1
|
Oh JM, Park Y, Lee J, Shen K. Microfabricated Organ-Specific Models of Tumor Microenvironments. Annu Rev Biomed Eng 2025; 27:307-333. [PMID: 40310890 DOI: 10.1146/annurev-bioeng-110222-103522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Despite the advances in detection, diagnosis, and treatments, cancer remains a lethal disease, claiming the lives of more than 600,000 people in the United States alone in 2024. To accelerate the development of new therapeutic strategies with improved responses, significant efforts have been made to develop microfabricated in vitro models of tumor microenvironments (TMEs) that address the limitations of animal-based cancer models. These models incorporate several advanced tissue engineering techniques to better reflect the organ- and patient-specific TMEs. Additionally, microfabricated models integrated with next-generation single-cell omics technologies provide unprecedented insights into patient's cellular and molecular heterogeneity and complexity. This review provides an overview of the recent understanding of cancer development and outlines the key TME elements that can be captured in microfabricated models to enhance their physiological relevance. We highlight the recent advances in microfabricated cancer models that reflect the unique characteristics of their organs of origin or sites of dissemination.
Collapse
Affiliation(s)
- Jeong Min Oh
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA;
| | - Yongkuk Park
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, USA;
| | - Jungwoo Lee
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts, USA;
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - Keyue Shen
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA;
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Wu P, Liu Z, Zheng L, Du Y, Zhou Z, Wang W, Lu C. Comprehensive multimodal and multiomic profiling reveals epigenetic and transcriptional reprogramming in lung tumors. Commun Biol 2025; 8:527. [PMID: 40164799 PMCID: PMC11958746 DOI: 10.1038/s42003-025-07954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Epigenomic mechanisms are critically involved in mediation of genetic and environmental factors that underlie cancer development. Histone modifications represent highly informative epigenomic marks that reveal activation and repression of gene activities and dysregulation of transcriptional control due to tumorigenesis. Here, we present a comprehensive epigenomic and transcriptomic mapping of 18 stage I and II tumor and 20 non-neoplastic tissues from non-small cell lung adenocarcinoma patients. Our profiling covers 5 histone marks including activating (H3K4me3, H3K4me1, and H3K27ac) and repressive (H3K27me3 and H3K9me3) marks and the transcriptome using only 20 mg of tissue per sample, enabled by low-input omic technologies. Using advanced integrative bioinformatic analysis, we uncover cancer-driving signaling cascade networks, changes in 3D genome modularity, differential expression and functionalities of transcription factors and noncoding RNAs. Many of these identified genes and regulatory molecules show no significant change in their expression or a single epigenomic modality, emphasizing the power of integrative multimodal and multiomic analysis using patient samples.
Collapse
Affiliation(s)
- Peiyao Wu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhengzhi Liu
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Lina Zheng
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yanmiao Du
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zirui Zhou
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
3
|
Gu A, Li J, Li M, Liu Y. Patient-derived xenograft model in cancer: establishment and applications. MedComm (Beijing) 2025; 6:e70059. [PMID: 39830019 PMCID: PMC11742426 DOI: 10.1002/mco2.70059] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/24/2024] [Accepted: 12/15/2024] [Indexed: 01/22/2025] Open
Abstract
The patient-derived xenograft (PDX) model is a crucial in vivo model extensively employed in cancer research that has been shown to maintain the genomic characteristics and pathological structure of patients across various subtypes, metastatic, and diverse treatment histories. Various treatment strategies utilized in PDX models can offer valuable insights into the mechanisms of tumor progression, drug resistance, and the development of novel therapies. This review provides a comprehensive overview of the establishment and applications of PDX models. We present an overview of the history and current status of PDX models, elucidate the diverse construction methodologies employed for different tumors, and conduct a comparative analysis to highlight the distinct advantages and limitations of this model in relation to other in vivo models. The applications are elucidated in the domain of comprehending the mechanisms underlying tumor development and cancer therapy, which highlights broad applications in the fields of chemotherapy, targeted therapy, delivery systems, combination therapy, antibody-drug conjugates and radiotherapy. Furthermore, the combination of the PDX model with multiomics and single-cell analyses for cancer research has also been emphasized. The application of the PDX model in clinical treatment and personalized medicine is additionally emphasized.
Collapse
Affiliation(s)
- Ao Gu
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiatong Li
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Meng‐Yao Li
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yingbin Liu
- Department of Biliary‐Pancreatic SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Zhao Y, Dhani S, Gogvadze V, Zhivotovsky B. The crosstalk between SND1 and PDCD4 is associated with chemoresistance of non-small cell lung carcinoma cells. Cell Death Discov 2025; 11:34. [PMID: 39885142 PMCID: PMC11782486 DOI: 10.1038/s41420-025-02310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) is highly resistant to chemo- or radiation therapy, which poses a huge challenge for treatment of advanced NSCLC. Previously, we demonstrated the oncogenic role of Tudor Staphylococcal nuclease (TSN, also known as Staphylococcal nuclease domain-containing protein 1, SND1), in regulating chemoresistance in NSCLC cells. Here, we showed that silencing of SND1 augmented the sensitivity of NSCLC cells to different chemotherapeutic drugs. Additionally, the expression of PDCD4 (a tumor suppressor highly associated with lung cancer) in NSCLC cells with low endogenous levels was attenuated by SND1 silencing, implying that SND1 might function as a molecular regulator upstream of PDCD4. PDCD4 is differentially expressed in various NSCLC cells. In the NSCLC cells (A549 and H23 cells) with low expression of PDCD4, despite the downregulation of PDCD4, silencing of SND1 still led to sensitization of NSCLC cells to treatment with different chemotherapeutic agents by the inhibition of autophagic activity. Thus, a novel correlation interlinking SND1 and PDCD4 in the regulation of NSCLC cells concerning chemotherapy was revealed, which contributes to understanding the mechanisms of chemoresistance in NSCLC.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shanel Dhani
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir Gogvadze
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia.
| |
Collapse
|
5
|
Li F, Hu B, Zhang L, Liu Y, Wang J, Wu C, Wu S, Zhang Y, Yang X, Lu H. Phosphoproteomics profiling of sorafenib-resistant hepatocellular carcinoma patient-derived xenografts reveals potential therapeutic strategies. iScience 2025; 28:111657. [PMID: 39886465 PMCID: PMC11780156 DOI: 10.1016/j.isci.2024.111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/15/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer with poor prognosis. Sorafenib, a first-line treatment for advanced HCC, has shown limited clinical benefits due to the onset of drug resistance. Thus, it is imperative to comprehend the mechanisms underlying sorafenib resistance and explore strategies to overcome or delay it. Here, we established HCC patient-derived xenograft (PDX) models with acquired resistance to sorafenib and performed comprehensive proteomic and phosphoproteomic analyses on these models. The active cell cycle pathway along with the active cyclin-dependent kinase CDK1 and DNA-dependent protein kinase PRKDC was identified through KEGG pathway enrichment and kinase substrate enrichment analyses. Upon investigating the potential of combining sorafenib with putative kinase inhibitors, we found that the combination displays synergistic anti-proliferative effects in the sorafenib-resistant liver cancer cell line, thus providing a proof of concept for phosphoproteomic-guided design of precision medicine.
Collapse
Affiliation(s)
- Feng Li
- Liver Cancer Institute and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Bo Hu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Lei Zhang
- Liver Cancer Institute and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Yang Liu
- Liver Cancer Institute and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Jun Wang
- Liver Cancer Institute and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Changqing Wu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Suiyi Wu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Ying Zhang
- Department of Chemistry and Key Laboratory of Glycoconjugates Research Ministry of Public Health, Fudan University, Shanghai, P.R. China
| | - Xinrong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Haojie Lu
- Liver Cancer Institute and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
- Department of Chemistry and Key Laboratory of Glycoconjugates Research Ministry of Public Health, Fudan University, Shanghai, P.R. China
| |
Collapse
|
6
|
Perez JM, Duda JM, Ryu J, Shetty M, Mehta S, Jagtap PD, Nelson AC, Winterhoff B, Griffin TJ, Starr TK, Thomas SN. Investigating proteogenomic divergence in patient-derived xenograft models of ovarian cancer. Sci Rep 2025; 15:813. [PMID: 39755759 PMCID: PMC11700199 DOI: 10.1038/s41598-024-84874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Within ovarian cancer research, patient-derived xenograft (PDX) models recapitulate histologic features and genomic aberrations found in original tumors. However, conflicting data from published studies have demonstrated significant transcriptional differences between PDXs and original tumors, challenging the fidelity of these models. We employed a quantitative mass spectrometry-based proteomic approach coupled with generation of patient-specific databases using RNA-seq data to investigate the proteogenomic landscape of serially-passaged PDX models established from two patients with distinct subtypes of ovarian cancer. We demonstrate that the utilization of patient-specific databases guided by transcriptional profiles increases the depth of human protein identification in PDX models. Our data show that human proteomes of serially passaged PDXs differ significantly from their patient-derived tumor of origin. Analysis of differentially abundant proteins revealed enrichment of distinct biological pathways with major downregulated processes including extracellular matrix organization and the immune system. Finally, we investigated the relative abundances of ovarian cancer-related proteins identified from the Cancer Gene Census across serially passaged PDXs, and found their protein levels to be unstable across PDX models. Our findings highlight features of distinct and dynamic proteomes of serially-passaged PDX models of ovarian cancer.
Collapse
Affiliation(s)
- Jesenia M Perez
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Jolene M Duda
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Joohyun Ryu
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Subina Mehta
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Pratik D Jagtap
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA
| | - Boris Winterhoff
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Timothy J Griffin
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Timothy K Starr
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefani N Thomas
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA.
| |
Collapse
|
7
|
Ozdemır C, Celık OI, Zeybek A, Suzek T, Aftabı Y, Karakas Celık S, Edgunlu T. Downregulation of MGLL and microRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in non-small cell lung cancer: potential roles in pathogenesis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-17. [PMID: 39673541 DOI: 10.1080/15257770.2024.2439904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/16/2024]
Abstract
Genes involved in lipid metabolism have been considered potential therapeutic targets in lung cancer because lipid metabolism is severely disrupted in this cancer. Monoglyceride lipase (MGLL) is a lipolytic enzyme that converts monoacylglycerides to fatty acids and glycerol. MicroRNAs (miRNA), one of the most important epigenetic regulators of gene expression, are also considered potential biomarkers in diagnosing, treating, and prognosis lung cancer. This study aimed to investigate the potential effects of MGLL and related miRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in the pathogenesis of non-small cell lung cancer (NSCLC) by examining their expression levels and regulatory mechanisms. We analysed the expression levels of MGLL and miRNAs in 30 NSCLC and 20 non-cancerous tissues by qPCR. We performed in silico analyses to determine the biological functions of MGLL and miRNAs in NSCLC. A protein-protein interaction (PPI) network was constructed for MGLL, and gene ontology (GO) analysis, and the interacting genes were analysed using the TCGAnalyzer tool. Our study showed that the expression levels of MGLL, miR-302b-5p, miR-190a-3p and miR-450a-2-3p were significantly decreased in NSCLC tissues (p < 0.05). Also, according to TCGAnalyzer, MSRB3, HTR4, and FCER1G genes were downregulated genes for NSCLC. We showed that miR-302b-5p, miR-190a-3p, and miR-450a-2-3p significantly regulate the TGF-β signalling pathway. In conclusion, this study provides evidence for the potential role of MGLL and microRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in NSCLC. In subsequent studies, it was determined that MSRB3, FCER1G and LTB4R2 genes, especially the HTR4 gene, could be potential target genes for lung cancer.
Collapse
Affiliation(s)
- Cilem Ozdemır
- Graduate School of Natural and Applied Sciences, Department of Bioinformatics, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Ozgur Ilhan Celık
- Faculty of Medicine, Department of Pathology, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Arife Zeybek
- Faculty of Medicine, Department of Thoracic Surgery, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Tugba Suzek
- Faculty of Engineering, Department of Computer Engineering, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Younes Aftabı
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Sevim Karakas Celık
- Faculty of Medicine, Department of Medical Genetics, Bülent Ecevit University, Zonguldak, Turkey
| | - Tuba Edgunlu
- Faculty of Medicine, Department of Medical Biology, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
8
|
Li S, Ma J, Bai J, Zhao Z. Complete remission after pembrolizumab monotherapy in a non-small cell lung cancer patient with PD-L1 negative, high tumor mutational burden, and positive tumor-infiltrating lymphocytes: A case report. Medicine (Baltimore) 2024; 103:e40369. [PMID: 39654211 PMCID: PMC11630958 DOI: 10.1097/md.0000000000040369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/12/2024] Open
Abstract
RATIONALE Immune checkpoint inhibitors have been used to treat cancer patients. Non-small cell lung cancer (NSCLC) patients with a high expression level of programmed cell death ligand-1 (PD-L1) could benefit from immune checkpoint inhibitor monotherapy. However, treating NSCLC patients with PD-L1 negative is still a clinical challenge. The utilization of new-type tumor markers as predictive indicators of therapeutic efficacy, with the aim of guiding clinical medication strategies, has emerged as a paramount focus of clinical investigation and interest. PATIENT CONCERNS AND DIAGNOSES We reported a 72-year-old male with cough diagnosed as poorly differentiated metastatic lung adenocarcinoma (cT3N2M1, stage IV). He tested negative for driver gene mutations, and PD-L1 negative (<1%), but a high tumor mutational burden (30.9 and 39.1 mutations/Mb in the lung tissue and blood, respectively), and positive tumor-infiltrating lymphocytes. INTERVENTIONS The patient received pembrolizumab monotherapy. OUTCOMES After 8 treatment cycles over 5 months, repeat examinations showed significantly reduced lung mass and circulating tumor DNA abundance. The patient reached clinical complete remission and had long-term survival with no significant adverse events. LESSONS A comprehensive evaluation of multiple tumor biomarkers should be considered in NSCLC patients. Pembrolizumab monotherapy could benefit NSCLC patients with negative driver genes, PD-L1 negative, a high tumor mutational burden, and positive tumor-infiltrating lymphocytes.
Collapse
Affiliation(s)
- Suoni Li
- Department of Oncology, Shaanxi Provincial Tumor Hospital, Xi’an, Shaanxi, China
| | - Jiequn Ma
- Department of Oncology, Shaanxi Provincial Tumor Hospital, Xi’an, Shaanxi, China
| | - Jie Bai
- Department of Oncology, Shaanxi Provincial Tumor Hospital, Xi’an, Shaanxi, China
| | - Zheng Zhao
- Department of Oncology, Shaanxi Provincial Tumor Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
9
|
Alashkar Alhamwe B, Yuskaeva K, Wulf F, Trinkmann F, Kriegsmann M, Thomas M, Keber CU, Strandmann EPV, Herth FJ, Kolahian S, Renz H, Muley T. Peripheral Inflammation Featuring Eosinophilia or Neutrophilia Is Associated with the Survival and Infiltration of Eosinophils within the Tumor among Various Histological Subgroups of Patients with NSCLC. Int J Mol Sci 2024; 25:9552. [PMID: 39273499 PMCID: PMC11395097 DOI: 10.3390/ijms25179552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Immune activation status determines non-small cell lung cancer (NSCLC) prognosis, with reported positive/negative associations for T helper type 2 (TH2) responses, including allergen-specific IgE and eosinophils. Our study seeks to explore the potential impact of these comorbid immune responses on the survival rates of patients with NSCLC. Our retrospective study used data from the Data Warehouse of the German Center for Lung Research (DZL) and Lung Biobank at Thoraxklinik Heidelberg. We estimated the association of blood eosinophilia and neutrophilia on survival rates in an inflammatory cohort of 3143 patients with NSCLC. We also tested sensitization to food and inhalants and high-sensitivity C-reactive protein (hs-CRP) in a comorbidity cohort of 212 patients with NSCLC. Finally, we estimated the infiltration of immune-relevant cells including eosinophils, T-cells, and mast cells in a tissue inflammatory sub-cohort of 60 patients with NSCLC. Sensitization to at least one food or inhalant (sIgE) was higher in patients with adenocarcinoma (adeno-LC) than the non-adenocarcinoma (non-adeno-LC). Furthermore, hs-CRP was higher in non-adeno-LC compared with adeno-LC. Peripheral inflammation, particularly eosinophilia and neutrophilia, was associated with poor survival outcomes in NSCLC with a clear difference between histological subgroups. Finally, blood eosinophilia was paralleled by significant eosinophil infiltration into the peritumoral tissue in the lung. This study provides novel perspectives on the crucial role of peripheral inflammation, featuring eosinophilia and neutrophilia, with overall survival, underscoring distinctions between NSCLC subgroups (adeno-LC vs. non-adeno-LC). Peripheral eosinophilia enhances eosinophil infiltration into tumors. This sheds light on the complex interplay between inflammation, eosinophil infiltration, and NSCLC prognosis among various histological subtypes. Further studies are required to underscore the role of eosinophils in NSCLC among different histological subgroups and their role in shaping the tumor microenvironment.
Collapse
Affiliation(s)
- Bilal Alashkar Alhamwe
- Institute of Laboratory Medicine, German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Medical Faculty, Philipps University of Marburg, 35043 Marburg, Germany
- Institute of Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany
- College of Pharmacy, International University for Science and Technology (IUST), Daraa 15, Syria
| | - Kadriya Yuskaeva
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), 35394 Heidelberg, Germany
- Translational Research Unit (STF), Thoraxklinik, University Hospital Heidelberg, 69126 Heidelberg, Germany
| | - Friederike Wulf
- Institute of Laboratory Medicine, German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Medical Faculty, Philipps University of Marburg, 35043 Marburg, Germany
| | - Frederik Trinkmann
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), 35394 Heidelberg, Germany
- Department of Pneumology and Respiratory Medicine, Thoraxklinik, University Hospital Heidelberg, 69126 Heidelberg, Germany
- Department of Biomedical Informatics (DBMI), Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Heidelberg, Germany
| | - Mark Kriegsmann
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), 35394 Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, Pathology Wiesbaden, Ludwig-Erhard-Str. 100, 65199 Wiesbaden, Germany
| | - Michael Thomas
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), 35394 Heidelberg, Germany
- Department of Oncology, Thoraxklinik, University Hospital Heidelberg, 69126 Heidelberg, Germany
| | - Corinna Ulrike Keber
- Institute for Pathology, University Hospital Giessen and Marburg, 35037 Marburg, Germany
| | - Elke Pogge von Strandmann
- Institute of Tumor Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany
| | - Felix J Herth
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), 35394 Heidelberg, Germany
- Department of Pneumology and Respiratory Medicine, Thoraxklinik, University Hospital Heidelberg, 69126 Heidelberg, Germany
| | - Saeed Kolahian
- Institute of Laboratory Medicine, German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Medical Faculty, Philipps University of Marburg, 35043 Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Medical Faculty, Philipps University of Marburg, 35043 Marburg, Germany
| | - Thomas Muley
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), 35394 Heidelberg, Germany
- Translational Research Unit (STF), Thoraxklinik, University Hospital Heidelberg, 69126 Heidelberg, Germany
| |
Collapse
|
10
|
Jiao F, Yu C, Wheat A, Chen L, Lih TSM, Zhang H, Huang L. DSBSO-Based XL-MS Analysis of Breast Cancer PDX Tissues to Delineate Protein Interaction Network in Clinical Samples. J Proteome Res 2024; 23:3269-3279. [PMID: 38334954 PMCID: PMC11296914 DOI: 10.1021/acs.jproteome.3c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Protein-protein interactions (PPIs) are fundamental to understanding biological systems as protein complexes are the active molecular modules critical for carrying out cellular functions. Dysfunctional PPIs have been associated with various diseases including cancer. Systems-wide PPI analysis not only sheds light on pathological mechanisms, but also represents a paradigm in identifying potential therapeutic targets. In recent years, cross-linking mass spectrometry (XL-MS) has emerged as a powerful tool for defining endogenous PPIs of cellular networks. While proteome-wide studies have been performed in cell lysates, intact cells and tissues, applications of XL-MS in clinical samples have not been reported. In this study, we adopted a DSBSO-based in vivo XL-MS platform to map interaction landscapes from two breast cancer patient-derived xenograft (PDX) models. As a result, we have generated a PDX interaction network comprising 2,557 human proteins and identified interactions unique to breast cancer subtypes. Interestingly, most of the observed differences in PPIs correlated well with protein abundance changes determined by TMT-based proteome quantitation. Collectively, this work has demonstrated the feasibility of XL-MS analysis in clinical samples, and established an analytical workflow for tissue cross-linking that can be generalized for mapping PPIs from patient samples in the future to dissect disease-relevant cellular networks.
Collapse
Affiliation(s)
- Fenglong Jiao
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Andrew Wheat
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| | - Lijun Chen
- Department of Pathology and Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231
| | - Tung-Shing Mamie Lih
- Department of Pathology and Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231
| | - Hui Zhang
- Department of Pathology and Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| |
Collapse
|
11
|
Ogawa H, Koga T, Pham NA, Bernards N, Gregor A, Sata Y, Kitazawa S, Hiraishi Y, Ishiwata T, Aragaki M, Yokote F, Effat A, Kazlovich K, Li Q, Hueniken K, Li M, Maniwa Y, Tsao MS, Yasufuku K. Clinical and pathological predictors of engraftment for patient-derived xenografts in lung adenocarcinoma. Lung Cancer 2024; 194:107863. [PMID: 38968761 DOI: 10.1016/j.lungcan.2024.107863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Patient-derived xenografts (PDXs) are increasingly utilized in preclinical drug efficacy studies due to their ability to retain the molecular, histological, and drug response characteristics of patient tumors. This study aimed to investigate the factors influencing the successful engraftment of PDXs. Lung adenocarcinoma PDXs were established using freshly resected tumor tissues obtained through surgery. Radiological data of pulmonary nodules from this PDX cohort were analyzed, categorizing them into solid tumors and tumors with ground-glass opacity (GGO) based on preoperative CT images. Gene mutation status was obtained from next generation sequencing data and MassARRAY panel. A total of 254 resected primary lung adenocarcinomas were utilized for PDX establishment, with successful initial engraftment in 58 cases (22.8 %); stable engraftment defined as at least three serial passages was observed in 43 cases (16.9 %). The stable engraftment rates of PDXs from solid tumors and tumors with GGO were 22.1 % (42 of 190 cases) and 1.6 % (1 of 64 cases), respectively (P < 0.001). Adenocarcinomas with advanced stage, poor differentiation, solid histologic subtype, and KRAS or TP53 gene mutations were associated with stable PDX engraftment. Avoiding tumors with GGO features could enhance the cost-effectiveness of establishing PDX models from early-stage resected lung adenocarcinomas.
Collapse
Affiliation(s)
- Hiroyuki Ogawa
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, Hyogo, Japan
| | - Takamasa Koga
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Nicholas Bernards
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Alexander Gregor
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Yuki Sata
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Shinsuke Kitazawa
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Yoshihisa Hiraishi
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Tsukasa Ishiwata
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Masato Aragaki
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Fumi Yokote
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Andrew Effat
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Kate Kazlovich
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Quan Li
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Katrina Hueniken
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming Li
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Yoshimasa Maniwa
- Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, Hyogo, Japan
| | - Ming-Sound Tsao
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Shen A, Garrett A, Chao CC, Liu D, Cheng C, Wang Z, Qian C, Zhu Y, Mai J, Jiang C. A comprehensive meta-analysis of tissue resident memory T cells and their roles in shaping immune microenvironment and patient prognosis in non-small cell lung cancer. Front Immunol 2024; 15:1416751. [PMID: 39040095 PMCID: PMC11260734 DOI: 10.3389/fimmu.2024.1416751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Tissue-resident memory T cells (TRM) are a specialized subset of long-lived memory T cells that reside in peripheral tissues. However, the impact of TRM-related immunosurveillance on the tumor-immune microenvironment (TIME) and tumor progression across various non-small-cell lung cancer (NSCLC) patient populations is yet to be elucidated. Our comprehensive analysis of multiple independent single-cell and bulk RNA-seq datasets of patient NSCLC samples generated reliable, unique TRM signatures, through which we inferred the abundance of TRM in NSCLC. We discovered that TRM abundance is consistently positively correlated with CD4+ T helper 1 cells, M1 macrophages, and resting dendritic cells in the TIME. In addition, TRM signatures are strongly associated with immune checkpoint and stimulatory genes and the prognosis of NSCLC patients. A TRM-based machine learning model to predict patient survival was validated and an 18-gene risk score was further developed to effectively stratify patients into low-risk and high-risk categories, wherein patients with high-risk scores had significantly lower overall survival than patients with low-risk. The prognostic value of the risk score was independently validated by the Cancer Genome Atlas Program (TCGA) dataset and multiple independent NSCLC patient datasets. Notably, low-risk NSCLC patients with higher TRM infiltration exhibited enhanced T-cell immunity, nature killer cell activation, and other TIME immune responses related pathways, indicating a more active immune profile benefitting from immunotherapy. However, the TRM signature revealed low TRM abundance and a lack of prognostic association among lung squamous cell carcinoma patients in contrast to adenocarcinoma, indicating that the two NSCLC subtypes are driven by distinct TIMEs. Altogether, this study provides valuable insights into the complex interactions between TRM and TIME and their impact on NSCLC patient prognosis. The development of a simplified 18-gene risk score provides a practical prognostic marker for risk stratification.
Collapse
Affiliation(s)
- Aidan Shen
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Aliesha Garrett
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Cheng-Chi Chao
- Department of Pipeline Development, Biomap, Inc., San Francisco, CA, United States
| | - Dongliang Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Zhaohui Wang
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Chen Qian
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yangzhi Zhu
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Chongming Jiang
- Department of Precision Medicine, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, United States
| |
Collapse
|
13
|
Wu P, Liu Z, Zheng L, Zhou Z, Wang W, Lu C. Comprehensive multimodal and multiomic profiling reveals epigenetic and transcriptional reprogramming in lung tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597667. [PMID: 38895479 PMCID: PMC11185586 DOI: 10.1101/2024.06.06.597667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Epigenomic mechanisms are critically involved in mediation of genetic and environmental factors that underlie cancer development. Histone modifications represent highly informative epigenomic marks that reveal activation and repression of gene activities and dysregulation of transcriptional control due to tumorigenesis. Here, we present a comprehensive epigenomic and transcriptomic mapping of 18 tumor and 20 non-neoplastic tissues from non-small cell lung adenocarcinoma patients. Our profiling covers 5 histone marks including activating (H3K4me3, H3K4me1, and H3K27ac) and repressive (H3K27me3 and H3K9me3) marks and the transcriptome using only 20 mg of tissue per sample, enabled by low-input omic technologies. Using advanced integrative bioinformatic analysis, we uncovered cancer-driving signaling cascade networks, changes in 3D genome modularity, and differential expression and functionalities of transcription factors and noncoding RNAs. Many of these identified genes and regulatory molecules showed no significant change in their expression or a single epigenomic modality, emphasizing the power of integrative multimodal and multiomic analysis using patient samples.
Collapse
|
14
|
Park SY, Choi H, Choi SM, Wang S, Shim S, Jun W, Lee J, Chung JW. T-plastin contributes to epithelial-mesenchymal transition in human lung cancer cells through FAK/AKT/Slug axis signaling pathway. BMB Rep 2024; 57:305-310. [PMID: 38835117 PMCID: PMC11214894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024] Open
Abstract
T-plastin (PLST), a member of the actin-bundling protein family, plays crucial roles in cytoskeletal structure, regulation, and motility. Studies have shown that the plastin family is associated with the malignant characteristics of cancer, such as circulating tumor cells and metastasis, by inducing epithelialmesenchymal transition (EMT) in various cancer cells. However, the role of PLST in the EMT of human lung cancer cells remains unclear. In this study, we observed that PLST overexpression enhanced cell migratory and invasive abilities, whereas its downregulation resulted in their suppression. Moreover, PLST expression levels were associated with the expression patterns of EMT markers, including E-cadherin, vimentin, and Slug. Furthermore, the phosphorylation levels of focal adhesion kinase (FAK) and AKT serine/threonine kinase (AKT) were dependent on PLST expression levels. These findings indicate that PLST induces the migration and invasion of human lung cancer cells by promoting Slug-mediated EMT via the FAK/AKT signaling pathway. [BMB Reports 2024; 57(6): 305-310].
Collapse
Affiliation(s)
- Soon Yong Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan 46033, Korea
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| | - Hyeongrok Choi
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| | - Soo Min Choi
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| | - Seungwon Wang
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| | - Sangin Shim
- Department of Agronomy, Gyeongsang National University, Jinju 52828, Korea
| | - Woojin Jun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan 49315, Korea
| | - Jin Woong Chung
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Korea
| |
Collapse
|
15
|
Ding D, Zhao Y, Jia Y, Niu M, Li X, Zheng X, Chen H. Identification of novel genes associated with atherosclerosis in Bama miniature pig. Animal Model Exp Med 2024; 7:377-387. [PMID: 38720469 PMCID: PMC11228093 DOI: 10.1002/ame2.12412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/20/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Atherosclerosis is a chronic cardiovascular disease of great concern. However, it is difficult to establish a direct connection between conventional small animal models and clinical practice. The pig's genome, physiology, and anatomy reflect human biology better than other laboratory animals, which is crucial for studying the pathogenesis of atherosclerosis. METHODS We used whole-genome sequencing data from nine Bama minipigs to perform a genome-wide linkage analysis, and further used bioinformatic tools to filter and identify underlying candidate genes. Candidate gene function prediction was performed using the online prediction tool STRING 12.0. Immunohistochemistry and immunofluorescence were used to detect the expression of proteins encoded by candidate genes. RESULTS We mapped differential single nucleotide polymorphisms (SNPs) to genes and obtained a total of 102 differential genes, then we used GO and KEGG pathway enrichment analysis to identify four candidate genes, including SLA-1, SLA-2, SLA-3, and TAP2. nsSNPs cause changes in the primary and tertiary structures of SLA-I and TAP2 proteins, the primary structures of these two proteins have undergone amino acid changes, and the tertiary structures also show slight changes. In addition, immunohistochemistry and immunofluorescence results showed that the expression changes of TAP2 protein in coronary arteries showed a trend of increasing from the middle layer to the inner layer. CONCLUSIONS We have identified SLA-I and TAP2 as potential susceptibility genes of atherosclerosis, highlighting the importance of antigen processing and immune response in atherogenesis.
Collapse
Affiliation(s)
- Dengfeng Ding
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Yuqiong Zhao
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Yunxiao Jia
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Miaomiao Niu
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Xuezhuang Li
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Xinou Zheng
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| | - Hua Chen
- Laboratory Animal CenterChinese PLA General HospitalBeijingChina
| |
Collapse
|
16
|
Hynds RE, Huebner A, Pearce DR, Hill MS, Akarca AU, Moore DA, Ward S, Gowers KHC, Karasaki T, Al Bakir M, Wilson GA, Pich O, Martínez-Ruiz C, Hossain ASMM, Pearce SP, Sivakumar M, Ben Aissa A, Grönroos E, Chandrasekharan D, Kolluri KK, Towns R, Wang K, Cook DE, Bosshard-Carter L, Naceur-Lombardelli C, Rowan AJ, Veeriah S, Litchfield K, Crosbie PAJ, Dive C, Quezada SA, Janes SM, Jamal-Hanjani M, Marafioti T, McGranahan N, Swanton C. Representation of genomic intratumor heterogeneity in multi-region non-small cell lung cancer patient-derived xenograft models. Nat Commun 2024; 15:4653. [PMID: 38821942 PMCID: PMC11143323 DOI: 10.1038/s41467-024-47547-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/28/2024] [Indexed: 06/02/2024] Open
Abstract
Patient-derived xenograft (PDX) models are widely used in cancer research. To investigate the genomic fidelity of non-small cell lung cancer PDX models, we established 48 PDX models from 22 patients enrolled in the TRACERx study. Multi-region tumor sampling increased successful PDX engraftment and most models were histologically similar to their parent tumor. Whole-exome sequencing enabled comparison of tumors and PDX models and we provide an adapted mouse reference genome for improved removal of NOD scid gamma (NSG) mouse-derived reads from sequencing data. PDX model establishment caused a genomic bottleneck, with models often representing a single tumor subclone. While distinct tumor subclones were represented in independent models from the same tumor, individual PDX models did not fully recapitulate intratumor heterogeneity. On-going genomic evolution in mice contributed modestly to the genomic distance between tumors and PDX models. Our study highlights the importance of considering primary tumor heterogeneity when using PDX models and emphasizes the benefit of comprehensive tumor sampling.
Collapse
Affiliation(s)
- Robert E Hynds
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Epithelial Cell Biology in ENT Research Group (EpiCENTR), Developmental Biology and Cancer, Great Ormond Street University College London Institute of Child Health, London, UK.
| | - Ariana Huebner
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - David R Pearce
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mark S Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Ayse U Akarca
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Sophia Ward
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Advanced Sequencing Facility, The Francis Crick Institute, London, UK
| | - Kate H C Gowers
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Takahiro Karasaki
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Maise Al Bakir
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Gareth A Wilson
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Oriol Pich
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Carlos Martínez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - A S Md Mukarram Hossain
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
| | - Simon P Pearce
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
| | - Monica Sivakumar
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Assma Ben Aissa
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Deepak Chandrasekharan
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Krishna K Kolluri
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Rebecca Towns
- Biological Services Unit, University College London, London, UK
| | - Kaiwen Wang
- School of Medicine, University of Leeds, Leeds, UK
| | - Daniel E Cook
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Leticia Bosshard-Carter
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | | | - Andrew J Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Philip A J Crosbie
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Caroline Dive
- Cancer Research UK National Biomarker Centre, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
- Department of Oncology, University College London Hospitals, London, UK
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- Department of Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
17
|
S V, Balasubramanian S, Perumal E, Santhakumar K. Identification of key genes and signalling pathways in clear cell renal cell carcinoma: An integrated bioinformatics approach. Cancer Biomark 2024; 40:111-123. [PMID: 38427469 PMCID: PMC11191544 DOI: 10.3233/cbm-230271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/10/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Clear cell Renal Cell Carcinoma (ccRCC) is one of the most prevalent types of kidney cancer. Unravelling the genes responsible for driving cellular changes and the transformation of cells in ccRCC pathogenesis is a complex process. OBJECTIVE In this study, twelve microarray ccRCC datasets were chosen from the gene expression omnibus (GEO) database and subjected to integrated analysis. METHODS Through GEO2R analysis, 179 common differentially expressed genes (DEGs) were identified among the datasets. The common DEGs were subjected to functional enrichment analysis using ToppFun followed by construction of protein-protein interaction network (PPIN) using Cytoscape. Clusters within the DEGs PPIN were identified using the Molecular Complex Detection (MCODE) Cytoscape plugin. To identify the hub genes, the centrality parameters degree, betweenness, and closeness scores were calculated for each DEGs in the PPIN. Additionally, Gene Expression Profiling Interactive Analysis (GEPIA) was utilized to validate the relative expression levels of hub genes in the normal and ccRCC tissues. RESULTS The common DEGs were highly enriched in Hypoxia-inducible factor (HIF) signalling and metabolic reprogramming pathways. VEGFA, CAV1, LOX, CCND1, PLG, EGF, SLC2A1, and ENO2 were identified as hub genes. CONCLUSION Among 8 hub genes, only the expression levels of VEGFA, LOX, CCND1, and EGF showed a unique expression pattern exclusively in ccRCC on compared to other type of cancers.
Collapse
Affiliation(s)
- Vinoth S
- Department of Genetic Engineering, Zebrafish Genetics Laboratory, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Satheeswaran Balasubramanian
- Department of Biotechnology, Molecular Toxicology Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Ekambaram Perumal
- Department of Biotechnology, Molecular Toxicology Laboratory, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Kirankumar Santhakumar
- Department of Genetic Engineering, Zebrafish Genetics Laboratory, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
18
|
Lê H, Deforges J, Hua G, Idoux-Gillet Y, Ponté C, Lindner V, Olland A, Falcoz PE, Zaupa C, Jain S, Quéméneur E, Benkirane-Jessel N, Balloul JM. In vitro vascularized immunocompetent patient-derived model to test cancer therapies. iScience 2023; 26:108094. [PMID: 37860774 PMCID: PMC10582498 DOI: 10.1016/j.isci.2023.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
This work describes a patient-derived tumoroid model (PDTs) to support precision medicine in lung oncology. The use of human adipose tissue-derived microvasculature and patient-derived peripheral blood mononuclear cells (PBMCs) permits to achieve a physiologically relevant tumor microenvironment. This study involved ten patients at various stages of tumor progression. The vascularized, immune-infiltrated PDT model could be obtained within two weeks, matching the requirements of the therapeutic decision. Histological and transcriptomic analyses confirmed that the main features from the original tumor were reproduced. The 3D tumor model could be used to determine the dynamics of response to antiangiogenic therapy and platinum-based chemotherapy. Antiangiogenic therapy showed a significant decrease in vascular endothelial growth factor (VEGF)-A expression, reflecting its therapeutic effect in the model. In an immune-infiltrated PDT model, chemotherapy showed the ability to decrease the levels of lymphocyte activation gene-3 protein (LAG-3), B and T lymphocyte attenuator (BTLA), and inhibitory receptors of T cells functions.
Collapse
Affiliation(s)
- Hélène Lê
- Transgene S.A, 400 Boulevard Gonthier d’Andernach, 67400 Illkirch-Graffenstaden, France
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Jules Deforges
- Transgene S.A, 400 Boulevard Gonthier d’Andernach, 67400 Illkirch-Graffenstaden, France
| | - Guoqiang Hua
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Ysia Idoux-Gillet
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Charlotte Ponté
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
- Hopitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - Véronique Lindner
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Anne Olland
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
- Hopitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - Pierre-Emanuel Falcoz
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
- Hopitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - Cécile Zaupa
- Boehringer Ingelheim, 29 avenue Tony Garnier, 69007 Lyon, France
| | - Shreyansh Jain
- Transgene S.A, 400 Boulevard Gonthier d’Andernach, 67400 Illkirch-Graffenstaden, France
| | - Eric Quéméneur
- Transgene S.A, 400 Boulevard Gonthier d’Andernach, 67400 Illkirch-Graffenstaden, France
| | - Nadia Benkirane-Jessel
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Jean-Marc Balloul
- Transgene S.A, 400 Boulevard Gonthier d’Andernach, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
19
|
Luna HGC, Imasa MS, Juat N, Hernandez KV, Sayo TM, Cristal-Luna G, Asur-Galang SM, Bellengan M, Duga KJ, Buenaobra BB, De los Santos MI, Medina D, Samo J, Literal VM, Bascos NA, Sy-Naval S. The differential prognostic implications of PD-L1 expression in the outcomes of Filipinos with EGFR-mutant NSCLC treated with tyrosine kinase inhibitors. Transl Lung Cancer Res 2023; 12:1896-1911. [PMID: 37854154 PMCID: PMC10579834 DOI: 10.21037/tlcr-23-118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/20/2023] [Indexed: 10/20/2023]
Abstract
Background The tumor immune microenvironment influences tumor evolution in non-small cell lung cancer (NSCLC). Yet, the prognostic value of programmed death-ligand 1 (PD-L1) in epidermal growth factor receptor (EGFR)-mutant NSCLC remains controversial. Additionally, prognostic studies in Filipinos with EGFR-mutant NSCLC remain unexplored to this day. Methods We prospectively studied the outcomes of EGFR-mutant NSCLC in Filipino cohort, and retrospectively verified the survival trend using The Cancer Genome Atlas (TCGA) cohort. Kaplan-Meier method and generalized linear regression were used to assess survival. Expression and DNA methylation of cluster of differentiation 274 (CD274, gene that codes for PD-L1) were examined from TCGA tumor profiles. Pearson's correlation was used to correlate PD-L1 expression with outcomes associated with occurrence of EGFR mutations, tyrosine kinase inhibitor (TKI) types, and programmed cell death protein 1 (PD-1) expression. Proteome network analysis was used to examine the correlation between drug resistance and PD-L1. Results PD-L1 positivity was associated with significantly longer progression-free survival (PFS; P=0.0096) but had a significantly contrasting influence in the overall survival (OS; P=0.0011). PD-L1 positivity (in both protein and RNA) was associated with longer median OS (mOS) in exon21 L858R, whereas, negativity was associated with longer mOS in exon19 deletion (exon19del). Stratification (high, low, negative) of PD-L1 expression lacked significant prognostic value (all P>0.05). PD-L1/CD274 expression (P<0.05) and DNA methylation (P<0.001) vary significantly among NSCLC subtypes and in different disease stages. Erlotinib treatment produced the longest median progression-free survival (mPFS; 874 days) relative to other EGFR-TKIs (137-311 days). PD-L1 lacked a significant correlation with EGFR-TKIs. Consistent with the immune-regulation activities of PD-1, higher expression leads to relatively shorter mOS. PD-1 correlated positively with PD-L1 expression and occurrence of exon21 L858R. Conclusions PD-L1 differentially influenced the outcomes of Filipinos with EGFR-mutant NSCLC. NSCLC subtypes, disease stage, and PD-1 expression may impact the collective outcomes associated with PD-L1 and EGFR-sensitizing mutations.
Collapse
Affiliation(s)
- Herdee Gloriane C. Luna
- Lung Center of the Philippines, Quezon City, Philippines
- National Kidney and Transplant Institute, Quezon City, Philippines
| | | | - Necy Juat
- National Kidney and Transplant Institute, Quezon City, Philippines
| | | | - Treah May Sayo
- Lung Center of the Philippines, Quezon City, Philippines
| | | | - Sheena Marie Asur-Galang
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Mirasol Bellengan
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Kent John Duga
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Bien Brian Buenaobra
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Marvin I. De los Santos
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Daniel Medina
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Jamirah Samo
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Venus Minerva Literal
- Clinical Proteomics for Cancer Initiative, Department of Science and Technology-Philippine Council for Health Research and Development, Taguig City, Philippines
| | - Neil Andrew Bascos
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City, Philippines
- Protein, Proteomics and Metabolomics Facility, Philippine Genome Center, University of the Philippines System, Quezon City, Philippines
| | | |
Collapse
|
20
|
Pomeshchik Y, Velasquez E, Gil J, Klementieva O, Gidlöf R, Sydoff M, Bagnoli S, Nacmias B, Sorbi S, Westergren-Thorsson G, Gouras GK, Rezeli M, Roybon L. Proteomic analysis across patient iPSC-based models and human post-mortem hippocampal tissue reveals early cellular dysfunction and progression of Alzheimer's disease pathogenesis. Acta Neuropathol Commun 2023; 11:150. [PMID: 37715247 PMCID: PMC10504768 DOI: 10.1186/s40478-023-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/30/2023] [Indexed: 09/17/2023] Open
Abstract
The hippocampus is a primary region affected in Alzheimer's disease (AD). Because AD postmortem brain tissue is not available prior to symptomatic stage, we lack understanding of early cellular pathogenic mechanisms. To address this issue, we examined the cellular origin and progression of AD pathogenesis by comparing patient-based model systems including iPSC-derived brain cells transplanted into the mouse brain hippocampus. Proteomic analysis of the graft enabled the identification of pathways and network dysfunction in AD patient brain cells, associated with increased levels of Aβ-42 and β-sheet structures. Interestingly, the host cells surrounding the AD graft also presented alterations in cellular biological pathways. Furthermore, proteomic analysis across human iPSC-based models and human post-mortem hippocampal tissue projected coherent longitudinal cellular changes indicative of early to end stage AD cellular pathogenesis. Our data showcase patient-based models to study the cell autonomous origin and progression of AD pathogenesis.
Collapse
Affiliation(s)
- Yuriy Pomeshchik
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184, Lund, Sweden.
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden.
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden.
| | - Erika Velasquez
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184, Lund, Sweden
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden
| | - Jeovanis Gil
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, BMC D13, Lund University, 22184, Lund, Sweden
| | - Oxana Klementieva
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden
- Medical Micro-Spectroscopy, Department of Experimental Medical Science, BMC B10, Lund University, 22184, Lund, Sweden
| | - Ritha Gidlöf
- Lund University BioImaging Centre, Faculty of Medicine, Lund University, 22142, Lund, Sweden
| | - Marie Sydoff
- Lund University BioImaging Centre, Faculty of Medicine, Lund University, 22142, Lund, Sweden
| | - Silvia Bagnoli
- Laboratorio Di Neurogenetica, Dipartimento Di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, 50134, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Benedetta Nacmias
- Laboratorio Di Neurogenetica, Dipartimento Di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, 50134, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Sandro Sorbi
- Laboratorio Di Neurogenetica, Dipartimento Di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino- NEUROFARBA, Università degli Studi di Firenze, 50134, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Gunilla Westergren-Thorsson
- Department of Experimental Medical Science, BMC C12, Faculty of Medicine, Lund University, 22142, Lund, Sweden
| | - Gunnar K Gouras
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden
- Experimental Dementia Research Unit, Department of Experimental Medical Science, BMC B11, Lund University, 22184, Lund, Sweden
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, BMC D13, Lund University, 22184, Lund, Sweden
- Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, 22184, Lund, Sweden
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184, Lund, Sweden.
- Strategic Research Area MultiPark, Lund University, 22184, Lund, Sweden.
- Lund Stem Cell Center, Lund University, 22184, Lund, Sweden.
- Department of Neurodegenerative Science, The MiND Program, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
21
|
Shen J, Sun N, Wang J, Zens P, Kunzke T, Buck A, Prade VM, Wang Q, Feuchtinger A, Hu R, Berezowska S, Walch A. Patterns of Carbon-Bound Exogenous Compounds Impact Disease Pathophysiology in Lung Cancer Subtypes in Different Ways. ACS NANO 2023; 17:16396-16411. [PMID: 37639684 PMCID: PMC10510585 DOI: 10.1021/acsnano.2c11161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Carbon-bound exogenous compounds, such as polycyclic aromatic hydrocarbons (PAHs), tobacco-specific nitrosamines, aromatic amines, and organohalogens, are known to affect both tumor characteristics and patient outcomes in lung squamous cell carcinoma (LUSC); however, the roles of these compounds in lung adenocarcinoma (LUAD) remain unclear. We analyzed 11 carbon-bound exogenous compounds in LUAD and LUSC samples using in situ high mass-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging and performed a cluster analysis to compare the patterns of carbon-bound exogenous compounds between these two lung cancer subtypes. Correlation analyses were conducted to investigate associations among exogenous compounds, endogenous metabolites, and clinical data, including patient survival outcomes and smoking behaviors. Additionally, we examined differences in exogenous compound patterns between normal and tumor tissues. Our analyses revealed that PAHs, aromatic amines, and organohalogens were more abundant in LUAD than in LUSC, whereas the tobacco-specific nitrosamine nicotine-derived nitrosamine ketone was more abundant in LUSC. Patients with LUAD and LUSC could be separated according to carbon-bound exogenous compound patterns detected in the tumor compartment. The same compounds had differential impacts on patient outcomes, depending on the cancer subtype. Correlation and network analyses indicated substantial differences between LUAD and LUSC metabolomes, associated with substantial differences in the patterns of the carbon-bound exogenous compounds. These data suggest that the contributions of these carcinogenic compounds to cancer biology may differ according to the cancer subtypes.
Collapse
Affiliation(s)
- Jian Shen
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
- Nanxishan
Hospital of Guangxi Zhuang Autonomous Region, Institute of Pathology, Guilin 541002, People’s Republic of China
| | - Na Sun
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Jun Wang
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Philipp Zens
- Institute
of Tissue Medicine and Pathology, University
of Bern, Murtenstrasse 31, Bern 3008, Switzerland
- Graduate
School for Health Sciences, University of
Bern, Mittelstrasse 43, Bern 3012, Switzerland
| | - Thomas Kunzke
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Achim Buck
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Verena M. Prade
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Qian Wang
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Annette Feuchtinger
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Ronggui Hu
- Center
for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200030, People’s
Republic of China
| | - Sabina Berezowska
- Institute
of Tissue Medicine and Pathology, University
of Bern, Murtenstrasse 31, Bern 3008, Switzerland
- Department
of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Axel Walch
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| |
Collapse
|
22
|
Deng X, Chen X, Luo Y, Que J, Chen L. Intratumor microbiome derived glycolysis-lactate signatures depicts immune heterogeneity in lung adenocarcinoma by integration of microbiomic, transcriptomic, proteomic and single-cell data. Front Microbiol 2023; 14:1202454. [PMID: 37664112 PMCID: PMC10469687 DOI: 10.3389/fmicb.2023.1202454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Microbiome plays roles in lung adenocarcinoma (LUAD) development and anti-tumor treatment efficacy. Aberrant glycolysis in tumor might promote lactate production that alter tumor microenvironment, affecting microbiome, cancer cells and immune cells. We aimed to construct intratumor microbiome score to predict prognosis of LUAD patients and thoroughly investigate glycolysis and lactate signature's association with LUAD immune cell infiltration. Methods The Cancer Genome Atlas-LUAD (TCGA-LUAD) microbiome data was downloaded from cBioPortal and analyzed to examine its association with overall survival to create a prognostic scoring model. Gene Set Enrichment Analysis (GSEA) was used to find each group's major mechanisms involved. Our study then investigated the glycolysis and lactate pattern in LUAD patients based on 19 genes, which were correlated with the tumor microenvironment (TME) phenotypes and immunotherapy outcomes. We developed a glycolysis-lactate risk score and signature to accurately predict TME phenotypes, prognosis, and response to immunotherapy. Results Using the univariate Cox regression analysis, the abundance of 38 genera were identified with prognostic values and a lung-resident microbial score (LMS) was then developed from the TCGA-LUAD-microbiome dataset. Glycolysis hallmark pathway was significantly enriched in high-LMS group and three distinct glycolysis-lactate patterns were generated. Patients in Cluster1 exhibited unfavorable outcomes and might be insensitive to immunotherapy. Glycolysis-lactate score was constructed for predicting prognosis with high accuracy and validated in external cohorts. Gene signature was developed and this signature was elevated in epithelial cells especially in tumor mass on single-cell level. Finally, we found that the glycolysis-lactate signature levels were consistent with the malignancy of histological subtypes. Discussion Our study demonstrated that an 18-microbe prognostic score and a 19-gene glycolysis-lactate signature for predicting prognosis of LUAD patients. Our LMS, glycolysis-lactate score and glycolysis-lactate signature have potential roles in precision therapy of LUAD patients.
Collapse
Affiliation(s)
| | | | | | - Jun Que
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Jiang S, Sun HF, Li S, Zhang N, Chen JS, Liu JX. SPARC: a potential target for functional nanomaterials and drugs. Front Mol Biosci 2023; 10:1235428. [PMID: 37577749 PMCID: PMC10419254 DOI: 10.3389/fmolb.2023.1235428] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC), also termed osteonectin or BM-40, is a matricellular protein which regulates cell adhesion, extracellular matrix production, growth factor activity, and cell cycle. Although SPARC does not perform a structural function, it, however, modulates interactions between cells and the surrounding extracellular matrix due to its anti-proliferative and anti-adhesion properties. The overexpression of SPARC at sites, including injury, regeneration, obesity, cancer, and inflammation, reveals its application as a prospective target and therapeutic indicator in the treatment and assessment of disease. This article comprehensively summarizes the mechanism of SPARC overexpression in inflammation and tumors as well as the latest research progress of functional nanomaterials in the therapy of rheumatoid arthritis and tumors by manipulating SPARC as a new target. This article provides ideas for using functional nanomaterials to treat inflammatory diseases through the SPARC target. The purpose of this article is to provide a reference for ongoing disease research based on SPARC-targeted therapy.
Collapse
Affiliation(s)
- Shan Jiang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Hui-Feng Sun
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shuang Li
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Ning Zhang
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Ji-Song Chen
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, China
- School of Pharmaceutical Sciences, University of South China, Hengyang, China
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
24
|
García Muñiz JA, Romo Garibay R, Vilches Cisneros N, Flores Gutiérrez JP. [Large cell carcinoma of the lung with null immunophenotype: Case report & brief review]. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2023; 56:206-211. [PMID: 37419561 DOI: 10.1016/j.patol.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 07/09/2023]
Abstract
Large cell carcinoma of the lung with null-immunophenotype (LCC-NI) is a diagnostic entity that is especially uncommon now as it does not have any type of cell differentiation or its own molecular alterations. It presents an exceptional diagnostic challenge; indeed, the diagnosis is only possible with complete surgical excision and adequate immunohistochemical and molecular studies. We report the case of a 69-year-old male, with a history of long-term smoking who presented with pleuritic pain. A tumor in the upper lobe of the right lung was detected and removed by lobectomy. Histopathology revealed a neoplasm with large cell morphology without any specific immunophenotype, molecular or genomic rearrangements through next-generation sequencing (NGS) studies, which was diagnosed as LCC-NI.
Collapse
Affiliation(s)
- José Antonio García Muñiz
- Servicio de Anatomía Patológica y Citopatología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
| | - Roberto Romo Garibay
- Servicio de Anatomía Patológica y Citopatología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México; Hospital Metropolitano Dr. Bernardo Sepúlveda, San Nicolás de los Garza, Nuevo León, México
| | - Natalia Vilches Cisneros
- Servicio de Anatomía Patológica y Citopatología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Juan Pablo Flores Gutiérrez
- Servicio de Anatomía Patológica y Citopatología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| |
Collapse
|
25
|
Zhang Z, Lu Y, Vosoughi S, Levy J, Christensen B, Salas L. HiTAIC: hierarchical tumor artificial intelligence classifier traces tissue of origin and tumor type in primary and metastasized tumors using DNA methylation. NAR Cancer 2023; 5:zcad017. [PMID: 37089814 PMCID: PMC10113876 DOI: 10.1093/narcan/zcad017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/04/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023] Open
Abstract
Human cancers are heterogenous by their cell composition and origination site. Cancer metastasis generates the conundrum of the unknown origin of migrated tumor cells. Tracing tissue of origin and tumor type in primary and metastasized cancer is vital for clinical significance. DNA methylation alterations play a crucial role in carcinogenesis and mark cell fate differentiation, thus can be used to trace tumor tissue of origin. In this study, we employed a novel tumor-type-specific hierarchical model using genome-scale DNA methylation data to develop a multilayer perceptron model, HiTAIC, to trace tissue of origin and tumor type in 27 cancers from 23 tissue sites in data from 7735 tumors with high resolution, accuracy, and specificity. In tracing primary cancer origin, HiTAIC accuracy was 99% in the test set and 93% in the external validation data set. Metastatic cancers were identified with a 96% accuracy in the external data set. HiTAIC is a user-friendly web-based application through https://sites.dartmouth.edu/salaslabhitaic/. In conclusion, we developed HiTAIC, a DNA methylation-based algorithm, to trace tumor tissue of origin in primary and metastasized cancers. The high accuracy and resolution of tumor tracing using HiTAIC holds promise for clinical assistance in identifying cancer of unknown origin.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Quantitative Biomedical Sciences Program, Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH, USA
| | - Yunrui Lu
- Quantitative Biomedical Sciences Program, Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH, USA
| | - Soroush Vosoughi
- Department of Computer Science, Dartmouth College, Hanover, NH, USA
| | - Joshua J Levy
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Quantitative Biomedical Sciences Program, Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH, USA
- Department of Pathology and Dermatology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Quantitative Biomedical Sciences Program, Guarini School of Graduate and Advanced Studies, Dartmouth College, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Lucas A Salas
- To whom correspondence should be addressed. Tel: +1 603 646 5420;
| |
Collapse
|
26
|
Allignet B, De Ruysscher D, Martel-Lafay I, Waissi W. Stereotactic body radiation therapy in unresectable stage III non-small cell lung cancer: A systematic review. Cancer Treat Rev 2023; 118:102573. [PMID: 37210766 DOI: 10.1016/j.ctrv.2023.102573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
In unresectable stage III non-small cell lung cancer (NSCLC), the standard of care for most fit patients is concurrent chemotherapy with normofractionated radiotherapy (NFRT), followed by durvalumab consolidation. Nevertheless, almost half of patients will present locoregional or metastatic intrathoracic relapse. Improving locoregional control thus remains an important objective. For this purpose, stereotactic body radiotherapy (SBRT) may be a relevant treatment modality. We performed a systematic review of the literature that evaluate the efficacy and safety of SBRT in this situation, either instead of or in addition to NFRT. Among 1788 unique reports, 18 met the inclusion criteria. They included 447 patients and were mainly prospective (n = 10, including 5 phase 2 trials). In none, maintenance durvalumab was administered. Most reported SBRT boost after NFRT (n = 8), or definitive tumor and nodal SBRT (n = 7). Median OS varied from 10 to 52 months, due to the heterogeneity of the included populations and according to treatment regimen. The rate of severe side effects was low, with <5 % grade 5 toxicity, and mainly observed when mediastinal SBRT was performed without dose constraints to the proximal bronchovascular tree. It was suggested that a biologically effective dose higher than 112.3 Gy may increase locoregional control. SBRT for selected stage III NSCLC bears potential to improve loco-regional tumor control, but at present, this should only be done in prospective clinical trials.
Collapse
Affiliation(s)
- Benoît Allignet
- Department of Radiation Oncology, Centre Léon Bérard, 28 rue Laennec, 69673 Lyon, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294 Lyon, France.
| | - Dirk De Ruysscher
- Department of Radiation Oncology (Maastro), Maastricht University Medical Center, GROW School for Oncology and Developmental Biology, The Netherlands; Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Isabelle Martel-Lafay
- Department of Radiation Oncology, Centre Léon Bérard, 28 rue Laennec, 69673 Lyon, France
| | - Waisse Waissi
- Department of Radiation Oncology, Centre Léon Bérard, 28 rue Laennec, 69673 Lyon, France
| |
Collapse
|
27
|
Liu Y, Wu W, Cai C, Zhang H, Shen H, Han Y. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther 2023; 8:160. [PMID: 37045827 PMCID: PMC10097874 DOI: 10.1038/s41392-023-01419-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Patient-derived xenograft (PDX) models, in which tumor tissues from patients are implanted into immunocompromised or humanized mice, have shown superiority in recapitulating the characteristics of cancer, such as the spatial structure of cancer and the intratumor heterogeneity of cancer. Moreover, PDX models retain the genomic features of patients across different stages, subtypes, and diversified treatment backgrounds. Optimized PDX engraftment procedures and modern technologies such as multi-omics and deep learning have enabled a more comprehensive depiction of the PDX molecular landscape and boosted the utilization of PDX models. These irreplaceable advantages make PDX models an ideal choice in cancer treatment studies, such as preclinical trials of novel drugs, validating novel drug combinations, screening drug-sensitive patients, and exploring drug resistance mechanisms. In this review, we gave an overview of the history of PDX models and the process of PDX model establishment. Subsequently, the review presents the strengths and weaknesses of PDX models and highlights the integration of novel technologies in PDX model research. Finally, we delineated the broad application of PDX models in chemotherapy, targeted therapy, immunotherapy, and other novel therapies.
Collapse
Affiliation(s)
- Yihan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
| |
Collapse
|
28
|
Ji L, Moghal N, Zou X, Fang Y, Hu S, Wang Y, Tsao MS. The NRF2 antagonist ML385 inhibits PI3K-mTOR signaling and growth of lung squamous cell carcinoma cells. Cancer Med 2023; 12:5688-5702. [PMID: 36305267 PMCID: PMC10028163 DOI: 10.1002/cam4.5311] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) currently has limited therapeutic options because of the relatively few validated targets and the lack of clinical drugs for some of these targets. Although NRF2/NFE2L2 pathway activation commonly occurs in LUSC, NRF2 has predominantly been studied in other cancer models. Here, we investigated the function of NRF2 in LUSC, including in organoid models, and we explored the activity of a small molecule NRF2 inhibitor ML385, which has not previously been investigated in LUSC. METHODS We first explored the role of NRF2 signaling in LUSC cancer cell line and organoid proliferation through NRF2 knockdown or ML385 treatment, both in vivo and in vitro. Next, we performed Western blot and immunofluorescence assays to determine the effect of NRF2 inhibition on PI3K-mTOR signaling. Finally, we used cell viability and clonogenic assays to explore whether ML385 could sensitize LUSC cancer cells to PI3K inhibitors. RESULTS We find that downregulation of NRF2 signaling inhibited proliferation of LUSC cancer cell lines and organoids, both in vivo and in vitro. We also demonstrate that inhibition of NRF2 reduces PI3K-mTOR signaling, with two potential mechanisms being involved. Although NRF2 promotes AKT phosphorylation, it also acts downstream of AKT to increase RagD protein expression and recruitment of mTOR to lysosomes after amino acid stimulation. We also find that ML385 potentiates LUSC growth inhibition by a pan-PI3K inhibitor, which correlates with stronger inhibition of PI3K-mTOR signaling. CONCLUSIONS Our data provide additional support for NRF2 promoting LUSC growth through PI3K-mTOR activation and support development of NRF2 inhibitors for the treatment of LUSC.
Collapse
Affiliation(s)
- Lili Ji
- Department of Pathology, Key Laboratory of Microenvironment and Translational Cancer Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Nadeem Moghal
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Xinru Zou
- Department of Pathology, Key Laboratory of Microenvironment and Translational Cancer Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yixuan Fang
- Department of Pathology, Key Laboratory of Microenvironment and Translational Cancer Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Shuning Hu
- Department of Pathology, Key Laboratory of Microenvironment and Translational Cancer Research, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yuhui Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Alanazi WA, Alhamami HN, Alshamrani AA, Alqahtani F, Alshammari A, Alhazzani K, Alswayyed M. Valsartan prevents gefitinib-induced lung inflammation, oxidative stress, and alteration of plasma metabolites in rats. Saudi J Biol Sci 2023; 30:103522. [PMID: 36561332 PMCID: PMC9763942 DOI: 10.1016/j.sjbs.2022.103522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Gefitinib (GEF) is an inhibitor of the epidermal growth factor receptor, linked to higher risk of severe/fatal interstitial lung disease (ILD). This study was performed to determine the protective roles of an angiotensin-II type-1 receptor (AT1R) "valsartan (VAL)" in prevention of lung inflammation, oxidative stress and metabolites alteration induced by GEF. Four groups of male Wistar albino rats were received vehicle, VAL (30 mg/kg), GEF (30 mg/kg), or both for four weeks. Blood samples and lungs were harvested for plasma metabolites and histological analysis, respectively, and evaluation of inflammation and oxidative stress. GEF monotherapy showed a dense inflammation in lungs, and significantly increased tumor necrosis factor-α (P = 0.0349), interleukin-6 (P < 0.0001), chemokine ligand-3 (P = 0.0420), and interleukin-1β (P = 0.0377). GEF increased oxidative stress markers including glutathione, malondialdehyde, and catalase levels. Also, several plasma metabolites including butanoic acid, N-methylphenylethanolamine, oxalic acid, l-alanine, phosphoric acid, l-theorinine, pyroglutamic acid, and 2-bromosebacic acid were changed by GEF. The combination of VAL plus GEF reduced the inflammation and oxidative stress mediated by GEF monotherapy. In addition, the combination treatment returned plasma metabolites to the normal levels compared to GEF monotherapy. These findings revealed that VAL has a possible pulmonary protective role against pulmonary toxicity of GEF, which may lead to novel approaches for management of GEF-induced ILD.
Collapse
Affiliation(s)
- Wael A. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia,Corresponding author at: Department of Pharmacology and Toxicology College of Pharmacy King Saud University, P.O. Box: 2457, Riyadh 11451, Saudi Arabia.
| | - Hussain N. Alhamami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali A. Alshamrani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Alswayyed
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
30
|
Mirhadi S, Zhang W, Pham NA, Karimzadeh F, Pintilie M, Tong J, Taylor P, Krieger J, Pitcher B, Sykes J, Wybenga-Groot L, Fladd C, Xu J, Wang T, Cabanero M, Li M, Weiss J, Sakashita S, Zaslaver O, Yu M, Caudy AA, St-Pierre J, Hawkins C, Kislinger T, Liu G, Shepherd FA, Tsao MS, Moran MF. Mitochondrial Aconitase ACO2 Links Iron Homeostasis with Tumorigenicity in Non-Small Cell Lung Cancer. Mol Cancer Res 2023; 21:36-50. [PMID: 36214668 PMCID: PMC9808373 DOI: 10.1158/1541-7786.mcr-22-0163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/08/2022] [Accepted: 10/03/2022] [Indexed: 02/03/2023]
Abstract
The ability of a patient tumor to engraft an immunodeficient mouse is the strongest known independent indicator of poor prognosis in early-stage non-small cell lung cancer (NSCLC). Analysis of primary NSCLC proteomes revealed low-level expression of mitochondrial aconitase (ACO2) in the more aggressive, engrafting tumors. Knockdown of ACO2 protein expression transformed immortalized lung epithelial cells, whereas upregulation of ACO2 in transformed NSCLC cells inhibited cell proliferation in vitro and tumor growth in vivo. High level ACO2 increased iron response element binding protein 1 (IRP1) and the intracellular labile iron pool. Impaired cellular proliferation associated with high level ACO2 was reversed by treatment of cells with an iron chelator, whereas increased cell proliferation associated with low level ACO2 was suppressed by treatment of cells with iron. Expression of CDGSH iron-sulfur (FeS) domain-containing protein 1 [CISD1; also known as mitoNEET (mNT)] was modulated by ACO2 expression level and inhibition of mNT by RNA interference or by treatment of cells with pioglitazone also increased iron and cell death. Hence, ACO2 is identified as a regulator of iron homeostasis and mNT is implicated as a target in aggressive NSCLC. IMPLICATIONS FeS cluster-associated proteins including ACO2, mNT (encoded by CISD1), and IRP1 (encoded by ACO1) are part of an "ACO2-Iron Axis" that regulates iron homeostasis and is a determinant of a particularly aggressive subset of NSCLC.
Collapse
Affiliation(s)
- Shideh Mirhadi
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Wen Zhang
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Melania Pintilie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jiefei Tong
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Paul Taylor
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonathan Krieger
- SPARC BioCentre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bethany Pitcher
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jenna Sykes
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Christopher Fladd
- SPARC BioCentre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jing Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tao Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Cabanero
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jessica Weiss
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shingo Sakashita
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Olga Zaslaver
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Man Yu
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amy A. Caudy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, Québec, Canada.,Department of Biochemistry, Microbiology, and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Cynthia Hawkins
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Frances A. Shepherd
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Ontario, Canada.,Corresponding Authors: Michael F. Moran, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada. Phone: 647-235-6435; E-mail: ; and Ming-Sound Tsao, Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada. Phone: 416-340-4737; E-mail:
| | - Michael F. Moran
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,SPARC BioCentre, Hospital for Sick Children, Toronto, Ontario, Canada.,Corresponding Authors: Michael F. Moran, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada. Phone: 647-235-6435; E-mail: ; and Ming-Sound Tsao, Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada. Phone: 416-340-4737; E-mail:
| |
Collapse
|
31
|
Li Y, Wu X, Yang P, Jiang G, Luo Y. Machine Learning for Lung Cancer Diagnosis, Treatment, and Prognosis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:850-866. [PMID: 36462630 PMCID: PMC10025752 DOI: 10.1016/j.gpb.2022.11.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/03/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
The recent development of imaging and sequencing technologies enables systematic advances in the clinical study of lung cancer. Meanwhile, the human mind is limited in effectively handling and fully utilizing the accumulation of such enormous amounts of data. Machine learning-based approaches play a critical role in integrating and analyzing these large and complex datasets, which have extensively characterized lung cancer through the use of different perspectives from these accrued data. In this review, we provide an overview of machine learning-based approaches that strengthen the varying aspects of lung cancer diagnosis and therapy, including early detection, auxiliary diagnosis, prognosis prediction, and immunotherapy practice. Moreover, we highlight the challenges and opportunities for future applications of machine learning in lung cancer.
Collapse
Affiliation(s)
- Yawei Li
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Xin Wu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ping Yang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905 / Scottsdale, AZ 85259, USA
| | - Guoqian Jiang
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuan Luo
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|