1
|
Luo Q, Wang C, Qiao S, Yu S, Chen L, Kim S, Wang K, Zheng J, Zhang Y, Wu F, Lei X, Lou J, Hennig M, Im W, Miao L, Zhou M, Bei W, Huang Y. Surface lipoprotein sorting by crosstalk between Lpt and Lol pathways in gram-negative bacteria. Nat Commun 2025; 16:4357. [PMID: 40348743 PMCID: PMC12065857 DOI: 10.1038/s41467-025-59660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
Lipopolysaccharide (LPS) and lipoprotein, two essential components of the outer membrane (OM) in Gram-negative bacteria, play critical roles in bacterial physiology and pathogenicity. LPS translocation to the OM is mediated by LptDE, yet how lipoproteins sort to the cell surface remains elusive. Here, we identify candidate lipoproteins that may be transported to the cell surface via LptDE. Notably, we determine the crystal structures of LptDE from Pseudomonas aeruginosa and its complex with an endogenous Escherichia coli lipoprotein LptM. The paLptDE-LptM structure demonstrates that LptM may translocate to the OM via LptDE, in a manner similar to LPS transport. The β-barrel domain serves as a passage for the proteinaceous moiety while its acyl chains are transported outside. Our finding has been corroborated by results from native mass spectrometry, immunofluorescence, and photocrosslinking assays, revealing a potential surface exposed lipoproteins (SLPs) transport mechanism through which lipoproteins are loaded into LptA by LolCDE prior to assembly of the LptB2FGCADE complex. These observations provide initial evidence of functional overlap between the Lpt and Lol pathways, potentially broadening current perspectives on lipoprotein sorting.
Collapse
Affiliation(s)
- Qingshan Luo
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chengai Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuai Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
- Department of Oncology, Center for Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Shan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lianwan Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Seonghoon Kim
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Kun Wang
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No.200 Xiao Ling Wei Street, Nanjing, 210094, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jiangge Zheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fan Wu
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Xiaoguang Lei
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing, 100871, China
| | - Jizhong Lou
- University of Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | - Wonpil Im
- Departments of Biological Sciences and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Long Miao
- University of Chinese Academy of Sciences, Beijing, 100101, China
- Department of Oncology, Center for Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- MOE Key Laboratory of Cell Proliferation and Regulation Biology, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
- College of Life Sciences and Food Engineering, Fuyang Normal University, Fuyang, 236037, China
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No.200 Xiao Ling Wei Street, Nanjing, 210094, China.
| | - Weiwei Bei
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yihua Huang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Schenck S, Laeremans T, Steyaert J, Brunner JD. Structures of native SV2A reveal the binding mode for tetanus neurotoxin and anti-epileptic racetams. Nat Commun 2025; 16:4172. [PMID: 40325068 PMCID: PMC12053756 DOI: 10.1038/s41467-025-59545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
The synaptic vesicle glycoprotein 2A (SV2A) is a synaptic vesicle (SV) resident with homology to the major facilitator superfamily (MFS) and essential in vertebrate neurotransmission. Despite its unclear physiological role, SV2A is of high medical relevance as it is the target of the anti-epileptic drug Levetiracetam (LEV) and a receptor for clostridial neurotoxins (CNTs), among them presumably tetanus neurotoxin (TeNT). To obtain detailed insights about these molecular interactions we subjected native SV2A, purified from brain tissue, to cryo-EM. We discover that TeNT binds SV2A strikingly different from botulinum neurotoxin A and unveil the precise geometry of TeNT binding to dipartite SV2-ganglioside receptors. The structures deliver compelling support for SV2A as the protein receptor for TeNT in central neurons and reinforce the concepts of the dual receptor hypothesis for CNT entry into neurons. Further, our LEV-bound structure of SV2A reveals the drug-interacting residues, delineates a putative substrate pocket in SV2A and provides insights into the SV2-isoform-specificity of LEV. Our work has implications for CNT engineering from a hitherto unrecognized SV2 binding interface and for improved designs of anti-convulsant drugs in epilepsy treatment.
Collapse
Affiliation(s)
- Stephan Schenck
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
- Structure and Function of Membrane Proteins, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Toon Laeremans
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
| | - Janine D Brunner
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium.
- Structure and Function of Membrane Proteins, VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
| |
Collapse
|
3
|
Gennaris A, Nguyen VS, Thouvenel L, Csoma N, Vertommen D, Iorga BI, Remaut H, Collet JF. Optimal functioning of the Lpt bridge depends on a ternary complex between the lipocalin YedD and the LptDE translocon. Cell Rep 2025; 44:115446. [PMID: 40127101 DOI: 10.1016/j.celrep.2025.115446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/17/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
The outer membrane is an efficient permeability barrier that protects gram-negative bacteria against external assaults, including many antibiotics. The unique permeability features of the outer membrane are due to the presence of lipopolysaccharide (LPS) molecules in its outer leaflet. LPS transport relies on the essential lipopolysaccharide transport (Lpt) pathway, which forms a bridge from the inner to the outer membrane. The LptDE translocon inserts LPS into the outer leaflet. Here, we identify the lipocalin YedD as a component of the translocon. Cryoelectron microscopy of the YedD-LptDE complex reveals that YedD binds LptD at a critical interface between its β-barrel and periplasmic β-taco domain. The YedD-LptDE complex is functionally relevant: under conditions where the connectivity of the β-taco and Lpt bridge is compromised, the absence of YedD decreases cell viability and causes LPS accumulation in the inner membrane. Our findings establish YedD as an Lpt component required for optimal LPS transport.
Collapse
Affiliation(s)
- Alexandra Gennaris
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium; de Duve Institute, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 75, 1200 Brussels, Belgium.
| | - Van Son Nguyen
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium
| | - Laurie Thouvenel
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium; de Duve Institute, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Naemi Csoma
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium; de Duve Institute, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Didier Vertommen
- de Duve Institute, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Bogdan Iuliu Iorga
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium; de Duve Institute, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 75, 1200 Brussels, Belgium; Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, 91198 Gif-sur-Yvette, France
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, 1050 Brussels, Belgium.
| | - Jean-François Collet
- WELBIO Department, WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium; de Duve Institute, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 75, 1200 Brussels, Belgium.
| |
Collapse
|
4
|
Sichrovsky M, Lacabanne D, Ruprecht JJ, Rana JJ, Stanik K, Dionysopoulou M, Sowton AP, King MS, Jones SA, Cooper L, Hardwick SW, Paris G, Chirgadze DY, Ding S, Fearnley IM, Palmer SM, Pardon E, Steyaert J, Leone V, Forrest LR, Tavoulari S, Kunji ERS. Molecular basis of pyruvate transport and inhibition of the human mitochondrial pyruvate carrier. SCIENCE ADVANCES 2025; 11:eadw1489. [PMID: 40249800 PMCID: PMC12007569 DOI: 10.1126/sciadv.adw1489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
The mitochondrial pyruvate carrier transports pyruvate, produced by glycolysis from sugar molecules, into the mitochondrial matrix, as a crucial transport step in eukaryotic energy metabolism. The carrier is a drug target for the treatment of cancers, diabetes mellitus, neurodegeneration, and metabolic dysfunction-associated steatotic liver disease. We have solved the structure of the human MPC1L/MPC2 heterodimer in the inward- and outward-open states by cryo-electron microscopy, revealing its alternating access rocker-switch mechanism. The carrier has a central binding site for pyruvate, which contains an essential lysine and histidine residue, important for its ΔpH-dependent transport mechanism. We have also determined the binding poses of three chemically distinct inhibitor classes, which exploit the same binding site in the outward-open state by mimicking pyruvate interactions and by using aromatic stacking interactions.
Collapse
Affiliation(s)
- Maximilian Sichrovsky
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Denis Lacabanne
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Jonathan J. Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Jessica J. Rana
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Klaudia Stanik
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Mariangela Dionysopoulou
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Alice P. Sowton
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Martin S. King
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Scott A. Jones
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Lee Cooper
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Steven W. Hardwick
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Giulia Paris
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dimitri Y. Chirgadze
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Shujing Ding
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Ian M. Fearnley
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Shane M. Palmer
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Vanessa Leone
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
- Department of Biophysics and Data Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226-3548, USA
| | - Lucy R. Forrest
- Computational Structural Biology Section, National Institutes of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Sotiria Tavoulari
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Edmund R. S. Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| |
Collapse
|
5
|
Jones SA, Sowton AP, Lacabanne D, King MS, Palmer SM, Zögg T, Pardon E, Steyaert J, Ruprecht JJ, Kunji ERS. Proton conductance by human uncoupling protein 1 is inhibited by purine and pyrimidine nucleotides. EMBO J 2025; 44:2353-2365. [PMID: 40021843 PMCID: PMC12000319 DOI: 10.1038/s44318-025-00395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 03/03/2025] Open
Abstract
Uncoupling protein 1 (UCP1, SLC25A7) is responsible for the thermogenic properties of brown adipose tissue. Upon fatty acid activation, UCP1 facilitates proton leakage, dissipating the mitochondrial proton motive force to release energy as heat. Purine nucleotides are considered to be the only inhibitors of UCP1 activity, binding to its central cavity to lock UCP1 in a proton-impermeable conformation. Here we show that pyrimidine nucleotides can also bind and inhibit its proton-conducting activity. All nucleotides bound in a pH-dependent manner, with the highest binding affinity observed for ATP, followed by dTTP, UTP, GTP and CTP. We also determined the structural basis of UTP binding to UCP1, showing that binding of purine and pyrimidine nucleotides follows the same molecular principles. We find that the closely related mitochondrial dicarboxylate carrier (SLC25A10) and oxoglutarate carrier (SLC25A11) have many cavity residues in common, but do not bind nucleotides. Thus, while UCP1 has evolved from dicarboxylate carriers, no selection for nucleobase specificity has occurred, highlighting the importance of the pH-dependent nucleotide binding mechanism mediated via the phosphate moieties.
Collapse
Affiliation(s)
- Scott A Jones
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Alice P Sowton
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Denis Lacabanne
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Martin S King
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Shane M Palmer
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Thomas Zögg
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels, Belgium
| | - Jonathan J Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Edmund R S Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK.
| |
Collapse
|
6
|
Dobert JP, Schäfer JH, Dal Maso T, Ravindran P, Huard DJE, Socher E, Schildmeyer LA, Lieberman RL, Versées W, Moeller A, Zunke F, Arnold P. Cryo-TEM structure of β-glucocerebrosidase in complex with its transporter LIMP-2. Nat Commun 2025; 16:3074. [PMID: 40159502 PMCID: PMC11955523 DOI: 10.1038/s41467-025-58340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
Targeting proteins to their final cellular destination requires transport mechanisms and nearly all lysosomal enzymes reach the lysosome via the mannose-6-phosphate receptor pathway. One of the few known exceptions is the enzyme β-glucocerebrosidase (GCase) that requires the lysosomal integral membrane protein type-2 (LIMP-2) as a proprietary lysosomal transporter. Genetic variations in the GCase encoding gene GBA1 cause Gaucher's disease (GD) and present the highest genetic risk factor to develop Parkinson's disease (PD). Activators targeting GCase emerge as a promising therapeutic approach to treat GD and PD, with pre-clinical and clinical trials ongoing. In this study, we resolve the complex of GCase and LIMP-2 using cryo-electron microscopy with the aid of an engineered LIMP-2 shuttle and two GCase-targeted pro-macrobodies. We identify helix 5 and helix 7 of LIMP-2 to interact with a binding pocket in GCase, forming a mostly hydrophobic interaction interface supported by one essential salt bridge. Understanding the interplay of GCase and LIMP-2 on a structural level is crucial to identify potential activation sites and conceptualizing novel therapeutic approaches targeting GCase. Here, we unveil the protein structure of a mannose-6-phosphate-independent lysosomal transport complex and provide fundamental knowledge for translational clinical research to overcome GD and PD.
Collapse
Affiliation(s)
- Jan Philipp Dobert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan-Hannes Schäfer
- Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, Osnabrück, Germany
| | - Thomas Dal Maso
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Priyadarshini Ravindran
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dustin J E Huard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eileen Socher
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lisa A Schildmeyer
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Raquel L Lieberman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wim Versées
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
| | - Arne Moeller
- Department of Biology/Chemistry, Structural Biology Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs); Osnabrück University, Osnabrück, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
7
|
Ackle F, Thavarasah S, Earp JC, Seeger MA. Rigid enlargement of sybodies with antibody fragments for cryo-EM analyses of small membrane proteins. Sci Rep 2025; 15:9460. [PMID: 40108246 PMCID: PMC11923154 DOI: 10.1038/s41598-025-92950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Single particle cryo-electron microscopy (cryo-EM) has become the method of choice to determine experimental structures of integral membrane proteins. However, high-resolution structure determination by cryo-EM remains a challenge for membrane proteins that are too small or lack distinctive structural elements for particle alignment. To address this problem, single-domain antibodies called nanobodies and their synthetic variants called sybodies are widely used tools to trap membrane transporters in defined conformations, to enlarge particle sizes and to act as fiducial markers enabling reliable particle alignment. Recently, antibody fragments (Fabs) enlarging nanobodies at their backside in a rigid fashion, called Legobody and NabFab, have been developed. Here, we investigated how Legobodies and NabFabs can be harmonized with sybodies. We show that any sybody can be adapted to the Legobody approach with minimal effort, while only a subset of sybodies belonging to the loop library can be converted into a format recognized by the NabFab without complementarity-determining region-grafting. This technical note will facilitate the usage of Legobodies and NabFabs in the context of sybodies targeting membrane proteins and other small proteins for high-resolution structure determination by cryo-EM.
Collapse
Affiliation(s)
- Fabian Ackle
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Sujani Thavarasah
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Jennifer C Earp
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Noori Goodarzi N, Barzi SM, Ajdary S, Chiani M, Yekaninejad MS, Badmasti F, Pourmand MR. Immunogenic evaluation of LptD + LtgC as a bivalent vaccine candidate against Neisseria gonorrhoeae. J Transl Med 2025; 23:261. [PMID: 40038701 PMCID: PMC11877727 DOI: 10.1186/s12967-025-06256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/14/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Neisseria gonorrhoeae is an escalating global health threat due to increasing antimicrobial resistance. The emergence of multidrug-resistant (MDR) strains necessitates alternative prevention strategies. This study focused on the development of a bivalent vaccine formulation to address this challenge. Lipopolysaccharide transport protein D (LptD) and lytic transglycosylase C (LtgC) as two promising immunogenic targets were considered in this study. METHODS The ltgC and lptD genes of N. gonorrhoeae ATCC 19424 were amplified, then cloned into the pET-28a (+) vector, expressed in Escherichia coli BL21 (DE3), and purified using Ni-NTA affinity chromatography. Antigen-specific total IgG levels in serum of patients with gonorrhea were assessed using enzyme-linked immunosorbent assay (ELISA). Proteins were formulated with monophosphoryl lipid A (MPLA) adjuvant in three groups: LptD, LtgC, and a bivalent LptD + LtgC. One additional group received LptD with liposomal MPLA, along with control groups. Vaccine formulations were administered to BALB/c mice in three doses at two-week intervals. Total IgG, IgG1, IgG2a, and IgA levels in sera and vaginal samples were measured using ELISA. Moreover, serum bactericidal (SBA) and opsonophagocytic (OPA) assays were conducted. RESULTS The total IgG levels against both proteins were considerably higher in the patients' sera compared to healthy individuals. All vaccine formulations significantly increased total IgG levels in animal model. The LptD + liposomal MPLA group exhibited the highest specific IgG level, whereas the bivalent formulation group exhibited the highest long-term IgG level until the day 112, which also yielded the strongest total IgG response in the whole-cell ELISA. The IgG2a/ IgG1 ratio was greater than 1 in all vaccine regimens, indicating a Th1-polarized response. The LptD + liposomal MPLA formulation elicited the highest serum IgA levels, followed by the LptD + LtgC combination. In addition, the bivalent formulation achieved the highest SBA and OPA titers. CONCLUSION This study successfully developed and evaluated a recombinant bivalent vaccine against N. gonorrhoeae. This formulation exhibited the most potent immunogenicity, as evidenced by higher antibody levels and SBA and OPA titers than single-antigen formulations. The Th1-polarized immune response further highlights the vaccine's potential to elicit a protective immune profile. These findings suggest that this multi-antigen formulation can be a promising vaccine candidate against gonorrhea. However, more investigations are required to confirm the vaccine efficacy.
Collapse
Affiliation(s)
- Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mahmoud Barzi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Chiani
- Nanobiotechnology Department, New Technologies Group, Pasteur Institute of Iran, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Skiba MA, Sterling SM, Rawson S, Zhang S, Xu H, Jiang H, Nemeth GR, Gilman MSA, Hurley JD, Shen P, Staus DP, Kim J, McMahon C, Lehtinen MK, Rockman HA, Barth P, Wingler LM, Kruse AC. Antibodies expand the scope of angiotensin receptor pharmacology. Nat Chem Biol 2024; 20:1577-1585. [PMID: 38744986 PMCID: PMC11561159 DOI: 10.1038/s41589-024-01620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
G-protein-coupled receptors (GPCRs) are key regulators of human physiology and are the targets of many small-molecule research compounds and therapeutic drugs. While most of these ligands bind to their target GPCR with high affinity, selectivity is often limited at the receptor, tissue and cellular levels. Antibodies have the potential to address these limitations but their properties as GPCR ligands remain poorly characterized. Here, using protein engineering, pharmacological assays and structural studies, we develop maternally selective heavy-chain-only antibody ('nanobody') antagonists against the angiotensin II type I receptor and uncover the unusual molecular basis of their receptor antagonism. We further show that our nanobodies can simultaneously bind to angiotensin II type I receptor with specific small-molecule antagonists and demonstrate that ligand selectivity can be readily tuned. Our work illustrates that antibody fragments can exhibit rich and evolvable pharmacology, attesting to their potential as next-generation GPCR modulators.
Collapse
Affiliation(s)
- Meredith A Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sarah M Sterling
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Cryo-EM Facility at MIT.nano, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shaun Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shuhao Zhang
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Huixin Xu
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Haoran Jiang
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Genevieve R Nemeth
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Morgan S A Gilman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joseph D Hurley
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Pengxiang Shen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Dean P Staus
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
- Septerna, South San Francisco, CA, USA
| | - Jihee Kim
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Sanofi, Large Molecule Research, Cambridge, MA, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Laura M Wingler
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Tan WB, Chng SS. How Bacteria Establish and Maintain Outer Membrane Lipid Asymmetry. Annu Rev Microbiol 2024; 78:553-573. [PMID: 39270665 DOI: 10.1146/annurev-micro-032521-014507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Gram-negative bacteria build an asymmetric outer membrane (OM), with lipopolysaccharides (LPS) and phospholipids (PLs) occupying the outer and inner leaflets, respectively. This distinct lipid arrangement is widely conserved within the Bacteria domain and confers strong protection against physical and chemical insults. The OM is physically separated from the inner membrane and the cytoplasm, where most cellular resources are located; therefore, the cell faces unique challenges in the assembly and maintenance of this asymmetric bilayer. Here, we present a framework for how gram-negative bacteria initially establish and continuously maintain OM lipid asymmetry, discussing the state-of-the-art knowledge of specialized lipid transport machines that place LPS and PLs directly into their corresponding leaflets in the OM, prevent excess PL accumulation and mislocalization, and correct any lipid asymmetry defects. We critically assess current studies, or the lack thereof, and highlight important future directions for research on OM lipid transport, homeostasis, and asymmetry.
Collapse
Affiliation(s)
- Wee Boon Tan
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| | - Shu-Sin Chng
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| |
Collapse
|
11
|
Jones SA, Ruprecht JJ, Crichton PG, Kunji ERS. Structural mechanisms of mitochondrial uncoupling protein 1 regulation in thermogenesis. Trends Biochem Sci 2024; 49:506-519. [PMID: 38565497 DOI: 10.1016/j.tibs.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
In mitochondria, the oxidation of nutrients is coupled to ATP synthesis by the generation of a protonmotive force across the mitochondrial inner membrane. In mammalian brown adipose tissue (BAT), uncoupling protein 1 (UCP1, SLC25A7), a member of the SLC25 mitochondrial carrier family, dissipates the protonmotive force by facilitating the return of protons to the mitochondrial matrix. This process short-circuits the mitochondrion, generating heat for non-shivering thermogenesis. Recent cryo-electron microscopy (cryo-EM) structures of human UCP1 have provided new molecular insights into the inhibition and activation of thermogenesis. Here, we discuss these structures, describing how purine nucleotides lock UCP1 in a proton-impermeable conformation and rationalizing potential conformational changes of this carrier in response to fatty acid activators that enable proton leak for thermogenesis.
Collapse
Affiliation(s)
- Scott A Jones
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Jonathan J Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK
| | - Paul G Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Edmund R S Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge, CB2 0XY, UK.
| |
Collapse
|
12
|
Kung JE, Johnson MC, Jao CC, Arthur CP, Tegunov D, Rohou A, Sudhamsu J. Disulfi de constrained Fabs overcome target size limitation for high-resolution single-particle cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593593. [PMID: 38798381 PMCID: PMC11118328 DOI: 10.1101/2024.05.10.593593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
High-resolution structures of proteins are critical to understanding molecular mechanisms of biological processes and in the discovery of therapeutic molecules. Cryo-EM has revolutionized structure determination of large proteins and their complexes1, but a vast majority of proteins that underlie human diseases are small (< 50 kDa) and usually beyond its reach due to low signal-to-noise images and difficulties in particle alignment2. Current strategies to overcome this problem increase the overall size of small protein targets using scaffold proteins that bind to the target, but are limited by inherent flexibility and not being bound to their targets in a rigid manner, resulting in the target being poorly resolved compared to the scaffolds3-11. Here we present an iteratively engineered molecular design for transforming Fabs (antibody fragments), into conformationally rigid scaffolds (Rigid-Fabs) that, when bound to small proteins (~20 kDa), can enable high-resolution structure determination using cryo-EM. This design introduces multiple disulfide bonds at strategic locations, generates a well-folded Fab constrained into a rigid conformation and can be applied to Fabs from various species, isotypes and chimeric Fabs. We present examples of the Rigid Fab design enabling high-resolution (2.3-2.5 Å) structures of small proteins, Ang2 (26 kDa) and KRAS (21 kDa) by cryo-EM. The strategies for designing disulfide constrained Rigid Fabs in our work thus establish a general approach to overcome the target size limitation of single particle cryo-EM.
Collapse
Affiliation(s)
- Jennifer E. Kung
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Matthew C. Johnson
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Christine C. Jao
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Christopher P. Arthur
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Dimitry Tegunov
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Alexis Rohou
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
13
|
Yoon Y, Song S. Structural Insights into the Lipopolysaccharide Transport (Lpt) System as a Novel Antibiotic Target. J Microbiol 2024; 62:261-275. [PMID: 38816673 DOI: 10.1007/s12275-024-00137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Lipopolysaccharide (LPS) is a critical component of the extracellular leaflet within the bacterial outer membrane, forming an effective physical barrier against environmental threats in Gram-negative bacteria. After LPS is synthesized and matured in the bacterial cytoplasm and the inner membrane (IM), LPS is inserted into the outer membrane (OM) through the ATP-driven LPS transport (Lpt) pathway, which is an energy-intensive process. A trans-envelope complex that contains seven Lpt proteins (LptA-LptG) is crucial for extracting LPS from the IM and transporting it across the periplasm to the OM. The last step in LPS transport involves the mediation of the LptDE complex, facilitating the insertion of LPS into the outer leaflet of the OM. As the Lpt system plays an essential role in maintaining the impermeability of the OM via LPS decoration, the interactions between these interconnected subunits, which are meticulously regulated, may be potential targets for the development of new antibiotics to combat multidrug-resistant Gram-negative bacteria. In this review, we aimed to provide an overview of current research concerning the structural interactions within the Lpt system and their implications to clarify the function and regulation of LPS transport in the overall process of OM biogenesis. Additionally, we explored studies on the development of therapeutic inhibitors of LPS transport, the factors that limit success, and future prospects.
Collapse
Affiliation(s)
- Yurim Yoon
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Saemee Song
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
14
|
Li Z, Zhao Z, Chen S, Wu W, Jin Y, Mao J, Lin Y, Jiang Y. Chemically Tailored Single Atoms for Targeted and Light-Controlled Bactericidal Activity. Adv Healthc Mater 2024; 13:e2302480. [PMID: 38063347 DOI: 10.1002/adhm.202302480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/21/2023] [Indexed: 02/20/2024]
Abstract
Single-atom (SA) nanoparticles exhibit considerable potential in terms of photothermal properties for bactericidal applications. Nevertheless, the restricted efficacy of their targeted and controlled antibacterial activity has hindered their practical implementation. This study aims to overcome this obstacle by employing chemical modifications to tailor SAs, thereby achieving targeted and light-controlled antimicrobial effects. By conducting atomic-level modifications on palladium SAs using glutathione (GSH) and mercaptophenylboronic acid (MBA), their superior targeted binding capabilities toward Escherichia coli cells are demonstrated, surpassing those of SAs modified with cysteine (Cys). Moreover, these modified SAs effectively inhibit wound bacteria proliferation and promote wound healing in rats, without inducing noticeable toxicity to major organs under 808 nm laser irradiation. This study highlights the significance of chemical engineering in tailoring the antibacterial properties of SA nanoparticles, opening avenues for combating bacterial infections and advancing nanoparticle-based therapies.
Collapse
Affiliation(s)
- Zaoming Li
- Department of Chemistry, Capital Normal University, No. 105 West Third Ring North Road, Beijing, 100048, China
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
| | - Zhiqiang Zhao
- Department of Chemistry, Capital Normal University, No. 105 West Third Ring North Road, Beijing, 100048, China
| | - Shutong Chen
- Department of Chemistry, Capital Normal University, No. 105 West Third Ring North Road, Beijing, 100048, China
| | - Wenjie Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical, Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Zhongguancun North First Street 2, Beijing, 100190, China
| | - Ying Jin
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule Based Materials, College of Chemistry and Materials Science, Anhui Normal University, No. 1, Beijing East Road, Wuhu, Anhui Province, Wuhu, Anhui, 241000, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, No. 105 West Third Ring North Road, Beijing, 100048, China
| | - Ying Jiang
- College of Chemistry, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, 100875, China
| |
Collapse
|
15
|
Frecot DI, Froehlich T, Rothbauer U. 30 years of nanobodies - an ongoing success story of small binders in biological research. J Cell Sci 2023; 136:jcs261395. [PMID: 37937477 DOI: 10.1242/jcs.261395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
A milestone in the field of recombinant binding molecules was achieved 30 years ago with the discovery of single-domain antibodies from which antigen-binding variable domains, better known as nanobodies (Nbs), can be derived. Being only one tenth the size of conventional antibodies, Nbs feature high affinity and specificity, while being highly stable and soluble. In addition, they display accessibility to cryptic sites, low off-target accumulation and deep tissue penetration. Efficient selection methods, such as (semi-)synthetic/naïve or immunized cDNA libraries and display technologies, have facilitated the isolation of Nbs against diverse targets, and their single-gene format enables easy functionalization and high-yield production. This Review highlights recent advances in Nb applications in various areas of biological research, including structural biology, proteomics and high-resolution and in vivo imaging. In addition, we provide insights into intracellular applications of Nbs, such as live-cell imaging, biosensors and targeted protein degradation.
Collapse
Affiliation(s)
- Desiree I Frecot
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Reutlingen, Germany
| | - Theresa Froehlich
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
16
|
Yang Y, Chen H, Corey RA, Morales V, Quentin Y, Froment C, Caumont-Sarcos A, Albenne C, Burlet-Schiltz O, Ranava D, Stansfeld PJ, Marcoux J, Ieva R. LptM promotes oxidative maturation of the lipopolysaccharide translocon by substrate binding mimicry. Nat Commun 2023; 14:6368. [PMID: 37821449 PMCID: PMC10567701 DOI: 10.1038/s41467-023-42007-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Insertion of lipopolysaccharide (LPS) into the bacterial outer membrane (OM) is mediated by a druggable OM translocon consisting of a β-barrel membrane protein, LptD, and a lipoprotein, LptE. The β-barrel assembly machinery (BAM) assembles LptD together with LptE at the OM. In the enterobacterium Escherichia coli, formation of two native disulfide bonds in LptD controls translocon activation. Here we report the discovery of LptM (formerly YifL), a lipoprotein conserved in Enterobacteriaceae, that assembles together with LptD and LptE at the BAM complex. LptM stabilizes a conformation of LptD that can efficiently acquire native disulfide bonds, whereas its inactivation makes disulfide bond isomerization by DsbC become essential for viability. Our structural prediction and biochemical analyses indicate that LptM binds to sites in both LptD and LptE that are proposed to coordinate LPS insertion into the OM. These results suggest that, by mimicking LPS binding, LptM facilitates oxidative maturation of LptD, thereby activating the LPS translocon.
Collapse
Affiliation(s)
- Yiying Yang
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Haoxiang Chen
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Violette Morales
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Yves Quentin
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Carine Froment
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31077, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Anne Caumont-Sarcos
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Cécile Albenne
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31077, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - David Ranava
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, UK
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31077, France
- Infrastructure Nationale de Protéomique, ProFI, FR 2048, Toulouse, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, 31062, France.
| |
Collapse
|
17
|
Feng L, Liu Y, Chen Y, Xiang Q, Huang Y, Liu Z, Xue W, Guo R. Injectable Antibacterial Hydrogel with Asiaticoside-Loaded Liposomes and Ultrafine Silver Nanosilver Particles Promotes Healing of Burn-Infected Wounds. Adv Healthc Mater 2023; 12:e2203201. [PMID: 37195780 DOI: 10.1002/adhm.202203201] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/15/2023] [Indexed: 05/18/2023]
Abstract
Post-injury infection and wound healing are recurrent daily life problems. Therefore, the necessity of developing a biomaterial with antibacterial and wound-healing properties is paramount. Based on the special porous structure of hydrogel, this work modifies recombinant collagen and quaternary ammonium chitosan and fused them with silver nanoparticles (Ag@mental-organic framework (Ag@MOF)) with antibacterial properties, and asiaticoside-loaded liposomes (Lip@AS) with anti-inflammatory/vascularization effects to form the rColMA/QCSG/LIP@AS/Ag@MOF (RQLAg) hydrogel. The prepared hydrogel possesses good sustainable release capabilities of Ag+ and AS and exhibits concentration-dependent swelling properties, pore size, and compressive strength. Cellular experiments show that the hydrogel exhibits good cell compatibility and promote cell migration, angiogenesis, and M1 macrophage polarization. Additionally, the hydrogels exhibit excellent antibacterial activity against Escherichia coli and Staphylococcus aureus in vitro. In vivo, Sprague Dawley rats burn-wound infection model showed that the RQLAg hydrogel could efficiently promote wound healing and has stronger healing promoting abilities than those of Aquacel Ag. In summary, the RQLAg hydrogel is expected to be an excellent material for accelerating open wound healing and preventing bacterial infections.
Collapse
Affiliation(s)
- Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yu Liu
- Research and Development Department, Guangzhou Beogene Biotech Co., Ltd, 510663, Guangzhou, China
| | - Yini Chen
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510663, China
| | - Qi Xiang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510663, China
| | - Yadong Huang
- Institute of Biomedicine and Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, 510663, China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
18
|
Skiba MA, Sterling SM, Rawson S, Gilman MS, Xu H, Nemeth GR, Hurley JD, Shen P, Staus DP, Kim J, McMahon C, Lehtinen MK, Wingler LM, Kruse AC. Antibodies Expand the Scope of Angiotensin Receptor Pharmacology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554128. [PMID: 37662341 PMCID: PMC10473732 DOI: 10.1101/2023.08.23.554128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
G protein-coupled receptors (GPCRs) are key regulators of human physiology and are the targets of many small molecule research compounds and therapeutic drugs. While most of these ligands bind to their target GPCR with high affinity, selectivity is often limited at the receptor, tissue, and cellular level. Antibodies have the potential to address these limitations but their properties as GPCR ligands remain poorly characterized. Here, using protein engineering, pharmacological assays, and structural studies, we develop maternally selective heavy chain-only antibody ("nanobody") antagonists against the angiotensin II type I receptor (AT1R) and uncover the unusual molecular basis of their receptor antagonism. We further show that our nanobodies can simultaneously bind to AT1R with specific small-molecule antagonists and demonstrate that ligand selectivity can be readily tuned. Our work illustrates that antibody fragments can exhibit rich and evolvable pharmacology, attesting to their potential as next-generation GPCR modulators.
Collapse
Affiliation(s)
- Meredith A. Skiba
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah M. Sterling
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shaun Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Morgan S.A. Gilman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Huixin Xu
- Department of Pathology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Genevieve R. Nemeth
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph D. Hurley
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Pengxiang Shen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Dean P. Staus
- Department of Medicine and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Jihee Kim
- Department of Medicine and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Conor McMahon
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Maria K. Lehtinen
- Department of Pathology, Boston Children’s Hospital, Boston, MA, 02115, USA
| | - Laura M. Wingler
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Andrew C. Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Jones SA, Gogoi P, Ruprecht JJ, King MS, Lee Y, Zögg T, Pardon E, Chand D, Steimle S, Copeman DM, Cotrim CA, Steyaert J, Crichton PG, Moiseenkova-Bell V, Kunji ER. Structural basis of purine nucleotide inhibition of human uncoupling protein 1. SCIENCE ADVANCES 2023; 9:eadh4251. [PMID: 37256948 PMCID: PMC10413660 DOI: 10.1126/sciadv.adh4251] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
Mitochondrial uncoupling protein 1 (UCP1) gives brown adipose tissue of mammals its specialized ability to burn calories as heat for thermoregulation. When activated by fatty acids, UCP1 catalyzes the leak of protons across the mitochondrial inner membrane, short-circuiting the mitochondrion to generate heat, bypassing ATP synthesis. In contrast, purine nucleotides bind and inhibit UCP1, regulating proton leak by a molecular mechanism that is unclear. We present the cryo-electron microscopy structure of the GTP-inhibited state of UCP1, which is consistent with its nonconducting state. The purine nucleotide cross-links the transmembrane helices of UCP1 with an extensive interaction network. Our results provide a structural basis for understanding the specificity and pH dependency of the regulatory mechanism. UCP1 has retained all of the key functional and structural features required for a mitochondrial carrier-like transport mechanism. The analysis shows that inhibitor binding prevents the conformational changes that UCP1 uses to facilitate proton leak.
Collapse
Affiliation(s)
- Scott A. Jones
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Prerana Gogoi
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, 10-124 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5158, USA
| | - Jonathan J. Ruprecht
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Martin S. King
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Yang Lee
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Thomas Zögg
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Deepak Chand
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| | - Stefan Steimle
- Department of Biochemistry and Biophysics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Danielle M. Copeman
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Camila A. Cotrim
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Paul G. Crichton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Vera Moiseenkova-Bell
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Perelman School of Medicine, 10-124 Smilow Center for Translational Research, 3400 Civic Center Boulevard, Philadelphia, PA 19104-5158, USA
| | - Edmund R. S. Kunji
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Keith Peters Building, Cambridge CB2 0XY, UK
| |
Collapse
|
20
|
Bilsing FL, Anlauf MT, Hachani E, Khosa S, Schmitt L. ABC Transporters in Bacterial Nanomachineries. Int J Mol Sci 2023; 24:ijms24076227. [PMID: 37047196 PMCID: PMC10094684 DOI: 10.3390/ijms24076227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Members of the superfamily of ABC transporters are found in all domains of life. Most of these primary active transporters act as isolated entities and export or import their substrates in an ATP-dependent manner across biological membranes. However, some ABC transporters are also part of larger protein complexes, so-called nanomachineries that catalyze the vectorial transport of their substrates. Here, we will focus on four bacterial examples of such nanomachineries: the Mac system providing drug resistance, the Lpt system catalyzing vectorial LPS transport, the Mla system responsible for phospholipid transport, and the Lol system, which is required for lipoprotein transport to the outer membrane of Gram-negative bacteria. For all four systems, we tried to summarize the existing data and provide a structure-function analysis highlighting the mechanistical aspect of the coupling of ATP hydrolysis to substrate translocation.
Collapse
|
21
|
Servais C, Vassen V, Verhaeghe A, Küster N, Carlier E, Phégnon L, Mayard A, Auberger N, Vincent S, De Bolle X. Lipopolysaccharide biosynthesis and traffic in the envelope of the pathogen Brucella abortus. Nat Commun 2023; 14:911. [PMID: 36806059 PMCID: PMC9938171 DOI: 10.1038/s41467-023-36442-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
Lipopolysaccharide is essential for most Gram-negative bacteria as it is a main component of the outer membrane. In the pathogen Brucella abortus, smooth lipopolysaccharide containing the O-antigen is required for virulence. Being part of the Rhizobiales, Brucella spp. display unipolar growth and lipopolysaccharide was shown to be incorporated at the active growth sites, i.e. the new pole and the division site. By localizing proteins involved in the lipopolysaccharide transport across the cell envelope, from the inner to the outer membrane, we show that the lipopolysaccharide incorporation sites are determined by the inner membrane complex of the lipopolysaccharide transport system. Moreover, we identify the main O-antigen ligase of Brucella spp. involved in smooth lipopolysaccharide synthesis. Altogether, our data highlight a layer of spatiotemporal organization of the lipopolysaccharide biosynthesis pathway and identify an original class of bifunctional O-antigen ligases.
Collapse
Affiliation(s)
- Caroline Servais
- Research Unit in Biology of Microorganisms (URBM), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Victoria Vassen
- Research Unit in Biology of Microorganisms (URBM), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Audrey Verhaeghe
- Research Unit in Biology of Microorganisms (URBM), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Nina Küster
- Research Unit in Biology of Microorganisms (URBM), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Elodie Carlier
- Research Unit in Biology of Microorganisms (URBM), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Léa Phégnon
- Research Unit in Biology of Microorganisms (URBM), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Aurélie Mayard
- Research Unit in Biology of Microorganisms (URBM), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Nicolas Auberger
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie, 4 rue Michel Brunet, 86073, Poitiers, France
| | - Stéphane Vincent
- Bio-organic Chemistry Unit (CBO), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium
| | - Xavier De Bolle
- Research Unit in Biology of Microorganisms (URBM), Narilis, University of Namur (UNamur), 61 rue de Bruxelles, 5000, Namur, Belgium.
| |
Collapse
|
22
|
Sperandeo P, Martorana AM, Zaccaria M, Polissi A. Targeting the LPS export pathway for the development of novel therapeutics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119406. [PMID: 36473551 DOI: 10.1016/j.bbamcr.2022.119406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022]
Abstract
The rapid rise of multi-resistant bacteria is a global health threat. This is especially serious for Gram-negative bacteria in which the impermeable outer membrane (OM) acts as a shield against antibiotics. The development of new drugs with novel modes of actions to combat multi-drug resistant pathogens requires the selection of suitable processes to be targeted. The LPS export pathway is an excellent under exploited target for drug development. Indeed, LPS is the major determinant of the OM permeability barrier, and its biogenetic pathway is conserved in most Gram-negatives. Here we describe efforts to identify inhibitors of the multiprotein Lpt system that transports LPS to the cell surface. Despite none of these molecules has been approved for clinical use, they may represent valuable compounds for optimization. Finally, the recent discovery of a link between inhibition of LPS biogenesis and changes in peptidoglycan structure uncovers additional targets to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Alessandra M Martorana
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Marta Zaccaria
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy
| | - Alessandra Polissi
- Department of Pharmacological and Biomolecular Sciences, Via Balzaretti 9, 20133 Milano, Italy.
| |
Collapse
|
23
|
Bowen HG, Kenedy MR, Johnson DK, MacKerell AD, Akins DR. Identification of a novel transport system in Borrelia burgdorferi that links the inner and outer membranes. Pathog Dis 2023; 81:ftad014. [PMID: 37385817 PMCID: PMC10353723 DOI: 10.1093/femspd/ftad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023] Open
Abstract
Borrelia burgdorferi, the spirochete that causes Lyme disease, is a diderm organism that is similar to Gram-negative organisms in that it contains both an inner and outer membrane. Unlike typical Gram-negative organisms, however, B. burgdorferi lacks lipopolysaccharide (LPS). Using computational genome analyses and structural modeling, we identified a transport system containing six proteins in B. burgdorferi that are all orthologs to proteins found in the lipopolysaccharide transport (LPT) system that links the inner and outer membranes of Gram-negative organisms and is responsible for placing LPS on the surface of these organisms. While B. burgdorferi does not contain LPS, it does encode over 100 different surface-exposed lipoproteins and several major glycolipids, which like LPS are also highly amphiphilic molecules, though no system to transport these molecules to the borrelial surface is known. Accordingly, experiments supplemented by molecular modeling were undertaken to determine whether the orthologous LPT system identified in B. burgdorferi could transport lipoproteins and/or glycolipids to the borrelial outer membrane. Our combined observations strongly suggest that the LPT transport system does not transport lipoproteins to the surface. Molecular dynamic modeling, however, suggests that the borrelial LPT system could transport borrelial glycolipids to the outer membrane.
Collapse
Affiliation(s)
- Hannah G Bowen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| | - Melisha R Kenedy
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| | - David K Johnson
- Shenkel Structural Biology Center, Molecular Graphics and Modeling Laboratory and the Computational Biology Core, University of Kansas, 2034 Becker Drive Lawrence, Kansas 66047, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore 20 North Pine Street Baltimore, Maryland 21201, United States
| | - Darrin R Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 1053 Oklahoma City, OK 73104, United States
| |
Collapse
|
24
|
Killer M, Finocchio G, Mertens HDT, Svergun DI, Pardon E, Steyaert J, Löw C. Cryo-EM Structure of an Atypical Proton-Coupled Peptide Transporter: Di- and Tripeptide Permease C. Front Mol Biosci 2022; 9:917725. [PMID: 35898305 PMCID: PMC9309889 DOI: 10.3389/fmolb.2022.917725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Proton-coupled Oligopeptide Transporters (POTs) of the Major Facilitator Superfamily (MFS) mediate the uptake of short di- and tripeptides in all phyla of life. POTs are thought to constitute the most promiscuous class of MFS transporters, with the potential to transport more than 8400 unique substrates. Over the past two decades, transport assays and biophysical studies have shown that various orthologues and paralogues display differences in substrate selectivity. The E. coli genome codes for four different POTs, known as Di- and tripeptide permeases A-D (DtpA-D). DtpC was shown previously to favor positively charged peptides as substrates. In this study, we describe, how we determined the structure of the 53 kDa DtpC by cryogenic electron microscopy (cryo-EM), and provide structural insights into the ligand specificity of this atypical POT. We collected and analyzed data on the transporter fused to split superfolder GFP (split sfGFP), in complex with a 52 kDa Pro-macrobody and with a 13 kDa nanobody. The latter sample was more stable, rigid and a significant fraction dimeric, allowing us to reconstruct a 3D volume of DtpC at a resolution of 2.7 Å. This work provides a molecular explanation for the selectivity of DtpC, and highlights the value of small and rigid fiducial markers such as nanobodies for structure determination of low molecular weight integral membrane proteins lacking soluble domains.
Collapse
Affiliation(s)
- Maxime Killer
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Molecular Biology Laboratory (EMBL), Hamburg Unit C/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Giada Finocchio
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Molecular Biology Laboratory (EMBL), Hamburg Unit C/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
| | - Haydyn D. T. Mertens
- Molecular Biology Laboratory (EMBL), Hamburg Unit C/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
| | - Dmitri I. Svergun
- Molecular Biology Laboratory (EMBL), Hamburg Unit C/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
- Molecular Biology Laboratory (EMBL), Hamburg Unit C/o Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
| |
Collapse
|