1
|
Kruczkowska W, Gałęziewska J, Buczek P, Płuciennik E, Kciuk M, Śliwińska A. Overview of Metformin and Neurodegeneration: A Comprehensive Review. Pharmaceuticals (Basel) 2025; 18:486. [PMID: 40283923 PMCID: PMC12030719 DOI: 10.3390/ph18040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
This comprehensive review examines the therapeutic potential of metformin, a well-established diabetes medication, in treating neurodegenerative disorders. Originally used as a first-line treatment for type 2 diabetes, recent studies have begun investigating metformin's effects beyond metabolic disorders, particularly its neuroprotective capabilities against conditions like Parkinson's disease, Alzheimer's disease, Huntington's disease, and multiple sclerosis. Key findings demonstrate that metformin's neuroprotective effects operate through multiple pathways: AMPK activation enhancing cellular energy metabolism and autophagy; upregulation of antioxidant defenses; suppression of inflammation; inhibition of protein aggregation; and improvement of mitochondrial function. These mechanisms collectively address common pathological features in neurodegeneration and neuroinflammation, including oxidative stress, protein accumulation, and mitochondrial dysfunction. Clinical and preclinical evidence supporting metformin's association with improved cognitive performance, reduced risk of dementia, and modulation of pathological hallmarks of neurodegenerative diseases is critically evaluated. While metformin shows promise as a therapeutic agent, this review emphasizes the need for further investigation to fully understand its mechanisms and optimal therapeutic applications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Julia Gałęziewska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Paulina Buczek
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
2
|
Ren Y, Mao X, Lin W, Chen Y, Chen R, Sun P. Targeting estrogen-related receptors to mitigate tumor resistance: A comprehensive approach to bridging cellular energy metabolism. Biochim Biophys Acta Rev Cancer 2025; 1880:189256. [PMID: 39743156 DOI: 10.1016/j.bbcan.2024.189256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
The war between humanity and malignant tumors has been ongoing, with continuous advancements in classic chemotherapy and radiotherapy regimens, targeted drugs, endocrine therapy, and immunotherapy. However, tumor cells can develop primary or secondary resistance to these treatment options, making the issue of tumor resistance a major factor affecting patient prognosis and leading to recurrence. Estrogen-related receptors (ERRs) are members of the nuclear receptor superfamily, primarily involved in regulating glucose, lipid, and amino acid metabolism, serving as a central hub for intracellular energy metabolism. ERRs not only mediate insulin resistance but also participate in the mechanisms of drug resistance in various tumors, including breast cancer, osteosarcoma, endometrial cancer, lung cancer, and liver cancer, and even mediate resistance to radiation and immunotherapy. They mainly resist tumor treatment methods through metabolic reprogramming within cells, affecting mitochondrial energy metabolism, regulating metabolites such as cholesterol, glutamine, and lactate, or other signaling pathways, or by influencing the immune microenvironment. ERRs are promising targets for addressing the dilemma of tumor resistance. Currently, electrochemical luminescence biosensors for detecting ERRα in bodily fluids have been developed, making large-scale, low-cost detection of ERRα possible. Additionally, targeted inhibitors of ERRs have shown significant effects in suppressing cancer cell proliferation and reversing tumor resistance. This article reviews the research progress of ERRs in tumor resistance, providing important references for developing more effective anti-tumor treatment strategies.
Collapse
Affiliation(s)
- Yuan Ren
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China
| | - Xiaodan Mao
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China
| | - Wenyu Lin
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China
| | - Yi Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Rongfeng Chen
- National Center for Occupational Safety and Health, Beijing, 102308, China; NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing 102308, China
| | - Pengming Sun
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China; Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China; School of Group Medicine and Public Health, Peking Union Medical College, Beijing 100091, China.
| |
Collapse
|
3
|
Chen J, Wu Y, Hao W, You J, Wu L. Non-canonical hepatic androgen receptor mediates glucagon sensitivity in female mice through the PGC1α/ERRα/mitochondria axis. Cell Rep 2025; 44:115188. [PMID: 39792556 DOI: 10.1016/j.celrep.2024.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/27/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Glucagon has recently been found to modulate liver fat content, in addition to its role in regulating gluconeogenesis. However, the precise mechanisms by which glucagon signaling synchronizes glucose and lipid metabolism in the liver remain poorly understood. By employing chemical and genetic approaches, we demonstrate that inhibiting the androgen receptor (AR) impairs the ability of glucagon to stimulate gluconeogenesis and lipid catabolism in primary hepatocytes and female mice. Notably, AR expression in the liver of female mice is up to three times higher than that in their male littermates, accounting for the more pronounced response to glucagon in females. Mechanistically, hepatic AR promotes energy metabolism and enhances lipid breakdown for liver glucose production in response to glucagon treatment through the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α)/estrogen-related receptor alpha (ERRα)-mitochondria axis. Overall, our findings highlight the crucial role of hepatic AR in mediating glucagon signaling and the sexual dimorphism in hepatic glucagon sensitivity.
Collapse
Affiliation(s)
- Jie Chen
- Fudan University, Shanghai, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yuanyuan Wu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Wenyuan Secondary School Affiliated to Xuejun High School, Hangzhou, Zhejiang, China
| | - Wanyu Hao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Pharmaceuticals, Hangzhou, Zhejiang, China
| | - Jia You
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| | - Lianfeng Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Di Florio DN, Weigel GJ, Gorelov DJ, McCabe EJ, Beetler DJ, Shapiro KA, Bruno KA, Chekuri I, Jain A, Whelan ER, Salomon GR, Khatib S, Bonvie-Hill NE, Fliess JJ, Giresi PG, Hamilton C, Hartmoyer CJ, Balamurugan V, Darakjian AA, Edenfield BH, Kocsis SC, McLeod CJ, Cooper LT, Audet-Walsh É, Coronado MJ, Sin J, Fairweather D. Sex differences in mitochondrial gene expression during viral myocarditis. Biol Sex Differ 2024; 15:104. [PMID: 39696682 PMCID: PMC11657264 DOI: 10.1186/s13293-024-00678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Myocarditis is an inflammation of the heart muscle most often caused by viral infections. Sex differences in the immune response during myocarditis have been well described but upstream mechanisms in the heart that might influence sex differences in disease are not completely understood. METHODS Male and female BALB/c wild type mice received an intraperitoneal injection of heart-passaged coxsackievirus B3 (CVB3) or vehicle control. Bulk-tissue RNA-sequencing was conducted to better understand sex differences in CVB3 myocarditis. We performed enrichment analysis and functional validation to understand sex differences in the transcriptional landscape of myocarditis and identify factors that might drive sex differences in myocarditis. RESULTS As expected, the hearts of male and female mice with myocarditis were significantly enriched for pathways related to an innate and adaptive immune response compared to uninfected controls. Unique to this study, we found that males were enriched for inflammatory pathways and gene changes that suggested worse mitochondrial electron transport function while females were enriched for pathways related to mitochondrial homeostasis. Mitochondria isolated from the heart of males were confirmed to have worse mitochondrial respiration than females during myocarditis. Unbiased TRANSFAC analysis identified estrogen-related receptor alpha (ERRα) as a transcription factor that may mediate sex differences in mitochondrial function during myocarditis. Transcript and protein levels of ERRα were confirmed as elevated in females with myocarditis compared to males. Differential binding analysis from chromatin immunoprecipitation (ChIP) sequencing confirmed that ERRα bound highly to select predicted respiratory chain genes in females more than males during myocarditis. CONCLUSIONS Females with viral myocarditis regulate mitochondrial homeostasis by upregulating master regulators of mitochondrial transcription including ERRα.
Collapse
Affiliation(s)
- Damian N Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Gabriel J Weigel
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - David J Gorelov
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Elizabeth J McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Danielle J Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Katie A Shapiro
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Isha Chekuri
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Angita Jain
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Emily R Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Gary R Salomon
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Sami Khatib
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jessica J Fliess
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Presley G Giresi
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Charwan Hamilton
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ashley A Darakjian
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Brandy H Edenfield
- Department of Cancer Biology, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - S Christian Kocsis
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Étienne Audet-Walsh
- Endocrinology - Nephrology Research Division, CHU de Québec - Université Laval Research Center, Québec, QC, Canada
| | | | - Jon Sin
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA.
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Jacksonville, FL, USA.
- Department of Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
5
|
Hu H, Hu J, Chen Z, Yang K, Zhu Z, Hao Y, Zhang Z, Li W, Peng Z, Cao Y, Sun X, Zhang F, Chi Q, Ding G, Liang W. RBBP6-Mediated ERRα Degradation Contributes to Mitochondrial Injury in Renal Tubular Cells in Diabetic Kidney Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405153. [PMID: 39441040 PMCID: PMC11633482 DOI: 10.1002/advs.202405153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Diabetic Kidney Disease (DKD), a major precursor to end-stage renal disease, involves mitochondrial dysfunction in proximal renal tubular cells (PTCs), contributing to its pathogenesis. Estrogen-related receptor α (ERRα) is essential for mitochondrial integrity in PTCs, yet its regulation in DKD is poorly understood. This study investigates ERRα expression and its regulatory mechanisms in DKD, assessing its therapeutic potential. Using genetic, biochemical, and cellular approaches, ERRα expression Was examined in human DKD specimens and DKD mouse models. We identified the E3 ubiquitin ligase retinoblastoma binding protein 6 (RBBP6) as a regulator of ERRα, promoting its degradation through K48-linked polyubiquitination at the K100 residue. This degradation pathway significantly contributed to mitochondrial injury in PTCs of DKD models. Notably, conditional ERRα overexpression or RBBP6 inhibition markedly reduced mitochondrial damage in diabetic mice, highlighting ERRα's protective role in maintaining mitochondrial integrity. The interaction between RBBP6 and ERRα opens new therapeutic avenues, suggesting that modulating RBBP6-ERRα interactions could be a strategy for preserving mitochondrial function and slowing DKD progression.
Collapse
Affiliation(s)
- Hongtu Hu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Jijia Hu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Zhaowei Chen
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Keju Yang
- The First College of Clinical Medical ScienceChina Three Gorges UniversityYichang443000China
| | - Zijing Zhu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Yiqun Hao
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Zongwei Zhang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Weiwei Li
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Zhuan Peng
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Yun Cao
- Department of NephrologyHainan General Hospital (Hainan Affiliated Hospital of Hainan Medical College)Haikou100053China
| | - Xiaoling Sun
- Ultrastructural Pathology CenterRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Fangcheng Zhang
- Ultrastructural Pathology CenterRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Qingjia Chi
- Department of Mechanics and Engineering StructureWuhan University of TechnologyWuhan430070China
| | - Guohua Ding
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| | - Wei Liang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhan430060China
- Key Clinical Research Center of Kidney DiseaseWuhan430060China
| |
Collapse
|
6
|
Desmet SJ, Thommis J, Vanderhaeghen T, Vandenboorn EMF, Clarisse D, Li Y, Timmermans S, Fijalkowska D, Ratman D, Van Hamme E, De Cauwer L, Staels B, Brunsveld L, Peelman F, Libert C, Tavernier J, De Bosscher K. Crosstalk interactions between transcription factors ERRα and PPARα assist PPARα-mediated gene expression. Mol Metab 2024; 84:101938. [PMID: 38631478 PMCID: PMC11059514 DOI: 10.1016/j.molmet.2024.101938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/10/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE The peroxisome proliferator-activated receptor α (PPARα) is a transcription factor driving target genes involved in fatty acid β-oxidation. To what extent various PPARα interacting proteins may assist its function as a transcription factor is incompletely understood. An ORFeome-wide unbiased mammalian protein-protein interaction trap (MAPPIT) using PPARα as bait revealed a PPARα-ligand-dependent interaction with the orphan nuclear receptor estrogen-related receptor α (ERRα). The goal of this study was to characterize the nature of the interaction in depth and to explore whether it was of physiological relevance. METHODS We used orthogonal protein-protein interaction assays and pharmacological inhibitors of ERRα in various systems to confirm a functional interaction and study the impact of crosstalk mechanisms. To characterize the interaction surfaces and contact points we applied a random mutagenesis screen and structural overlays. We pinpointed the extent of reciprocal ligand effects of both nuclear receptors via coregulator peptide recruitment assays. On PPARα targets revealed from a genome-wide transcriptome analysis, we performed an ERRα chromatin immunoprecipitation analysis on both fast and fed mouse livers. RESULTS Random mutagenesis scanning of PPARα's ligand-binding domain and coregulator profiling experiments supported the involvement of (a) bridging coregulator(s), while recapitulation of the interaction in vitro indicated the possibility of a trimeric interaction with RXRα. The PPARα·ERRα interaction depends on 3 C-terminal residues within helix 12 of ERRα and is strengthened by both PGC1α and serum deprivation. Pharmacological inhibition of ERRα decreased the interaction of ERRα to ligand-activated PPARα and revealed a transcriptome in line with enhanced mRNA expression of prototypical PPARα target genes, suggesting a role for ERRα as a transcriptional repressor. Strikingly, on other PPARα targets, including the isolated PDK4 enhancer, ERRα behaved oppositely. Chromatin immunoprecipitation analyses demonstrate a PPARα ligand-dependent ERRα recruitment onto chromatin at PPARα-binding regions, which is lost following ERRα inhibition in fed mouse livers. CONCLUSIONS Our data support the coexistence of multiple layers of transcriptional crosstalk mechanisms between PPARα and ERRα, which may serve to finetune the activity of PPARα as a nutrient-sensing transcription factor.
Collapse
Affiliation(s)
- Sofie J Desmet
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Jonathan Thommis
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Tineke Vanderhaeghen
- VIB Center for Inflammation Research, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Edmee M F Vandenboorn
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612AZ Eindhoven, the Netherlands
| | - Dorien Clarisse
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Yunkun Li
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Steven Timmermans
- VIB Center for Inflammation Research, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Daria Fijalkowska
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Dariusz Ratman
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | | | - Lode De Cauwer
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Luc Brunsveld
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612AZ Eindhoven, the Netherlands
| | - Frank Peelman
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Claude Libert
- VIB Center for Inflammation Research, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
7
|
Huang T, Lu Z, Wang Z, Cheng L, Gao L, Gao J, Zhang N, Geng CA, Zhao X, Wang H, Wong CW, Yeung KWK, Pan H, Lu WW, Guan M. Targeting adipocyte ESRRA promotes osteogenesis and vascular formation in adipocyte-rich bone marrow. Nat Commun 2024; 15:3769. [PMID: 38704393 PMCID: PMC11069533 DOI: 10.1038/s41467-024-48255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Excessive bone marrow adipocytes (BMAds) accumulation often occurs under diverse pathophysiological conditions associated with bone deterioration. Estrogen-related receptor α (ESRRA) is a key regulator responding to metabolic stress. Here, we show that adipocyte-specific ESRRA deficiency preserves osteogenesis and vascular formation in adipocyte-rich bone marrow upon estrogen deficiency or obesity. Mechanistically, adipocyte ESRRA interferes with E2/ESR1 signaling resulting in transcriptional repression of secreted phosphoprotein 1 (Spp1); yet positively modulates leptin expression by binding to its promoter. ESRRA abrogation results in enhanced SPP1 and decreased leptin secretion from both visceral adipocytes and BMAds, concertedly dictating bone marrow stromal stem cell fate commitment and restoring type H vessel formation, constituting a feed-forward loop for bone formation. Pharmacological inhibition of ESRRA protects obese mice against bone loss and high marrow adiposity. Thus, our findings highlight a therapeutic approach via targeting adipocyte ESRRA to preserve bone formation especially in detrimental adipocyte-rich bone milieu.
Collapse
Affiliation(s)
- Tongling Huang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhaocheng Lu
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zihui Wang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lixin Cheng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Lu Gao
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Gao
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ning Zhang
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaoli Zhao
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huaiyu Wang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haobo Pan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - William Weijia Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Min Guan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Scholtes C, Dufour CR, Pleynet E, Kamyabiazar S, Hutton P, Baby R, Guluzian C, Giguère V. Identification of a chromatin-bound ERRα interactome network in mouse liver. Mol Metab 2024; 83:101925. [PMID: 38537884 PMCID: PMC10990974 DOI: 10.1016/j.molmet.2024.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVES Estrogen-related-receptor α (ERRα) plays a critical role in the transcriptional regulation of cellular bioenergetics and metabolism, and perturbations in its activity have been associated with metabolic diseases. While several coactivators and corepressors of ERRα have been identified to date, a knowledge gap remains in understanding the extent to which ERRα cooperates with coregulators in the control of gene expression. Herein, we mapped the primary chromatin-bound ERRα interactome in mouse liver. METHODS RIME (Rapid Immuno-precipitation Mass spectrometry of Endogenous proteins) analysis using mouse liver samples from two circadian time points was used to catalog ERRα-interacting proteins on chromatin. The genomic crosstalk between ERRα and its identified cofactors in the transcriptional control of precise gene programs was explored through cross-examination of genome-wide binding profiles from chromatin immunoprecipitation-sequencing (ChIP-seq) studies. The dynamic interplay between ERRα and its newly uncovered cofactor Host cell factor C1 (HCFC1) was further investigated by loss-of-function studies in hepatocytes. RESULTS Characterization of the hepatic ERRα chromatin interactome led to the identification of 48 transcriptional interactors of which 42 were previously unknown including HCFC1. Interrogation of available ChIP-seq binding profiles highlighted oxidative phosphorylation (OXPHOS) under the control of a complex regulatory network between ERRα and multiple cofactors. While ERRα and HCFC1 were found to bind to a large set of common genes, only a small fraction showed their colocalization, found predominately near the transcriptional start sites of genes particularly enriched for components of the mitochondrial respiratory chain. Knockdown studies demonstrated inverse regulatory actions of ERRα and HCFC1 on OXPHOS gene expression ultimately dictating the impact of their loss-of-function on mitochondrial respiration. CONCLUSIONS Our work unveils a repertoire of previously unknown transcriptional partners of ERRα comprised of chromatin modifiers and transcription factors thus advancing our knowledge of how ERRα regulates metabolic transcriptional programs.
Collapse
Affiliation(s)
- Charlotte Scholtes
- Goodman Cancer Institute, McGill University, Montréal, Québec, H3A 1A3, Canada
| | | | - Emma Pleynet
- Goodman Cancer Institute, McGill University, Montréal, Québec, H3A 1A3, Canada
| | - Samaneh Kamyabiazar
- Goodman Cancer Institute, McGill University, Montréal, Québec, H3A 1A3, Canada
| | - Phillipe Hutton
- Goodman Cancer Institute, McGill University, Montréal, Québec, H3A 1A3, Canada; Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, H3G 1Y6, Canada
| | - Reeba Baby
- Goodman Cancer Institute, McGill University, Montréal, Québec, H3A 1A3, Canada
| | - Christina Guluzian
- Goodman Cancer Institute, McGill University, Montréal, Québec, H3A 1A3, Canada; Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, H3G 1Y6, Canada
| | - Vincent Giguère
- Goodman Cancer Institute, McGill University, Montréal, Québec, H3A 1A3, Canada; Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, H3G 1Y6, Canada.
| |
Collapse
|
9
|
Spinelli S, Bruschi M, Passalacqua M, Guida L, Magnone M, Sturla L, Zocchi E. Estrogen-Related Receptor α: A Key Transcription Factor in the Regulation of Energy Metabolism at an Organismic Level and a Target of the ABA/LANCL Hormone Receptor System. Int J Mol Sci 2024; 25:4796. [PMID: 38732013 PMCID: PMC11084903 DOI: 10.3390/ijms25094796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The orphan nuclear receptor ERRα is the most extensively researched member of the estrogen-related receptor family and holds a pivotal role in various functions associated with energy metabolism, especially in tissues characterized by high energy requirements, such as the heart, skeletal muscle, adipose tissue, kidney, and brain. Abscisic acid (ABA), traditionally acknowledged as a plant stress hormone, is detected and actively functions in organisms beyond the land plant kingdom, encompassing cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. Its ancient, cross-kingdom role enables ABA and its signaling pathway to regulate cell responses to environmental stimuli in various organisms, such as marine sponges, higher plants, and humans. Recent advancements in understanding the physiological function of ABA and its mammalian receptors in governing energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells suggest potential therapeutic applications for ABA in pre-diabetes, diabetes, and cardio-/neuroprotection. The ABA/LANCL1-2 hormone/receptor system emerges as a novel regulator of ERRα expression levels and transcriptional activity, mediated through the AMPK/SIRT1/PGC-1α axis. There exists a reciprocal feed-forward transcriptional relationship between the LANCL proteins and transcriptional coactivators ERRα/PGC-1α, which may be leveraged using natural or synthetic LANCL agonists to enhance mitochondrial function across various clinical contexts.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Mario Passalacqua
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Lucrezia Guida
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Mirko Magnone
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Laura Sturla
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Elena Zocchi
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| |
Collapse
|
10
|
Leanza G, Cannata F, Faraj M, Pedone C, Viola V, Tramontana F, Pellegrini N, Vadalà G, Piccoli A, Strollo R, Zalfa F, Beeve AT, Scheller EL, Tang SY, Civitelli R, Maccarrone M, Papalia R, Napoli N. Bone canonical Wnt signaling is downregulated in type 2 diabetes and associates with higher advanced glycation end-products (AGEs) content and reduced bone strength. eLife 2024; 12:RP90437. [PMID: 38598270 PMCID: PMC11006415 DOI: 10.7554/elife.90437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156-0.366]) vs non-diabetic subjects 0.352% [0.269-0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46-30.10] vs non-diabetic subjects 76.24 MPa [26.81-132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=-0.7500, p=0.0255; r=-0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young's modulus was negatively correlated with SOST (r=-0.5675, p=0.0011), AXIN2 (r=-0.5523, p=0.0042), and SFRP5 (r=-0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.
Collapse
Affiliation(s)
- Giulia Leanza
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
- Operative Research Unit of Osteometabolic and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
| | - Francesca Cannata
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Malak Faraj
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Claudio Pedone
- Operative Research Unit of Geriatrics, Fondazione Policlinico Universitario Campus Bio Medico, Via Alvaro del PortilloRomaItaly
| | - Viola Viola
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Flavia Tramontana
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
- Operative Research Unit of Osteometabolic and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
| | - Niccolò Pellegrini
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Gianluca Vadalà
- Operative Research Unit of Orthopedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
| | - Alessandra Piccoli
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Rocky Strollo
- Department of Human Sciences and Promotion of the Quality of Life San Raffaele Roma Open University Via di Val CannutaRomaItaly
| | - Francesca Zalfa
- Predictive Molecular Diagnostic Unit, Pathology Department, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
- Microscopic and Ultrastructural Anatomy Unit, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
| | - Alec T Beeve
- Department of Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of MedicineSt. LouisUnited States
| | - Erica L Scheller
- Department of Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of MedicineSt. LouisUnited States
| | - Simon Y Tang
- Department of Orthopaedic Surgery, Washington University in St. LouisSt LouisUnited States
| | - Roberto Civitelli
- Department of Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of MedicineSt. LouisUnited States
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio sncAquilaItaly
- European Center for Brain Research, Santa Lucia Foundation IRCCSRomaItaly
| | - Rocco Papalia
- Operative Research Unit of Orthopedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
| | - Nicola Napoli
- Department of Medicine and Surgery, Research Unit of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del PortilloRomaItaly
- Operative Research Unit of Osteometabolic and Thyroid Diseases, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del PortilloRomaItaly
- Department of Medicine, Division of Bone and Mineral Diseases, Musculoskeletal Research Center, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
11
|
Jeon SJ, Chung KC. The SCF-FBW7β E3 ligase mediates ubiquitination and degradation of the serine/threonine protein kinase PINK1. J Biol Chem 2024; 300:107198. [PMID: 38508312 PMCID: PMC11026729 DOI: 10.1016/j.jbc.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024] Open
Abstract
Understanding the mechanisms that govern the stability of functionally crucial proteins is essential for various cellular processes, development, and overall cell viability. Disturbances in protein homeostasis are linked to the pathogenesis of neurodegenerative diseases. PTEN-induced kinase 1 (PINK1), a protein kinase, plays a significant role in mitochondrial quality control and cellular stress response, and its mutated forms lead to early-onset Parkinson's disease. Despite its importance, the specific mechanisms regulating PINK1 protein stability have remained unclear. This study reveals a cytoplasmic interaction between PINK1 and F-box and WD repeat domain-containing 7β (FBW7β) in mammalian cells. FBW7β, a component of the Skp1-Cullin-1-F-box protein complex-type ubiquitin ligase, is instrumental in recognizing substrates. Our findings demonstrate that FBW7β regulates PINK1 stability through the Skp1-Cullin-1-F-box protein complex and the proteasome pathway. It facilitates the K48-linked polyubiquitination of PINK1, marking it for degradation. When FBW7 is absent, PINK1 accumulates, leading to heightened mitophagy triggered by carbonyl cyanide 3-chlorophenylhydrazone treatment. Moreover, exposure to the toxic compound staurosporine accelerates PINK1 degradation via FBW7β, correlating with increased cell death. This study unravels the intricate mechanisms controlling PINK1 protein stability and sheds light on the novel role of FBW7β. These findings deepen our understanding of PINK1-related pathologies and potentially pave the way for therapeutic interventions.
Collapse
Affiliation(s)
- Seo Jeong Jeon
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
12
|
Di Florio D, Gorelov D, McCabe E, Beetler D, Shapiro K, Bruno K, Chekuri I, Jain A, Whelan E, Salomon G, Khatib S, Bonvie-Hill N, Giresi P, Balamurugan V, Weigel G, Fliess J, Darakjian A, Edenfield B, Kocsis C, McLeod C, Cooper L, Audet-Walsh E, Coronado M, Sin J, Fairweather D. Sex differences in mitochondrial gene expression during viral myocarditis. RESEARCH SQUARE 2023:rs.3.rs-3716881. [PMID: 38196574 PMCID: PMC10775395 DOI: 10.21203/rs.3.rs-3716881/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Background Myocarditis is an inflammation of the heart muscle most often caused by an immune response to viral infections. Sex differences in the immune response during myocarditis have been well described but upstream mechanisms in the heart that might influence sex differences in disease are not completely understood. Methods Male and female BALB/c wild type mice received an intraperitoneal injection of heart-passaged coxsackievirus B3 (CVB3) or vehicle control. Bulk-tissue RNA-sequencing was conducted to better understand sex differences in CVB3 myocarditis. We performed enrichment analysis to understand sex differences in the transcriptional landscape of myocarditis and identify candidate transcription factors that might drive sex differences in myocarditis. Results The hearts of male and female mice with myocarditis were significantly enriched for pathways related to an innate and adaptive immune response compared to uninfected controls. When comparing females to males with myocarditis, males were enriched for inflammatory pathways and gene changes that suggested worse mitochondrial transcriptional support (e.g., mitochondrial electron transport genes). In contrast, females were enriched for pathways related to mitochondrial respiration and bioenergetics, which were confirmed by higher transcript levels of master regulators of mitochondrial function including peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1α), nuclear respiratory factor 1 (NRF1) and estrogen-related receptor alpha (ERRα). TRANSFAC analysis identified ERRa as a transcription factor that may mediate sex differences in mitochondrial function during myocarditis. Conclusions Master regulators of mitochondrial function were elevated in females with myocarditis compared to males and may promote sex differences in mitochondrial respiratory transcript expression during viral myocarditis resulting in less severe myocarditis in females following viral infection.
Collapse
|
13
|
Xia H, Scholtes C, Dufour CR, Guluzian C, Giguère V. ERRα fosters running endurance by driving myofiber aerobic transformation and fuel efficiency. Mol Metab 2023; 78:101814. [PMID: 37802398 PMCID: PMC10590867 DOI: 10.1016/j.molmet.2023.101814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
OBJECTIVE Estrogen related receptor α (ERRα) occupies a central node in the transcriptional control of energy metabolism, including in skeletal muscle, but whether modulation of its activity can directly contribute to extend endurance to exercise remains to be investigated. The goal of this study was to characterize the benefit of mice engineered to express a physiologically relevant activated form of ERRα on skeletal muscle exercise metabolism and performance. METHODS We recently shown that mutational inactivation of three regulated phosphosites in the amino terminal domain of the nuclear receptor ERRα impedes its degradation, leading to an accumulation of ERRα proteins and perturbation of metabolic homeostasis in ERRα3SA mutant mice. Herein, we used a multi-omics approach in combination with physical endurance tests to ascertain the consequences of expressing the constitutively active phospho-deficient ERRα3SA form on muscle exercise performance and energy metabolism. RESULTS Genetic heightening of ERRα activity enhanced exercise capacity, fatigue-resistance, and endurance. This phenotype resulted from extensive reprogramming of ERRα global DNA occupancy and transcriptome in muscle leading to an increase in oxidative fibers, mitochondrial biogenesis, fatty acid oxidation, and lactate homeostasis. CONCLUSION Our findings support the potential to enhance physical performance and exercise-induced health benefits by targeting molecular pathways regulating ERRα transcriptional activity.
Collapse
Affiliation(s)
- Hui Xia
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada H3A 1A3; Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada H3G 1Y6
| | - Charlotte Scholtes
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada H3A 1A3
| | - Catherine R Dufour
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada H3A 1A3
| | - Christina Guluzian
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada H3A 1A3; Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada H3G 1Y6
| | - Vincent Giguère
- Goodman Cancer Institute, McGill University, Montréal, Québec, Canada H3A 1A3; Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada H3G 1Y6.
| |
Collapse
|
14
|
Zhang W, Jiang H, Wu G, Huang P, Wang H, An H, Liu S, Zhang W. The pathogenesis and potential therapeutic targets in sepsis. MedComm (Beijing) 2023; 4:e418. [PMID: 38020710 PMCID: PMC10661353 DOI: 10.1002/mco2.418] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is defined as "a life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection." At present, sepsis continues to pose a grave healthcare concern worldwide. Despite the use of supportive measures in treating traditional sepsis, such as intravenous fluids, vasoactive substances, and oxygen plus antibiotics to eradicate harmful pathogens, there is an ongoing increase in both the morbidity and mortality associated with sepsis during clinical interventions. Therefore, it is urgent to design specific pharmacologic agents for the treatment of sepsis and convert them into a novel targeted treatment strategy. Herein, we provide an overview of the molecular mechanisms that may be involved in sepsis, such as the inflammatory response, immune dysfunction, complement deactivation, mitochondrial damage, and endoplasmic reticulum stress. Additionally, we highlight important targets involved in sepsis-related regulatory mechanisms, including GSDMD, HMGB1, STING, and SQSTM1, among others. We summarize the latest advancements in potential therapeutic drugs that specifically target these signaling pathways and paramount targets, covering both preclinical studies and clinical trials. In addition, this review provides a detailed description of the crosstalk and function between signaling pathways and vital targets, which provides more opportunities for the clinical development of new treatments for sepsis.
Collapse
Affiliation(s)
- Wendan Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Honghong Jiang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Gaosong Wu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Pengli Huang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Haonan Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Huazhasng An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghaiChina
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosecurityShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
15
|
Xia H, Dufour CR, Medkour Y, Scholtes C, Chen Y, Guluzian C, B'chir W, Giguère V. Hepatocyte FBXW7-dependent activity of nutrient-sensing nuclear receptors controls systemic energy homeostasis and NASH progression in male mice. Nat Commun 2023; 14:6982. [PMID: 37914694 PMCID: PMC10620240 DOI: 10.1038/s41467-023-42785-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/20/2023] [Indexed: 11/03/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is epidemiologically associated with obesity and diabetes and can lead to liver cirrhosis and hepatocellular carcinoma if left untreated. The intricate signaling pathways that orchestrate hepatocyte energy metabolism and cellular stress, intrahepatic cell crosstalk, as well as interplay between peripheral tissues remain elusive and are crucial for the development of anti-NASH therapies. Herein, we reveal E3 ligase FBXW7 as a key factor regulating hepatic catabolism, stress responses, systemic energy homeostasis, and NASH pathogenesis with attenuated FBXW7 expression as a feature of advanced NASH. Multiomics and pharmacological intervention showed that FBXW7 loss-of-function in hepatocytes disrupts a metabolic transcriptional axis conjointly controlled by the nutrient-sensing nuclear receptors ERRα and PPARα, resulting in suppression of fatty acid oxidation, elevated ER stress, apoptosis, immune infiltration, fibrogenesis, and ultimately NASH progression in male mice. These results provide the foundation for developing alternative strategies co-targeting ERRα and PPARα for the treatment of NASH.
Collapse
Affiliation(s)
- Hui Xia
- Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Catherine R Dufour
- Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Younes Medkour
- Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Charlotte Scholtes
- Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Yonghong Chen
- Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Christina Guluzian
- Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Wafa B'chir
- Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Vincent Giguère
- Goodman Cancer Institute, McGill University, Montréal, QC, H3A 1A3, Canada.
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, H3G 1Y6, Canada.
| |
Collapse
|
16
|
Tan X, Yang X, Xu X, Peng Y, Li X, Deng Y, Zhang X, Qiu W, Wu D, Ruan Y, Zhi C. Investigation of anti-diabetic effect of a novel coenzyme Q10 derivative. Front Chem 2023; 11:1280999. [PMID: 37927560 PMCID: PMC10620959 DOI: 10.3389/fchem.2023.1280999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: The rising incidence of type 2 diabetes has seriously affected international public health. The search for more drugs that can effectively treat diabetes has become a cutting-edge trend in research. Coenzyme Q10 (CoQ10) has attracted much attention in the last decade due to its wide range of biological activities. Many researchers have explored the clinical effects of CoQ10 in patients with type 2 diabetes. However, CoQ10 has low bio-availability due to its high lipophilicity. Therefore, we have structurally optimized CoQ10 in an attempt to exploit the potential of its pharmacological activity. Methods: A novel coenzyme Q10 derivative (L-50) was designed and synthesized by introducing a group containing bromine atom and hydroxyl at the terminal of coenzyme Q10 (CoQ10), and the antidiabetic effect of L-50 was investigated by cellular assays and animal experiments. Results: Cytotoxicity results showed that L-50 was comparatively low toxicity to HepG2 cells. Hypoglycemic assays indicated that L-50 could increase glucose uptake in IR-HepG2 cells, with significantly enhanced hypoglycemic capacity compared to the CoQ10. In addition, L-50 improved cellular utilization of glucose through reduction of reactive oxygen species (ROS) accumulated in insulin-resistant HepG2 cells (IR-HepG2) and regulation of JNK/AKT/GSK3β signaling pathway, resulting in hypoglycemic effects. Furthermore, the animal experiments demonstrated that L-50 could restore the body weight of HFD/STZ mice. Notably, the findings suggested that L-50 could improve glycemic and lipid metabolism in HFD/STZ mice. Moreover, L-50 could increase fasting insulin levels (FINS) in HFD/STZ mice, leading to a decrease in fasting blood glucose (FBG) and hepatic glycogen. Furthermore, L-50 could recover triglycerides (TG), total cholesterol (T-CHO), lipoprotein (LDL-C) and high-density lipoprotein (HDL-C) levels in HFD/STZ mice. Discussion: The addition of a bromine atom and a hydroxyl group to CoQ10 could enhance its anti-diabetic activity. It is anticipated that L-50 could be a promising new agent for T2DM.
Collapse
Affiliation(s)
- Xiaojun Tan
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xinyi Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xun Xu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yuwei Peng
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xin Li
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yongxing Deng
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xueyang Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Wenlong Qiu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Dudu Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Chen Zhi
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
17
|
Sopariwala DH, Hao NTT, Narkar VA. Estrogen-related Receptor Signaling in Skeletal Muscle Fitness. Int J Sports Med 2023; 44:609-617. [PMID: 36787804 PMCID: PMC11168301 DOI: 10.1055/a-2035-8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Skeletal muscle is a highly plastic tissue that can alter its metabolic and contractile features, as well as regenerative potential in response to exercise and other conditions. Multiple signaling factors including metabolites, kinases, receptors, and transcriptional factors have been studied in the regulation of skeletal muscle plasticity. Recently, estrogen-related receptors (ERRs) have emerged as a critical transcriptional hub in control of skeletal muscle homeostasis. ERRα and ERRγ - the two highly expressed ERR sub-types in the muscle respond to various extracellular cues such as exercise, hypoxia, fasting and dietary factors, in turn regulating gene expression in the skeletal muscle. On the other hand, conditions such as diabetes and muscular dystrophy suppress expression of ERRs in the skeletal muscle, likely contributing to disease progression. We highlight key functions of ERRs in the skeletal muscle including the regulation of fiber type, mitochondrial metabolism, vascularization, and regeneration. We also describe how ERRs are regulated in the skeletal muscle, and their interaction with important muscle regulators (e. g. AMPK and PGCs). Finally, we identify critical gaps in our understanding of ERR signaling in the skeletal muscle, and suggest future areas of investigation to advance ERRs as potential targets for function promoting therapeutics in muscle diseases.
Collapse
Affiliation(s)
- Danesh H. Sopariwala
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | - Nguyen Thi Thu Hao
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| | - Vihang A. Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School at The University of Texas Health Science Center (UTHealth), Houston, TX, USA
| |
Collapse
|
18
|
Giguère V. Transcription initiation by the ERRs: no ligand but two activation pathways. Cell Res 2023; 33:269-270. [PMID: 36755059 PMCID: PMC10066204 DOI: 10.1038/s41422-023-00780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Vincent Giguère
- Goodman Cancer Institute and Department of Biochemistry, Faculty of Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
19
|
Targeting PI3K/AKT signaling pathway in obesity. Biomed Pharmacother 2023; 159:114244. [PMID: 36638594 DOI: 10.1016/j.biopha.2023.114244] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Obesity is a disorder with an increasing prevalence, which impairs the life quality of patients and intensifies societal health care costs. The development of safe and innovative prevention strategies and therapeutic approaches is thus of great importance. The complex pathophysiology of obesity involves multiple signaling pathways that influence energy metabolism in different tissues. The phosphatidylinositol 3-kinases (PI3K)/protein kinase B (AKT) pathway is critical for the metabolic homeostasis and its function in insulin-sensitive tissues is described in the context of health, obesity and obesity-related complications. The PI3K family participates in the regulation of diverse physiological processes including but not limited to cell growth, survival, differentiation, autophagy, chemotaxis, and metabolism depending on the cellular context. AKT is downstream of PI3K in the insulin signaling pathway, and promotes multiple cellular processes by targeting a plethora of regulatory proteins that control glucose and lipid metabolism. Natural products are essential for prevention and treatment of many human diseases, including obesity. Anti-obesity natural compounds effect multiple pathophysiological mechanisms involved in obesity development. Numerous recent preclinical studies reveal the advances in using plant secondary metabolites to target the PI3K/AKT signaling pathway for obesity management. In this paper the druggability of PI3K as a target for compounds with anti-obesity potential is evaluated. Perspectives on the strategies and limitations for clinical implementation of obesity management using natural compounds modulating the PI3K/AKT pathway are suggested.
Collapse
|
20
|
Turki T, Taguchi YH. A new machine learning based computational framework identifies therapeutic targets and unveils influential genes in pancreatic islet cells. Gene 2023; 853:147038. [PMID: 36503891 DOI: 10.1016/j.gene.2022.147038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022]
Abstract
Pancreatic islets comprise a group of cells that produce hormones regulating blood glucose levels. Particularly, the alpha and beta islet cells produce glucagon and insulin to stabilize blood glucose. When beta islet cells are dysfunctional, insulin is not secreted, inducing a glucose metabolic disorder. Identifying effective therapeutic targets against the disease is a complicated task and is not yet conclusive. To close the wide gap between understanding the molecular mechanism of pancreatic islet cells and providing effective therapeutic targets, we present a computational framework to identify potential therapeutic targets against pancreatic disorders. First, we downloaded three transcriptome expression profiling datasets pertaining to pancreatic islet cells (GSE87375, GSE79457, GSE110154) from the Gene Expression Omnibus database. For each dataset, we extracted expression profiles for two cell types. We then provided these expression profiles along with the cell types to our proposed constrained optimization problem of a support vector machine and to other existing methods, selecting important genes from the expression profiles. Finally, we performed (1) an evaluation from a classification perspective which showed the superiority of our methods against the baseline; and (2) an enrichment analysis which indicated that our methods achieved better outcomes. Results for the three datasets included 44 unique genes and 10 unique transcription factors (SP1, HDAC1, EGR1, E2F1, AR, STAT6, RELA, SP3, NFKB1, and ESR1) which are reportedly related to pancreatic islet functions, diseases, and therapeutic targets.
Collapse
Affiliation(s)
- Turki Turki
- King Abdulaziz University, Department of Computer Science, Jeddah 21589, Saudi Arabia.
| | - Y-H Taguchi
- Chuo University, Department of Physics, Tokyo 112-8551, Japan.
| |
Collapse
|
21
|
Sopariwala DH, Rios AS, Pei G, Roy A, Tomaz da Silva M, Thi Thu Nguyen H, Saley A, Van Drunen R, Kralli A, Mahan K, Zhao Z, Kumar A, Narkar VA. Innately expressed estrogen-related receptors in the skeletal muscle are indispensable for exercise fitness. FASEB J 2023; 37:e22727. [PMID: 36583689 DOI: 10.1096/fj.202201518r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022]
Abstract
Transcriptional determinants in the skeletal muscle that govern exercise capacity, while poorly defined, could provide molecular insights into how exercise improves fitness. Here, we have elucidated the role of nuclear receptors, estrogen-related receptor alpha and gamma (ERRα/γ) in regulating myofibrillar composition, contractility, and exercise capacity in skeletal muscle. We used muscle-specific single or double (DKO) ERRα/γ knockout mice to investigate the effect of ERRα/γ deletion on muscle and exercise parameters. Individual knockout of ERRα/γ did not have a significant impact on the skeletal muscle. On the other hand, DKO mice exhibit pale muscles compared to wild-type (WT) littermates. RNA-seq analysis revealed a predominant decrease in expression of genes linked to mitochondrial and oxidative metabolism in DKO versus WT muscles. DKO muscles exhibit marked repression of oxidative enzymatic capacity, as well as mitochondrial number and size compared to WT muscles. Mitochondrial function is also impaired in single myofibers isolated from DKO versus WT muscles. In addition, mutant muscles exhibit reduced angiogenic gene expression and decreased capillarity. Consequently, DKO mice have a significantly reduced exercise capacity, further reflected in poor fatigue resistance of DKO mice in in vivo contraction assays. These results show that ERRα and ERRγ together are a critical link between muscle aerobic capacity and exercise tolerance. The ERRα/γ mutant mice could be valuable for understanding the long-term impact of impaired mitochondria and vascular supply on the pathogenesis of muscle-linked disorders.
Collapse
Affiliation(s)
- Danesh H Sopariwala
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Andrea S Rios
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Guangsheng Pei
- Center for Precision Medicine, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Meiricris Tomaz da Silva
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Hao Thi Thu Nguyen
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Addison Saley
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA.,Department of Biosciences, Rice University, Houston, Texas, USA
| | - Rachel Van Drunen
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA
| | - Anastasia Kralli
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristin Mahan
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, USA
| | - Zhongming Zhao
- Center for Precision Medicine, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, USA
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Vihang A Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, USA.,Graduate School of Biomedical Sciences at UTHealth, Houston, Texas, USA
| |
Collapse
|
22
|
Scholtes C, Giguère V. Transcriptional control of energy metabolism by nuclear receptors. Nat Rev Mol Cell Biol 2022; 23:750-770. [DOI: 10.1038/s41580-022-00486-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 12/11/2022]
|