1
|
Sommer-Plüss CJ, Leiggener C, Nikci E, Mancuso RV, Rabbani S, Lamers C, Ricklin D. Determining Ligand Binding and Specificity Within the β 2-Integrin Family with a Novel Assay Platform. Biomolecules 2025; 15:238. [PMID: 40001541 PMCID: PMC11853025 DOI: 10.3390/biom15020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/01/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
The family of the β2-integrin receptors is critically involved in host defense and homeostasis, by mediating immune cell adhesion, migration, and phagocytosis. Due to their key roles in immune surveillance and inflammation, their modulation has been recognized as an attractive drug target. However, the development of therapeutics has been limited, partly due to the high promiscuity of endogenous ligands, their functional responses, and gaps in our understanding of their disease-related molecular mechanisms. The delineation of the molecular role of β2 integrins and their ligands has been hampered by a shortage of validated assay systems. To facilitate molecular and functional studies on the β2-integrin family, and to enable screening of modulators, this study provides a uniform and validated assay platform. For this purpose, the major ligand-binding domains (αI) of all four β2 integrins were recombinantly expressed in both low- and high-affinity states. By optimizing the expression parameters and selecting appropriate purification tags, all αI-domain variants could be produced with high yield and purity. Direct binding studies using surface plasmon resonance (SPR) confirmed the expected activity and selectivity profiles of the recombinant αI domains towards their reported ligands, validating our approach. In addition, the SPR studies provided additional insights into ligand binding, especially for the scarcely described family member CD11d. Alongside characterizing endogenous ligands, the platform can be employed to test pharmacologically active compounds, such as the reported β2-integrin antagonist simvastatin. In addition, we established a bead-based adhesion assay using the recombinant αI domains, and a cell-based adhesion assay underlining most findings generated with the isolated αI domains. Interestingly, the binding of ligands to the recombinant αDI is not dependent on divalent cation, in contrast to the full integrin CD11d/CD18, suggesting a binding mode distinct of the metal ion-dependent adhesion site (MIDAS). The setup highlights the applicability of recombinant αI domains for first screenings and direct or competitive interaction studies, while the full integrin is needed to validate those findings.
Collapse
Affiliation(s)
- Carla Johanna Sommer-Plüss
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Céline Leiggener
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Elira Nikci
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Riccardo Vincenzo Mancuso
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Said Rabbani
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Christina Lamers
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
- Institute for Drug Development, Faculty of Medicine, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany
| | - Daniel Ricklin
- Molecular Pharmacy Research Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Zhao T, Liu X, Chu Z, Zhao J, Jiang D, Dong X, Lu Z, Yeung KWK, Liu X, Ouyang L. L-arginine loading porous PEEK promotes percutaneous tissue repair through macrophage orchestration. Bioact Mater 2024; 40:19-33. [PMID: 38882001 PMCID: PMC11179658 DOI: 10.1016/j.bioactmat.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 06/18/2024] Open
Abstract
Infection and poor tissue repair are the key causes of percutaneous implantation failure. However, there is a lack of effective strategies to cope with due to its high requirements of sterilization, soft tissue healing, and osseointegration. In this work, l-arginine (L-Arg) was loaded onto a sulfonated polyetheretherketone (PEEK) surface to solve this issue. Under the infection condition, nitric oxide (NO) and reactive oxygen species (ROS) are produced through catalyzing L-Arg by inducible nitric oxide synthase (iNOS) and thus play a role in bacteria sterilization. Under the tissue repair condition, L-Arg is catalyzed to ornithine by Arginase-1 (Arg-1), which promotes the proliferation and collagen secretion of L929 and rBMSCs. Notably, L-Arg loading samples could polarize macrophages to M1 and M2 in infection and tissue repair conditions, respectively. The results in vivo show that the L-Arg loading samples could enhance infected soft tissue sealing and bone regeneration. In summary, L-Arg loading sulfonated PEEK could polarize macrophage through metabolic reprogramming, providing multi-functions of antibacterial abilities, soft tissue repair, and bone regeneration, which gives a new idea to design percutaneous implantation materials.
Collapse
Affiliation(s)
- Tong Zhao
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai JiaoTong University School of Medicine, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xingdan Liu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai JiaoTong University School of Medicine, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhuangzhuang Chu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai JiaoTong University School of Medicine, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jing Zhao
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Dongya Jiang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiaohua Dong
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Ziyi Lu
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai JiaoTong University School of Medicine, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Kelvin W K Yeung
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, Guangdong Engineering Technology, Research Center for Orthopaedic Trauma Repair, Department of Orthopaedics and Traumatology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Liping Ouyang
- Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai JiaoTong University School of Medicine, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| |
Collapse
|
3
|
Ge TQ, Guan PP, Wang P. Complement 3a induces the synapse loss via C3aR in mitochondria-dependent NLRP3 activating mechanisms during the development and progression of Alzheimer's disease. Neurosci Biobehav Rev 2024; 165:105868. [PMID: 39218048 DOI: 10.1016/j.neubiorev.2024.105868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/08/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
As a central molecule in complement system (CS), complement (C) 3 is upregulated in the patients and animal models of Alzheimer's disease (AD). C3 will metabolize to iC3b and C3a. iC3b is responsible for clearing β-amyloid protein (Aβ). In this scenario, C3 exerts neuroprotective effects against the disease via iC3b. However, C3a will inhibit microglia to clear the Aβ, leading to the deposition of Aβ and impair the functions of synapses. To their effects on AD, activation of C3a and C3a receptor (C3aR) will impair the mitochondria, leading to the release of reactive oxygen species (ROS), which activates the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasomes. The overloading of NLRP3 inflammasomes activate microglia, leading to the formation of inflammatory environment. The inflammatory environment will facilitate the deposition of Aβ and abnormal synapse pruning, which results in the progression of AD. Therefore, the current review will decipher the mechanisms of C3a inducing the synapse loss via C3aR in mitochondria-dependent NLRP3 activating mechanisms, which facilitates the understanding the AD.
Collapse
Affiliation(s)
- Tong-Qi Ge
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China; College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| | - Pu Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China.
| |
Collapse
|
4
|
Nguyen H, Podolnikova NP, Ugarova TP, Wang X. α MI-domain of integrin Mac-1 binds the cytokine pleiotrophin using multiple mechanisms. Structure 2024; 32:1184-1196.e4. [PMID: 38729161 PMCID: PMC11316656 DOI: 10.1016/j.str.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/21/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
The integrin Mac-1 (αMβ2, CD11b/CD18, CR3) is an adhesion receptor expressed on macrophages and neutrophils. Mac-1 is also a promiscuous integrin that binds a diverse set of ligands through its αMI-domain. However, the binding mechanism of most ligands remains unclear. We have characterized the interaction of αMI-domain with the cytokine pleiotrophin (PTN), a protein known to bind αMI-domain and induce Mac-1-mediated cell adhesion and migration. Our data show that PTN's N-terminal domain binds a unique site near the N- and C-termini of the αMI-domain using a metal-independent mechanism. However, a stronger interaction is achieved when an acidic amino acid in a zwitterionic motif in PTN's C-terminal domain chelates the divalent cation in the metal ion-dependent adhesion site of active αMI-domain. These results indicate that αMI-domain can bind ligands using multiple mechanisms and that the active αMI-domain has a preference for motifs containing both positively and negatively charged amino acids.
Collapse
Affiliation(s)
- Hoa Nguyen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA
| | | | - Tatiana P Ugarova
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
5
|
Bendapudi PK, Nazeen S, Ryu J, Söylemez O, Robbins A, Rouaisnel B, O’Neil JK, Pokhriyal R, Yang M, Colling M, Pasko B, Bouzinier M, Tomczak L, Collier L, Barrios D, Ram S, Toth-Petroczy A, Krier J, Fieg E, Dzik WH, Hudspeth JC, Pozdnyakova O, Nardi V, Knight J, Maas R, Sunyaev S, Losman JA. Low-frequency inherited complement receptor variants are associated with purpura fulminans. Blood 2024; 143:1032-1044. [PMID: 38096369 PMCID: PMC10950473 DOI: 10.1182/blood.2023021231] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/15/2023] [Indexed: 03/16/2024] Open
Abstract
ABSTRACT Extreme disease phenotypes can provide key insights into the pathophysiology of common conditions, but studying such cases is challenging due to their rarity and the limited statistical power of existing methods. Herein, we used a novel approach to pathway-based mutational burden testing, the rare variant trend test (RVTT), to investigate genetic risk factors for an extreme form of sepsis-induced coagulopathy, infectious purpura fulminans (PF). In addition to prospective patient sample collection, we electronically screened over 10.4 million medical records from 4 large hospital systems and identified historical cases of PF for which archived specimens were available to perform germline whole-exome sequencing. We found a significantly increased burden of low-frequency, putatively function-altering variants in the complement system in patients with PF compared with unselected patients with sepsis (P = .01). A multivariable logistic regression analysis found that the number of complement system variants per patient was independently associated with PF after controlling for age, sex, and disease acuity (P = .01). Functional characterization of PF-associated variants in the immunomodulatory complement receptors CR3 and CR4 revealed that they result in partial or complete loss of anti-inflammatory CR3 function and/or gain of proinflammatory CR4 function. Taken together, these findings suggest that inherited defects in CR3 and CR4 predispose to the maladaptive hyperinflammation that characterizes severe sepsis with coagulopathy.
Collapse
Affiliation(s)
- Pavan K. Bendapudi
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Sumaiya Nazeen
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Justine Ryu
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Onuralp Söylemez
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Alissa Robbins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Betty Rouaisnel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jillian K. O’Neil
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Ruchika Pokhriyal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Meaghan Colling
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Bryce Pasko
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO
| | - Michael Bouzinier
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Lindsay Tomczak
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
| | - Lindsay Collier
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
| | - David Barrios
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA
| | - Agnes Toth-Petroczy
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Joel Krier
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Elizabeth Fieg
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Walter H. Dzik
- Division of Hematology and Blood Transfusion Service, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - James C. Hudspeth
- Department of Medicine, Boston Medical Center, Boston, MA
- Boston University School of Medicine, Boston, MA
| | - Olga Pozdnyakova
- Harvard Medical School, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Valentina Nardi
- Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - James Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT
| | - Richard Maas
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shamil Sunyaev
- Harvard Medical School, Boston, MA
- Division of Genomic Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Julie-Aurore Losman
- Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
6
|
Nguyen H, Podolnikova NP, Ugarova TP, Wang X. α MI-domain of Integrin Mac-1 Binds the Cytokine Pleiotrophin Using Multiple Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578455. [PMID: 38352421 PMCID: PMC10862807 DOI: 10.1101/2024.02.01.578455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The integrin Mac-1 (αMβ2, CD11b/CD18, CR3) is an important adhesion receptor expressed on macrophages and neutrophils. Mac-1 is also the most promiscuous member of the integrin family that binds a diverse set of ligands through its αMI-domain. However, the binding mechanism of most ligands is not clear. We have determined the interaction of αMI-domain with the cytokine pleiotrophin (PTN), a cationic protein known to bind αMI-domain and induce Mac-1-mediated cell adhesion and migration. Our data show that PTN's N-terminal domain binds a unique site near the N- and C-termini of the αMI-domain using a metal-independent mechanism. However, stronger interaction is achieved when an acidic amino acid in a zwitterionic motif in PTN's C-terminal domain chelates the divalent cation in the metal ion-dependent adhesion site of the active αMI-domain. These results indicate that αMI-domain can bind ligands using multiple mechanisms, and suggest that active αMI-domain prefers acidic amino acids in zwitterionic motifs.
Collapse
Affiliation(s)
- Hoa Nguyen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| | | | | | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
7
|
Zhao S, Hu Y, Yang B, Zhang L, Xu M, Jiang K, Liu Z, Wu M, Huang Y, Li P, Liang SJ, Sun X, Hide G, Lun ZR, Wu Z, Shen J. The transplant rejection response involves neutrophil and macrophage adhesion-mediated trogocytosis and is regulated by NFATc3. Cell Death Dis 2024; 15:75. [PMID: 38242872 PMCID: PMC10798984 DOI: 10.1038/s41419-024-06457-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The anti-foreign tissue (transplant rejection) response, mediated by the immune system, has been the biggest obstacle to successful organ transplantation. There are still many enigmas regarding this process and some aspects of the underlying mechanisms driving the immune response against foreign tissues remain poorly understood. Here, we found that a large number of neutrophils and macrophages were attached to the graft during skin transplantation. Furthermore, both types of cells could autonomously adhere to and damage neonatal rat cardiomyocyte mass (NRCM) in vitro. We have demonstrated that Complement C3 and the receptor CR3 participated in neutrophils/macrophages-mediated adhesion and damage this foreign tissue (NRCM or skin grafts). We have provided direct evidence that the damage to these tissues occurs by a process referred to as trogocytosis, a damage mode that has never previously been reported to directly destroy grafts. We further demonstrated that this process can be regulated by NFAT, in particular, NFATc3. This study not only enriches an understanding of host-donor interaction in transplant rejection, but also provides new avenues for exploring the development of novel immunosuppressive drugs which prevent rejection during transplant therapy.
Collapse
Affiliation(s)
- Siyu Zhao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Yunyi Hu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Bicheng Yang
- The Andrology Department, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lichao Zhang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Meiyining Xu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Kefeng Jiang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Zhun Liu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, Guangdong, China
| | - Mingrou Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Yun Huang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Peipei Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Si-Jia Liang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Sun Yat-sen University, 74 Zhongshan 2 Rd, Guangzhou, 510080, China
| | - Xi Sun
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Geoff Hide
- Biomedical Research and Innovation Centre, School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK
| | - Zhao-Rong Lun
- Biomedical Research and Innovation Centre, School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhongdao Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, Guangdong, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China
| | - Jia Shen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, Guangdong, China.
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
8
|
Bowman KA, Kaplonek P, McNamara RP. Understanding Fc function for rational vaccine design against pathogens. mBio 2024; 15:e0303623. [PMID: 38112418 PMCID: PMC10790774 DOI: 10.1128/mbio.03036-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Antibodies represent the primary correlate of immunity following most clinically approved vaccines. However, their mechanisms of action vary from pathogen to pathogen, ranging from neutralization, to opsonophagocytosis, to cytotoxicity. Antibody functions are regulated both by antigen specificity (Fab domain) and by the interaction of their Fc domain with distinct types of Fc receptors (FcRs) present in immune cells. Increasing evidence highlights the critical nature of Fc:FcR interactions in controlling pathogen spread and limiting the disease state. Moreover, variation in Fc-receptor engagement during the course of infection has been demonstrated across a range of pathogens, and this can be further influenced by prior exposure(s)/immunizations, age, pregnancy, and underlying health conditions. Fc:FcR functional variation occurs at the level of antibody isotype and subclass selection as well as post-translational modification of antibodies that shape Fc:FcR-interactions. These factors collectively support a model whereby the immune system actively harnesses and directs Fc:FcR interactions to fight disease. By defining the precise humoral mechanisms that control infections, as well as understanding how these functions can be actively tuned, it may be possible to open new paths for improving existing or novel vaccines.
Collapse
Affiliation(s)
- Kathryn A. Bowman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Paulina Kaplonek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Ryan P. McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Fernández FJ, Querol-García J, Navas-Yuste S, Martino F, Vega MC. X-Ray Crystallography for Macromolecular Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:125-140. [PMID: 38507204 DOI: 10.1007/978-3-031-52193-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
X-ray crystallography has for most of the last century been the standard technique to determine the high-resolution structure of biological macromolecules, including multi-subunit protein-protein and protein-nucleic acids as large as the ribosome and viruses. As such, the successful application of X-ray crystallography to many biological problems revolutionized biology and biomedicine by solving the structures of small molecules and vitamins, peptides and proteins, DNA and RNA molecules, and many complexes-affording a detailed knowledge of the structures that clarified biological and chemical mechanisms, conformational changes, interactions, catalysis and the biological processes underlying DNA replication, translation, and protein synthesis. Now reaching well into the first quarter of the twenty-first century, X-ray crystallography shares the structural biology stage with cryo-electron microscopy and other innovative structure determination methods, as relevant and central to our understanding of biological function and structure as ever. In this chapter, we provide an overview of modern X-ray crystallography and how it interfaces with other mainstream structural biology techniques, with an emphasis on macromolecular complexes.
Collapse
Affiliation(s)
| | | | - Sergio Navas-Yuste
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Fabrizio Martino
- Structural Biology Research Centre, Human Technopole, Milan, Italy
| | - M Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain.
| |
Collapse
|
10
|
Rajasekaran A, Green TJ, Renfrow MB, Julian BA, Novak J, Rizk DV. Current Understanding of Complement Proteins as Therapeutic Targets for the Treatment of Immunoglobulin A Nephropathy. Drugs 2023; 83:1475-1499. [PMID: 37747686 PMCID: PMC10807511 DOI: 10.1007/s40265-023-01940-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide and a frequent cause of kidney failure. Currently, the diagnosis necessitates a kidney biopsy, with routine immunofluorescence microscopy revealing IgA as the dominant or co-dominant immunoglobulin in the glomerular immuno-deposits, often with IgG and sometimes IgM or both. Complement protein C3 is observed in most cases. IgAN leads to kidney failure in 20-40% of patients within 20 years of diagnosis and reduces average life expectancy by about 10 years. There is increasing clinical, biochemical, and genetic evidence that the complement system plays a paramount role in the pathogenesis of IgAN. The presence of C3 in the kidney immuno-deposits differentiates the diagnosis of IgAN from subclinical glomerular mesangial IgA deposition. Markers of complement activation via the lectin and alternative pathways in kidney-biopsy specimens are associated with disease activity and are predictive of poor outcome. Levels of select complement proteins in the circulation have also been assessed in patients with IgAN and found to be of prognostic value. Ongoing genetic studies have identified at least 30 loci associated with IgAN. Genes within some of these loci encode complement-system regulating proteins that can interact with immune complexes. The growing appreciation for the central role of complement components in IgAN pathogenesis highlighted these pathways as potential treatment targets and sparked great interest in pharmacological agents targeting the complement cascade for the treatment of IgAN, as evidenced by the plethora of ongoing clinical trials.
Collapse
Affiliation(s)
- Arun Rajasekaran
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Todd J Green
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bruce A Julian
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dana V Rizk
- Division of Nephrology, Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Leimi L, Koski JR, Kilpivaara O, Vettenranta K, Lokki AI, Meri S. Rare variants in complement system genes associate with endothelial damage after pediatric allogeneic hematopoietic stem cell transplantation. Front Immunol 2023; 14:1249958. [PMID: 37771589 PMCID: PMC10525714 DOI: 10.3389/fimmu.2023.1249958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Complement system has a postulated role in endothelial problems after hematopoietic stem cell transplantation (HSCT). In this retrospective, singlecenter study we studied genetic complement system variants in patients with documented endotheliopathy. In our previous study among pediatric patients with an allogeneic HSCT (2001-2013) at the Helsinki University Children´s Hospital, Finland, we identified a total of 19/122 (15.6%) patients with vascular complications, fulfilling the criteria of capillary leak syndrome (CLS), venoocclusive disease/sinusoidal obstruction syndrome (VOD/SOS) or thrombotic microangiopathy (TMA). Methods We performed whole exome sequencing (WES) on 109 patients having an adequate pre-transplantation DNA for the analysis to define possible variations and mutations potentially predisposing to functional abnormalities of the complement system. In our data analysis, we focused on 41 genes coding for complement components. Results 50 patients (45.9%) had one or several, nonsynonymous, rare germline variants in complement genes. 21/66 (31.8%) of the variants were in the terminal pathway. Patients with endotheliopathy had variants in different complement genes: in the terminal pathway (C6 and C9), lectin pathway (MASP1) and receptor ITGAM (CD11b, part of CR3). Four had the same rare missense variant (rs183125896; Thr279Ala) in the C9 gene. Two of these patients were diagnosed with endotheliopathy and one with capillary leak syndrome-like problems. The C9 variant Thr279Ala has no previously known disease associations and is classified by the ACMG guidelines as a variant of uncertain significance (VUS). We conducted a gene burden test with gnomAD Finnish (fin) as the reference population. Complement gene variants seen in our patient population were investigated and Total Frequency Testing (TFT) was used for execution of burden tests. The gene variants seen in our patients with endotheliopathy were all significantly (FDR < 0.05) enriched compared to gnomAD. Overall, 14/25 genes coding for components of the complement system had an increased burden of missense variants among the patients when compared to the gnomAD Finnish population (N=10 816). Discussion Injury to the vascular endothelium is relatively common after HSCT with different phenotypic appearances suggesting yet unidentified underlying mechanisms. Variants in complement components may be related to endotheliopathy and poor prognosis in these patients.
Collapse
Affiliation(s)
- Lilli Leimi
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jessica R. Koski
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Outi Kilpivaara
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Kim Vettenranta
- Pediatric Research Center, Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - A. Inkeri Lokki
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Seppo Meri
- Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
- Department of Bacteriology and Immunology and Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Santos-López J, de la Paz K, Fernández FJ, Vega MC. Structural biology of complement receptors. Front Immunol 2023; 14:1239146. [PMID: 37753090 PMCID: PMC10518620 DOI: 10.3389/fimmu.2023.1239146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The complement system plays crucial roles in a wide breadth of immune and inflammatory processes and is frequently cited as an etiological or aggravating factor in many human diseases, from asthma to cancer. Complement receptors encompass at least eight proteins from four structural classes, orchestrating complement-mediated humoral and cellular effector responses and coordinating the complex cross-talk between innate and adaptive immunity. The progressive increase in understanding of the structural features of the main complement factors, activated proteolytic fragments, and their assemblies have spurred a renewed interest in deciphering their receptor complexes. In this review, we describe what is currently known about the structural biology of the complement receptors and their complexes with natural agonists and pharmacological antagonists. We highlight the fundamental concepts and the gray areas where issues and problems have been identified, including current research gaps. We seek to offer guidance into the structural biology of the complement system as structural information underlies fundamental and therapeutic research endeavors. Finally, we also indicate what we believe are potential developments in the field.
Collapse
Affiliation(s)
- Jorge Santos-López
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Karla de la Paz
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Research & Development, Abvance Biotech SL, Madrid, Spain
| | | | - M. Cristina Vega
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
13
|
Lorentzen J, Olesen HG, Hansen AG, Thiel S, Birkelund S, Andersen CBF, Andersen GR. Trypanosoma brucei Invariant Surface gp65 Inhibits the Alternative Pathway of Complement by Accelerating C3b Degradation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:862-873. [PMID: 37466368 DOI: 10.4049/jimmunol.2300128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
Trypanosomes are known to activate the complement system on their surface, but they control the cascade in a manner such that the cascade does not progress into the terminal pathway. It was recently reported that the invariant surface glycoprotein ISG65 from Trypanosoma brucei interacts reversibly with complement C3 and its degradation products, but the molecular mechanism by which ISG65 interferes with complement activation remains unknown. In this study, we show that ISG65 does not interfere directly with the assembly or activity of the two C3 convertases. However, ISG65 acts as a potent inhibitor of C3 deposition through the alternative pathway in human and murine serum. Degradation assays demonstrate that ISG65 stimulates the C3b to iC3b converting activity of complement factor I in the presence of the cofactors factor H or complement receptor 1. A structure-based model suggests that ISG65 promotes a C3b conformation susceptible to degradation or directly bridges factor I and C3b without contact with the cofactor. In addition, ISG65 is observed to form a stable ternary complex with the ligand binding domain of complement receptor 3 and iC3b. Our data suggest that ISG65 supports trypanosome complement evasion by accelerating the conversion of C3b to iC3b through a unique mechanism.
Collapse
Affiliation(s)
- Josefine Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Heidi G Olesen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Svend Birkelund
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
14
|
Nguyen H, Jing T, Wang X. The Q163C/Q309C mutant of αMI-domain is an active variant suitable for NMR characterization. PLoS One 2023; 18:e0280778. [PMID: 36696377 PMCID: PMC9876370 DOI: 10.1371/journal.pone.0280778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Integrin αMβ2 (Mac-1, CD11b/CD18, CR3) is an important adhesion receptor expressed on monocytes. Mac-1 is responsible for mediating cell migration, phagocytosis, degranulation as well as cell-cell fusion. It is also the most promiscuous integrin in terms of ligand specificity with over 100 ligands, most of which use the αMI-domain as their binding site. Despite the importance of αMI-domain in defining ligand interactions of Mac-1, structural studies of αMI-domain's interactions with ligands are lacking. In particular, solution NMR studies of αMI-domain's interaction with ligands have not been possible because the most commonly used active αMI-domain mutants (I316G and ΔK315) are not sufficiently stable and soluble to be used in solution NMR. The goal of this study is to identify an αMI-domain active mutant that's amenable to NMR characterization. By screening known activating mutations of αMI-domain, we determined that the Q163C/Q309C mutant, which converts the αMI-domain into its active form through the formation of an intramolecular disulfide bond, can be produced with a high yield and is more stable than other active mutants. In addition, the Q163C/Q309C mutant has better NMR spectral quality than other active mutants and its affinity for ligands is comparable to other active mutants. Analysis of the Co2+-induced pseudocontact shifts in the Q163C/Q309C mutant showed the structure of the mutant is consistent with the active conformation. Finally, we show that the minor fraction of the Q163C/Q309C mutant without the disulfide bond can be removed through the use of carboxymethyl sepharose chromatography. We think the availability of this mutant for NMR study will significantly enhance structural characterizations of αMI-domain-ligand interactions.
Collapse
Affiliation(s)
- Hoa Nguyen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Tianwei Jing
- Biosensing Instrument Inc., Tempe, Arizona, United States of America
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
15
|
Boero E, Gorham RD, Francis EA, Brand J, Teng LH, Doorduijn DJ, Ruyken M, Muts RM, Lehmann C, Verschoor A, van Kessel KPM, Heinrich V, Rooijakkers SHM. Purified complement C3b triggers phagocytosis and activation of human neutrophils via complement receptor 1. Sci Rep 2023; 13:274. [PMID: 36609665 PMCID: PMC9822988 DOI: 10.1038/s41598-022-27279-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/29/2022] [Indexed: 01/07/2023] Open
Abstract
The complement system provides vital immune protection against infectious agents by labeling them with complement fragments that enhance phagocytosis by immune cells. Many details of complement-mediated phagocytosis remain elusive, partly because it is difficult to study the role of individual complement proteins on target surfaces. Here, we employ serum-free methods to couple purified complement C3b onto E. coli bacteria and beads and then expose human neutrophils to these C3b-coated targets. We examine the neutrophil response using a combination of flow cytometry, confocal microscopy, luminometry, single-live-cell/single-target manipulation, and dynamic analysis of neutrophil spreading on opsonin-coated surfaces. We show that purified C3b can potently trigger phagocytosis and killing of bacterial cells via Complement receptor 1. Comparison of neutrophil phagocytosis of C3b- versus antibody-coated beads with single-bead/single-target analysis exposes a similar cell morphology during engulfment. However, bulk phagocytosis assays of C3b-beads combined with DNA-based quenching reveal that these are poorly internalized compared to their IgG1 counterparts. Similarly, neutrophils spread slower on C3b-coated compared to IgG-coated surfaces. These observations support the requirement of multiple stimulations for efficient C3b-mediated uptake. Together, our results establish the existence of a direct pathway of phagocytic uptake of C3b-coated targets and present methodologies to study this process.
Collapse
Affiliation(s)
- Elena Boero
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands ,grid.425088.3GSK, 53100 Siena, Italy
| | - Ronald D. Gorham
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands ,grid.417555.70000 0000 8814 392XSanofi, Waltham, MA 02451 USA
| | - Emmet A. Francis
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Jonathan Brand
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Lay Heng Teng
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Dennis J. Doorduijn
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Maartje Ruyken
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Remy M. Muts
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Christian Lehmann
- grid.5330.50000 0001 2107 3311Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital of Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Admar Verschoor
- grid.15474.330000 0004 0477 2438Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, 81675 Munich, Germany
| | - Kok P. M. van Kessel
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Volkmar Heinrich
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California Davis, Davis, CA 95616 USA
| | - Suzan H. M. Rooijakkers
- grid.5477.10000000120346234Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
16
|
Kolev M, Barbour T, Baver S, Francois C, Deschatelets P. With complements: C3 inhibition in the clinic. Immunol Rev 2023; 313:358-375. [PMID: 36161656 DOI: 10.1111/imr.13138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is a key complement protein, located at the nexus of all complement activation pathways. Extracellular, tissue, cell-derived, and intracellular C3 plays critical roles in the immune response that is dysregulated in many diseases, making it an attractive therapeutic target. However, challenges such as very high concentration in blood, increased acute expression, and the elevated risk of infections have historically posed significant challenges in the development of C3-targeted therapeutics. This is further complicated because C3 activation fragments and their receptors trigger a complex network of downstream effects; therefore, a clear understanding of these is needed to provide context for a better understanding of the mechanism of action (MoA) of C3 inhibitors, such as pegcetacoplan. Because of C3's differential upstream position to C5 in the complement cascade, there are mechanistic differences between pegcetacoplan and eculizumab that determine their efficacy in patients with paroxysmal nocturnal hemoglobinuria. In this review, we compare the MoA of pegcetacoplan and eculizumab in paroxysmal nocturnal hemoglobinuria and discuss the complement-mediated disease that might be amenable to C3 inhibition. We further discuss the current state and outlook for C3-targeted therapeutics and provide our perspective on which diseases might be the next success stories in the C3 therapeutics journey.
Collapse
Affiliation(s)
- Martin Kolev
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Tara Barbour
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Scott Baver
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | | | | |
Collapse
|
17
|
de Jong S, Tang J, Clark SJ. Age-related macular degeneration: A disease of extracellular complement amplification. Immunol Rev 2023; 313:279-297. [PMID: 36223117 DOI: 10.1111/imr.13145] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Age-related macular degeneration (AMD) is a major cause of vision impairment in the Western World, and with the aging world population, its incidence is increasing. As of today, for the majority of patients, no treatment exists. Multiple genetic and biochemical studies have shown a strong association with components in the complement system and AMD, and evidence suggests a major role of remodeling of the extracellular matrix underlying the outer blood/retinal barrier. As part of the innate immune system, the complement cascade acts as a first-line defense against pathogens, and upon activation, its amplification loop ensures a strong, rapid, and sustained response. Excessive activation, however, can lead to host tissue damage and cause complement-associated diseases like AMD. AMD patients present with aberrant activation of the alternative pathway, especially in ocular tissues but also on a systemic level. Here, we review the latest findings of complement activation in AMD, and we will discuss in vivo observations made in human tissue, cellular models, the potential synergy of different AMD-associated pathways, and conclude on current clinical trials and the future outlook.
Collapse
Affiliation(s)
- Sarah de Jong
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany.,Department for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jiaqi Tang
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany.,Department for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Simon J Clark
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany.,Department for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
18
|
Zarantonello A, Revel M, Grunenwald A, Roumenina LT. C3-dependent effector functions of complement. Immunol Rev 2023; 313:120-138. [PMID: 36271889 PMCID: PMC10092904 DOI: 10.1111/imr.13147] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is the central effector molecule of the complement system, mediating its multiple functions through different binding sites and their corresponding receptors. We will introduce the C3 forms (native C3, C3 [H2 O], and intracellular C3), the C3 fragments C3a, C3b, iC3b, and C3dg/C3d, and the C3 expression sites. To highlight the important role that C3 plays in human biological processes, we will give an overview of the diseases linked to C3 deficiency and to uncontrolled C3 activation. Next, we will present a structural description of C3 activation and of the C3 fragments generated by complement regulation. We will proceed by describing the C3a interaction with the anaphylatoxin receptor, followed by the interactions of opsonins (C3b, iC3b, and C3dg/C3d) with complement receptors, divided into two groups: receptors bearing complement regulatory functions and the effector receptors without complement regulatory activity. We outline the molecular architecture of the receptors, their binding sites on the C3 activation fragments, the cells expressing them, the diversity of their functions, and recent advances. With this review, we aim to give an up-to-date analysis of the processes triggered by C3 activation fragments on different cell types in health and disease contexts.
Collapse
Affiliation(s)
- Alessandra Zarantonello
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Margot Revel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
19
|
Gber TE, Louis H, Owen AE, Etinwa BE, Benjamin I, Asogwa FC, Orosun MM, Eno EA. Heteroatoms (Si, B, N, and P) doped 2D monolayer MoS 2 for NH 3 gas detection. RSC Adv 2022; 12:25992-26010. [PMID: 36199611 PMCID: PMC9468912 DOI: 10.1039/d2ra04028j] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
2D transition metal dichalcogenide MoS2 monolayer quantum dots (MoS2-QD) and their doped boron (B@MoS2-QD), nitrogen (N@MoS2-QD), phosphorus (P@MoS2-QD), and silicon (Si@MoS2-QD) surfaces have been theoretically investigated using density functional theory (DFT) computation to understand their mechanistic sensing ability, such as conductivity, selectivity, and sensitivity toward NH3 gas. The results from electronic properties showed that P@MoS2-QD had the lowest energy gap, which indicated an increase in electrical conductivity and better adsorption behavior. By carrying out comparative adsorption studies using m062-X, ωB97XD, B3LYP, and PBE0 methods at the 6-311G++(d,p) level of theory, the most negative values were observed from ωB97XD for the P@MoS2-QD surface, signifying the preferred chemisorption surface for NH3 detection. The mechanistic studies provided in this study also indicate that the P@MoS2-QD dopant is a promising sensing material for monitoring ammonia gas in the real world. We hope this research work will provide informative knowledge for experimental researchers to realize the potential of MoS2 dopants, specifically the P@MoS2-QD surface, as a promising candidate for sensors to detect gas.
Collapse
Affiliation(s)
- Terkumbur E Gber
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Chemistry, Akwa-Ibom State University Uyo Nigeria
| | - Aniekan E Owen
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Chemistry, Akwa-Ibom State University Uyo Nigeria
| | - Benjamin E Etinwa
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria
| | - Innocent Benjamin
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria
| | - Fredrick C Asogwa
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria
| | | | - Ededet A Eno
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar Calabar Nigeria
| |
Collapse
|
20
|
Jensen RK, Pedersen H, Lorentzen J, Laursen NS, Vorup-Jensen T, Andersen GR. Structural insights into the function-modulating effects of nanobody binding to the integrin receptor α Mβ 2. J Biol Chem 2022; 298:102168. [PMID: 35738398 PMCID: PMC9287160 DOI: 10.1016/j.jbc.2022.102168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/12/2023] Open
Abstract
The integrin receptor αMβ2 mediates phagocytosis of complement-opsonized objects, adhesion to the extracellular matrix, and transendothelial migration of leukocytes. However, the mechanistic aspects of αMβ2 signaling upon ligand binding are unclear. Here, we present the first atomic structure of the human αMβ2 headpiece fragment in complex with the nanobody (Nb) hCD11bNb1 at a resolution of 3.2 Å. We show that the receptor headpiece adopts the closed conformation expected to exhibit low ligand affinity. The crystal structure indicates that in the R77H αM variant, associated with systemic lupus erythematosus, the modified allosteric relationship between ligand binding and integrin outside–inside signaling is due to subtle conformational effects transmitted over a distance of 40 Å. Furthermore, we found the Nb binds to the αI domain of the αM subunit in an Mg2+-independent manner with low nanomolar affinity. Biochemical and biophysical experiments with purified proteins demonstrated that the Nb acts as a competitive inhibitor through steric hindrance exerted on the thioester domain of complement component iC3b attempting to bind the αM subunit. Surprisingly, we show that the Nb stimulates the interaction of cell-bound αMβ2 with iC3b, suggesting that it may represent a novel high-affinity proteinaceous αMβ2-specific agonist. Taken together, our data suggest that the iC3b–αMβ2 complex may be more dynamic than predicted from the crystal structure of the core complex. We propose a model based on the conformational spectrum of the receptor to reconcile these observations regarding the functional consequences of hCD11bNb1 binding to αMβ2.
Collapse
Affiliation(s)
- Rasmus K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Henrik Pedersen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Josefine Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | | | | | |
Collapse
|
21
|
Complement component C3: A structural perspective and potential therapeutic implications. Semin Immunol 2022; 59:101627. [PMID: 35760703 PMCID: PMC9842190 DOI: 10.1016/j.smim.2022.101627] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 01/18/2023]
Abstract
As the most abundant component of the complement system, C3 and its proteolytic derivatives serve essential roles in the function of all three complement pathways. Central to this is a network of protein-protein interactions made possible by the sequential proteolysis and far-reaching structural changes that accompany C3 activation. Beginning with the crystal structures of C3, C3b, and C3c nearly twenty years ago, the physical transformations underlying C3 function that had long been suspected were finally revealed. In the years that followed, a compendium of crystallographic information on C3 derivatives bound to various enzymes, regulators, receptors, and inhibitors generated new levels of insight into the structure and function of the C3 molecule. This Review provides a concise classification, summary, and interpretation of the more than 50 unique crystal structure determinations for human C3. It also highlights other salient features of C3 structure that were made possible through solution-based methods, including Hydrogen/Deuterium Exchange and Small Angle X-ray Scattering. At this pivotal time when the first C3-targeted therapeutics begin to see use in the clinic, some perspectives are also offered on how this continually growing body of structural information might be leveraged for future development of next-generation C3 inhibitors.
Collapse
|