1
|
Fines C, McCarthy H, Buckley N. The search for a TNBC vaccine: the guardian vaccine. Cancer Biol Ther 2025; 26:2472432. [PMID: 40089851 PMCID: PMC11913391 DOI: 10.1080/15384047.2025.2472432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/17/2025] Open
Abstract
Nearly 20 million people are diagnosed with cancer each year with breast cancer being the most common among women. Triple negative breast cancer (TNBC), defined by its no/low expression of ER and PR and lack of amplification of HER2, makes up 15-20% of all breast cancer cases. While patients overall have a higher response to chemotherapy, this subgroup is associated with the lowest survival rate indicating significant clinical and molecular heterogeneity demanding alternate treatment options. Therefore, new therapies have been explored, with a large focus on utilizing the immune system. A whole host of immunotherapies have been studied including immune checkpoint inhibitors, now standard of care for eligible patients, and possibly the most exciting and promising is that of a TNBC vaccine. While currently there are no approved TNBC vaccines, this review highlights many promising studies and points to an antigen, p53, which we believe is highly relevant for TNBC.
Collapse
Affiliation(s)
- Cory Fines
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
| | - Helen McCarthy
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
| | - Niamh Buckley
- School of Pharmacy, Queen’s University Belfast, Belfast, UK
| |
Collapse
|
2
|
Wang ZR, Li LT, Xiong FF, Zhao LB, Mao H, Zhu MY, Su SY, Guo ZY, He C. Preparation, and enzymatic activity analysis of an engineered capping enzyme. Enzyme Microb Technol 2025; 188:110640. [PMID: 40188656 DOI: 10.1016/j.enzmictec.2025.110640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 05/27/2025]
Abstract
The Vaccinia capping enzyme (VCE) and the 2'-O-methyltransferase (VP39) are proteins encoded by the vaccinia virus genome, used for capping viral mRNA to form m7GpppN2Me mRNA (Cap1 mRNA). This capping structure is essential for protecting mRNA from degradation, facilitating pre-mRNA splicing and nuclear export, and enabling translation initiation by the eukaryotic initiation factor (eIF4E). Moreover, it helps the virus circumvent innate immune responses, thereby facilitating replication using host cell mechanisms. Currently, the enzymatic capping process employs VCE and VP39 in concert with pre-mRNA to synthesize Cap1 mRNA directly. This study introduces an engineered fusion capping enzyme , created by linking VCE and VP39 via a flexible (GGGGS)3 linker(D1R-D12L-GS linker-VP39, DDGSV). The aim is to enhance the capping reaction while reducing raw material costs, process complexity, and impurities. The tertiary structure of DDGSV, predicted using AlphaFold2, aligns well with published structures of VCE and VP39, demonstrating no steric hindrance at the enzymatic active sites resulting from the fusion configuration. The expression vector pTolo-EX2-DDGSV was constructed and expressed in Escherichia coli BL21(DE3). The mRNA of the prepared capping enzymes exhibited good integrity on an agarose gel. The capping efficiency of the engineered enzyme DDGSV reached 80.19 % after 2 h of the capping reaction, matching the performance of commercial capping enzymes. Furthermore, the potential of RNA dot blotting for rapid detection of mRNA capping efficiency was explored; however, quantitative methods are also needed. Additionally, GFP mRNA prepared using DDGSV demonstrated high expression levels in HEK 293 T cells. These results indicate that the engineered enzyme can effectively cap Cap1 mRNA, providing a novel approach for mRNA vaccine development.
Collapse
Affiliation(s)
- Zi-Ru Wang
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Ling-Ting Li
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Fei-Fei Xiong
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Li-Bin Zhao
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Hui Mao
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Man-Yi Zhu
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Si-Yuan Su
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Zi-Yu Guo
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China
| | - Cheng He
- Shanghai Institute of Biological Products Co., Ltd., 350 Anshun Road, Shanghai 200051, China.
| |
Collapse
|
3
|
Zhang L, Bai J, Shen A, Zhao J, Su Z, Wang M, Dong M, Xu ZP. Artificially tagging tumors with nano-aluminum adjuvant-tethered antigen mRNA recruits and activates antigen-specific cytotoxic T cells for enhanced cancer immunotherapy. Biomaterials 2025; 317:123085. [PMID: 39778272 DOI: 10.1016/j.biomaterials.2025.123085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/17/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
T cell therapy for solid tumors faces significant challenges due to the immune off-target attack caused by the loss of tumor surface antigens and inactivation in acidic tumor microenvironment (TME). Herein, we developed a bifunctional immunomodulator (MO@NAL) by loading ovalbumin (OVA; model antigen) mRNA (mOVA) onto lysozyme-coated layered double hydroxide nano-aluminum adjuvant (NA). The NA's inherent alkalinity effectively neutralizes the excess acid within the TME and suppresses regulatory T cells, creating a favorable microenvironment to enhance cytotoxic T cell infiltration and activation in tumors. Particularly, once internalization by tumor cells, MO@NAL efficiently tags the tumor cell surface with OVA through the carried mOVA, providing targets for recruiting and directing the antigen-specific cytotoxic T cells to destroy tumor cells. In mice pre-vaccinated with the OVA vaccine, intratumoral administration of MO@NAL rapidly awakens OVA-specific immune memory, rapidly and effectively inhibiting the progression of colon tumors and melanoma at both early and advanced stages. In non-pre-vaccinated mice, combining MO@NAL with the OVA therapeutic vaccine or OVA-specific adoptive T cell transfusion similarly achieves robust solid tumor suppression. These findings thus underscore the potential of MO@NAL as an effective and safe immunomodulator for enhancing cytotoxic T cell responses and providing timely intervention in solid tumor progression.
Collapse
Affiliation(s)
- Lingxiao Zhang
- Interdisciplinary Nanoscience Center (INANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| | - Jie Bai
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China; School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Aining Shen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Jing Zhao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Zhenwei Su
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China
| | - Maoze Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (INANO), Aarhus University, Aarhus C, DK-8000, Denmark.
| | - Zhi Ping Xu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518107, China; School of Medicine, Hangzhou City University, Hangzhou, 310015, China; Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315040, China.
| |
Collapse
|
4
|
Bakrania A, Mo Y, Zheng G, Bhat M. RNA nanomedicine in liver diseases. Hepatology 2025; 81:1847-1877. [PMID: 37725757 PMCID: PMC12077345 DOI: 10.1097/hep.0000000000000606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
The remarkable impact of RNA nanomedicine during the COVID-19 pandemic has demonstrated the expansive therapeutic potential of this field in diverse disease contexts. In recent years, RNA nanomedicine targeting the liver has been paradigm-shifting in the management of metabolic diseases such as hyperoxaluria and amyloidosis. RNA nanomedicine has significant potential in the management of liver diseases, where optimal management would benefit from targeted delivery, doses titrated to liver metabolism, and personalized therapy based on the specific site of interest. In this review, we discuss in-depth the different types of RNA and nanocarriers used for liver targeting along with their specific applications in metabolic dysfunction-associated steatotic liver disease, liver fibrosis, and liver cancers. We further highlight the strategies for cell-specific delivery and future perspectives in this field of research with the emergence of small activating RNA, circular RNA, and RNA base editing approaches.
Collapse
Affiliation(s)
- Anita Bakrania
- Department of Medicine, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Medicine, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yulin Mo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mamatha Bhat
- Department of Medicine, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Medicine, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Division of Gastroenterology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Wu R, Yu S, Bi A, Li Y, Tiek D, Yu K, Xiong H, Shi Q, Mo Z, Yu X, Song X, Yin F, Wang Y, Yi W, Liu M, Li P, Hu B, Le A, Cheng SY, Zhou B. Therapeutic targeting of circTNK2 with nanoparticles restores tamoxifen sensitivity and enhances NK cell-mediated immunity in ER-positive breast cancer. Cancer Lett 2025:217823. [PMID: 40419081 DOI: 10.1016/j.canlet.2025.217823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/22/2025] [Accepted: 05/24/2025] [Indexed: 05/28/2025]
Abstract
Endocrine resistance is a leading cause of relapse in patients with estrogen receptor (ER)-positive breast cancer (ER+ BC), with tamoxifen resistance being the most prevalent form. circTNK2, a circular RNA, is overexpressed in tamoxifen-resistant BC tissues and is correlated with poor prognosis. circTNK2 encodes a novel 487-amino acid protein, termed C-TNK2-487aa, which inhibits the recruitment of natural killer (NK) cells into BC tumors. Mechanistically, C-TNK2-487aa interacts with STAT3 and promotes STAT3 phosphorylation (p-STAT3) in ER+ BC cells. The increased p-STAT3 competes with STAT1 binding, inhibiting the formation of STAT1 homodimers that induces CXCL10 expression, ultimately leading to immune evasion. Additionally, circTNK2 RNA binds to SRSF1 and promotes tamoxifen resistance and BC tumorigenicity by activating AKT-mTOR signaling. Delivery of BC-targeting ZIF-8 nanoparticles loaded with circTNK2 antisense oligonucleotides (ASOs) and a CXCL10-encoding plasmid DNA markedly suppresses the growth of BC tumor xenografts, restores tamoxifen sensitivity, and increases CD56+ NK cell infiltration into BC tumors. Our data describe a critical role of the circTNK2-encoded peptide and its RNA in ER+ BC resistance to tamoxifen and immune evasion, providing a therapeutic vulnerability in treating tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- Runxin Wu
- Department of Breast Disease Center, General Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China; The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Shubin Yu
- Department of Pathology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Aiwei Bi
- Biotherapy Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yingliang Li
- Department of Breast Disease Center, General Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Deanna Tiek
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kuai Yu
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Haiwei Xiong
- Department of Breast Disease Center, General Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Qingfeng Shi
- Department of Breast Disease Center, General Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Zhaohong Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Xiaozhou Yu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Fang Yin
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yu Wang
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Wang Yi
- Department of Breast Disease Center, General Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Mengting Liu
- Department of Breast Disease Center, General Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Penghui Li
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Aiping Le
- Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Boxuan Zhou
- Department of Breast Disease Center, General Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China; Department of Blood Transfusion, Key Laboratory of Jiangxi Province for Transfusion Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China; Postdoctoral Innovation Practice Base, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
6
|
Oh N, Kim JY. Ionizable Lipids Drive Subcellular Localization and Immune Cell Targeting of Barcoded Nanoparticles in Lung Cancer. ACS NANO 2025. [PMID: 40391427 DOI: 10.1021/acsnano.5c02283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
To accurately predict the effect of a drug and enhance its potency, it is essential to examine not only the arrival of the carrier and its payload at the target cell but also the final destination of the subcellular organelle because a considerable number of diseases are associated with the malfunctioning of cellular organelles. Here, we present nanoparticle (NP) microscopy via signal amplification of DNA barcodes combined with the multiplexed cyclic immunofluorescence technique for quantifying multiple NP types simultaneously. This technique enhanced the fluorescence signal-to-noise by 15-fold compared to standard fluorescence in situ hybridization, thereby providing a more precise means of analyzing the intra- and interdistribution of three core-shell NPs (G0-P5, 7C1-F5, and C12-D) in vitro and in vivo. The in vitro results demonstrated that in macrophages, nucleic acids condensed with G0-C14 cationic lipids were often located in lysosomes, whereas in tumor cells, nucleic acids were mainly located in mitochondria, regardless of the type of cationic lipid. Together, the in vivo results reveal that nucleic acids condensed with G0-C14 cationic lipids demonstrated the greatest uptake by CD206+ immune cells, whereas nucleic acids condensed with 7C1 and C12-200 cationic lipids exhibited the highest level of uptake by CD206+CD11c+Arg1+ immune cells.
Collapse
Affiliation(s)
- Nuri Oh
- Department of Chemistry and Biology, Korea Science Academy of KAIST, Busan 47162, Republic of Korea
| | - Jae Yoon Kim
- Department of Urology, Sanggye Paik Hospital, Inje University College of Medicine, Seoul 01757, Republic of Korea
| |
Collapse
|
7
|
Zhang Z, Fan YN, Jiang SQ, Ma YJ, Yu YR, Qing YX, Li QR, Liu YL, Shen S, Wang J. Recent Advances in mRNA Delivery Systems for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e17571. [PMID: 40391789 DOI: 10.1002/advs.202417571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/01/2025] [Indexed: 05/22/2025]
Abstract
mRNA therapy is a promising approach in oncology, offering innovative applications such as tumor vaccines, protein replacement therapy, cell therapy, and gene therapy. However, challenges such as mRNA stability and delivery efficiency must be addressed. Advances in delivery system technologies are crucial for precise mRNA delivery, enhancing treatment safety and efficacy. The development of delivery systems requires accurate organ or cell targeting, intelligent release mechanisms, and optimized administration routes. This review outlines the applications of mRNA therapy in oncology, as well as the utilization of nonviral vectors, encompassing organic, inorganic, and biomimetic systems. It further elucidates the strategies for passive and active vector targeting and examines recent advances in the realm of stimuli-responsive delivery systems that are sensitive to pH and ultrasound. Additionally, the review addresses the development of noninvasive mRNA delivery systems designed for oral and pulmonary administration. The current challenges and emerging trends of mRNA therapy are discussed, and the potential strategies to mitigate these issues are emphasized.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Ya-Nan Fan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Si-Qi Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Ya-Jing Ma
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Yao-Ru Yu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Yu-Xin Qing
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Qian-Ru Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Yi-Lin Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Song Shen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
8
|
Lei S, Gao Y, Wang K, Wu S, Zhu M, Chen X, Zhou W, Chen X, Zhang J, Duan X, Men K. An Implantable Double-Layered Spherical Scaffold Depositing Gene and Cell Agents to Facilitate Collaborative Cancer Immunotherapy. ACS NANO 2025; 19:17653-17673. [PMID: 40304563 DOI: 10.1021/acsnano.5c01366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Gene therapies and adoptive cell therapy (ACT) are promising strategies for cancer immunotherapy. Referring to their different mechanisms, the combination of these two might result in a strategy with potential collaborative and compensatory effects. However, it is challenging to combine gene therapies and ACT that work in a proper logical order. Here, we developed a double-layered spherical scaffold (DLS) to codeliver mRNA and T cells and constructed an implantable hydrogel formulation, named the GD-920 scaffold. With a diameter of 7 mm, this scaffold loaded primary T cells in the inner layer and the Bim mRNA nanocomplex in the outer layer. While maintaining their bioactivities, GD-920 released gene and cell payloads in a controllable and sequential manner. The mRNA complex from the outer layer was first released and induced immunogenic tumor cell death. The produced antigens then migrated into the scaffold with dendritic cells, triggering a tumor-specific immune response. Finally, activated T cells released by the inner layer attacked the tumor tissue via massive infiltration. We showed that in situ implantation of the GD-920 scaffold is capable of effectively inhibiting tumor growth and is far more potent than that of control scaffolds containing a single payload. Our results demonstrated the outstanding potential of this DLS in combining gene and cell therapeutic approaches to cancer immunotherapy.
Collapse
Affiliation(s)
- Sibei Lei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Gao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyu Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shan Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Manfang Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xiaohua Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weilin Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiayu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Ke Men
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Zhang M, Gu Y, Shen F, Gong Y, Gu Z, Hua K, Zhou G, Ding J. Restoration of TP53 strategy via specific nanoparticles for ovarian cancer therapy. J Ovarian Res 2025; 18:95. [PMID: 40325478 PMCID: PMC12054137 DOI: 10.1186/s13048-025-01672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
The p53 tumor suppressor gene, a master regulator of diverse cellular pathways, is frequently altered in various cancers. Loss of function in tumor suppressor genes is commonly associated with the onset/progression of cancer and treatment resistance. Currently, approaches for restoration of TP53 expression, including small molecules and DNA therapies, have yielded progressive success, but each has formidable drawbacks. Here, we introduced an endogenous nanoplatform to effectively deliver the TP53 protein. Briefly speaking, the endogenous TP53 proteins were fused by the Lamp2b and loaded into extracellular vesicles-based nanoparticles, which could markedly restore the TP53 expression in natural TP53-deficient ovarian cancer (OCs) and subsequently inhibit cell proliferation as well as induce cell apoptosis. Moreover, a well-known biotin streptavidin binding strategy was used to confer the nanoplatform targeting ability. Since mesothelin (MSLN) expressed highly in ovarian cancer, the anti-MSLN nanoplatform were engineered to deliver TP53 proteins to MSLN ovarian cancer and exert the anti-tumor ability. Our findings indicated that restoration of tumor suppressors by the targeting nanoplatform could be promising nanotechnology approaches for potential ovarian cancer treatment.
Collapse
Affiliation(s)
- Menglei Zhang
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fang-Xie Road, Shanghai, 200011, P.R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Yuanyuan Gu
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fang-Xie Road, Shanghai, 200011, P.R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Fang Shen
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fang-Xie Road, Shanghai, 200011, P.R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Yingxin Gong
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fang-Xie Road, Shanghai, 200011, P.R. China
| | - Zheng Gu
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fang-Xie Road, Shanghai, 200011, P.R. China
| | - Keqin Hua
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fang-Xie Road, Shanghai, 200011, P.R. China.
| | - Guannan Zhou
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fang-Xie Road, Shanghai, 200011, P.R. China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
| | - Jingxin Ding
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fang-Xie Road, Shanghai, 200011, P.R. China.
| |
Collapse
|
10
|
Rueda A, Serna N, Mangues R, Villaverde A, Unzueta U. Targeting the chemokine receptor CXCR4 for cancer therapies. Biomark Res 2025; 13:68. [PMID: 40307933 PMCID: PMC12044942 DOI: 10.1186/s40364-025-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
The C-X-C chemokine receptor type 4 (CXCR4) has emerged as a key molecular biomarker for cancer therapies due to its critical role in tumor progression and metastases by displaying a stem cells phenotype. Its overexpression has been observed in more than 20 types of cancers, including solid tumors and hematological malignancies, and it is often associated with tumor aggressiveness and poor prognosis. Being initially recognized as a co-receptor involved in HIV infection, numerous CXCR4-targeting ligands and antagonists, including small molecules, peptides and biologics have been identified over the past decades. While only few of them have been used in the context of cancer therapies, recent biotechnological advancements using CXCR4 as a molecular target are showing significant potential to revolutionize future cancer therapies. Therefore, this review highlights the biotechnological innovations developed for cancer therapy and diagnosis by targeting the chemokine receptor CXCR4. It also discusses future perspectives on emerging therapeutic strategies, ranging from the use of small molecule inhibitors that block receptor signaling to cutting-edge nanocarriers designed for the targeted delivery of innovative drugs and proteins into cancer stem cells, aiming at cell-selective precision nanomedicines.
Collapse
Affiliation(s)
- Ariana Rueda
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77 - 79, Barcelona, 08041, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Josep Carreras Leukaemia Research Institute (IJC Sant Pau), 08041, Barcelona, Spain
| | - Naroa Serna
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Ramon Mangues
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77 - 79, Barcelona, 08041, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Josep Carreras Leukaemia Research Institute (IJC Sant Pau), 08041, Barcelona, Spain.
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| | - Ugutz Unzueta
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77 - 79, Barcelona, 08041, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain.
- Josep Carreras Leukaemia Research Institute (IJC Sant Pau), 08041, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain.
| |
Collapse
|
11
|
Wang Y, Hu X, Wang J, Zhang Y, Guo P, Lv Y, Ma G, Wei W, Wang S. Versatile PLGA-Based Drug Delivery Systems for Tumor Immunotherapy. SMALL METHODS 2025; 9:e2401623. [PMID: 39924767 DOI: 10.1002/smtd.202401623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/07/2025] [Indexed: 02/11/2025]
Abstract
Tumor immunotherapy, which utilizes the immune system to fight cancer, represents a revolutionary method for cancer treatment. Poly (lactic-co-glycolic acid) (PLGA) copolymer has emerged as a promising material for tumor immunotherapy due to its biocompatibility, biodegradability, and versatility in drug delivery. By tuning the size, shape, and surface properties of PLGA-based systems, researchers have improved their ability to align with the requirements for diverse tumor immunotherapy modalities. In this review, the basic properties of the PLGA materials are first introduced and further the principal forms of the PLGA systems for controlled release are summarized and delivery applications are targeted. In addition, recent advances in the use of PLGA delivery systems are highlighted to enhance antitumor immune responses in terms of tumor vaccines, immunogenic cell death-mediated immune responses, tumor microenvironment modulation, and combination immunotherapies. Finally, prospects for the future research and clinical translation of PLGA materials are proposed.
Collapse
Affiliation(s)
- Yishu Wang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoming Hu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinghui Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, P. R. China
| | - Yu Zhang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peilin Guo
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlin Lv
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Wei
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Xia Y, Su M, Ye Z, Du F, Wang X, Guan D, Zhang X, Rao Z, Ning P. An epigenetic regulator synergizes with alphavirus-mediated gene therapy via biomimetic delivery for enhanced cancer therapy. Trends Biotechnol 2025; 43:1196-1214. [PMID: 39955233 DOI: 10.1016/j.tibtech.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 02/17/2025]
Abstract
Gene therapy is promising for treating genetic disorders, but faces challenges in treating cancer due to the intricate genetic and immunosuppressive landscape of this disease. Here, we describe a technology combining alphavirus-based gene therapy with an epigenetic regulator via pyroptosis and immune checkpoints to address these challenges. A filamentous actin-mimicking liposomal delivery system, with high fusion efficiency, was developed that encapsulates the Semliki Forest virus (pSFV) DNA vector to deliver p53 and PDL1 scFv DNA, bypassing traditional endocytic barriers to deliver genes with high efficiency via membrane fusion. To enhance this combined therapy, the DNA methyltransferase inhibitor decitabine (DAC) was used to increase Gasdermin E (GSDME) expression, converting apoptosis to pyroptosis. This approach kills apoptosis-resistant tumor cells, and also promotes T cell infiltration and activation, facilitating an anti-PDL1 therapy and the systemic antitumor immune response. This multifaceted therapeutic strategy combines gene therapy with epigenetic regulation to significantly improve immune checkpoint therapy (ICT) effectiveness, offering a robust potential as a transformative cancer treatment.
Collapse
Affiliation(s)
- Yuqiong Xia
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Maozhi Su
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Zixuan Ye
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Fuyu Du
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Xinruo Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Dashan Guan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Xianghan Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China; Guangzhou Institute of Technology, Xidian University, Guangzhou, Guangdong, 510555, PR China
| | - Zhiping Rao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| | - Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular and Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| |
Collapse
|
13
|
Yu X, Zhang Q, Wang L, Zhang Y, Zhu L. Engineered nanoparticles for imaging and targeted drug delivery in hepatocellular carcinoma. Exp Hematol Oncol 2025; 14:62. [PMID: 40307921 PMCID: PMC12044934 DOI: 10.1186/s40164-025-00658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
Liver cancer, notably hepatocellular carcinoma (HCC), poses a significant global health burden due to its high fatality rates. Conventional antitumor medications face challenges, including poor targeting, high toxicity, and drug resistance, leading to suboptimal clinical outcomes. This review focused on nanoparticle use in diagnosing and delivering medication for HCC, aiming to advance the development of nanomedicines for improved treatment outcomes. As an emerging frontier science and technology, nanotechnology has shown great potential, especially in precision medicine and personalized treatment. The success of nanosystems is attributable to their smaller size, biocompatibility, selective tumor accumulation, and lower toxicity. Nanoparticles, as a central part of nanotechnology innovation, have emerged in the field of medical diagnostics and therapeutics to overcome the various limitations of conventional chemotherapy, thus offering promising applications for improved selectivity, earlier and more precise diagnosis of cancers, personalized treatment, and overcoming drug resistance. Nanoparticles play a crucial role in drug delivery and imaging of HCC, with the body acting as a delivery system to target and deliver drugs or diagnostic reagents to specific organs or tissues, helping to accurately diagnose and target therapies while minimizing damage to healthy tissues. They protect drugs from early degradation and increase their biological half-life.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qin Zhang
- Department of Postgraduate Students, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Leibo Wang
- Department of Surgery, Beijing Jishuitan Hospital Guizhou Hospital Guiyang, Guiyang, 550000, Guizhou, The People's Republic of China
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
14
|
Cordeiro R, Oliveira D, Santo D, Coelho J, Faneca H. Mesoporous silica-glycopolymer hybrid nanoparticles for dual targeted chemotherapy and gene therapy to liver cancer cells. Int J Pharm 2025; 675:125553. [PMID: 40187702 DOI: 10.1016/j.ijpharm.2025.125553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The development of nanocarriers for pharmaceutical applications is a challenging research field as they have to fulfil several requirements, such as suitable physicochemical properties, biocompatibility, loading capacity for therapeutic agents, high stability in the bloodstream, and specific delivery to the target cells. This task becomes even more difficult when trying to transport two different therapeutic agents simultaneously, as is required by most of the current therapeutic strategies. Mesoporous silica nanoparticles (MSN) fulfil most of these requirements, although they partially fail in the last two. However, these weaknesses can be circumvented if they are combined with another type of material such as polymers. In this context, the main goal of this research work was to develop MSN-based nanocarriers capable to co-transport drugs and nucleic acids and to specifically deliver them in liver cancer cells. To this end, we have prepared MSNs coated with lactobionic acid-based copolymers, as lactobionic acid has a high binding affinity to asialoglycoprotein receptors (ASGPR), which are overexpressed in liver cells. The designed hybrid MSN-based nanocarriers exhibited appropriate physicochemical properties, high ASGPR specificity and high biological activity. These MSN-glycopolymer hybrid nanosystems showed a 280-fold higher transfection activity in liver cancer cells than bare MSN particles. Furthermore, we demonstrated the ability of these nanosystems to efficiently mediate a combined antitumor strategy involving HSV-TK/GCV suicide gene therapy and chemotherapy (epirubicin), in liver cancer cells. Overall, the data obtained showed the great potential of this MSN-based nanoplatform to be applied in combined therapeutic strategies for the treatment of liver cancer.
Collapse
Affiliation(s)
- Rosemeyre Cordeiro
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Daniel Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal
| | - Daniela Santo
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal; Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima - Pólo II, 3030-790 Coimbra, Portugal
| | - Jorge Coelho
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima - Pólo II, 3030-790 Coimbra, Portugal; IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Henrique Faneca
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra 3004-504 Coimbra, Portugal; Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
15
|
Suresh A, Suresh D, Li Z, Sansalone J, Aluru N, Upendran A, Kannan R. Self-Assembled Multilayered Concentric Supraparticle Architecture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502055. [PMID: 40285599 DOI: 10.1002/adma.202502055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Supraparticles (SPs) with unique properties are emerging as versatile platforms for applications in catalysis, photonics, and medicine. However, the synthesis of novel SPs with complex internal structures remains a challenge. Self-Assembled Multilayered Supraparticles (SAMS) presented here are composed of concentric lamellar spherical structures made from metallic nanoparticles, formed from a synergistic three-way interaction phenomenon between gold nanoparticles, lipidoid, and gelatin, exhibiting interlayer spacing of 3.5 ± 0.2 nm within a self-limited 156.8 ± 56.6 nm diameter. The formation is critically influenced by both physical (including nanoparticle size, lipidoid chain length) and chemical factors (including elemental composition, nanoparticle cap, and organic material), which collectively modulate the surface chemistry and hydrophobicity, affecting interparticle interactions. SAMS can efficiently deliver labile payloads such as siRNA, achieving dose-dependent silencing in vivo, while also showing potential for complex payloads such as mRNA. This work not only advances the field of SP design by introducing a new structure and interaction phenomenon but also demonstrates its potential in nanomedicine.
Collapse
Affiliation(s)
- Agasthya Suresh
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, 65211, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, 65212, USA
| | - Dhananjay Suresh
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
| | - Zhaohui Li
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
| | - John Sansalone
- Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Narayana Aluru
- Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Anandhi Upendran
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212, USA
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, 65211, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, 65212, USA
| |
Collapse
|
16
|
Lin L, Su K, Zhang X, Shi L, Yan X, Fu Q, Yao K, Siegwart DJ, Liu S. A Versatile Strategy to Transform Cationic Polymers for Efficient and Organ-Selective mRNA Delivery. Angew Chem Int Ed Engl 2025; 64:e202500306. [PMID: 39929776 DOI: 10.1002/anie.202500306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Indexed: 02/19/2025]
Abstract
The progress of mRNA therapeutics underscores the imperative demand for the development of targeted delivery systems. While cationic polymers hold promise as genetic vectors, their poor in vivo efficacy and numerous variants highlight the urgent need for a universal functionalization strategy to bolster their delivery capabilities. Here, we present a versatile strategy to transform low-cost commercial cationic polymers into phospholipidated and alkylated polymers (PAPs), enabling efficient and organ-selective mRNA delivery in vivo. This straightforward post-functionalization method can be readily broadened to a diverse array of existing cationic polymers, enhancing their cellular uptake, endosomal escape, and mRNA release functionalities. Consequently, PAPs facilitate up to 30,500-fold higher mRNA expression compared to their unmodified counterparts in vivo. Notably, the one-component PAPs enable spleen-specific mRNA delivery, with their vaccine application validated in a mouse melanoma model following intravenous administration. Better still, PAPs can synergize with different helper lipids to formulate four-component lipid nanoparticles (LNPs), achieving respective lung- and liver-specific mRNA delivery. Noteworthy is that these organ-selective mRNA delivery systems significantly outperform previous polymer and LNP benchmarks. This transformation strategy for cationic polymers represents a generalized methodology to give highly effective mRNA carriers, highlighting substantial potential for clinical translation of mRNA therapies with organ-targeting requirements.
Collapse
Affiliation(s)
- Lixin Lin
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine College of Pharmaceutical Sciences, Liangzhu Laboratory, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Kexin Su
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine College of Pharmaceutical Sciences, Liangzhu Laboratory, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xinyue Zhang
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine College of Pharmaceutical Sciences, Liangzhu Laboratory, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lu Shi
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine College of Pharmaceutical Sciences, Liangzhu Laboratory, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Xinxin Yan
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine College of Pharmaceutical Sciences, Liangzhu Laboratory, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Qiuli Fu
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine College of Pharmaceutical Sciences, Liangzhu Laboratory, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine College of Pharmaceutical Sciences, Liangzhu Laboratory, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Daniel J Siegwart
- Department of Biomedical Engineering Department of Biochemistry Simmons Comprehensive Cancer Center Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuai Liu
- Eye Center of the Second Affiliated Hospital of Zhejiang University School of Medicine College of Pharmaceutical Sciences, Liangzhu Laboratory, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Liu X, Liu Z, Kobayashi T, Lei PJ, Shi Y, Yuan D, Wang J, Li M, Matsui A, Mafra K, Huang P, Kuang M, Bod L, Duda DG. Inhibiting B-cell-mediated Immunosuppression to Enhance the Immunotherapy Efficacy in Hepatocellular Carcinoma. RESEARCH SQUARE 2025:rs.3.rs-6355345. [PMID: 40321752 PMCID: PMC12047993 DOI: 10.21203/rs.3.rs-6355345/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Background Immunotherapy is efficacious in hepatocellular carcinoma (HCC), but the benefits are limited to a minority of patients. Most HCC patients show resistance to immune checkpoint blockade (ICB). Agonists of the stimulator of interferon genes (STING), potent immune stimulators, showed limited effectiveness. Using preclinical models, we studied the mechanisms of resistance to ICB and STING agonism. Methods Murine HCA-1 and RIL-175 HCCs were orthotopically grown in mice with underlying liver fibrosis, to mimic the presentation of human HCC. Established tumors were treated with a STING agonist (BMS-986301) or anti-PD1 ICB, and mice were followed to evaluate safety and efficacy, as well as the mechanisms of treatment resistance by RNA sequencing, flow cytometry, and immunofluorescence, B-cell depletion and T-cell immunoglobulin and mucin domain 1 (TIM-1) ICB. Results Unbiased analyses of transcriptomic data from murine HCC tissues from ICB-treated mice showed an increased abundance of intratumoral CD8+ T cells and B cells. STING agonism alone showed efficacy in the ICB-responsive RIL-175 HCC model but more limited efficacy in the ICB-resistant HCA-1 model. STING agonism increased circulating IL-10 and intratumoral infiltration by B-cells, including TIM-1+ B cells, and promoted the formation of tertiary lymphoid structure (TLS)-like structures, especially in the peritumoral areas. Strikingly, adding B cell depletion to ICB or STING agonism treatment significantly increased survival. Interestingly, unlike ICB, STING agonism also had a pronounced anti-metastatic activity. In addition, the combination of STING agonism and TIM-1 blockade augmented B cell differentiation and antigen presentation in vitro and improved the anti-tumor effects in murine HCC in vivo. This approach decreased the number of TIM-1+ B cells in the tumor and shifted B cells to higher expression of CD86 and MHC class II, enhancing the antigen presentation capability and further boosting the antitumor efficacy of CD8+ cytotoxic T cells. Conclusion Our findings demonstrate that B cells are associated with ICB- and STING-mediated therapy resistance, and that depleting B-cells or targeting TIM-1 enhances both innate and acquired therapeutic efficacy in HCC.
Collapse
Affiliation(s)
- Xin Liu
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zelong Liu
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tatsuya Kobayashi
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Pin-Ji Lei
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Yue Shi
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dandan Yuan
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jianguo Wang
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Li
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Aya Matsui
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- Kanazawa University Institute of Medical, Pharmaceutical and Health Sciences Faculty of Medicine, Kanazawa, Japan
| | - Kassiana Mafra
- Department of Medicine, Krantz Family Center for Cancer Research, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Peigen Huang
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Ming Kuang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lloyd Bod
- Department of Medicine, Krantz Family Center for Cancer Research, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dan G. Duda
- Edwin. L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
18
|
Su P, Han Y, Yi J, Hou Y, Xiao Y. Research status and frontiers in liver cancer immunotherapy: a bibliometric perspective on highly cited literature. Front Oncol 2025; 15:1587252. [PMID: 40276056 PMCID: PMC12018336 DOI: 10.3389/fonc.2025.1587252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 04/26/2025] Open
Abstract
Background Liver cancer is one of the major causes of cancer-related death in the world. As a breakthrough therapy, immunotherapy had significantly improved the prognosis of patients. However, the current research status and research hotspots in the field of liver cancer immunotherapy still lack systematic review. Based on the bibliometric analysis of highly cited papers, this study intended to reveal the current research status, research hotspots and future research trends in this field. Objective The purpose of this study was to analyze the national/regional contributions, authors and institutions cooperation network, keywords clustering and keywords burst analysis of highly cited papers on liver cancer immunotherapy through bibliometrics, so as to clarify the research frontier and development direction, and provide objective data support for future research direction and clinical practice. Methods The highly cited papers on liver cancer immunotherapy from the Web of Science core collection up to February 23, 2025 were retrieved, and 232 studies were included. CiteSpace was used to build a knowledge map, analyze the distribution of years, countries, authors, institutions and cooperation networks, and identify research hotspots and emerging trends through keyword clustering and burst detection. Results The number of highly cited papers continued to increase from 2014 and reached a peak in 2022. China and the United States had the highest number of publications and the centrality of cooperation networks. The author with the highest number of papers was Llovet, Josep M, whose research direction mainly focused on immune checkpoint inhibitor combination therapy and molecular typing. The author with the highest cooperation network centrality was Duda, Dan G, whose research team focused on tumor microenvironment regulation. Harvard University and the University of Barcelona played an important central role in the institutional collaboration. Keywords analysis showed that immune checkpoint inhibitors, tumor microenvironment and combination therapy were the core of liver cancer immunotherapy. Burst keywords such as cell lung cancer, pembrolizumab, advanced melanoma, blockade, lymphocytes, etc. had revealed the research frontier of liver cancer immunotherapy research. Conclusion The research on liver cancer immunotherapy had made multi-dimensional progress, with China and the United States leading the global cooperation. The main research directions were the combination strategy of immunization, the regulation of tumor microenvironment and the exploration of novel targets. In the future, it is necessary to optimize treatment resistance solutions, integrate interdisciplinary resources, and promote the development of precision and personalized treatment.
Collapse
Affiliation(s)
- Pan Su
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Yeqiong Han
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Jindong Yi
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Hou
- Department of Pulmonology, Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xiao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standards, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Afzal A, Abbasi MH, Ahmad S, Sheikh N, Khawar MB. Current Trends in Messenger RNA Technology for Cancer Therapeutics. Biomater Res 2025; 29:0178. [PMID: 40207255 PMCID: PMC11978394 DOI: 10.34133/bmr.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Messenger RNA (mRNA)-based therapy has revolutionized cancer research by enabling versatile delivery systems for therapeutic applications. The future of mRNA-based cancer therapies shows promise amidst challenges such as delivery efficiency, immunogenicity, and tumor heterogeneity. Recent progress has adapted various strategies such as design flexibility, scalable production, and targeted delivery capabilities to enhance the potential in personalized cancer therapy. Further research to optimize delivery for enhanced outcomes and efficacy in solid tumors is warranted. Therefore, we aim to explore the current landscape and future prospects of mRNA technology across various therapeutic platforms.
Collapse
Affiliation(s)
- Ali Afzal
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology,
University of Narowal, Narowal, Pakistan
| | | | - Shaaf Ahmad
- King Edward Medical University/Mayo Hospital, Lahore, Punjab 54000, Pakistan
| | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Institute of Zoology,
University of the Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology,
University of Narowal, Narowal, Pakistan
| |
Collapse
|
20
|
Liang Y, Zhang J, Wang J, Yang Y, Tan X, Li S, Guo Z, Zhang Z, Liu J, Shi J, Zhang K. Restoring Tumor Cell Immunogenicity Through Ion-Assisted p53 mRNA Domestication for Enhanced In Situ Cancer Vaccination Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500825. [PMID: 39965083 PMCID: PMC11984859 DOI: 10.1002/advs.202500825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/28/2025] [Indexed: 02/20/2025]
Abstract
The efficacy of in situ cancer vaccines (ISCVs) is hindered by the poor immunogenicity of tumor cells. Here, PRIZE, a P53-repair nanosystem based on a virus-mimicking nanostructure to deliver p53 mRNA and Zn (II) into tumor cells, domesticating tumor cells by restoring intracellular P53 levels to bolster their immunogenicity, is designed. PRIZE ensures precise delivery to tumor sites, stabilizes p53 mRNA with its biomineralized structure, and extends the half-life of P53. This research highlights that PRIZE can efficiently repair P53 abnormalities in 4T1 (P53-deficient) and MC38 (P53-mutant) cells, subsequently upregulating the expression of major histocompatibility complex (MHC) class I molecules and the surface co-stimulatory molecule CD80 on tumor cells, enhancing antigen presentation and transforming tumor cells into in situ antigen reservoirs. The co-delivered photothermal agent (ICG) can trigger immunogenic cell death under laser irradiation, effectively releasing tumor-associated antigens, and inducing the formation of ISCVs. Importantly, in P53 abnormal tumor mouse models, the induced ISCVs initiate the cancer immune cycle (CIC), demonstrating outstanding tumoricidal immunity and effectively thwarting tumor metastasis and postoperative recurrence, which provides valuable insights for advancing personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Yan Liang
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Jingge Zhang
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Jinjin Wang
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Yuhe Yang
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Xinyu Tan
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Shuguang Li
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Zhenzhen Guo
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Junjie Liu
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Jinjin Shi
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Beijing Life Science AcademyBeijing102209P. R. China
| |
Collapse
|
21
|
Zhang X, Mille-Fragoso LS, Kaseniit KE, Lee AP, Zhang M, Call CC, Hu Y, Xie Y, Gao XJ. Post-transcriptional modular synthetic receptors. Nat Chem Biol 2025:10.1038/s41589-025-01872-w. [PMID: 40155716 DOI: 10.1038/s41589-025-01872-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/06/2025] [Indexed: 04/01/2025]
Abstract
Inspired by the power of transcriptional synthetic receptors and hoping to complement them to expand the toolbox for cell engineering, we establish LIDAR (Ligand-Induced Dimerization-Activating RNA editing), a modular post-transcriptional synthetic receptor platform that harnesses RNA editing by adenosine deaminases acting on RNA. LIDAR is compatible with various receptor architectures in different cellular contexts and enables the sensing of diverse ligands and the production of functional outputs. Furthermore, LIDAR can sense orthogonal signals in the same cell and produce synthetic spatial patterns, potentially enabling the programming of complex multicellular behaviors. Lastly, LIDAR is compatible with compact encoding and can be delivered as synthetic mRNA. Thus, LIDAR expands the family of synthetic receptors, holding the promise to empower basic research and therapeutic applications.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Luis S Mille-Fragoso
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
| | - K Eerik Kaseniit
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
| | - Arden P Lee
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Meng Zhang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Connor C Call
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Yixin Hu
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yunxin Xie
- The Chinese Undergraduate Visiting Research (UGVR) Program, Stanford, CA, USA
| | - Xiaojing J Gao
- Stanford Bio-X, Stanford University, Stanford, CA, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Pan X, Zhang YWQ, Dai C, Zhang J, Zhang M, Chen X. Applications of mRNA Delivery in Cancer Immunotherapy. Int J Nanomedicine 2025; 20:3339-3361. [PMID: 40125430 PMCID: PMC11928443 DOI: 10.2147/ijn.s500520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/08/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer treatment is continually advancing, with immunotherapy gaining prominence as a standard modality that has markedly improved the management of various malignancies. Despite these advancements, the efficacy of immunotherapy remains variable, with certain cancers exhibiting limited response and patient outcomes differing considerably. Thus, enhancing the effectiveness of immunotherapy is imperative. A promising avenue is mRNA delivery, employing carriers such as liposomes, peptide nanoparticles, inorganic nanoparticles, and exosomes to introduce mRNA cargos encoding tumor antigens, immune-stimulatory, or immune-modulatory molecules into the tumor immune microenvironment (TIME). This method aims to activate the immune system to target and eradicate tumor cells. In this review, we introduce the characteristics and limitations of these carriers and summarize the application and mechanisms of currently prevalent cargos in mRNA-based tumor treatment. Additionally, given the significant clinical application of immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR)-based cell therapies in solid tumors (including melanoma, non-small-cell lung cancer, head and neck squamous cell carcinoma, triple-negative breast cancer, gastric cancer) and leukemia, which have become first-line treatments, we highlight and discuss recent progress in combining mRNA delivery with ICIs, CAR-T, CAR-NK, and CAR-macrophage therapies. This combination enhances the targeting capabilities and efficacy of ICIs and CAR-cell-based therapies, while also mitigating the long-term off-target toxicities associated with conventional methods. Finally, we analyze the limitations of current mRNA delivery systems, such as nuclease-induced mRNA instability, immunogenicity risks, complex carrier production, and knowledge gaps concerning dosing and safety. Addressing these challenges is crucial for unlocking the potential of mRNA in cancer immunotherapy. Overall, exploring mRNA delivery enriches our comprehension of cancer immunotherapy and holds promise for developing personalized and effective treatment strategies, potentially enhancing the immune responses of cancer patients and extending their survival time.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yang-Wen-Qing Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Caixia Dai
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Junyu Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Minghe Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Xi Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| |
Collapse
|
23
|
Ye H, Liao W, Pan J, Shi Y, Wang Q. Immune checkpoint blockade for cancer therapy: current progress and perspectives. J Zhejiang Univ Sci B 2025; 26:203-226. [PMID: 40082201 PMCID: PMC11906392 DOI: 10.1631/jzus.b2300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/05/2023] [Indexed: 03/16/2025]
Abstract
Dysfunction of anti-tumor immune responses is crucial for cancer progression. Immune checkpoint blockade (ICB), which can potentiate T cell responses, is an effective strategy for the normalization of host anti-tumor immunity. In recent years, immune checkpoints, expressed on both tumor cells and immune cells, have been identified; some of them have exhibited potential druggability and have been approved by the US Food and Drug Administration (FDA) for clinical treatment. However, limited responses and immune-related adverse events (irAEs) cannot be ignored. This review outlines the development and applications of ICBs, potential strategies for overcoming resistance, and future directions for ICB-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hongying Ye
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China
| | - Weijie Liao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China
| | - Jiongli Pan
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China
| | - Yin Shi
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
24
|
Haghmorad D, Eslami M, Orooji N, Halabitska I, Kamyshna I, Kamyshnyi O, Oksenych V. mRNA vaccine platforms: linking infectious disease prevention and cancer immunotherapy. Front Bioeng Biotechnol 2025; 13:1547025. [PMID: 40144393 PMCID: PMC11937095 DOI: 10.3389/fbioe.2025.1547025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
The advent of mRNA vaccines, accelerated by the global response to the COVID-19 pandemic, marks a transformative shift in vaccine technology. In this article, we discuss the development, current applications, and prospects of mRNA vaccines for both the prevention and treatment of infectious diseases and oncology. By leveraging the capacity to encode antigens within host cells directly, mRNA vaccines provide a versatile and scalable platform suitable for addressing a broad spectrum of pathogens and tumor-specific antigens. We highlight recent advancements in mRNA vaccine design, innovative delivery mechanisms, and ongoing clinical trials, with particular emphasis on their efficacy in combating infectious diseases, such as COVID-19, Zika, and influenza, as well as their emerging potential in cancer immunotherapy. We also address critical challenges, including vaccine stability, optimization of immune responses, and the broader issue of global accessibility. Finally, we review potential strategies for advancing next-generation mRNA vaccines, with the aim of overcoming current limitations in vaccine technology and enhancing both preventive and therapeutic approaches for infectious and oncological diseases.
Collapse
Affiliation(s)
- Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Niloufar Orooji
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
25
|
Schock Vaiani J, Broekgaarden M, Coll JL, Sancey L, Busser B. In vivo vectorization and delivery systems for gene therapies and RNA-based therapeutics in oncology. NANOSCALE 2025; 17:5501-5525. [PMID: 39927415 DOI: 10.1039/d4nr05371k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Gene and RNA-based therapeutics represent a promising frontier in oncology, enabling targeted modulation of tumor-associated genes and proteins. This review explores the latest advances in payload vectorization and delivery systems developed for in vivo cancer treatments. We discuss viral and non-viral organic particles, including lipid based nanoparticles and polymeric structures, for the effective transport of plasmids, siRNA, and self-amplifying RNA therapeutics. Their physicochemical properties, strategies to overcome intracellular barriers, and innovations in cell-based carriers and engineered extracellular vesicles are highlighted. Moreover, we consider oncolytic viruses, novel viral capsid modifications, and approaches that refine tumor targeting and immunomodulation. Ongoing clinical trials and regulatory frameworks guide future directions and emphasize the need for safe, scalable production. The potential convergence of these systems with combination therapies paves the way toward personalized cancer medicine.
Collapse
Affiliation(s)
- Julie Schock Vaiani
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Mans Broekgaarden
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Jean-Luc Coll
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Lucie Sancey
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Benoit Busser
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
- Grenoble Alpes Univ. Hospital (CHUGA), 38043 Grenoble, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
26
|
Somu Naidu G, Rampado R, Sharma P, Ezra A, Kundoor GR, Breier D, Peer D. Ionizable Lipids with Optimized Linkers Enable Lung-Specific, Lipid Nanoparticle-Mediated mRNA Delivery for Treatment of Metastatic Lung Tumors. ACS NANO 2025; 19:6571-6587. [PMID: 39912611 PMCID: PMC11841047 DOI: 10.1021/acsnano.4c18636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/31/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Lipid nanoparticles (LNPs) have emerged as a groundbreaking delivery system for vaccines and therapeutic mRNAs. Ionizable lipids are the most pivotal component of LNPs due to their ability to electrostatically interact with mRNA, allowing its encapsulation while concurrently enabling its endosomal escape following cellular internalization. Thus, extensive research has been performed to optimize the ionizable lipid structure and to develop formulations that are well tolerated and allow efficient targeting of different organs that result in a high and sustained mRNA expression. However, one facet of the ionizable lipids' structure has been mostly overlooked: the linker segment between the ionizable headgroup and their tails. Here, we screened a rationally designed library of ionizable lipids with different biodegradable linkers. We extensively characterized LNPs formulated using these ionizable lipids and elucidated how these minor structural changes in the ionizable lipids structure radically influenced the LNPs' biodistribution in vivo. We showed how the use of amide and urea linkers can modulate the LNPs' pKa, resulting in an improved specificity for lung transfection. Finally, we demonstrated how one of these lipids (lipid 35) that form LNPs entrapping a bacterial toxin [pseudomonas exotoxin A (mmPE)] in the form of an mRNA reduced tumor burden and significantly increased the survival of mice with lung metastasis.
Collapse
Affiliation(s)
- Gonna Somu Naidu
- Laboratory
of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer
Research, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
- Department
of Materials Sciences and Engineering, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Cancer
Biology Research Center, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Riccardo Rampado
- Laboratory
of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer
Research, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
- Department
of Materials Sciences and Engineering, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Cancer
Biology Research Center, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
- Department
of Pharmaceutical Sciences, University of
Padova, Padova 35131, Italy
| | - Preeti Sharma
- Laboratory
of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer
Research, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
- Department
of Materials Sciences and Engineering, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Cancer
Biology Research Center, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Assaf Ezra
- Laboratory
of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer
Research, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
- Department
of Materials Sciences and Engineering, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Cancer
Biology Research Center, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Govinda Reddy Kundoor
- Laboratory
of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer
Research, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
- Department
of Materials Sciences and Engineering, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Cancer
Biology Research Center, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Dor Breier
- Laboratory
of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer
Research, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
- Department
of Materials Sciences and Engineering, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Cancer
Biology Research Center, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Dan Peer
- Laboratory
of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer
Research, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
- Department
of Materials Sciences and Engineering, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv-Yafo 69978, Israel
- Cancer
Biology Research Center, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| |
Collapse
|
27
|
Park W, Choi J, Hwang J, Kim S, Kim Y, Shim MK, Park W, Yu S, Jung S, Yang Y, Kweon DH. Apolipoprotein Fusion Enables Spontaneous Functionalization of mRNA Lipid Nanoparticles with Antibody for Targeted Cancer Therapy. ACS NANO 2025; 19:6412-6425. [PMID: 39908463 PMCID: PMC11841042 DOI: 10.1021/acsnano.4c16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
The mRNA-lipid nanoparticles (mRNA@LNPs) offer a novel opportunity to treat targets previously considered undruggable. Although antibody conjugation is crucial for enhancing the specificity, delivery efficiency, and minimizing the toxicity of mRNA therapeutics, current chemical conjugation methods are complex and produce heterogeneous particles with misoriented antibodies. In this work, we introduce a chemical-free approach to functionalize mRNA@LNPs with antibodies, mimicking protein corona formation for targeted mRNA delivery. By fusing apolipoprotein to the Fc domain of a targeting antibody, we enabled the antibody to spontaneously display on the surface of mRNA@LNPs without altering the existing LNP process or employing complex chemical conjugation techniques. We demonstrated precise protein expression using trastuzumab-bound mRNA@LNPs, facilitating specific mRNA expression in HER2-positive cancer cells. mRNA was efficiently delivered to the tumor site after intravenous administration. While the control LNPs lacking targeting antibodies caused acute liver toxicity, trastuzumab-displayed LNPs showed no systemic toxicity. The tumor-specific delivery of p53 tumor suppressor mRNA led to the complete regression of cancer cells. Thus, apolipoprotein fusion enables a straightforward and scalable production of antibody-functionalized mRNA@LNPs, offering significant therapeutic potential in gene therapy.
Collapse
Affiliation(s)
- Wonbeom Park
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Jiwoong Choi
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Jaehyeon Hwang
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Suhyun Kim
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Yelee Kim
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
- Department
of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Man Kyu Shim
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
| | - Wooram Park
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Seokhyeon Yu
- Research
Center, MVRIX, Anyang 14058, Republic of Korea
| | - Sangwon Jung
- Research
Center, MVRIX, Anyang 14058, Republic of Korea
| | - Yoosoo Yang
- Biomedical
Research Division, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic
of Korea
- Division
of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Dae-Hyuk Kweon
- Department
of Integrative Biotechnology, Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| |
Collapse
|
28
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
29
|
Liang J, Cheng G, Qiu L, Xue L, Xu H, Qiao X, Guo N, Xiang H, Chen Y, Ding H. Activatable Sulfur Dioxide Nanosonosensitizer Enables Precisely Controllable Sono-Gaseous Checkpoint Trimodal Therapy for Orthotopic Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409442. [PMID: 39679828 PMCID: PMC11791957 DOI: 10.1002/advs.202409442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/28/2024] [Indexed: 12/17/2024]
Abstract
Immune checkpoint blockade (ICB) is combined with sonodynamic therapy (SDT) to increase response rates and enhance anticancer efficacy. However, the "always on" property of most sonosensitizers in reducing tumor microenvironment (TME) compromises the therapeutic outcome of sonoimmunotherapy and exacerbates adverse side effects. Precisely controllable strategies combining sulfur dioxide (SO2) gas therapy with cancer immunotherapy can address these issues but remain lacking. Herein an "activatable SO2 nanosonosensitizer" for precise sono-gaseous checkpoint trimodal therapy of orthotopic hepatocellular carcinoma (HCC) is reported, whose full activity is initiated by ultrasound (US) irradiation in the reducing TME. This "activatable SO2 nanosonosensitizer," Aza-DNBS nanoparticles (NPs), are established by self-assembling Aza-boron-dipyrromethene based sonosensitizer molecules and 2,4-dinitrobenzenesulfonate (DNBS)-caged SO2 prodrug. The activity of Aza-DNBS NPs is initially silenced, and the sonodynamic, gaseous, and immunosuppressive TME reprogramming activities are precisely awakened under US irradiation. Due to the glutathione-responsiveness of Aza-DNBS NPs, Aza-DNBS NPs can generate large amounts of SO2 for gas therapy-enhanced SDT, which triggers robust immunogenic cell death activation and reprogramming of the immunosuppressive TME, thereby significantly suppressing orthotopic tumor growth and delaying lung metastasis. Thus, this study represents a strategy for designing a generic nanoplatform for precisely combined immunotherapy of orthotopic HCC.
Collapse
Affiliation(s)
- Jing Liang
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Guangwen Cheng
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Luping Qiu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Liyun Xue
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huning Xu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Xiaohui Qiao
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Na Guo
- Department of PathologyZhejiang Cancer HospitalHangzhouZhejiang310022China
| | - Huijing Xiang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| | - Hong Ding
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| |
Collapse
|
30
|
Jang I, Yum K, Han S, Moon S, Lee JB. A virus-inspired RNA mimicry approach for effective cancer immunotherapy. J Mater Chem B 2025; 13:1619-1629. [PMID: 39834198 DOI: 10.1039/d4tb02301c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Current cancer treatments, including chemotherapy, surgery, and radiation, often present significant challenges such as severe side effects, drug resistance, and damage to healthy tissues. To address these issues, we introduce a virus-inspired RNA mimicry approach, specifically through the development of uridine-rich nanoparticles (UNPs) synthesized using the rolling circle transcription (RCT) technique. These UNPs are designed to mimic the poly-U tail sequences of viral RNA, effectively engaging RIG-I-like receptors (RLRs) such as MDA5 and LGP2 in cancer cells. Activation of these receptors leads to the upregulation of pro-inflammatory cytokines and the initiation of apoptosis, resulting in targeted cancer cell death. Importantly, this strategy overcomes the limitations of traditional therapies and enhances the effectiveness of existing RIG-I stimulators, such as poly(I:C), which has often exhibited toxicity in clinical settings due to delivery methods. Our in vivo studies further demonstrate the ability of UNPs to significantly reduce tumor growth without adverse effects, highlighting their potential as a novel and effective approach in cancer immunotherapy. This approach offers new therapeutic strategies that leverage the body's innate antiviral mechanisms for cancer treatment.
Collapse
Affiliation(s)
- Iksoo Jang
- Department of Chemical Engineering, University of Seoul, Republic of Korea
| | - Kyuha Yum
- Department of Chemical Engineering, University of Seoul, Republic of Korea
| | - Sangwoo Han
- Department of Chemical Engineering, University of Seoul, Republic of Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, Republic of Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, Republic of Korea
- Center for Innovative Chemical Processes, Institute of Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
31
|
Zhang B, Zhang H, Qin Y. A Primer on the Role of TP53 Mutation and Targeted Therapy in Endometrial Cancer. FRONT BIOSCI-LANDMRK 2025; 30:25447. [PMID: 39862074 DOI: 10.31083/fbl25447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 01/27/2025]
Abstract
Endometrial Cancer (EC) is one of the most common gynecological malignancies, ranking first in developed countries and regions. The occurrence and development of EC is closely associated with genetic mutations. TP53 mutation, in particular, can lead to the dysfunction of numerous regulatory factors and alteration of the tumor microenvironment (TME). The changes in the TME subsequently promote the development of tumors and assist in immune escape by tumor cells, making it more challenging to treat EC and resulting in a poor prognosis. Therefore, it is important to understand the effects of TP53 mutation in EC and to conduct further research in relation to the targeting of TP53 mutations. This article reviews current research progress on the role of TP53 mutations in regulating the TME and in the mechanism of EC tumorigenesis, as well as progress on drugs that target TP53 mutations.
Collapse
Affiliation(s)
- Bohao Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| | - Haozhe Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou Hospital of Zhengzhou University, 450000 Zhengzhou, Henan, China
| |
Collapse
|
32
|
Mancino C, Franke M, Greco A, Sontam T, Mcculloch P, Corbo C, Taraballi F. RNA therapies for musculoskeletal conditions. J Control Release 2025; 377:756-766. [PMID: 39617171 DOI: 10.1016/j.jconrel.2024.11.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Musculoskeletal conditions impact 1.71 billion individuals, posing significant challenges due to their complexity, varying clinical courses, and unclear molecular mechanisms. Conventional spectrum treatments often prove inadequate, underscoring the importance of targeted therapies. Recently, RNA-based technologies have emerged as a groundbreaking approach in therapeutics, showing applications in joint related ailments. This perspective aims to examine endeavors exploring the use of RNA-based treatments in both experimental and clinical contexts for addressing joint issues like osteoarthritis, rheumatoid arthritis, and cartilage injuries. The cited studies demonstrate how mRNA can stimulate the production of proteins that aid in controlling inflammation, fostering tissue regeneration and repairing cartilage damage. In summary, this perspective offers an overview of the progress made in mRNA-based technologies for treating related conditions by highlighting favorable findings from preclinical research and encouraging results from clinical trials. With advancements in the field, mRNA therapeutics have the potential to revolutionize treatment approaches for musculoskeletal disorders, bringing renewed hope to the future of musculoskeletal conditions.
Collapse
Affiliation(s)
- Chiara Mancino
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Madeline Franke
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA
| | - Antonietta Greco
- School of Medicine and Surgery, Nanomedicine Center Nanomib, University of Milano-Bicocca, Via R. Follereau 3, 20854 Vedano al Lambro, MB, Italy
| | - Tarun Sontam
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA
| | - Patrick Mcculloch
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Claudia Corbo
- School of Medicine and Surgery, Nanomedicine Center Nanomib, University of Milano-Bicocca, Via R. Follereau 3, 20854 Vedano al Lambro, MB, Italy; IRCCS Istituto Ortopedico Galeazzi, Via Cristina Belgioioso 173, 20161 Milan, Italy.
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
33
|
Yaremenko AV, Khan MM, Zhen X, Tang Y, Tao W. Clinical advances of mRNA vaccines for cancer immunotherapy. MED 2025; 6:100562. [PMID: 39798545 DOI: 10.1016/j.medj.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025]
Abstract
The development of mRNA vaccines represents a significant advancement in cancer treatment, with more than 120 clinical trials to date demonstrating their potential across various malignancies, including lung, breast, prostate, melanoma, and more challenging cancers such as pancreatic and brain tumors. These vaccines work by encoding tumor-specific antigens and immune-stimulating molecules, effectively activating the immune system to target and eliminate cancer cells. Despite these promising advancements, significant challenges remain, particularly in achieving efficient delivery and precise regulation of the immune response. This review provides a comprehensive overview of recent clinical progress in mRNA cancer vaccines, discusses the innovative strategies being employed to overcome existing hurdles, and explores future directions, including the integration of CRISPR-Cas9 technology and advancements in mRNA design. Our aim is to provide insights into the ongoing research and clinical trials, highlighting the transformative potential of mRNA vaccines in advancing oncology and improving patient outcomes.
Collapse
Affiliation(s)
- Alexey V Yaremenko
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Muhammad Muzamil Khan
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xueyan Zhen
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yan Tang
- Pulmonary and Critical Care Medicine, Development of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Wei Tao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Fu Q, Zhao X, Hu J, Jiao Y, Yan Y, Pan X, Wang X, Jiao F. mRNA vaccines in the context of cancer treatment: from concept to application. J Transl Med 2025; 23:12. [PMID: 39762875 PMCID: PMC11702060 DOI: 10.1186/s12967-024-06033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Immuno-oncology has witnessed remarkable advancements in the past decade, revolutionizing the landscape of cancer therapeutics in an encouraging manner. Among the diverse immunotherapy strategies, mRNA vaccines have ushered in a new era for the therapeutic management of malignant diseases, primarily due to their impressive impact on the COVID-19 pandemic. In this comprehensive review, we offer a systematic overview of mRNA vaccines, focusing on the optimization of structural design, the crucial role of delivery materials, and the administration route. Additionally, we summarize preclinical studies and clinical trials to provide valuable insights into the current status of mRNA vaccines in cancer treatment. Furthermore, we delve into a systematic discussion on the significant challenges facing the current development of mRNA tumor vaccines. These challenges encompass both intrinsic and external factors that are closely intertwined with the successful application of this innovative approach. To pave the way for a more promising future in cancer treatments, a deeper understanding of immunological mechanisms, an increasing number of high-quality clinical trials, and a well-established manufacturing platform are crucial. Collaborative efforts between scientists, clinicians, and industry engineers are essential to achieving these goals.
Collapse
Affiliation(s)
- Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Xiaoming Zhao
- Center of Physical Examination, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Yang Jiao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Yunfei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China
| | - Xuchen Pan
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China
| | - Xin Wang
- Department of Clinical Laboratory & Health Service Training, Binzhou Medical University Affiliated 970 Hospital of the PLA Joint Logistic Support Force, Yantai, 264002, P. R. China.
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
| |
Collapse
|
35
|
Ma H, Hong Y, Xu Z, Weng Z, Yang Y, Jin D, Chen Z, Zhou X, Xu Z, Fei F, Song W, Li J. ALKBH5 acts a tumor-suppressive biomarker and is associated with immunotherapy response in hepatocellular carcinoma. Sci Rep 2025; 15:55. [PMID: 39747943 PMCID: PMC11696456 DOI: 10.1038/s41598-024-84050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
As immune-checkpoint inhibitors (ICIs) therapy has made great strides in hepatocellular carcinoma (HCC) treatment, improving patient response to this strategy has become the main focus of research. Accumulating evidence has shown that m6A methylation plays a crucial role in the tumorigenesis and progression of HCC, while the precise impact of the m6A demethylase ALKBH5 on the tumor immune microenvironment (TIME) of HCC remains poorly defined. The clinical significance of ALKBH5 and TIM3 were evaluated in human HCC tissues. The biological function of ALKBH5 was analyzed in vitro and in vivo. The HCC molecular subtypes were identified based on key ALKBH5-regulated methylation-related genes (MRGs). The differences in survival, clinical features, TIME and immunotherapy response between these two subtypes were then evaluated. The regulation of ALKBH5 on TIM3 was detected by qPCR, western blotting and MeRIP. ALKBH5 was downregulated in HCC and associated with worse prognosis. ALKBH5 inhibited the proliferation and migration activities of HCC cells in vitro and in vivo. The HCC subtype with high expression of key MRGs was characterized by immunosuppression phenotypes and a worse response to ICIs. Moreover, TIM3 was identified as a target of ALKBH5. Upregulated TIM3 level was negatively correlated with survival in HCC. The results of this study suggest that ALKBH5 is an important regulator in HCC progression. ALKBH5 exerts its influence on the TIME and immunotherapy response by targeting TIM3 in HCC. This work provides new insight into the correlation between m6A modification and ICI response, which may help provide therapeutic benefits to HCC patients.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- AlkB Homolog 5, RNA Demethylase/metabolism
- AlkB Homolog 5, RNA Demethylase/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Immunotherapy/methods
- Male
- Animals
- Female
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Mice
- Hepatitis A Virus Cellular Receptor 2/metabolism
- Hepatitis A Virus Cellular Receptor 2/genetics
- Tumor Microenvironment/immunology
- Cell Proliferation
- Prognosis
- Middle Aged
- Cell Movement
Collapse
Affiliation(s)
- Hehua Ma
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuxin Hong
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenzhen Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zuyi Weng
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuanxun Yang
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Dandan Jin
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhiyou Chen
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuan Zhou
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Zhi Xu
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Fei Fei
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wei Song
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Juan Li
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
36
|
Yuan Y, Sun W, Xie J, Zhang Z, Luo J, Han X, Xiong Y, Yang Y, Zhang Y. RNA nanotherapeutics for hepatocellular carcinoma treatment. Theranostics 2025; 15:965-992. [PMID: 39776807 PMCID: PMC11700867 DOI: 10.7150/thno.102964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality worldwide, particularly due to the limited effectiveness of current therapeutic options for advanced-stage disease. The efficacy of traditional treatments is often compromised by the intricate liver microenvironment and the inherent heterogeneity. RNA-based therapeutics offer a promising alternative, utilizing the innovative approach of targeting aberrant molecular pathways and modulating the tumor microenvironment. The integration of nanotechnology in this field, through the development of advanced nanocarrier delivery systems, especially lipid nanoparticles (LNPs), polymer nanoparticles (PNPs), and bioinspired vectors, enhances the precision and efficacy of RNA therapies. This review highlights the significant progress in RNA nanotherapeutics for HCC treatment, covering micro RNA (miRNA), small interfering RNA (siRNA), message RNA (mRNA), and small activating RNA (saRNA) mediated gene silencing, therapeutic protein restoration, gene activation, cancer vaccines, and concurrent therapy. It further comprehensively discusses the prevailing challenges within this therapeutic landscape and provides a forward-looking perspective on the potential of RNA nanotherapeutics to transform HCC treatment.
Collapse
Affiliation(s)
- Yihang Yuan
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
- Department of General Surgery Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School Nanjing University, Nanjing 210008, China
| | - Weijie Sun
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, China
| | - Jiaqi Xie
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Ziheng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jing Luo
- Department of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiangfei Han
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637600, China
| | - Yang Yang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing 210008, China
| | - Yang Zhang
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
37
|
Lefler DS, Manobianco SA, Bashir B. Immunotherapy resistance in solid tumors: mechanisms and potential solutions. Cancer Biol Ther 2024; 25:2315655. [PMID: 38389121 PMCID: PMC10896138 DOI: 10.1080/15384047.2024.2315655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
While the emergence of immunotherapies has fundamentally altered the management of solid tumors, cancers exploit many complex biological mechanisms that result in resistance to these agents. These encompass a broad range of cellular activities - from modification of traditional paradigms of immunity via antigen presentation and immunoregulation to metabolic modifications and manipulation of the tumor microenvironment. Intervening on these intricate processes may provide clinical benefit in patients with solid tumors by overcoming resistance to immunotherapies, which is why it has become an area of tremendous research interest with practice-changing implications. This review details the major ways cancers avoid both natural immunity and immunotherapies through primary (innate) and secondary (acquired) mechanisms of resistance, and it considers available and emerging therapeutic approaches to overcoming immunotherapy resistance.
Collapse
Affiliation(s)
- Daniel S. Lefler
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven A. Manobianco
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Babar Bashir
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
38
|
Yao R, Xie C, Xia X. Recent progress in mRNA cancer vaccines. Hum Vaccin Immunother 2024; 20:2307187. [PMID: 38282471 PMCID: PMC10826636 DOI: 10.1080/21645515.2024.2307187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/16/2024] [Indexed: 01/30/2024] Open
Abstract
The research and development of messenger RNA (mRNA) cancer vaccines have gradually overcome numerous challenges through the application of personalized cancer antigens, structural optimization of mRNA, and the development of alternative RNA-based vectors and efficient targeted delivery vectors. Clinical trials are currently underway for various cancer vaccines that encode tumor-associated antigens (TAAs), tumor-specific antigens (TSAs), or immunomodulators. In this paper, we summarize the optimization of mRNA and the emergence of RNA-based expression vectors in cancer vaccines. We begin by reviewing the advancement and utilization of state-of-the-art targeted lipid nanoparticles (LNPs), followed by presenting the primary classifications and clinical applications of mRNA cancer vaccines. Collectively, mRNA vaccines are emerging as a central focus in cancer immunotherapy, offering the potential to address multiple challenges in cancer treatment, either as standalone therapies or in combination with current cancer treatments.
Collapse
Affiliation(s)
- Ruhui Yao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
39
|
Shih FH, Chang HH, Wang YC. Utilizing adeno-associated virus as a vector in treating genetic disorders or human cancers. IUBMB Life 2024; 76:1000-1010. [PMID: 38970351 DOI: 10.1002/iub.2896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024]
Abstract
Clinical data from over two decades, involving more than 3000 treated patients, demonstrate that adeno-associated virus (AAV) gene therapy is a safe, effective, and well-tolerated therapeutic method. Clinical trials using AAV-mediated gene delivery to accessible tissues have led to successful treatments for numerous monogenic disorders and advancements in tissue engineering. Although the US Food and Drug Administration (FDA) has approved AAV for clinical use, systemic administration remains a significant challenge. In this review, we delve into AAV biology, focusing on current manufacturing technologies and transgene engineering strategies. We examine the use of AAVs in ongoing clinical trials for ocular, neurological, and hematological disorders, as well as cancers. By discussing recent advancements and current challenges in the field, we aim to provide valuable insights for researchers and clinicians navigating the evolving landscape of AAV-based gene therapy.
Collapse
Affiliation(s)
- Fu-Hsuan Shih
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hsiung-Hao Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
40
|
Song J, Wang H, Meng X, Li W, Qi J. A hypoxia-activated and microenvironment-remodeling nanoplatform for multifunctional imaging and potentiated immunotherapy of cancer. Nat Commun 2024; 15:10395. [PMID: 39613774 PMCID: PMC11607447 DOI: 10.1038/s41467-024-53906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/26/2024] [Indexed: 12/01/2024] Open
Abstract
Activatable theranostic systems combining precise diagnosis and robust immune activation have significant potential in cancer treatment. Herein, we develop a versatile nanoplatform integrating hypoxia-activatable molecular imaging with effective photoimmunotherapy for cancer treatment. Our molecular probe features turn-on near-infrared-II (NIR-II) fluorescence and photoacoustic signals in hypoxic tumor environments. It also induces hypoxia-triggered photodynamic and photothermal effects, promoting immunogenic cell death and activating the STING pathway, engaging both innate and adaptive immunity. The molecular probe is formulated with a vascular disrupting agent to amplify the hypoxia-responsive phototheranostic properties, on which M1-like macrophage membrane is camouflaged to shield against premature release while conferring cancer-targeting affinity. The activatable NIR-II fluorescence and photoacoustic imaging enable precise tumor delineation, while the enhanced phototherapy activates tumor-specific cytotoxic T cells, impeding both primary and distant tumor progression and providing protective immunity against rechallenge in 4T1 tumor-bearing female mice. This work advances activatable theranostic protocols for image-guided immunotherapy.
Collapse
Affiliation(s)
- Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, China
| | - He Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue Meng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
41
|
Gawi Ermi A, Sarkar D. Resistance to Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma (HCC): Clinical Implications and Potential Strategies to Overcome the Resistance. Cancers (Basel) 2024; 16:3944. [PMID: 39682130 DOI: 10.3390/cancers16233944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, and the development of effective treatment strategies remains a significant challenge in the management of advanced HCC patients. The emergence of tyrosine kinase inhibitors (TKIs) has been a significant advancement in the treatment of HCC, as these targeted therapies have shown promise in prolonging the survival of patients with advanced disease. Although immunotherapy is currently considered as the first line of treatment for advanced HCC patients, many such patients do not meet the clinical criteria to be eligible for immunotherapy, and in many parts of the world there is still lack of accessibility to immunotherapy. As such, TKIs still serve as the first line of treatment and play a major role in the treatment repertoire for advanced HCC patients. However, the development of resistance to these agents is a major obstacle that must be overcome. In this review, we explore the underlying mechanisms of resistance to TKIs in HCC, the clinical implications of this resistance, and the potential strategies to overcome or prevent the emergence of resistance.
Collapse
Affiliation(s)
- Ali Gawi Ermi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
42
|
Laila UE, An W, Xu ZX. Emerging prospects of mRNA cancer vaccines: mechanisms, formulations, and challenges in cancer immunotherapy. Front Immunol 2024; 15:1448489. [PMID: 39654897 PMCID: PMC11625737 DOI: 10.3389/fimmu.2024.1448489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer continues to pose an alarming threat to global health, necessitating the need for the development of efficient therapeutic solutions despite massive advances in the treatment. mRNA cancer vaccines have emerged as a hopeful avenue, propelled by the victory of mRNA technology in COVID-19 vaccines. The article delves into the intricate mechanisms and formulations of cancer vaccines, highlighting the ongoing efforts to strengthen mRNA stability and ensure successful translation inside target cells. Moreover, it discusses the design and mechanism of action of mRNA, showcasing its potential as a useful benchmark for developing efficacious cancer vaccines. The significance of mRNA therapy and selecting appropriate tumor antigens for the personalized development of mRNA vaccines are emphasized, providing insights into the immune mechanism. Additionally, the review explores the integration of mRNA vaccines with other immunotherapies and the utilization of progressive delivery platforms, such as lipid nanoparticles, to improve immune responses and address challenges related to immune evasion and tumor heterogeneity. While underscoring the advantages of mRNA vaccines, the review also addresses the challenges associated with the susceptibility of RNA to degradation and the difficulty in identifying optimum tumor-specific antigens, along with the potential solutions. Furthermore, it provides a comprehensive overview of the ongoing research efforts aimed at addressing these hurdles and enhancing the effectiveness of mRNA-based cancer vaccines. Overall, this review is a focused and inclusive impression of the present state of mRNA cancer vaccines, outlining their possibilities, challenges, and future predictions in the fight against cancer, ultimately aiding in the development of more targeted therapies against cancer.
Collapse
Affiliation(s)
| | | | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| |
Collapse
|
43
|
Guo X, Guo M, Cai R, Hu M, Rao L, Su W, Liu H, Gao F, Zhang X, Liu J, Chen C. mRNA compartmentalization via multimodule DNA nanostructure assembly augments the immunogenicity and efficacy of cancer mRNA vaccine. SCIENCE ADVANCES 2024; 10:eadp3680. [PMID: 39576858 PMCID: PMC11584007 DOI: 10.1126/sciadv.adp3680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Messenger RNA (mRNA) vaccine has fueled a great hope for cancer immunotherapy. However, low immunogenicity, caused by inefficient mRNA expression and weak immune stimulation, hampers the efficacy of mRNA vaccines. Here, we present an mRNA compartmentalization-based cancer vaccine, comprising a multimodule DNA nanostructure (MMDNS)-assembled compartment for efficient mRNA translation via in situ localizing mRNA concentration and relevant reaction molecules. The MMDNS is constructed via programmable DNA hybridization chain reaction (HCR)-based strategy, with integrating antigen-coded mRNA, CpG oligodeoxynucleotides (ODNs), acidic-responsive DNA sequence, and dendritic cells targeting aptamer. MMDNS undergoes in situ assembly in acidic lysosomes to form a micro-sized aggregate, inducing an enhanced CpG ODN adjuvant efficacy. Subsequently, the aggregates escape into cytoplasm, providing a moderate compartment which supports the efficient translation of spatially proximal mRNA transcripts via localizing relevant reaction molecules. The mRNA compartmentalization-based vaccine boosts a strong immune response and effectively inhibits tumor growth and metastasis, offering a robust strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaocui Guo
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Mengyu Guo
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Rong Cai
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Mingdi Hu
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Le Rao
- Health Management Institute, The Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Wen Su
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - He Liu
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Fene Gao
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Xiaoyu Zhang
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Jing Liu
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700, China
| |
Collapse
|
44
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Liu H, Li X, Yan R, Yang J, Lu Q, Wang L. DNA tetrahedron nanoparticles service as a help carrier and adjvant of mRNA vaccine. J Transl Med 2024; 22:1024. [PMID: 39543727 PMCID: PMC11566622 DOI: 10.1186/s12967-024-05837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
AIM OF THE STUDY To investigate the potential of DNA nanoparticles (DNPs) as carriers and adjuvants for mRNA vaccines. MATERIALS AND METHODS Customized oligonucleotides were assembled into DNA tetrahedra (DNA-TH), which were subsequently complexed with streptavidin and mRNA encoding green fluorescent protein (GFP). Various assays were conducted to evaluat the stability of the DNPs, their cellular uptake, immune activation potential, and GFP mRNA transcription efficiency. P53-mutant HSC-3 cells were used to establish a subcutaneous xenograft tumor model to explore the effects of DNPs as carriers and adjuvants in a disease model. RESULTS The DNPs were remained stable extracellularly and rapidly taken up by antigen-presenting cells. Compared to naked GFP mRNA, DNPs statistically significantly activated immune responses and facilitated GFP mRNA transcription and protein expression both in vitro and in vivo. Immunization with DNP-GFP mRNA complexes induced higher antibody titers compared to naked mRNA. The DNPs demonstrated good biocompatibility. DNP-p53 inhibited the growth of subcutaneous xenograft tumors in mice with p53-mutant HSC-3 cells, outperforming both the naked p53 mRNA and blank control groups, with a statistically significant difference (P < 0.05). CONCLUSION DNA nanoparticles show promise for improving mRNA vaccine delivery and efficacy. Further optimization of these nanoparticles could lead to highly effective mRNA vaccine carriers with broad applications.
Collapse
Affiliation(s)
- Henglang Liu
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xianxian Li
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ruike Yan
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qun Lu
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lili Wang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
46
|
Peng Y, Bai J, Li W, Su Z, Cheng X. Advancements in p53-Based Anti-Tumor Gene Therapy Research. Molecules 2024; 29:5315. [PMID: 39598704 PMCID: PMC11596491 DOI: 10.3390/molecules29225315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The p53 gene is one of the genes most closely associated with human tumors and has become a popular target for tumor drug design. Currently, p53-based gene therapy techniques have been developed, but these therapies face challenges such as immaturity, high safety hazards, limited efficacy, and low patient acceptance. However, researchers are no less enthusiastic about the treatment because of its theoretical potential to treat cancer. In this paper, the advances in p53-based gene therapy and related nucleic acid delivery technologies were reviewed and prospected in order to support further development in this field.
Collapse
Affiliation(s)
- Yuanwan Peng
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.P.); (J.B.); (W.L.)
| | - Jinping Bai
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.P.); (J.B.); (W.L.)
| | - Wang Li
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.P.); (J.B.); (W.L.)
| | - Zhengding Su
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Xiyao Cheng
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.P.); (J.B.); (W.L.)
| |
Collapse
|
47
|
Li Y, Chen W, Koo S, Liu H, Saiding Q, Xie A, Kong N, Cao Y, Abdi R, Serhan CN, Tao W. Innate immunity-modulating nanobiomaterials for controlling inflammation resolution. MATTER 2024; 7:3811-3844. [PMID: 40123651 PMCID: PMC11925551 DOI: 10.1016/j.matt.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The acute inflammatory response is an inherent protective mechanism, its unsuccessful resolution can contribute to disease pathogenesis and potentially lead to death. Innate immune cells are the first line of host defenders and play a substantial role in inflammation initiation, amplification, resolution, or subsequent disease progression. As the resolution of inflammation is an active and highly regulated process, modulating innate immune cells, including neutrophils, monocytes and macrophages, and endothelial cells, and their interactions offer opportunities to control excessive inflammation. Nanobiomaterials have shown superior therapeutic potential in inflammation-related diseases by manipulating inflammatory responses because nanobiomaterials can target and interact with innate immune cells. Versatile nanobiomaterials can be designed for targeted modulation of specific innate immune responses. Nanopro-resolving medicines have been prepared both with pro-resolving lipid mediators and peptides each demonstrated to active resolution of inflammation in animal disease models. Here, we review innovative nanobiomaterials for modulating innate immunity and alleviating inflammation. We summarise the strategies converging the design of nanobiomaterials and the nano-bio interaction in modulating innate immune profiles and propelling the advancement of nanobiomaterials for inflammatory disease treatments. We also propose the future perspectives and translational challenges of nanobiomaterials that need to be overcome in this swiftly rising field.
Collapse
Affiliation(s)
- Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally: Yongjiang Li, Wei Chen
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally: Yongjiang Li, Wei Chen
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Haijun Liu
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Angel Xie
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
48
|
Liu H, Zhang T, Zheng M, Xie Z. Tumor associated antigens combined with carbon dots for inducing durable antitumor immunity. J Colloid Interface Sci 2024; 673:594-606. [PMID: 38897061 DOI: 10.1016/j.jcis.2024.06.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Although therapeutic nanovaccines have made a mark in cancer immunotherapy, the shortcomings such as poor homing ability of lymph nodes (LNs), low antigen presentation efficiency and low antitumor efficacy have hindered their clinical transformation. Accordingly, we prepared advanced nanovaccines (CMB and CMC) by integrating carbon dots (CDs) with tumor-associated antigens (B16F10 and CT26). These nanovaccines could forwardly target tumors harbouring LNs, induce strong immunogenicity for activating cytotoxic T cells (CTLs), thereby readily eliminating tumor cells and suppressing primary/distal tumor growth. This work provides a promising therapeutic vaccination strategy to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Hongxin Liu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China
| | - Tao Zhang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, PR China
| | - Min Zheng
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, PR China.
| |
Collapse
|
49
|
Wu S, Su K, Yan X, Shi L, Lin L, Ren E, Zhou J, Zhang C, Song Y, Liu S. Paracyclophane-based ionizable lipids for efficient mRNA delivery in vivo. J Control Release 2024; 376:395-401. [PMID: 39424104 DOI: 10.1016/j.jconrel.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
mRNA therapeutics utilizing lipid nanoparticle (LNP) delivery technology represent a medical innovation for the treatment of various diseases. Amine-derived ionizable cationic lipids have been regarded as the pivotal component of LNPs, which often utilize commercially available small amine molecules as their cores. Given that even minor changes in the structure of ionizable lipids can result in significant differences in the delivery performance, there is a growing need to redesign the lipid amine-cores to optimize mRNA therapy. Here, we rationally design and synthesize a library of 198 paracyclophane-based ionizable lipids (PILs), which are then formulated into LNPs for mRNA delivery in vitro and in vivo. The resulting PIL LNPs display favorable characteristics, including appropriate particle sizes, zeta potentials, mRNA binding capability, efficacious endosomal escape, and robust mRNA delivery in vitro. Tailoring the PIL structures further enables mRNA expression specifically in the liver or simultaneously across multi-organs in vivo. Notably, the optimized PIL LNPs demonstrate superior efficacy compared to the U.S. Food and Drug Administration (FDA) approved DLin-MC3-DMA LNPs following intravenous administration. Additionally, when administered intramuscularly, our PIL LNPs exhibit higher efficacy than the SM-102 and ALC-0315 LNPs that are employed in the coronavirus disease 2019 (COVID-19) mRNA vaccines. These findings demonstrate the potential of paracyclophane-based ionizable lipids in advancing mRNA therapeutics, particularly for liver-targeted drugs and vaccines.
Collapse
Affiliation(s)
- Shiqi Wu
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Kexin Su
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinxin Yan
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lu Shi
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Lixin Lin
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - En Ren
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jingjing Zhou
- Cosychem Technology (Tianjin) Co., Ltd., Tianjin 300450, China
| | - Chao Zhang
- Cosychem Technology (Tianjin) Co., Ltd., Tianjin 300450, China
| | - Yanmin Song
- Cosychem Technology (Tianjin) Co., Ltd., Tianjin 300450, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Liangzhu Laboratory, Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
50
|
Nian Z, Dou Y, Shen Y, Liu J, Du X, Jiang Y, Zhou Y, Fu B, Sun R, Zheng X, Tian Z, Wei H. Interleukin-34-orchestrated tumor-associated macrophage reprogramming is required for tumor immune escape driven by p53 inactivation. Immunity 2024; 57:2344-2361.e7. [PMID: 39321806 DOI: 10.1016/j.immuni.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/29/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
As the most frequent genetic alteration in cancer, more than half of human cancers have p53 mutations that cause transcriptional inactivation. However, how p53 modulates the immune landscape to create a niche for immune escape remains elusive. We found that cancer stem cells (CSCs) established an interleukin-34 (IL-34)-orchestrated niche to promote tumorigenesis in p53-inactivated liver cancer. Mechanistically, we discovered that Il34 is a gene transcriptionally repressed by p53, and p53 loss resulted in IL-34 secretion by CSCs. IL-34 induced CD36-mediated elevations in fatty acid oxidative metabolism to drive M2-like polarization of foam-like tumor-associated macrophages (TAMs). These IL-34-orchestrated TAMs suppressed CD8+ T cell-mediated antitumor immunity to promote immune escape. Blockade of the IL-34-CD36 axis elicited antitumor immunity and synergized with anti-PD-1 immunotherapy, leading to a complete response. Our findings reveal the underlying mechanism of p53 modulation of the tumor immune microenvironment and provide a potential target for immunotherapy of cancer with p53 inactivation.
Collapse
Affiliation(s)
- Zhigang Nian
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yingchao Dou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yiqing Shen
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jintang Liu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xianghui Du
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yong Jiang
- Department of Anesthesiology, The first affiliated hospital of Anhui Medical University, Hefei, Anhui 230027, China
| | - Yonggang Zhou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Binqing Fu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaohu Zheng
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haiming Wei
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|