1
|
Liu Y, Jin HY, Li MM, Zuo M, Kumar Dinker M, Kou J, Yan J, Ding L, Sun LB. Improving Light-Responsive Efficiency of Type II Porous Liquid by Tailoring the Functionality of Host. Angew Chem Int Ed Engl 2025; 64:e202501191. [PMID: 39932303 DOI: 10.1002/anie.202501191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Light-responsive porous liquids (LPLs) attract significant attention for their controllable gas uptake under light irradiation, while their preparation has remained a great challenge. Here we report the fabrication of type II LPLs with enhanced light-responsive efficiency by tailoring the host's functionality for the first time. The functionality of light-responsive metal-organic cage (MOC-RL, constructed from dicopper and responsive ligands) is modified by introducing the second long-chain alkyl ligand, producing MOC-RL-AL as a new host. A spatially hindered solvent based on polyethylene glycol, IL-NTf2, is designed and can dissolve MOC-RL-AL due to the suitable interaction, creating a type II LPL (PL-RL-AL). Under light irradiation, the variation in propylene adsorption for PL-RL-AL increases by 58.0 % compared to PL-RL. The enhanced light-responsive efficiency is caused by easier control in accessibility of internal cavities within MOCs and increased number of external cavities between MOCs and IL-NTf2. This makes PL-RL-AL the first LPL with the probability for propylene/propane separation.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Han-Yan Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Meng-Meng Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mingrui Zuo
- Department of Chemistry, Xi'an JiaoTong-Liverpool University, Suzhou, 215123, China
| | - Manish Kumar Dinker
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiahui Kou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Juntao Yan
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Lifeng Ding
- Department of Chemistry, Xi'an JiaoTong-Liverpool University, Suzhou, 215123, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
2
|
Kai A, Mroz A, Jelfs KE, Cooper AI, Little MA, Greenaway RL. Construction of an organic cage-based porous ionic liquid using an aminal tying strategy. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2025:d5me00004a. [PMID: 40225719 PMCID: PMC11979736 DOI: 10.1039/d5me00004a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
An aminal tying method was applied to post-synthetically modify a flexible organic cage, RCC1, to construct a porous ionic liquid (PIL). The resulting PIL, [RCC1-IM][NTf2]6, displayed melting behaviour below 100 °C, a transition to a glass phase on melt-quenching, CO2 uptake, and its permanent porosity was confirmed using molecular dynamic simulations.
Collapse
Affiliation(s)
- Aiting Kai
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Austin Mroz
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
- I-X Centre for AI in Science, Imperial College London White City Campus W12 0BZ London UK
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| | - Andrew I Cooper
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
| | - Marc A Little
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
- Institute of Chemical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Rebecca L Greenaway
- Department of Chemistry and Materials Innovation Factory, University of Liverpool 51 Oxford Street Liverpool L7 3NY UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London 82 Wood Lane London W12 0BZ UK
| |
Collapse
|
3
|
Li E, Ganesan A, Liu H, Ivanov AS, He L, Nalaoh P, Jenkins DM, Steren CA, Mokhtari-Nori N, Hu J, Li B, Jiang DE, Mahurin SM, Yang Z, Dai S. Sub-5 Ångstrom Porosity Tuning in Calixarene-Derived Porous Liquids via Supramolecular Complexation Construction. Angew Chem Int Ed Engl 2025:e202421615. [PMID: 39760709 DOI: 10.1002/anie.202421615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/21/2024] [Accepted: 01/06/2025] [Indexed: 01/07/2025]
Abstract
Sub-Ångstrom-level porosity engineering, which is appealing in gas separations, has been demonstrated in solid carbon, polymer, and framework materials but rarely achieved in the liquid phase. In this work, a gas molecular sieving effect in the liquid phase at sub-5 Ångstrom scale is created via sophisticated porosity tuning in calixarene-derived porous liquids (PLs). Type II PLs are constructed via supramolecular complexation between the sodium salts of calixarene derivatives and crown ether solvents. The chemical structure variation and assembly behavior of the porous host upon PL construction are monitored by spectroscopy-, X-ray-, and neutron-scattering techniques. The presence of permanent porosity in calixarene-derived PLs is verified by pressure swing gas uptake, altered CO2 physisorption behavior, and molecular simulations. Sub-5 Ångstrom porosity tuning within the PL phase is achieved by introducing bulky substituted groups on the benzene ring of the calixarene host, which then greatly affects the dynamic motion and transport behavior of CO2 molecules and the Xe uptake performance. The approach being demonstrated in this work represents a promising pathway to tune and leverage the porosity effect for enhanced gas uptake capacity and selectivity in liquid sorbents.
Collapse
Affiliation(s)
- Errui Li
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
| | - Arvind Ganesan
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Hongjun Liu
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Phattananawee Nalaoh
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
| | - David M Jenkins
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
| | - Carlos Alberto Steren
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
| | - Narges Mokhtari-Nori
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
| | - Jianzhi Hu
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Bo Li
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Shannon M Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sheng Dai
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
4
|
Wang D, Xin Y, Fan W, Li P, Zhou W, Liu J, Qian L, Ning H, Zhang Y, Ying Y, Yao D, Yang Z, Zheng Y. Type I Porous Liquids with Super-Low Viscosities: the Construction through a Rather Simple One-Step Covalent Linkage Strategy and Its Facile Regulation by a Mixed-Ligand Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408466. [PMID: 39632698 DOI: 10.1002/smll.202408466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Porous liquids (PLs) are a novel class of flowing liquid systems that possess accessible permanent porosity, exhibiting great prospects in gas capture and separation. Nevertheless, the further development of PLs lies in the facile synthesis and regulation of PLs with low viscosities. Herein, a novel strategy of preparing type I PLs with super-low viscosity is proposed through a simple one-step covalent linkage reaction using UiO-66-NH2 as the pore generator and monoglycidyl ether terminated polydimethylsiloxane (E-PDMS) as the sterically hindered solvent, respectively. More importantly, the idea that PLs can be regulated like advanced porous materials (APMs) is proposed and demonstrated, that is, PLs can be regulated by modulating pore generators with the mixed-ligands method. As expected, the resultant PLs not only demonstrate a promising potential in CO2 sorption as a flowing sorbent but also exhibit a superior CO2/N2 selective separation. Meanwhile, positron annihilation lifetime spectrum (PALS) and molecular dynamics (MD) simulations further verify the accessible permanent porosity and the favorable CO2 selective sorption. This work provides a simple and facile method to prepare type I PLs with super-low viscosities, shedding light on the precise regulation of PLs toward task-specific applications.
Collapse
Affiliation(s)
- Dechao Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Yangyang Xin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Wendi Fan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Peipei Li
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi, 710071, P. R. China
| | - Wenwu Zhou
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Jianwei Liu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Libing Qian
- School of Nuclear Technology and Chemistry & Biology, Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Hailong Ning
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yating Zhang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Yunpan Ying
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dongdong Yao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Zhiyuan Yang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, P. R. China
| | - Yaping Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| |
Collapse
|
5
|
Li E, Siniard KM, Yang Z, Dai S. Porous liquids: an integrated platform for gas storage and catalysis. Chem Sci 2024:d4sc04288c. [PMID: 39430938 PMCID: PMC11487929 DOI: 10.1039/d4sc04288c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Porous liquids (PLs) represent a new frontier in materials design, combining the unique features of fluidity in liquids and permanent porosity in solids. By engineering well-defined pores into liquids via designed structure modification techniques, the greatly improved free volume significantly enhances the gas transport and storage capability of PL sorbents. Triggered by the promising applications of PLs in gas separation, PLs are further explored in catalysis particularly to integrate the gas storage and catalytic transformation procedure. This emerging field has demonstrated promising progress to advance catalytic procedures using PLs as catalysts, with performance surpassing that of the pure liquid and porous host counterparts. In this perspective article, the recent discoveries and progress in the field of integrated gas storage and catalysis by leveraging the PL platforms will be summarized, particularly compared with the traditional homogeneous or heterogeneous catalytic procedures. The unique features of PLs endow them with combined merits from liquid and solid catalysts and beyond which will be illustrated first. This will be followed by the unique techniques being utilized to probe the porosity and active sites in PLs and the structural evolution during the catalytic procedures. The catalytic application of PLs will be divided by the reaction categories, including CO2-involving transformation, O2-involving reaction, H2S conversion, hydrogenation reaction, and non-gas involving cascade reactions. In each reaction type, the synthesis approaches and structure engineering techniques of PLs, structure characterization, catalytic performance evaluation, and reaction mechanism exploration will be discussed, highlighting the structure-performance relationship and the advancement benefiting from the unique features of PLs.
Collapse
Affiliation(s)
- Errui Li
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee Knoxville TN 37996 USA
| | - Kevin M Siniard
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee Knoxville TN 37996 USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee Knoxville TN 37996 USA
| |
Collapse
|
6
|
Dinker MK, Li MM, Liu Y, Zuo M, Ding L, Kou J, Sun LB. What Matters to Fabrication of Type II Porous Liquids: A Case Study on Metallocages and Bulky Ionic Liquid? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403174. [PMID: 39031672 DOI: 10.1002/smll.202403174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/10/2024] [Indexed: 07/22/2024]
Abstract
Porosity in bulky solvents can be created by the methods of dispersing and dissolving porous hosts or by their chemical adornment. And the ensuing liquids with cavities offer requisite high gas uptakes. Intriguingly, metal-organic cages (MOCs) as discrete nanoporous hosts have been utilized recently as soluble entities to obtain a series of interesting type II porous liquids (PLs). Yet, factors affecting the fabrication of type II PLs have not been disclosed. Herein, three metallocages (NUT-101, ZrT-1-NH2, and ZrT-1) with the same zirconocene nodes but different organic ligands are chosen as porous hosts and a polyethylene-glycol (PEG) linked bis-imidazolium based IL, IL(NTf2), is used as a bulky solvent. It is revealed for the first time that the generation of type II PL depends upon the flexibility of MOCs and the interaction between MOCs and solvent molecules. The maximum solubility is observed with NUT-101 (5%) in IL(NTf2) while ZrT-1-NH2 and ZrT-1 remain least soluble (0.5% and 0.2%). As a result, PL-NUT-101-5% with most intrinsic cavities shows higher CO2 uptake (0.576 mmol g-1) than PL-ZrT-1-NH2-0.5% and PL-ZrT-1-0.2% as well as those reported type II PLs.
Collapse
Affiliation(s)
- Manish Kumar Dinker
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Meng-Meng Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Mingrui Zuo
- Department of Chemistry, Xi'an JiaoTong-Liverpool University, Suzhou, 215123, China
| | - Lifeng Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Department of Chemistry, Xi'an JiaoTong-Liverpool University, Suzhou, 215123, China
| | - Jiahui Kou
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
7
|
Jiang HY, Wang ZM, Sun XQ, Zeng SJ, Guo YY, Bai L, Yao MS, Zhang XP. Advanced Materials for NH 3 Capture: Interaction Sites and Transport Pathways. NANO-MICRO LETTERS 2024; 16:228. [PMID: 38935160 PMCID: PMC11211316 DOI: 10.1007/s40820-024-01425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/26/2024] [Indexed: 06/28/2024]
Abstract
Ammonia (NH3) is a carbon-free, hydrogen-rich chemical related to global food safety, clean energy, and environmental protection. As an essential technology for meeting the requirements raised by such issues, NH3 capture has been intensively explored by researchers in both fundamental and applied fields. The four typical methods used are (1) solvent absorption by ionic liquids and their derivatives, (2) adsorption by porous solids, (3) ab-adsorption by porous liquids, and (4) membrane separation. Rooted in the development of advanced materials for NH3 capture, we conducted a coherent review of the design of different materials, mainly in the past 5 years, their interactions with NH3 molecules and construction of transport pathways, as well as the structure-property relationship, with specific examples discussed. Finally, the challenges in current research and future worthwhile directions for NH3 capture materials are proposed.
Collapse
Affiliation(s)
- Hai-Yan Jiang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zao-Ming Wang
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo-Ku, YoshidaKyoto, 606-8501, Japan
| | - Xue-Qi Sun
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Shao-Juan Zeng
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Yang-Yang Guo
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Lu Bai
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Ming-Shui Yao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Xiang-Ping Zhang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- China University of Petroleum, Beijing, 102249, People's Republic of China.
| |
Collapse
|
8
|
Li H, Fu W, Yin J, Zhang J, Ran H, Zhang M, Jiang W, Zhu W, Li H, Dai S. Porous ionic liquids for oxidative desulfurization influenced by electrostatic solvent effect. J Colloid Interface Sci 2024; 662:160-170. [PMID: 38340515 DOI: 10.1016/j.jcis.2024.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/12/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Developing a highly efficient strategy for the stabilization of the solid-liquid interface is a persistent pursuit for researchers. Herein, porous ionic liquids based on UiO-66 (Zr) porous materials were synthesized and applied to the selective desulfurization catalysis, which integrates the permanent pores of porous solids with the exceptional properties of ionic liquids. Results show that porous ionic liquids possess high activity and selectivity for dibenzothiophene. Experimental analysis and density functional theory calculations revealed that the ionic liquids moiety served as an extractant to enrich dibenzothiophene into the porous ionic liquids phase through the π···π and CH···π interactions. Additionally, the electrostatic solvent effect in the porous ionic liquids contributes to the stabilization solid-liquid interface, which was favorable for UiO-66 moiety to catalytically activate hydrogen peroxide (H2O2) to generate ·OH radicals, and subsequently oxidized dibenzothiophene to the corresponding sulfone. It is hoped that the development of porous ionic liquids could pave a new route to the stabilization of the solid-liquid interface for catalytic oxidation.
Collapse
Affiliation(s)
- Hongping Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wendi Fu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jie Yin
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinrui Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Hongshun Ran
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ming Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wei Jiang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenshuai Zhu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Huaming Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Sheng Dai
- Department of Chemistry, University of Tennessee Knoxville, TN 37996, United States; Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| |
Collapse
|
9
|
Sheng L, Wang Y, Mou X, Xu B, Chen Z. Accelerating Metal-Organic Framework Selection for Type III Porous Liquids by Synergizing Machine Learning and Molecular Simulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56253-56264. [PMID: 37988477 DOI: 10.1021/acsami.3c12507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
MOF-based type III porous liquids, comprising porous MOFs dissolved in a liquid solvent, have attracted increasing attention in carbon capture. However, discovering appropriate MOFs to prepare porous liquids was still limited in experiments, wasting time and energy. In this study, we have used the density functional theory and molecular dynamics simulation methods to identify 4530 MOF candidates as the core database based on the idea of prohibiting the pore occupancy of porous liquids by the solvent, [DBU-PEG][NTf2] ionic liquid. Based on high-throughput molecular simulation, random forest machine learning models were first trained to predict the CO2 sorption and the CO2/N2 sorption selectivity of MOFs to screen the MOFs to prepare porous liquids. The feature importance was inferred based on Shapley Additive Explanations (SHAP) interpretation, and the ranking of the top 5 descriptors for sorption/selectivity trade-off (TSN) was gravimetric surface area (GSA) > porosity > density > metal fraction > pore size distribution (PSD, 3.5-4 Å). RICBEM was predicted to be one candidate for preparing porous liquid with CO2 sorption capacity of 20.87 mmol/g and CO2/N2 sorption selectivity of 16.75. The experimental results showed that the RICBEM-based porous liquid was successfully synthesized with CO2 sorption capacity of 2.21 mmol/g and CO2/N2 sorption selectivity of 63.2, the best carbon capture performance known to date. Such a screening method would advance the screening of cores and solvents for preparing type III porous liquids with different applications by addressing corresponding factors.
Collapse
Affiliation(s)
- Lisha Sheng
- School of Energy and Environment, Southeast University, Nanjing 210000, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Nanjing 210000, P. R. China
- Key Laboratory of Inlet and Exhaust System Technology, Ministry of Education, Nanjing 210000, P. R. China
| | - Yi Wang
- School of Energy and Environment, Southeast University, Nanjing 210000, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Nanjing 210000, P. R. China
| | - Xinzhu Mou
- College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210000, P. R. China
| | - Bo Xu
- School of Energy and Environment, Southeast University, Nanjing 210000, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Nanjing 210000, P. R. China
| | - Zhenqian Chen
- School of Energy and Environment, Southeast University, Nanjing 210000, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Nanjing 210000, P. R. China
- Jiangsu Province Key Laboratory of Solar Energy Science and Technology, Nanjing 210000, P. R. China
| |
Collapse
|
10
|
Shu C, Zhao M, Cheng H, Deng Y, Stiernet P, Hedin N, Yuan J. Desulfurization of diesel via joint adsorption and extraction using a porous liquid derived from ZIF-8 and a phosphonium-type ionic liquid. REACT CHEM ENG 2023; 8:3124-3132. [PMID: 38024524 PMCID: PMC10660146 DOI: 10.1039/d3re00364g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/26/2023] [Indexed: 12/01/2023]
Abstract
A type-III porous liquid based on zeolitic imidazolate framework-8 (ZIF-8) and an ionic liquid trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide ([THTDP][BTI]) was synthesized and used for the desulfurization of model diesel. The desulfurization effect by ZIF-8/[THTDP][BTI] combined both the adsorptive desulfurization by ZIF-8 and the extraction desulfurization by [THTDP][BTI]. The removal of the three chosen aromatic organic sulfides by the ZIF-8/[THTDP][BTI] porous liquid followed the order of dibenzothiophene (73.1%) > benzothiophene (70.0%) > thiophene (61.5%). It was further found that deep desulfurization could be realized by ZIF-8/[THTDP][BTI] through triple desulfurization cycles and ZIF-8/[THTDP][BTI] can be regenerated readily. The desulfurization mechanism was explored further in detail by conformation search and density functional theory calculations. Calculations supported that the large molecular volume of [THTDP][BTI] excluded itself from the cavities of ZIF-8, making the pores of ZIF-8 in the porous liquid unoccupied and accessible by other guest species, here the studied organic sulfides. These calculations indicate that the van der Waals interactions were the main interactions between ZIF-8/[THTDP][BTI] and specifically benzothiophene. This work supports that the porous liquid ZIF-8/[THTDP][BTI] could potentially be used for desulfurization of diesel in industry.
Collapse
Affiliation(s)
- Chenhua Shu
- School of Chemistry and Environmental Science, Shangrao Normal University Shangrao 334001 China
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm 10691 Sweden
| | - Min Zhao
- School of Chemistry and Environmental Science, Shangrao Normal University Shangrao 334001 China
| | - Hua Cheng
- School of Chemistry and Environmental Science, Shangrao Normal University Shangrao 334001 China
| | - Yajie Deng
- School of Chemistry and Environmental Science, Shangrao Normal University Shangrao 334001 China
| | - Pierre Stiernet
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm 10691 Sweden
| | - Niklas Hedin
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm 10691 Sweden
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University Stockholm 10691 Sweden
| |
Collapse
|
11
|
Ning H, Shi M, Yang Q, Huang J, Zhang X, Wu Y, Jie K. Rational Design of Porous Ionic Liquids for Coupling Natural Gas Purification with Waste Gas Conversion. Angew Chem Int Ed Engl 2023; 62:e202310741. [PMID: 37706280 DOI: 10.1002/anie.202310741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
Removal of trace impurities for natural gas purification coupled with waste gas conversion is highly desired in industry. We here report a type of porous ionic liquids (PILs) that can realize the continuous flow separation of CH4 /CO2 /H2 S and the conversion of the captured H2 S to useful products. The PILs are synthesized through a step-by-step surface modification of ionic liquids (ILs) onto UiO-66-OH nanocrystals. The introduction of free tertiary amine groups on the nanocrystal surface endows these PILs with an exceptional ability to enrich H2 S from CO2 and CH4 with impressive selectivity, while the permanent pores of UiO-66-OH act as containers to store an exceptionally higher amount of the selectively captured H2 S than the corresponding nonporous ILs. Simultaneously, the tertiary amines as dual functional moieties offer effective catalytic sites for the conversion of the H2 S stored in PILs into 3-mercaptoisobutyric acid, a key intermediate required for the synthesis of Captopril (an antihypertensive drug). Molecular dynamics, density functional theory calculations and Grand Canonical Monte Carlo simulations help understand both the mechanisms of separation and catalysis performance, confirming that the tertiary amines as well as the permanent pores in UiO-66-OH play vital roles in the whole procedure.
Collapse
Affiliation(s)
- Hailong Ning
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Mingzhen Shi
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Qian Yang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jingwei Huang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaomin Zhang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Institute of Green Chemistry and Engineering, Nanjing University, Suzhou, 215163, P. R. China
| | - Youting Wu
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Institute of Green Chemistry and Engineering, Nanjing University, Suzhou, 215163, P. R. China
| | - Kecheng Jie
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
12
|
Meng D, Li C, Hao C, Shi W, Xu J, Sun M, Kuang H, Xu C, Xu L. Interfacial Self-assembly of Chiral Selenide Nanomembrane for Enantiospecific Recognition. Angew Chem Int Ed Engl 2023; 62:e202311416. [PMID: 37677113 DOI: 10.1002/anie.202311416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Here, we report the synthesis of chiral selenium nanoparticles (NPs) using cysteine and the interfacial assembly strategy to generate a self-assembled nanomembrane on a large-scale with controllable morphology and handedness. The selenide (Se) NPs exhibited circular dichroism (CD) bands in the ultraviolet and visible region with a maximum intensity of 39.96 mdeg at 388 nm and optical anisotropy factors (g-factors) of up to 0.0013 while a self-assembled monolayer nanomembrane exhibited symmetrical CD approaching 72.8 mdeg at 391 nm and g-factors up to 0.0034. Analysis showed that a photocurrent of 20.97±1.55 nA was generated by the D-nanomembrane when irradiated under light while the L-nanomembrane generated a photocurrent of 20.58±1.36 nA. Owing to the asymmetric intensity of the photocurrent with respect to the handedness of the nanomembrane, an ultrasensitive recognition of enantioselective kynurenine (Kyn) was achieved by the ten-layer (10L) D-nanomembrane exhibiting a photocurrent for L-kynurenine (L-Kyn) that was 8.64-fold lower than that of D-Kyn, with a limit of detection (LOD) of 0.0074 nM for the L-Kyn, which was attributed to stronger affinity between L-Kyn and D-Se NPs. Noticeably, the chiral Se nanomembrane precisely distinguished L-Kyn in serum and cerebrospinal fluid samples from Alzheimer's disease patients and healthy subjects.
Collapse
Affiliation(s)
- Dan Meng
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chen Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research 8 Center for Neurological Diseases, No. 119 South 4th Ring West Road, Beijing, 100070, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
13
|
Yan Z, Liu X, Ding B, Yu J, Si Y. Interfacial engineered superelastic metal-organic framework aerogels with van-der-Waals barrier channels for nerve agents decomposition. Nat Commun 2023; 14:2116. [PMID: 37055384 PMCID: PMC10101950 DOI: 10.1038/s41467-023-37693-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Chemical warfare agents (CWAs) significantly threaten human peace and global security. Most personal protective equipment (PPE) deployed to prevent exposure to CWAs is generally devoid of self-detoxifying activity. Here we report the spatial rearrangement of metal-organic frameworks (MOFs) into superelastic lamellar-structured aerogels based on a ceramic network-assisted interfacial engineering protocol. The optimized aerogels exhibit efficient adsorption and decomposition performance against CWAs either in liquid or aerosol forms (half-life of 5.29 min, dynamic breakthrough extent of 400 L g-1) due to the preserved MOF structure, van-der-Waals barrier channels, minimized diffusion resistance (~41% reduction), and stability over a thousand compressions. The successful construction of the attractive materials offers fascinating perspectives on the development of field-deployable, real-time detoxifying, and structurally adaptable PPE that could be served as outdoor emergency life-saving devices against CWAs threats. This work also provides a guiding toolbox for incorporating other critical adsorbents into the accessible 3D matrix with enhanced gas transport properties.
Collapse
Affiliation(s)
- Zishuo Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaoyan Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
| |
Collapse
|
14
|
Abdul Rinshad V, Sahoo J, Venkateswarulu M, Hickey N, De M, Sarathi Mukherjee P. Solvent Induced Conversion of a Self-Assembled Gyrobifastigium to a Barrel and Encapsulation of Zinc-Phthalocyanine within the Barrel for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202218226. [PMID: 36715420 DOI: 10.1002/anie.202218226] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
A rare gyrobifastigium architecture (GB) was constructed by self-assembly of a tetradentate donor (L) with PdII acceptor in DMSO. The GB was converted to its isomeric tetragonal barrel (MB) upon treatment with water. The hydrophobic cavity of MB has been explored for the encapsulation of zinc-phthalocyanine (ZnPc), which is an excellent photosensitizer for photodynamic therapy (PDT). However, the poor water-solubility and aggregation tendency are the main reasons for the suboptimal PDT performance of free ZnPc in the aqueous medium. Effective solubilization of ZnPc in an aqueous medium was achieved by encapsulating it in the cavity of MB. The inclusion complex (ZnPc⊂MB) showed enhanced singlet oxygen generation in water. Higher cellular uptake and anticancer activity of the ZnPc⊂MB compared to free ZnPc on HeLa cells indicate that encapsulation of ZnPc in an aqueous host is a potential strategy for enhancement of its PDT activity in water.
Collapse
Affiliation(s)
- Valiyakath Abdul Rinshad
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
15
|
Boventi M, Mauri M, Alexander F, James SL, Simonutti R, Castiglione F. Exploring cavities in Type II Porous Liquids with Xenon. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Amphiphile regulated ionic-liquid-based aqueous biphasic systems with tunable LCST and extraction behavior. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Yang X, Yu X, Wang Q, Zou J, Liao G, Li M, Liu X, Xia H, Xu F. Metal–organic cages ZrT-1-NH2 for rapid and selective sensing of nitrite. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|