain mostly metallic, paralleling the observed difference of catalytic performances. This fundamental shift of selectivity, away from methanation to reverse water-gas shift for the smaller nanoparticles is noteworthy and correlates with the formation of CoO under CO2 hydrogenation conditions.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| | - Gregory A Price
- BP Innovation & Engineering, Applied Sciences, BP plc, Saltend, Hull, HU12 8DS, UK
| | - Glenn J Sunley
- BP Innovation & Engineering, Applied Sciences, BP plc, Saltend, Hull, HU12 8DS, UK
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1-5, 8093, Zürich, Switzerland
| |
Collapse
|
25
|
Fu XP, Wu CP, Wang WW, Jin Z, Liu JC, Ma C, Jia CJ. Boosting reactivity of water-gas shift reaction by synergistic function over CeO 2-x/CoO 1-x/Co dual interfacial structures. Nat Commun 2023; 14:6851. [PMID: 37891176 PMCID: PMC10611738 DOI: 10.1038/s41467-023-42577-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Dual-interfacial structure within catalysts is capable of mitigating the detrimentally completive adsorption during the catalysis process, but its construction strategy and mechanism understanding remain vastly lacking. Here, a highly active dual-interfaces of CeO2-x/CoO1-x/Co is constructed using the pronounced interfacial interaction from surrounding small CeO2-x islets, which shows high activity in catalyzing the water-gas shift reaction. Kinetic evidence and in-situ characterization results revealed that CeO2-x modulates the oxidized state of Co species and consequently generates the dual active CeO2-x/CoO1-x/Co interface during the WGS reaction. A synergistic redox mechanism comprised of independent contribution from dual functional interfaces, including CeO2-x/CoO1-x and CoO1-x/Co, is authenticated by experimental and theoretical results, where the CeO2-x/CoO1-x interface alleviates the CO poison effect, and the CoO1-x/Co interface promotes the H2 formation. The results may provide guidance for fabricating dual-interfacial structures within catalysts and shed light on the mechanism over multi-component catalyst systems.
Collapse
Affiliation(s)
- Xin-Pu Fu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Cui-Ping Wu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Zhao Jin
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China
| | - Jin-Cheng Liu
- Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, 300350, Tianjin, China.
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, 410082, Changsha, China.
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, China.
| |
Collapse
|
26
|
Wang J, Deng D, Wu Q, Liu M, Wang Y, Jiang J, Zheng X, Zheng H, Bai Y, Chen Y, Xiong X, Lei Y. Insight on Atomically Dispersed Cu Catalysts for Electrochemical CO 2 Reduction. ACS NANO 2023; 17:18688-18705. [PMID: 37725796 DOI: 10.1021/acsnano.3c07307] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Electrochemical CO2 reduction (ECO2R) with renewable electricity is an advanced carbon conversion technology. At present, copper is the only metal to selectively convert CO2 into multicarbon (C2+) products. Among them, atomically dispersed (AD) Cu catalysts have received great attention due to the relatively single chemical environment, which are able to minimize the negative impact of morphology, valence state, and crystallographic properties, etc. on product selectivity. Furthermore, the completely exposed atomic Cu sites not only provide space and bonding electrons for the adsorption of reactants in favor of better catalytic activity but also provide an ideal platform for studying its reaction mechanism. This review summarizes the recent progress of AD Cu catalysts as a chemically tunable platform for ECO2R, including the atomic Cu sites dynamic evolution, the catalytic performance, and mechanism. Furthermore, the prospects and challenges of AD Cu catalysts for ECO2R are carefully discussed. We sincerely hope that this review can contribute to the rational design of AD Cu catalysts with enhanced performance for ECO2R.
Collapse
Affiliation(s)
- Jinxian Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Danni Deng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Qiumei Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Mengjie Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Jiabi Jiang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Xinran Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Huanran Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yu Bai
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yingbi Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Xiang Xiong
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
27
|
Varga G, Szenti I, Kiss J, Baán K, Halasi G, Óvári L, Szamosvölgyi Á, Mucsi R, Dodony E, Fogarassy Z, Pécz B, Olivi L, Sápi A, Kukovecz Á, Kónya Z. Decisive role of Cu/Co interfaces in copper cobaltite derivatives for high performance CO2 methanation catalyst. J CO2 UTIL 2023; 75:102582. [DOI: 10.1016/j.jcou.2023.102582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
28
|
Dong C, Mu R, Li R, Wang J, Song T, Qu Z, Fu Q, Bao X. Disentangling Local Interfacial Confinement and Remote Spillover Effects in Oxide-Oxide Interactions. J Am Chem Soc 2023; 145:17056-17065. [PMID: 37493082 DOI: 10.1021/jacs.3c02483] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Supported oxides are widely used in many important catalytic reactions, in which the interaction between the oxide catalyst and oxide support is critical but still remains elusive. Here, we construct a chemically bonded oxide-oxide interface by chemical deposition of Co3O4 onto ZnO powder (Co3O4/ZnO), in which complete reduction of Co3O4 to Co0 has been strongly impeded. It was revealed that the local interfacial confinement effect between Co oxide and the ZnO support helps to maintain a metastable CoOx state in CO2 hydrogenation reaction, producing 93% CO. In contrast, a physically contacted oxide-oxide interface was formed by mechanically mixing Co3O4 and ZnO powders (Co3O4-ZnO), in which reduction of Co3O4 to Co0 was significantly promoted, demonstrating a quick increase of CO2 conversion to 45% and a high selectivity toward CH4 (92%) in the CO2 hydrogenation reaction. This interface effect is ascribed to unusual remote spillover of dissociated hydrogen species from ZnO nanoparticles to the neighboring Co oxide nanoparticles. This work clearly illustrates the equally important but opposite local and remote effects at the oxide-oxide interfaces. The distinct oxide-oxide interactions contribute to many diverse interface phenomena in oxide-oxide catalytic systems.
Collapse
Affiliation(s)
- Cui Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rongtan Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tongyuan Song
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenping Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
29
|
Belgamwar R, Verma R, Das T, Chakraborty S, Sarawade P, Polshettiwar V. Defects Tune the Strong Metal-Support Interactions in Copper Supported on Defected Titanium Dioxide Catalysts for CO 2 Reduction. J Am Chem Soc 2023. [PMID: 37018652 DOI: 10.1021/jacs.3c01336] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
A highly active and stable Cu-based catalyst for CO2 to CO conversion was demonstrated by creating a strong metal-support interaction (SMSI) between Cu active sites and the TiO2-coated dendritic fibrous nano-silica (DFNS/TiO2) support. The DFNS/TiO2-Cu10 catalyst showed excellent catalytic performance with a CO productivity of 5350 mmol g-1 h-1 (i.e., 53,506 mmol gCu-1 h-1), surpassing that of almost all copper-based thermal catalysts, with 99.8% selectivity toward CO. Even after 200 h of reaction, the catalyst remained active. Moderate initial agglomeration and high dispersion of nanoparticles (NPs) due to SMSI made the catalysts stable. Electron energy loss spectroscopy confirmed the strong interactions between copper NPs and the TiO2 surface, supported by in situ diffuse reflectance infrared Fourier transform spectroscopy and X-ray photoelectron spectroscopy. The H2-temperature programmed reduction (TPR) study showed α, β, and γ H2-TPR signals, further confirming the presence of SMSI between Cu and TiO2. In situ Raman and UV-vis diffuse reflectance spectroscopy studies provided insights into the role of oxygen vacancies and Ti3+ centers, which were produced by hydrogen, then consumed by CO2, and then again regenerated by hydrogen. These continuous defect generation-regeneration processes during the progress of the reaction allowed long-term high catalytic activity and stability. The in situ studies and oxygen storage complete capacity indicated the key role of oxygen vacancies during catalysis. The in situ time-resolved Fourier transform infrared study provided an understanding of the formation of various reaction intermediates and their conversion to products with reaction time. Based on these observations, we have proposed a CO2 reduction mechanism, which follows a redox pathway assisted by hydrogen.
Collapse
Affiliation(s)
- Rajesh Belgamwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
- National Centre for Nanoscience and Nanotechnology and Department of Physics, University of Mumbai, Mumbai 400098, India
| | - Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Tisita Das
- Materials Theory for Energy Scavenging Lab, Harish-Chandra Research Institute, Allahabad, Prayagraj 211019, India
| | - Sudip Chakraborty
- Materials Theory for Energy Scavenging Lab, Harish-Chandra Research Institute, Allahabad, Prayagraj 211019, India
| | - Pradip Sarawade
- National Centre for Nanoscience and Nanotechnology and Department of Physics, University of Mumbai, Mumbai 400098, India
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
30
|
De Coster V, Srinath NV, Yazdani P, Poelman H, Galvita VV. Modulation Engineering: Stimulation Design for Enhanced Kinetic Information from Modulation-Excitation Experiments on Catalytic Systems. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
31
|
Li K, Li X, Li L, Chang X, Wu S, Yang C, Song X, Zhao ZJ, Gong J. Nature of Catalytic Behavior of Cobalt Oxides for CO 2 Hydrogenation. JACS AU 2023; 3:508-515. [PMID: 36873681 PMCID: PMC9975827 DOI: 10.1021/jacsau.2c00632] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/01/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Cobalt oxide (CoO x ) catalysts are widely applied in CO2 hydrogenation but suffer from structural evolution during the reaction. This paper describes the complicated structure-performance relationship under reaction conditions. An iterative approach was employed to simulate the reduction process with the help of neural network potential-accelerated molecular dynamics. Based on the reduced models of catalysts, a combined theoretical and experimental study has discovered that CoO(111) provides active sites to break C-O bonds for CH4 production. The analysis of the reaction mechanism indicated that the C-O bond scission of *CH2O species plays a key role in producing CH4. The nature of dissociating C-O bonds is attributed to the stabilization of *O atoms after C-O bond cleavage and the weakening of C-O bond strength by surface-transferred electrons. This work may offer a paradigm to explore the origin of performance over metal oxides in heterogeneous catalysis.
Collapse
Affiliation(s)
- Kailang Li
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Xianghong Li
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Lulu Li
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Xin Chang
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Shican Wu
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Chengsheng Yang
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Xiwen Song
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
- Joint
School of National University of Singapore and Tianjin University,
International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National
Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
32
|
Gao M, Fan J, Li X, Wang Q, Li D, Feng J, Duan X. A Carbon-Negative Hydrogen Production Strategy: CO 2 Selective Capture with H 2 Production. Angew Chem Int Ed Engl 2023; 62:e202216527. [PMID: 36599818 DOI: 10.1002/anie.202216527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
We reported a strategy of carbon-negative H2 production in which CO2 capture was coupled with H2 evolution at ambient temperature and pressure. For this purpose, carbonate-type Cux Mgy Fez layered double hydroxide (LDH) was preciously constructed, and then a photocatalysis reaction of interlayer CO3 2- reduction with glycerol oxidation was performed as driving force to induce the electron storage on LDH layers. With the participation of pre-stored electrons, CO2 was captured to recover interlayer CO3 2- in presence of H2 O, accompanied with equivalent H2 production. During photocatalysis reaction, Cu0.6 Mg1.4 Fe1 exhibited a decent CO evolution amount of 1.63 mmol g-1 and dihydroxyacetone yield of 3.81 mmol g-1 . In carbon-negative H2 production process, it showed an exciting CO2 capture quantity of 1.61 mmol g-1 and H2 yield of 1.44 mmol g-1 . Besides, this system possessed stable operation capability under simulated flu gas condition with negligible performance loss, exhibiting application prospect.
Collapse
Affiliation(s)
- Mingyu Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiaxuan Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xintao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qian Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing, 100029, China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing, 100029, China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
33
|
Hetero-site cobalt catalysts for higher alcohols synthesis by CO2 hydrogenation: A review. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Parastaev A, Muravev V, Osta EH, Kimpel TF, Simons JFM, van Hoof AJF, Uslamin E, Zhang L, Struijs JJC, Burueva DB, Pokochueva EV, Kovtunov KV, Koptyug IV, Villar-Garcia IJ, Escudero C, Altantzis T, Liu P, Béché A, Bals S, Kosinov N, Hensen EJM. Breaking structure sensitivity in CO2 hydrogenation by tuning metal–oxide interfaces in supported cobalt nanoparticles. Nat Catal 2022. [DOI: 10.1038/s41929-022-00874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Mazhar F, Kausar A, Iqbal M. Photocatalytic hydrogen generation using TiO 2: a state-of-the-art review. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Abstract
This review is focusing on photocatalytic hydrogen (H2) production as a viable fuel. The limitations of different production methods for H2 generation and the importance of photocatalytic process are discussed, which renders this process as highly promising to meet the future energy crises. TiO2 is one of most effective material to generate the H2 via photocatalytic processes. Therefore, advantages of the catalyst over other semiconductors have been thoroughly analyzed. Starting from synthesis of TiO2 and factors affecting the whole process of photocatalytic H2 production have been discussed. Modifications for improvement in TiO2 and the photocatalytic reaction are critically reviewed as well as the mechanism of TiO2 modification has been described. Metal doping, non-metal doping, impurity addition and defect introduction processes have been analyzed and the comparison of experimental results is developed based on H2 production efficiency. A critical review of the literature from 2004 to 2021 concludes that H2 production as fuel using TiO2 photocatalytic method is efficient and environment friendly, which have potential for practical applications for H2 generation.
Collapse
Affiliation(s)
- Fatima Mazhar
- Department of Chemical Engineering , COMSATS University Islamabad , Lahore , Pakistan
| | - Abida Kausar
- Department of Chemistry , Government College Women University Faisalabad , Faisalabad , Pakistan
- Department of Chemistry, Division of Science and Technology , University of Education , Lahore , Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology , University of Education , Lahore , Pakistan
| |
Collapse
|
36
|
Belthle KS, Beyazay T, Ochoa-Hernández C, Miyazaki R, Foppa L, Martin WF, Tüysüz H. Effects of Silica Modification (Mg, Al, Ca, Ti, and Zr) on Supported Cobalt Catalysts for H 2-Dependent CO 2 Reduction to Metabolic Intermediates. J Am Chem Soc 2022; 144:21232-21243. [DOI: 10.1021/jacs.2c08845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kendra S. Belthle
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Tuğçe Beyazay
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Cristina Ochoa-Hernández
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Ray Miyazaki
- The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, 14195 Berlin, Germany
| | - Lucas Foppa
- The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, 14195 Berlin, Germany
| | - William F. Martin
- Institute of Molecular Evolution, University of Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
37
|
Zichittella G, Ebrahim AM, Zhu J, Brenner AE, Drake G, Beckham GT, Bare SR, Rorrer JE, Román-Leshkov Y. Hydrogenolysis of Polyethylene and Polypropylene into Propane over Cobalt-Based Catalysts. JACS AU 2022; 2:2259-2268. [PMID: 36311830 PMCID: PMC9597591 DOI: 10.1021/jacsau.2c00402] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 05/22/2023]
Abstract
The development of technologies to recycle polyethylene (PE) and polypropylene (PP), globally the two most produced polymers, is critical to increase plastic circularity. Here, we show that 5 wt % cobalt supported on ZSM-5 zeolite catalyzes the solvent-free hydrogenolysis of PE and PP into propane with weight-based selectivity in the gas phase over 80 wt % after 20 h at 523 K and 40 bar H2. This catalyst significantly reduces the formation of undesired CH4 (≤5 wt %), a product which is favored when using bulk cobalt oxide or cobalt nanoparticles supported on other carriers (selectivity ≤95 wt %). The superior performance of Co/ZSM-5 is attributed to the stabilization of dispersed oxidic cobalt nanoparticles by the zeolite support, preventing further reduction to metallic species that appear to catalyze CH4 generation. While ZSM-5 is also active for propane formation at 523 K, the presence of Co promotes stability and selectivity. After optimizing the metal loading, it was demonstrated that 10 wt % Co/ZSM-5 can selectively catalyze the hydrogenolysis of low-density PE (LDPE), mixtures of LDPE and PP, as well as postconsumer PE, showcasing the effectiveness of this technology to upcycle realistic plastic waste. Cobalt supported on zeolites FAU, MOR, and BEA were also effective catalysts for C2-C4 hydrocarbon formation and revealed that the framework topology provides a handle to tune gas-phase selectivity.
Collapse
Affiliation(s)
- Guido Zichittella
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Amani M. Ebrahim
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jie Zhu
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Anna E. Brenner
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Griffin Drake
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Gregg T. Beckham
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
- BOTTLE
Consortium, Golden, Colorado 80401, United
States
| | - Simon R. Bare
- SLAC
National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Julie E. Rorrer
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yuriy Román-Leshkov
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Cai X, Li G, Hu W, Zhu Y. Catalytic Conversion of CO 2 over Atomically Precise Gold-Based Cluster Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Guangjun Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Weigang Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
39
|
Meunier FC. Hydrogenation of CO and CO2: Contributions of IR operando studies. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Controlled Oxidation of Cobalt Nanoparticles to Obtain Co/CoO/Co3O4 Composites with Different Co Content. NANOMATERIALS 2022; 12:nano12152523. [PMID: 35893491 PMCID: PMC9331854 DOI: 10.3390/nano12152523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023]
Abstract
The paper studies patterns of interaction of electroexplosive Co nanoparticles with air oxygen during heating. The characteristics of Co nanoparticles and composite Co/CoO/Co3O4 nanoparticles formed as a result of oxidation were studied using transmission electron microscopy, X-ray phase analysis, thermogravimetric analysis, differential scanning calorimetry, and vibrating sample magnetometry. It was established that nanoparticles with similar morphology in the form of hollow spheres with different content of Co, CoO, and Co3O4 can be produced by varying oxidation temperatures. The influence of the composition of composite nanoparticles on their magnetic characteristics is shown.
Collapse
|
41
|
Bredy P, Farrusseng D, Schuurman Y, Meunier FC. On the link between CO surface coverage and selectivity to CH4 during CO2 hydrogenation over supported cobalt catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|