1
|
Wilcox XE, Zhang H, Mah JL, Cazet JF, Mozumder S, Venkatesh S, Juliano CE, Beal PA, Fisher AJ. Phylogenetic and structural analysis of Hydra ADAR. Arch Biochem Biophys 2025; 767:110353. [PMID: 39986343 DOI: 10.1016/j.abb.2025.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Adenosine deaminases acting on RNAs (ADARs) perform adenosine-to-inosine (A-to-I) RNA editing for essential biological functions. While studies of editing sites in diverse animals have revealed unique biological roles of ADAR editing including temperature adaptation and reproductive maturation, rigorous biochemical and structural studies of these ADARs are lacking. Here, we present a phylogenetic sequence analysis and AlphaFold computational structure prediction to reveal that medusozoan ADAR2s contain five dsRNA binding domains (dsRBDs) with several RNA binding residues in the dsRBDs and deaminase domain conserved. Additionally, we identified evolutionary divergence between the medusozoan (e.g. Hydra) and anthozoan cnidarian subphyla. The anthozoan ADAR deaminase domains more closely resemble human ADARs with longer 5' RNA binding loops, glutamate base-flipping residues, and a conserved TWDG dimerization motif. Conversely, medusozoan ADAR deaminase domains have short 5' binding loops, glutamine flipping residues, and non-conserved helix dimerization motif. We also report the direct detection of A-to-I RNA editing by an ADAR ortholog from the freshwater cnidarian Hydra vulgaris (hyADAR). We solved the crystal structure of the monomeric deaminase domain of hyADAR (hyADARd) to 2.0 Å resolution, showing conserved active site architecture and the presence of a buried inositol hexakisphosphate known to be required for ADAR activity. In addition, these data demonstrate that medusozoans have evolved novel ADAR structural features, however the physiological consequence of this remains unknown. In addition, these results provide a framework for biochemically and structurally characterizing ADARs from evolutionarily distant organisms to understand the diverse roles of ADAR editing amongst metazoans.
Collapse
Affiliation(s)
- Xander E Wilcox
- Department of Chemistry, University of California, Davis, CA, USA
| | - Howard Zhang
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Jasmine L Mah
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Jack F Cazet
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Sukanya Mozumder
- Department of Chemistry, University of California, Davis, CA, USA
| | - Srinidhi Venkatesh
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, CA, USA
| | - Andrew J Fisher
- Department of Chemistry, University of California, Davis, CA, USA; Department of Molecular and Cellular Biology, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
D'Sa K, Choi ML, Wagen AZ, Setó-Salvia N, Kopach O, Evans JR, Rodrigues M, Lopez-Garcia P, Lachica J, Clarke BE, Singh J, Ghareeb A, Bayne J, Grant-Peters M, Garcia-Ruiz S, Chen Z, Rodriques S, Athauda D, Gustavsson EK, Gagliano Taliun SA, Toomey C, Reynolds RH, Young G, Strohbuecker S, Warner T, Rusakov DA, Patani R, Bryant C, Klenerman DA, Gandhi S, Ryten M. Astrocytic RNA editing regulates the host immune response to alpha-synuclein. SCIENCE ADVANCES 2025; 11:eadp8504. [PMID: 40215316 PMCID: PMC11988446 DOI: 10.1126/sciadv.adp8504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
RNA editing is a posttranscriptional mechanism that targets changes in RNA transcripts to modulate innate immune responses. We report the role of astrocyte-specific, ADAR1-mediated RNA editing in neuroinflammation in Parkinson's disease (PD). We generated human induced pluripotent stem cell-derived astrocytes, neurons and cocultures and exposed them to small soluble alpha-synuclein aggregates. Oligomeric alpha-synuclein triggered an inflammatory glial state associated with Toll-like receptor activation, viral responses, and cytokine secretion. This reactive state resulted in loss of neurosupportive functions and the induction of neuronal toxicity. Notably, interferon response pathways were activated leading to up-regulation and isoform switching of the RNA deaminase enzyme, ADAR1. ADAR1 mediates A-to-I RNA editing, and increases in RNA editing were observed in inflammatory pathways in cells, as well as in postmortem human PD brain. Aberrant, or dysregulated, ADAR1 responses and RNA editing may lead to sustained inflammatory reactive states in astrocytes triggered by alpha-synuclein aggregation, and this may drive the neuroinflammatory cascade in Parkinson's.
Collapse
Affiliation(s)
- Karishma D'Sa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Minee L. Choi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Brain & Cognitive Sciences, KAIST, 921 Dehak-ro, Daejeon, Republic of Korea
| | - Aaron Z. Wagen
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Núria Setó-Salvia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Olga Kopach
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Neuroscience and Cell Biology Research Institute, City St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - James R. Evans
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Margarida Rodrigues
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at The University of Cambridge, Cambridge CB2 0AH, UK
| | - Patricia Lopez-Garcia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Joanne Lachica
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Benjamin E. Clarke
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jaijeet Singh
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ali Ghareeb
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Applied Biotechnology Lab, The Francis Crick Institute, London NW1 1AT, UK
| | - James Bayne
- Applied Biotechnology Lab, The Francis Crick Institute, London NW1 1AT, UK
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Melissa Grant-Peters
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sonia Garcia-Ruiz
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Zhongbo Chen
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Samuel Rodriques
- Applied Biotechnology Lab, The Francis Crick Institute, London NW1 1AT, UK
- FutureHouse, 1405 Minnesota Street, San Francisco, CA 94107, USA
| | - Dilan Athauda
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emil K. Gustavsson
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sarah A. Gagliano Taliun
- Montréal Heart Institute, Montréal, QC, Canada
- Department of Medicine and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Christina Toomey
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Regina H. Reynolds
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - George Young
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- MRC Laboratory of Medical Sciences, London W12 0HS, UK
| | - Stephanie Strohbuecker
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Thomas Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Dmitri A. Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - David A. Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at The University of Cambridge, Cambridge CB2 0AH, UK
| | - Sonia Gandhi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Mina Ryten
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UK Dementia Research Institute at The University of Cambridge, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
3
|
Zhu B, Wei R, Hua W, Li L, Zhang W, Liang P. A-to-I RNA editing of CYP18A1 mediates transgenerational wing dimorphism in aphids. eLife 2025; 13:RP96540. [PMID: 40178071 PMCID: PMC11968105 DOI: 10.7554/elife.96540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Entomology, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Rui Wei
- Department of Entomology, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Wenjuan Hua
- Department of Entomology, College of Plant Protection, China Agricultural UniversityBeijingChina
| | - Lu Li
- Department of Entomology, College of Plant Protection, China Agricultural UniversityBeijingChina
| | | | - Pei Liang
- Department of Entomology, College of Plant Protection, China Agricultural UniversityBeijingChina
| |
Collapse
|
4
|
Choudhury M, Yamamoto R, Xiao X. Genetic architecture of RNA editing, splicing and gene expression in schizophrenia. Hum Mol Genet 2025; 34:277-290. [PMID: 39656777 PMCID: PMC11792240 DOI: 10.1093/hmg/ddae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Genome wide association studies (GWAS) have been conducted over the past decades to investigate the underlying genetic origin of neuropsychiatric diseases, such as schizophrenia (SCZ). While these studies demonstrated the significance of disease-phenotype associations, there is a pressing need to fully characterize the functional relevance of disease-associated genetic variants. Functional genetic loci can affect transcriptional and post-transcriptional phenotypes that may contribute to disease pathology. Here, we investigate the associations between genetic variation and RNA editing, splicing, and overall gene expression through identification of quantitative trait loci (QTL) in the CommonMind Consortium SCZ cohort. We find that editing QTL (edQTL), splicing QTL (sQTL) and expression QTL (eQTL) possess both unique and common gene targets, which are involved in many disease-relevant pathways, including brain function and immune response. We identified two QTL that fall into all three QTL categories (seedQTL), one of which, rs146498205, targets the lincRNA gene, RP11-156P1.3. In addition, we observe that the RNA binding protein AKAP1, with known roles in neuronal regulation and mitochondrial function, had enriched binding sites among edQTL, including the seedQTL, rs146498205. We conduct colocalization with various brain disorders and find that all QTL have top colocalizations with SCZ and related neuropsychiatric diseases. Furthermore, we identify QTL within biologically relevant GWAS loci, such as in ELA2, an important tRNA processing gene associated with SCZ risk. This work presents the investigation of multiple QTL types in parallel and demonstrates how they target both distinct and overlapping SCZ-relevant genes and pathways.
Collapse
Affiliation(s)
- Mudra Choudhury
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
| | - Ryo Yamamoto
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 612 Charles E. Young Drive East, Box 957246, Los Angeles, CA 90095-7246, United States
- Molecular Biology Institute, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
| |
Collapse
|
5
|
Doctor Y, Sanghvi M, Mali P. A Manual for Genome and Transcriptome Engineering. IEEE Rev Biomed Eng 2025; 18:250-267. [PMID: 39514364 PMCID: PMC11875898 DOI: 10.1109/rbme.2024.3494715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Genome and transcriptome engineering have emerged as powerful tools in modern biotechnology, driving advancements in precision medicine and novel therapeutics. In this review, we provide a comprehensive overview of the current methodologies, applications, and future directions in genome and transcriptome engineering. Through this, we aim to provide a guide for tool selection, critically analyzing the strengths, weaknesses, and best use cases of these tools to provide context on their suitability for various applications. We explore standard and recent developments in genome engineering, such as base editors and prime editing, and provide insight into tool selection for change of function (knockout, deletion, insertion, substitution) and change of expression (repression, activation) contexts. Advancements in transcriptome engineering are also explored, focusing on established technologies like antisense oligonucleotides (ASOs) and RNA interference (RNAi), as well as recent developments such as CRISPR-Cas13 and adenosine deaminases acting on RNA (ADAR). This review offers a comparison of different approaches to achieve similar biological goals, and consideration of high-throughput applications that enable the probing of a variety of targets. This review elucidates the transformative impact of genome and transcriptome engineering on biological research and clinical applications that will pave the way for future innovations in the field.
Collapse
Affiliation(s)
| | | | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, CA 92039, USA
| |
Collapse
|
6
|
Jiang J, Zhang Y, Wang J, Qin Y, Zhao C, He K, Wang C, Liu Y, Feng H, Cai H, He S, Li R, Galstyan DS, Yang L, Lim LW, de Abreu MS, Kalueff AV. Using Zebrafish Models to Study Epitranscriptomic Regulation of CNS Functions. J Neurochem 2025; 169:e16311. [PMID: 39825734 DOI: 10.1111/jnc.16311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025]
Abstract
Epitranscriptomic regulation of cell functions involves multiple post-transcriptional chemical modifications of coding and non-coding RNA that are increasingly recognized in studying human brain disorders. Although rodent models are presently widely used in neuroepitranscriptomic research, the zebrafish (Danio rerio) has emerged as a useful and promising alternative model species. Mounting evidence supports the importance of RNA modifications in zebrafish CNS function, providing additional insights into epitranscriptomic mechanisms underlying a wide range of brain disorders. Here, we discuss recent data on the role of RNA modifications in CNS regulation, with a particular focus on zebrafish models, as well as evaluate current problems, challenges, and future directions of research in this field of molecular neurochemistry.
Collapse
Affiliation(s)
- Jiayou Jiang
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yunqian Zhang
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Jiyi Wang
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yixin Qin
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Chonguang Zhao
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Kai He
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Chaoming Wang
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yucheng Liu
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Haoyu Feng
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Huiling Cai
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Shulei He
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Ruiyu Li
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - David S Galstyan
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Longen Yang
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Lee Wei Lim
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
- Moscow Institute of Physics and Technology, Moscow, Russia
- Western Caspian University, Baku, Azerbaijan
| | - Allan V Kalueff
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Moscow Institute of Physics and Technology, Moscow, Russia
| |
Collapse
|
7
|
Dehghannasiri R, Kokot M, Starr AL, Maziarz J, Gordon T, Tan SY, Wang PL, Voskoboynik A, Musser JM, Deorowicz S, Salzman J. sc-SPLASH provides ultra-efficient reference-free discovery in barcoded single-cell sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.24.630263. [PMID: 39763839 PMCID: PMC11703226 DOI: 10.1101/2024.12.24.630263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Typical high-throughput single-cell RNA-sequencing (scRNA-seq) analyses are primarily conducted by (pseudo)alignment, through the lens of annotated gene models, and aimed at detecting differential gene expression. This misses diversity generated by other mechanisms that diversify the transcriptome such as splicing and V(D)J recombination, and is blind to sequences missing from imperfect reference genomes. Here, we present sc-SPLASH, a highly efficient pipeline that extends our SPLASH framework for statistics-first, reference-free discovery to barcoded scRNA-seq (10x Chromium) and spatial transcriptomics (10x Visium); we also provide its optimized module for preprocessing and k-mer counting in barcoded data, BKC, as a standalone tool. sc-SPLASH rediscovers known biology including V(D)J recombination and cell-type-specific alternative splicing in human and trans-splicing in tunicate (Ciona) and when applied to spatial datasets, detects sequence variation including tumor-specific somatic mutation. In sponge (Spongilla) and tunicate (Ciona), we uncover secreted repeat proteins expressed in immune-type cells and regulated during development; the sponge genes were absent from the reference assembly. sc-SPLASH provides a powerful alternative tool for exploring transcriptomes that is applicable to the breadth of life's diversity.
Collapse
Affiliation(s)
| | - Marek Kokot
- Department of Algorithmics and Software, v, Gliwice, Poland
| | | | - Jamie Maziarz
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, 06511, USA
| | - Tal Gordon
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, 94305 USA
| | - Serena Y. Tan
- Department of Pathology, Stanford University Medical Center, Stanford, 94305, USA
| | - Peter L. Wang
- Department of Biomedical Data Science, Stanford University, Stanford, 94305, USA
- Department of Biochemistry, Stanford University, Stanford, 94305, USA
| | - Ayelet Voskoboynik
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, 94305 USA
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, 93950, USA
| | - Jacob M. Musser
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, 06511, USA
- Wu Tsai Institute, Yale University, New Haven, 06510, USA
| | | | - Julia Salzman
- Department of Biomedical Data Science, Stanford University, Stanford, 94305, USA
- Department of Biochemistry, Stanford University, Stanford, 94305, USA
- Department of Statistics (by courtesy), Stanford University, Stanford, 94305, USA
- Department of Biology (by Courtesy), Stanford University, Stanford, 94305, CA, USA
| |
Collapse
|
8
|
Dailamy A, Lyu W, Nourreddine S, Tong M, Rainaldi J, McDonald D, Panwala R, Muotri A, Breen MS, Zhang K, Mali P. Charting and probing the activity of ADARs in human development and cell-fate specification. Nat Commun 2024; 15:9818. [PMID: 39537590 PMCID: PMC11561244 DOI: 10.1038/s41467-024-53973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) impact diverse cellular processes and pathological conditions, but their functions in early cell-fate specification remain less understood. To gain insights here, we began by charting time-course RNA editing profiles in human organs from fetal to adult stages. Next, we utilized hPSC differentiation to experimentally probe ADARs, harnessing brain organoids as neural specific, and teratomas as pan-tissue developmental models. We show that time-series teratomas faithfully recapitulate fetal developmental trends, and motivated by this, conducted pan-tissue, single-cell CRISPR-KO screens of ADARs in teratomas. Knocking out ADAR leads to a global decrease in RNA editing across all germ-layers. Intriguingly, knocking out ADAR leads to an enrichment of adipogenic cells, revealing a role for ADAR in human adipogenesis. Collectively, we present a multi-pronged framework charting time-resolved RNA editing profiles and coupled ADAR perturbations in developmental models, thereby shedding light on the role of ADARs in cell-fate specification.
Collapse
Affiliation(s)
- Amir Dailamy
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Weiqi Lyu
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Michael Tong
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Joseph Rainaldi
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, San Diego, CA, USA
| | - Daniella McDonald
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, San Diego, CA, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Alysson Muotri
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | | | - Kun Zhang
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
9
|
Aygün N, Vuong C, Krupa O, Mory J, Le BD, Valone JM, Liang D, Shafie B, Zhang P, Salinda A, Wen C, Gandal MJ, Love MI, de la Torre-Ubieta L, Stein JL. Genetics of cell-type-specific post-transcriptional gene regulation during human neurogenesis. Am J Hum Genet 2024; 111:1877-1898. [PMID: 39168119 PMCID: PMC11393701 DOI: 10.1016/j.ajhg.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk postmortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA editing and alternative polyadenylation (APA) within a cell-type-specific population of human neural progenitors and neurons. More RNA editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting that genetically mediated post-transcriptional regulation during brain development leads to differences in brain function.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celine Vuong
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandon D Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jordan M Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Beck Shafie
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pan Zhang
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Angelo Salinda
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cindy Wen
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael J Gandal
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis de la Torre-Ubieta
- Intellectual and Developmental Disabilities Research Center, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Marot-Lassauzaie V, Beneyto-Calabuig S, Obermayer B, Velten L, Beule D, Haghverdi L. Identifying cancer cells from calling single-nucleotide variants in scRNA-seq data. BIOINFORMATICS (OXFORD, ENGLAND) 2024; 40:btae512. [PMID: 39163479 PMCID: PMC11379463 DOI: 10.1093/bioinformatics/btae512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
MOTIVATION Single-cell RNA sequencing (scRNA-seq) data are widely used to study cancer cell states and their heterogeneity. However, the tumour microenvironment is usually a mixture of healthy and cancerous cells and it can be difficult to fully separate these two populations based on transcriptomics alone. If available, somatic single-nucleotide variants (SNVs) observed in the scRNA-seq data could be used to identify the cancer population and match that information with the single cells' expression profile. However, calling somatic SNVs in scRNA-seq data is a challenging task, as most variants seen in the short-read data are not somatic, but can instead be germline variants, RNA edits or transcription, sequencing, or processing errors. In addition, only variants present in actively transcribed regions for each individual cell will be seen in the data. RESULTS To address these challenges, we develop CCLONE (Cancer Cell Labelling On Noisy Expression), an interpretable tool adapted to handle the uncertainty and sparsity of SNVs called from scRNA-seq data. CCLONE jointly identifies cancer clonal populations, and their associated variants. We apply CCLONE on two acute myeloid leukaemia datasets and one lung adenocarcinoma dataset and show that CCLONE captures both genetic clones and somatic events for multiple patients. These results show how CCLONE can be used to gather insight into the course of the disease and the origin of cancer cells in scRNA-seq data. AVAILABILITY AND IMPLEMENTATION Source code is available at github.com/HaghverdiLab/CCLONE.
Collapse
Affiliation(s)
- Valérie Marot-Lassauzaie
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Hannoversche Str. 28, 10115 Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sergi Beneyto-Calabuig
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Lars Velten
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Laleh Haghverdi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Hannoversche Str. 28, 10115 Berlin, Germany
| |
Collapse
|
11
|
Kudriavskii VV, Goncharov AO, Eremeev AV, Ruchko ES, Veselovsky VA, Klimina KM, Bogomazova AN, Lagarkova MA, Moshkovskii SA, Kliuchnikova AA. RNA Editing by ADAR Adenosine Deaminases in the Cell Models of CAG Repeat Expansion Diseases: Significant Effect of Differentiation from Stem Cells into Brain Organoids in the Absence of Substantial Influence of CAG Repeats on the Level of Editing. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1474-1489. [PMID: 39245456 DOI: 10.1134/s0006297924080078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
Expansion of CAG repeats in certain genes is a known cause of several neurodegenerative diseases, but exact mechanism behind this is not yet fully understood. It is believed that the double-stranded RNA regions formed by CAG repeats could be harmful to the cell. This study aimed to test the hypothesis that these RNA regions might potentially interfere with ADAR RNA editing enzymes, leading to the reduced A-to-I editing of RNA and activation of the interferon response. We studied induced pluripotent stem cells (iPSCs) derived from the patients with Huntington's disease or ataxia type 17, as well as midbrain organoids developed from these cells. A targeted panel for next-generation sequencing was used to assess editing in the specific RNA regions. Differentiation of iPSCs into brain organoids led to increase in the ADAR2 gene expression and decrease in the expression of protein inhibitors of RNA editing. As a result, there was increase in the editing of specific ADAR2 substrates, which allowed identification of differential substrates of ADAR isoforms. However, comparison of the pathology and control groups did not show differences in the editing levels among the iPSCs. Additionally, brain organoids with 42-46 CAG repeats did not exhibit global changes. On the other hand, brain organoids with the highest number of CAG repeats in the huntingtin gene (76) showed significant decrease in the level of RNA editing of specific transcripts, potentially involving ADAR1. Notably, editing of the long non-coding RNA PWAR5 was nearly absent in this sample. It could be stated in conclusion that in most cultures with repeat expansion, the hypothesized effect on RNA editing was not confirmed.
Collapse
Affiliation(s)
- Viacheslav V Kudriavskii
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Anton O Goncharov
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Artem V Eremeev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Evgenii S Ruchko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Vladimir A Veselovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Ksenia M Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Alexandra N Bogomazova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Sergei A Moshkovskii
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Max Planck Institute for Interdisciplinary Research, Göttingen, 37077, Germany.
| | - Anna A Kliuchnikova
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| |
Collapse
|
12
|
Yang H, Xu S, Hong X, Liu Y, Qian S, Lou Y, Wang W. ADAR1 prevents ZBP1-dependent PANoptosis via A-to-I RNA editing in developmental sevoflurane neurotoxicity. Cell Biol Toxicol 2024; 40:57. [PMID: 39060787 PMCID: PMC11281990 DOI: 10.1007/s10565-024-09905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
It is well established that sevoflurane exposure leads to widespread neuronal cell death in the developing brain. Adenosine deaminase acting on RNA-1 (ADAR1) dependent adenosine-to-inosine (A-to-I) RNA editing is dynamically regulated throughout brain development. The current investigation is designed to interrogate the contributed role of ADAR1 in developmental sevoflurane neurotoxicity. Herein, we provide evidence to show that developmental sevoflurane priming triggers neuronal pyroptosis, apoptosis and necroptosis (PANoptosis), and elicits the release of inflammatory factors including IL-1β, IL-18, TNF-α and IFN-γ. Additionally, ADAR1-P150, but not ADAR1-P110, depresses cellular PANoptosis and inflammatory response by competing with Z-DNA/RNA binding protein 1 (ZBP1) for binding to Z-RNA in the presence of sevoflurane. Further investigation demonstrates that ADAR1-dependent A-to-I RNA editing mitigates developmental sevoflurane-induced neuronal PANoptosis. To restore RNA editing, we utilize adeno-associated virus (AAV) to deliver engineered circular ADAR-recruiting guide RNAs (cadRNAs) into cells, which is capable of recruiting endogenous adenosine deaminases to promote cellular A-to-I RNA editing. As anticipated, AAV-cadRNAs diminishes sevoflurane-induced cellular Z-RNA production and PANoptosis, which could be abolished by ADAR1-P150 shRNA transfection. Moreover, AAV-cadRNAs delivery ameliorates developmental sevoflurane-induced spatial and emotional cognitive deficits without influence on locomotor activity. Taken together, these results illustrate that ADAR1-P150 exhibits a prominent role in preventing ZBP1-dependent PANoptosis through A-to-I RNA editing in developmental sevoflurane neurotoxicity. Application of engineered cadRNAs to rectify the compromised ADAR1-dependent A-to-I RNA editing provides an inspiring direction for possible clinical preventions and therapeutics.
Collapse
Affiliation(s)
- Huiling Yang
- Department of Anesthesiology, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, 310023, Zhejiang, China
| | - Sen Xu
- Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Xinya Hong
- Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Yusi Liu
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Shaojie Qian
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Yifei Lou
- Department of Anesthesiology, Affiliated Hangzhou Xixi Hospital, Zhejiang Chinese Medical University, Hangzhou, 310023, Zhejiang, China
| | - Wenyuan Wang
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
13
|
Rodriguez de Los Santos M, Kopell BH, Buxbaum Grice A, Ganesh G, Yang A, Amini P, Liharska LE, Vornholt E, Fullard JF, Dong P, Park E, Zipkowitz S, Kaji DA, Thompson RC, Liu D, Park YJ, Cheng E, Ziafat K, Moya E, Fennessy B, Wilkins L, Silk H, Linares LM, Sullivan B, Cohen V, Kota P, Feng C, Johnson JS, Rieder MK, Scarpa J, Nadkarni GN, Wang M, Zhang B, Sklar P, Beckmann ND, Schadt EE, Roussos P, Charney AW, Breen MS. Divergent landscapes of A-to-I editing in postmortem and living human brain. Nat Commun 2024; 15:5366. [PMID: 38926387 PMCID: PMC11208617 DOI: 10.1038/s41467-024-49268-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries offer more nuanced and accurate insights into the regulatory mechanisms of RNA editing in the human brain.
Collapse
Affiliation(s)
| | - Brian H Kopell
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Gauri Ganesh
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andy Yang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pardis Amini
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lora E Liharska
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Vornholt
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John F Fullard
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pengfei Dong
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Park
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Zipkowitz
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Deepak A Kaji
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ryan C Thompson
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Donjing Liu
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - You Jeong Park
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Esther Cheng
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kimia Ziafat
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily Moya
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brian Fennessy
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lillian Wilkins
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hannah Silk
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lisa M Linares
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brendan Sullivan
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vanessa Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Prashant Kota
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Claudia Feng
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | - Joseph Scarpa
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Minghui Wang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pamela Sklar
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Noam D Beckmann
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric E Schadt
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Panos Roussos
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Michael S Breen
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
14
|
Lee K, Ku J, Ku D, Kim Y. Inverted Alu repeats: friends or foes in the human transcriptome. Exp Mol Med 2024; 56:1250-1262. [PMID: 38871814 PMCID: PMC11263572 DOI: 10.1038/s12276-024-01177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 06/15/2024] Open
Abstract
Alu elements are highly abundant primate-specific short interspersed nuclear elements that account for ~10% of the human genome. Due to their preferential location in gene-rich regions, especially in introns and 3' UTRs, Alu elements can exert regulatory effects on the expression of both host and neighboring genes. When two Alu elements with inverse orientations are positioned in close proximity, their transcription results in the generation of distinct double-stranded RNAs (dsRNAs), known as inverted Alu repeats (IRAlus). IRAlus are key immunogenic self-dsRNAs and post-transcriptional cis-regulatory elements that play a role in circular RNA biogenesis, as well as RNA transport and stability. Recently, IRAlus dsRNAs have emerged as regulators of transcription and activators of Z-DNA-binding proteins. The formation and activity of IRAlus can be modulated through RNA editing and interactions with RNA-binding proteins, and misregulation of IRAlus has been implicated in several immune-associated disorders. In this review, we summarize the emerging functions of IRAlus dsRNAs, the regulatory mechanisms governing IRAlus activity, and their relevance in the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Keonyong Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jayoung Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Doyeong Ku
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea.
- KAIST Institute for BioCentury (KIB), Daejeon, 34141, Republic of Korea.
- KAIST Institute for Health Science and Technology (KIHST), Daejeon, 34141, Republic of Korea.
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
15
|
Chen HW, Ma CP, Chin E, Chen YT, Wang TC, Kuo YP, Su CH, Huang PJ, Tan BCM. Imbalance in Unc80 RNA Editing Disrupts Dynamic Neuronal Activity and Olfactory Perception. Int J Mol Sci 2024; 25:5985. [PMID: 38892173 PMCID: PMC11172567 DOI: 10.3390/ijms25115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
A-to-I RNA editing, catalyzed by the ADAR protein family, significantly contributes to the diversity and adaptability of mammalian RNA signatures, aligning with developmental and physiological needs. Yet, the functions of many editing sites are still to be defined. The Unc80 gene stands out in this context due to its brain-specific expression and the evolutionary conservation of its codon-altering editing event. The precise biological functions of Unc80 and its editing, however, are still largely undefined. In this study, we first demonstrated that Unc80 editing occurs in an ADAR2-dependent manner and is exclusive to the brain. By employing the CRISPR/Cas9 system to generate Unc80 knock-in mouse models that replicate the natural editing variations, our findings revealed that mice with the "gain-of-editing" variant (Unc80G/G) exhibit heightened basal neuronal activity in critical olfactory regions, compared to the "loss-of-editing" (Unc80S/S) counterparts. Moreover, an increase in glutamate levels was observed in the olfactory bulbs of Unc80G/G mice, indicating altered neurotransmitter dynamics. Behavioral analysis of odor detection revealed distinctive responses to novel odors-both Unc80 deficient (Unc80+/-) and Unc80S/S mice demonstrated prolonged exploration times and heightened dishabituation responses. Further elucidating the olfactory connection of Unc80 editing, transcriptomic analysis of the olfactory bulb identified significant alterations in gene expression that corroborate the behavioral and physiological findings. Collectively, our research advances the understanding of Unc80's neurophysiological functions and the impact of its editing on the olfactory sensory system, shedding light on the intricate molecular underpinnings of olfactory perception and neuronal activity.
Collapse
Affiliation(s)
- Hui-Wen Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chung-Pei Ma
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
| | - En Chin
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yi-Tung Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan;
| | - Teh-Cheng Wang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yu-Ping Kuo
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Po-Jung Huang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Genomic Medicine Core Laboratory, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-W.C.); (C.-P.M.); (E.C.); (Y.-T.C.); (P.-J.H.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Division of Colon and Rectal Surgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Neurosurgery, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
16
|
de los Santos MR, Kopell BH, Grice AB, Ganesh G, Yang A, Amini P, Liharska LE, Vornholt E, Fullard JF, Dong P, Park E, Zipkowitz S, Kaji DA, Thompson RC, Liu D, Park YJ, Cheng E, Ziafat K, Moya E, Fennessy B, Wilkins L, Silk H, Linares LM, Sullivan B, Cohen V, Kota P, Feng C, Johnson JS, Rieder MK, Scarpa J, Nadkarni GN, Wang M, Zhang B, Sklar P, Beckmann ND, Schadt EE, Roussos P, Charney AW, Breen MS. Divergent landscapes of A-to-I editing in postmortem and living human brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.06.24306763. [PMID: 38765961 PMCID: PMC11100843 DOI: 10.1101/2024.05.06.24306763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR1 and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries illuminate the nuanced functions and intricate regulatory mechanisms of RNA editing within the human brain.
Collapse
Affiliation(s)
| | - Brian H. Kopell
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Gauri Ganesh
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andy Yang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pardis Amini
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lora E. Liharska
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Vornholt
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John F. Fullard
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pengfei Dong
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Park
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah Zipkowitz
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Deepak A. Kaji
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ryan C. Thompson
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Donjing Liu
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - You Jeong Park
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Esther Cheng
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kimia Ziafat
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily Moya
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brian Fennessy
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lillian Wilkins
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hannah Silk
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lisa M. Linares
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brendan Sullivan
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vanessa Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Prashant Kota
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Claudia Feng
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | - Joseph Scarpa
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Minghui Wang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bin Zhang
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Pamela Sklar
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Noam D. Beckmann
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric E. Schadt
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Panos Roussos
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Michael S. Breen
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| |
Collapse
|
17
|
Yang L, Yi L, Yang J, Zhang R, Xie Z, Wang H. Temporal landscape and translational regulation of A-to-I RNA editing in mouse retina development. BMC Biol 2024; 22:106. [PMID: 38715001 PMCID: PMC11077751 DOI: 10.1186/s12915-024-01908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The significance of A-to-I RNA editing in nervous system development is widely recognized; however, its influence on retina development remains to be thoroughly understood. RESULTS In this study, we performed RNA sequencing and ribosome profiling experiments on developing mouse retinas to characterize the temporal landscape of A-to-I editing. Our findings revealed temporal changes in A-to-I editing, with distinct editing patterns observed across different developmental stages. Further analysis showed the interplay between A-to-I editing and alternative splicing, with A-to-I editing influencing splicing efficiency and the quantity of splicing events. A-to-I editing held the potential to enhance translation diversity, but this came at the expense of reduced translational efficiency. When coupled with splicing, it could produce a coordinated effect on gene translation. CONCLUSIONS Overall, this study presents a temporally resolved atlas of A-to-I editing, connecting its changes with the impact on alternative splicing and gene translation in retina development.
Collapse
Affiliation(s)
- Ludong Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Liang Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jiaqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Rui Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
18
|
Liu H, Zhao Y. Integrated modeling of protein and RNA. Brief Bioinform 2024; 25:bbae139. [PMID: 38561980 PMCID: PMC10985284 DOI: 10.1093/bib/bbae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Affiliation(s)
- Haoquan Liu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
19
|
Karagianni K, Bibi A, Madé A, Acharya S, Parkkonen M, Barbalata T, Srivastava PK, de Gonzalo-Calvo D, Emanueli C, Martelli F, Devaux Y, Dafou D, Nossent AY. Recommendations for detection, validation, and evaluation of RNA editing events in cardiovascular and neurological/neurodegenerative diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102085. [PMID: 38192612 PMCID: PMC10772297 DOI: 10.1016/j.omtn.2023.102085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
RNA editing, a common and potentially highly functional form of RNA modification, encompasses two different RNA modifications, namely adenosine to inosine (A-to-I) and cytidine to uridine (C-to-U) editing. As inosines are interpreted as guanosines by the cellular machinery, both A-to-I and C-to-U editing change the nucleotide sequence of the RNA. Editing events in coding sequences have the potential to change the amino acid sequence of proteins, whereas editing events in noncoding RNAs can, for example, affect microRNA target binding. With advancing RNA sequencing technology, more RNA editing events are being discovered, studied, and reported. However, RNA editing events are still often overlooked or discarded as sequence read quality defects. With this position paper, we aim to provide guidelines and recommendations for the detection, validation, and follow-up experiments to study RNA editing, taking examples from the fields of cardiovascular and brain disease. We discuss all steps, from sample collection, storage, and preparation, to different strategies for RNA sequencing and editing-sensitive data analysis strategies, to validation and follow-up experiments, as well as potential pitfalls and gaps in the available technologies. This paper may be used as an experimental guideline for RNA editing studies in any disease context.
Collapse
Affiliation(s)
- Korina Karagianni
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Alessia Bibi
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Alisia Madé
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy
| | - Shubhra Acharya
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-alzette, Luxembourg
| | - Mikko Parkkonen
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Teodora Barbalata
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B. P. Hasdeu Street, 050568 Bucharest, Romania
| | | | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | | | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Dimitra Dafou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - A. Yaël Nossent
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| | - on behalf of EU-CardioRNA COST Action CA17129
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-alzette, Luxembourg
- Research Unit of Biomedicine and Internal Medicine, Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
- Lipidomics Department, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8, B. P. Hasdeu Street, 050568 Bucharest, Romania
- National Heart & Lung Institute, Imperial College London, London, UK
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Wang Y, Wu J, Zhao J, Xu T, Zhang M, Liu J, Wang Y, Wang Q, Song X. Global characterization of RNA editing in genetic regulation of multiple ovarian cancer subtypes. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102127. [PMID: 38352860 PMCID: PMC10863325 DOI: 10.1016/j.omtn.2024.102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
RNA editing plays an extensive role in the initiation and progression of cancer. However, the overall profile and molecular functions of RNA editing in different ovarian cancer subtypes have not been fully characterized and elucidated. Here, we conducted a study on RNA editing in four cohorts of ovarian cancer subtypes through large-scale parallel reporting and bioinformatics analysis. Our findings revealed that RNA editing patterns exhibit subtype-specific characteristics within cancer subtypes. The expression pattern of ADAR and the number of differential editing sites varied under different conditions. CCOC and EOC exhibited significant editing deficiency, whereas HGSC and MOC displayed significant editing excess. The sites within the turquoise module of the coedited network also revealed their correlation with ovarian cancer. In addition, we identified an average of over 40,000 cis-edQTLs in the four subtypes. Finally, we explored the association between RNA editing and drug response, uncovering several potentially effective editing-drug pairs (EDP) and suggesting the conceivable utility of RNA editing sites as therapeutic targets for cancer treatment. Overall, our comprehensive study has identified and characterized RNA editing events in various subtypes of ovarian cancer, providing a new perspective for ovarian cancer research and facilitating the development of medical interventions and treatments.
Collapse
Affiliation(s)
- Yulan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jing Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Tianyi Xu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Meng Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Yixuan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Quan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
21
|
Levanon EY, Cohen-Fultheim R, Eisenberg E. In search of critical dsRNA targets of ADAR1. Trends Genet 2024; 40:250-259. [PMID: 38160061 DOI: 10.1016/j.tig.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Recent studies have underscored the pivotal role of adenosine-to-inosine RNA editing, catalyzed by ADAR1, in suppressing innate immune interferon responses triggered by cellular double-stranded RNA (dsRNA). However, the specific ADAR1 editing targets crucial for this regulatory function remain elusive. We review analyses of transcriptome-wide ADAR1 editing patterns and their evolutionary dynamics, which offer valuable insights into this unresolved query. The growing appreciation of the significance of immunogenic dsRNAs and their editing in inflammatory and autoimmune diseases and cancer calls for a more comprehensive understanding of dsRNA immunogenicity, which may promote our understanding of these diseases and open doors to therapeutic avenues.
Collapse
Affiliation(s)
- Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
| | - Roni Cohen-Fultheim
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv, University, Tel Aviv 6997801, Israel.
| |
Collapse
|
22
|
Milham LT, Morris GP, Konen LM, Rentsch P, Avgan N, Vissel B. Quantification of AMPA receptor subunits and RNA editing-related proteins in the J20 mouse model of Alzheimer's disease by capillary western blotting. Front Mol Neurosci 2024; 16:1338065. [PMID: 38299128 PMCID: PMC10828003 DOI: 10.3389/fnmol.2023.1338065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction Accurate modelling of molecular changes in Alzheimer's disease (AD) dementia is crucial for understanding the mechanisms driving neuronal pathology and for developing treatments. Synaptic dysfunction has long been implicated as a mechanism underpinning memory dysfunction in AD and may result in part from changes in adenosine deaminase acting on RNA (ADAR) mediated RNA editing of the GluA2 subunit of AMPA receptors and changes in AMPA receptor function at the post synaptic cleft. However, few studies have investigated changes in proteins which influence RNA editing and notably, AD studies that focus on studying changes in protein expression, rather than changes in mRNA, often use traditional western blotting. Methods Here, we demonstrate the value of automated capillary western blotting to investigate the protein expression of AMPA receptor subunits (GluA1-4), the ADAR RNA editing proteins (ADAR1-3), and proteins known to regulate RNA editing (PIN1, WWP2, FXR1P, and CREB1), in the J20 AD mouse model. We describe extensive optimisation and validation of the automated capillary western blotting method, demonstrating the use of total protein to normalise protein load, in addition to characterising the optimal protein/antibody concentrations to ensure accurate protein quantification. Following this, we assessed changes in proteins of interest in the hippocampus of 44-week-old J20 AD mice. Results We observed an increase in the expression of ADAR1 p110 and GluA3 and a decrease in ADAR2 in the hippocampus of 44-week-old J20 mice. These changes signify a shift in the balance of proteins that play a critical role at the synapse. Regression analysis revealed unique J20-specific correlations between changes in AMPA receptor subunits, ADAR enzymes, and proteins that regulate ADAR stability in J20 mice, highlighting potential mechanisms mediating RNA-editing changes found in AD. Discussion Our findings in J20 mice generally reflect changes seen in the human AD brain. This study underlines the importance of novel techniques, like automated capillary western blotting, to assess protein expression in AD. It also provides further evidence to support the hypothesis that a dysregulation in RNA editing-related proteins may play a role in the initiation and/or progression of AD.
Collapse
Affiliation(s)
- Luke T. Milham
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Gary P. Morris
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Lyndsey M. Konen
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Peggy Rentsch
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Nesli Avgan
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
23
|
Azad MTA, Sugi T, Qulsum U, Kato K. Detection of Developmental Asexual Stage-Specific RNA Editing Events in Plasmodium falciparum 3D7 Malaria Parasite. Microorganisms 2024; 12:137. [PMID: 38257964 PMCID: PMC10819399 DOI: 10.3390/microorganisms12010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Transcriptional variation has been studied but post-transcriptional modification due to RNA editing has not been investigated in Plasmodium. We investigated developmental stage-specific RNA editing in selected genes in Plasmodium falciparum 3D7. We detected extensive amination- and deamination-type RNA editing at 8, 16, 24, 32, 40, and 46 h in tightly synchronized Plasmodium. Most of the editing events were observed in 8 and 16 h ring-stage parasites. Extensive A-to-G deamination-type editing was detected more during the 16 h ring stage (25%) than the 8 h ring stage (20%). Extensive U-to-C amination-type editing was detected more during the 16 h ring stage (31%) than the 8 h ring stage (22%). In 28S, rRNA editing converted the loop structure to the stem structure. The hemoglobin binding activity of PF3D7_0216900 was also altered due to RNA editing. Among the expressed 28S rRNA genes, PF3D7_0532000 and PF3D7_0726000 expression was higher. Increased amounts of the transcripts of these two genes were found, particularly PF3D7_0726000 in the ring stage and PF3D7_0532000 in the trophozoite and schizont stages. Adenosine deaminase (ADA) expression did not correlate with the editing level. This first experimental report of RNA editing will help to identify the editing machinery that might be useful for antimalarial drug discovery and malaria control.
Collapse
Affiliation(s)
- Md Thoufic Anam Azad
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Tatsuki Sugi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Nishi10-Kita 20, Sapporo 001-0020, Japan
| | - Umme Qulsum
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
- Department of Botany, Faculty of Biological Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| |
Collapse
|
24
|
Wales-McGrath B, Mercer H, Piontkivska H. Changes in ADAR RNA editing patterns in CMV and ZIKV congenital infections. BMC Genomics 2023; 24:685. [PMID: 37968596 PMCID: PMC10652522 DOI: 10.1186/s12864-023-09778-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND RNA editing is a process that increases transcriptome diversity, often through Adenosine Deaminases Acting on RNA (ADARs) that catalyze the deamination of adenosine to inosine. ADAR editing plays an important role in regulating brain function and immune activation, and is dynamically regulated during brain development. Additionally, the ADAR1 p150 isoform is induced by interferons in viral infection and plays a role in antiviral immune response. However, the question of how virus-induced ADAR expression affects host transcriptome editing remains largely unanswered. This question is particularly relevant in the context of congenital infections, given the dynamic regulation of ADAR editing during brain development, the importance of this editing for brain function, and subsequent neurological symptoms of such infections, including microcephaly, sensory issues, and other neurodevelopmental abnormalities. Here, we begin to address this question, examining ADAR expression in publicly available datasets of congenital infections of human cytomegalovirus (HCMV) microarray expression data, as well as mouse cytomegalovirus (MCMV) and mouse/ human induced pluripotent neuroprogenitor stem cell (hiNPC) Zika virus (ZIKV) RNA-seq data. RESULTS We found that in all three datasets, ADAR1 was overexpressed in infected samples compared to uninfected samples. In the RNA-seq datasets, editing rates were also analyzed. In all mouse infections cases, the number of editing sites was significantly increased in infected samples, albeit this was not the case for hiNPC ZIKV samples. Mouse ZIKV samples showed altered editing of well-established protein-recoding sites such as Gria3, Grik5, and Nova1, as well as editing sites that may impact miRNA binding. CONCLUSIONS Our findings provide evidence for changes in ADAR expression and subsequent dysregulation of ADAR editing of host transcriptomes in congenital infections. These changes in editing patterns of key neural genes have potential significance in the development of neurological symptoms, thus contributing to neurodevelopmental abnormalities. Further experiments should be performed to explore the full range of editing changes that occur in different congenital infections, and to confirm the specific functional consequences of these editing changes.
Collapse
Affiliation(s)
- Benjamin Wales-McGrath
- University of Pennsylvania, Perelman School of Medicine, Department of Genetics, Philadelphia, PA, USA
- Children's Hospital of Philadelphia, Division of Cancer Pathobiology, Philadelphia, PA, USA
| | - Heather Mercer
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, USA
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, USA.
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.
- Brain Health Research Institute, Kent State University, Kent, OH, USA.
- Healthy Communities Research Institute, Kent State University, Kent, OH, USA.
| |
Collapse
|
25
|
Tan MH. Identification of Bona Fide RNA Editing Sites: History, Challenges, and Opportunities. Acc Chem Res 2023; 56:3033-3044. [PMID: 37827987 DOI: 10.1021/acs.accounts.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by the adenosine deaminase acting on the RNA (ADAR) family of enzymes of which there are three members (ADAR1, ADAR2, and ADAR3), is a major gene regulatory mechanism that diversifies the transcriptome. It is widespread in many metazoans, including humans. As inosine is interpreted by cellular machineries mainly as guanosine, A-to-I editing effectively gives A-to-G nucleotide changes. Depending on its location, an editing event can generate new protein isoforms or influence other RNA processing pathways. Researchers have found that ADAR-mediated editing performs diverse functions. For example, it enables living organisms such as cephalopods to adapt rapidly to fluctuating environmental conditions such as water temperature. In development, the loss of ADAR1 is embryonically lethal partly because endogenous double-stranded RNAs (dsRNAs) are no longer marked by inosines, which signal "self", and thus cause the melanoma differentiation-associated protein 5 (MDA5) sensor to trigger a deleterious interferon response. Hence, ADAR1 plays a key role in preventing aberrant activation of the innate immune system. Furthermore, ADAR enzymes have been implicated in myriad human diseases. Intriguingly, some cancer cells are known to exploit ADAR1 activity to dodge immune responses. However, the exact identities of immunogenic RNAs in different biological contexts have remained elusive. Consequently, there is tremendous interest in identifying inosine-containing RNAs in the cell.The identification of A-to-I RNA editing sites is dependent on the sequencing of nucleic acids. Technological and algorithmic advancements over the past decades have revolutionized the way editing events are detected. At the beginning, the discovery of editing sites relies on Sanger sequencing, a first-generation technology. Both RNA, which is reverse transcribed into complementary DNA (cDNA), and genomic DNA (gDNA) from the same source are analyzed. After sequence alignment, one would require an adenosine to be present in the genome but a guanosine to be detected in the RNA sample for a position to be declared as an editing site. However, an issue with Sanger sequencing is its low throughput. Subsequently, Illumina sequencing, a second-generation technology, was invented. By permitting the simultaneous interrogation of millions of molecules, it enables many editing sites to be identified rapidly. However, a key challenge is that the Illumina platform produces short sequencing reads that can be difficult to map accurately. To tackle the challenge, we and others developed computational workflows with a series of filters to discard sites that are likely to be false positives. When Illumina sequencing data sets are properly analyzed, A-to-G variants should emerge as the most dominant mismatch type. Moreover, the quantitative nature of the data allows us to build a comprehensive atlas of editing-level measurements across different biological contexts, providing deep insights into the spatiotemporal dynamics of RNA editing. However, difficulties remain in identifying true A-to-I editing sites in short protein-coding exons or in organisms and diseases where DNA mutations and genomic polymorphisms are prevalent and mostly unknown. Nanopore sequencing, a third-generation technology, promises to address the difficulties, as it allows native RNAs to be sequenced without conversion to cDNA, preserving base modifications that can be directly detected through machine learning. We recently demonstrated that nanopore sequencing could be used to identify A-to-I editing sites in native RNA directly. Although further work is needed to enhance the detection accuracy in single molecules from fewer cells, the nanopore technology holds the potential to revolutionize epitranscriptomic studies.
Collapse
Affiliation(s)
- Meng How Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- HP-NTU Digital Manufacturing Corporate Laboratory, Nanyang Technological University, Singapore 637460, Singapore
| |
Collapse
|
26
|
Zhu Z, Chen X, Zhang S, Yu R, Qi C, Cheng L, Zhang X. Leveraging molecular quantitative trait loci to comprehend complex diseases/traits from the omics perspective. Hum Genet 2023; 142:1543-1560. [PMID: 37755483 DOI: 10.1007/s00439-023-02602-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
Comprehending the molecular basis of quantitative genetic variation is a principal goal for complex diseases or traits. Molecular quantitative trait loci (molQTLs) have made it possible to investigate the effects of genetic variants hiding behind large-scale omics data. A deeper understanding of molQTL is urgently required in light of the multi-dimensionalization of omics data to more fully elucidate the pertinent biological mechanisms. Herein, we reviewed molQTLs with the corresponding resource from the omics perspective and further discussed the integrative strategy of GWAS-molQTL to infer their causal effects. Subsequently, we described the opportunities and challenges encountered by molQTL. The case studies showed that molQTL is essential for complex diseases and traits, whether single- or multi-omics QTLs. Overall, we highlighted the functional significance of genetic variants to employ the discovery of molQTL in complex diseases and traits.
Collapse
Affiliation(s)
- Zijun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xinyu Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Sainan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Rui Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Changlu Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150028, Heilongjiang, China.
| | - Xue Zhang
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150028, Heilongjiang, China
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
27
|
Aygün N, Krupa O, Mory J, Le B, Valone J, Liang D, Love MI, Stein JL. Genetics of cell-type-specific post-transcriptional gene regulation during human neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555019. [PMID: 37693528 PMCID: PMC10491258 DOI: 10.1101/2023.08.30.555019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk post-mortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA-editing and alternative polyadenylation (APA), within a cell-type-specific population of human neural progenitors and neurons. More RNA-editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting genetically mediated post-transcriptional regulation during brain development lead to differences in brain function.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brandon Le
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jordan Valone
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael I. Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L. Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lead contact
| |
Collapse
|
28
|
Xiao YL, Liu S, Ge R, Wu Y, He C, Chen M, Tang W. Transcriptome-wide profiling and quantification of N 6-methyladenosine by enzyme-assisted adenosine deamination. Nat Biotechnol 2023; 41:993-1003. [PMID: 36593412 PMCID: PMC10625715 DOI: 10.1038/s41587-022-01587-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/24/2022] [Indexed: 01/03/2023]
Abstract
N6-methyladenosine (m6A), the most abundant internal messenger RNA modification in higher eukaryotes, serves myriad roles in regulating cellular processes. Functional dissection of m6A is, however, hampered in part by the lack of high-resolution and quantitative detection methods. Here we present evolved TadA-assisted N6-methyladenosine sequencing (eTAM-seq), an enzyme-assisted sequencing technology that detects and quantifies m6A by global adenosine deamination. With eTAM-seq, we analyze the transcriptome-wide distribution of m6A in HeLa and mouse embryonic stem cells. The enzymatic deamination route employed by eTAM-seq preserves RNA integrity, facilitating m6A detection from limited input samples. In addition to transcriptome-wide m6A profiling, we demonstrate site-specific, deep-sequencing-free m6A quantification with as few as ten cells, an input demand orders of magnitude lower than existing quantitative profiling methods. We envision that eTAM-seq will enable researchers to not only survey the m6A landscape at unprecedented resolution, but also detect m6A at user-specified loci with a simple workflow.
Collapse
Affiliation(s)
- Yu-Lan Xiao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Shun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Ruiqi Ge
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Yuan Wu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
| | - Mengjie Chen
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA.
| | - Weixin Tang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
29
|
Wu Y, Hao S, Xu X, Dong G, Ouyang W, Liu C, Sun HX. A novel computational method enables RNA editome profiling during human hematopoiesis from scRNA-seq data. Sci Rep 2023; 13:10335. [PMID: 37365211 DOI: 10.1038/s41598-023-37325-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
RNA editing is a post-transcriptional modification with a cell-specific manner and important biological implications. Although single-cell RNA-seq (scRNA-seq) is an effective method for studying cellular heterogeneity, it is difficult to detect and study RNA editing events from scRNA-seq data because of the low sequencing coverage. To overcome this, we develop a computational method to systematically identify RNA editing sites of cell types from scRNA-seq data. To demonstrate its effectiveness, we apply it to scRNA-seq data of human hematopoietic stem/progenitor cells (HSPCs) with an annotated lineage differentiation relationship according to previous research and study the impacts of RNA editing on hematopoiesis. The dynamic editing patterns reveal the relevance of RNA editing on different HSPCs. For example, four microRNA (miRNA) target sites on 3' UTR of EIF2AK2 are edited across all HSPC populations, which may abolish the miRNA-mediated inhibition of EIF2AK2. Elevated EIF2AK2 may thus activate the integrated stress response (ISR) pathway to initiate global translational attenuation as a protective mechanism to maintain cellular homeostasis during HSPCs' differentiation. Besides, our findings also indicate that RNA editing plays an essential role in the coordination of lineage commitment and self-renewal of hematopoietic stem cells (HSCs). Taken together, we demonstrate the capacity of scRNA-seq data to exploit RNA editing events of cell types, and find that RNA editing may exert multiple modules of regulation in hematopoietic processes.
Collapse
Affiliation(s)
- Yan Wu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Beijing, Beijing, 102601, China
| | - Shijie Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiaojing Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI-Beijing, Beijing, 102601, China
| | - Guoyi Dong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Chao Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Hai-Xi Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- BGI-Shenzhen, Shenzhen, 518083, China.
- BGI-Beijing, Beijing, 102601, China.
| |
Collapse
|
30
|
Cuddleston WH, Fan X, Sloofman L, Liang L, Mossotto E, Moore K, Zipkowitz S, Wang M, Zhang B, Wang J, Sestan N, Devlin B, Roeder K, Sanders SJ, Buxbaum JD, Breen MS. Spatiotemporal and genetic regulation of A-to-I editing throughout human brain development. Cell Rep 2022; 41:111585. [PMID: 36323256 PMCID: PMC9704047 DOI: 10.1016/j.celrep.2022.111585] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 07/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Posttranscriptional RNA modifications by adenosine-to-inosine (A-to-I) editing are abundant in the brain, yet elucidating functional sites remains challenging. To bridge this gap, we investigate spatiotemporal and genetically regulated A-to-I editing sites across prenatal and postnatal stages of human brain development. More than 10,000 spatiotemporally regulated A-to-I sites were identified that occur predominately in 3' UTRs and introns, as well as 37 sites that recode amino acids in protein coding regions with precise changes in editing levels across development. Hyper-edited transcripts are also enriched in the aging brain and stabilize RNA secondary structures. These features are conserved in murine and non-human primate models of neurodevelopment. Finally, thousands of cis-editing quantitative trait loci (edQTLs) were identified with unique regulatory effects during prenatal and postnatal development. Collectively, this work offers a resolved atlas linking spatiotemporal variation in editing levels to genetic regulatory effects throughout distinct stages of brain maturation.
Collapse
Affiliation(s)
- Winston H Cuddleston
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xuanjia Fan
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Laura Sloofman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lindsay Liang
- Department of Psychiatry and Behavioral Sciences and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Enrico Mossotto
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kendall Moore
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah Zipkowitz
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Icahn Institute for Genomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Icahn Institute for Genomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jiebiao Wang
- Department of Biostatistics, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration, and Repair and Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale School of Medicine, New Haven, CT 06510, USA
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| | - Kathryn Roeder
- Carnegie Mellon University, Statistics & Data Science Department, Pittsburgh, PA 15213, USA
| | - Stephan J Sanders
- Department of Psychiatry and Behavioral Sciences and UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael S Breen
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|