1
|
Coutant O, Lopes-Lima M, Murienne J, Pellissier L, Quartarollo G, Valentini A, Prié V, Brosse S. No attenuation of fish and mammal biodiversity declines in the Guiana Shield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:179021. [PMID: 40081079 DOI: 10.1016/j.scitotenv.2025.179021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/30/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
Real-time biodiversity monitoring should provide more resolved data to quantify shifts in ecological communities progressively altered by anthropogenic disturbances. Identifying biodiversity trends requires a rapid and efficient inventory method that enables the collection and delivery of high-resolution data within short intervals. Using aquatic environmental DNA (eDNA), we investigated spatiotemporal changes in fish and mammal communities along the Maroni River in French Guiana. We compared spatial biodiversity trends between two years, separated by a four-year interval, during which an increase in anthropogenic disturbances was observed. To evaluate biodiversity changes, we examined the impact of these disturbances on both taxonomic and functional diversity. Our findings revealed that, while the increase in disturbances did not result in major biodiversity decline, it continued to drive alterations in community taxonomic and functional richness. Communities underwent changes in their functional structure, with mammal communities experiencing a decline in extreme functional traits, while fish communities lost functional redundancy in generalist functions and experienced a reduction in extreme functional strategies. In a context of small-scale anthropogenic disturbances, these changes highlight the necessity of long-term, short-interval monitoring to capture rapid reorganisation of ecological communities under stress.
Collapse
Affiliation(s)
- Opale Coutant
- Centre de Recherches sur la Biodiversité et l'Environnement, CRBE UMR5300, Université de Toulouse, IRD, CNRS, INP 118 route de Narbonne, 31062 Toulouse, France.
| | - Manuel Lopes-Lima
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, at the Universidade do Porto, in Vairão, Portugal
| | - Jérôme Murienne
- Centre de Recherches sur la Biodiversité et l'Environnement, CRBE UMR5300, Université de Toulouse, IRD, CNRS, INP 118 route de Narbonne, 31062 Toulouse, France.
| | - Loic Pellissier
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland; Land Change Science Research Unit, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland.
| | - Grégory Quartarollo
- HYDRECO, Laboratoire Environnement de Petit Saut, Kourou, French Guiana; Guyane Wild Fish, Cayenne, French Guiana.
| | | | | | - Sébastien Brosse
- Centre de Recherches sur la Biodiversité et l'Environnement, CRBE UMR5300, Université de Toulouse, IRD, CNRS, INP 118 route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
2
|
Ge Q, Piao Y, Li Z, Yang Y, Pan M, Bai Y. Environmental DNA integrity index is sensitive for species biomass estimation in freshwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178734. [PMID: 39914319 DOI: 10.1016/j.scitotenv.2025.178734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/05/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
Environmental DNA (eDNA) derived from aquatic vertebrates has recently been employed to estimate species presence. However, the accuracy of these estimations is contingent upon the degradation rate of eDNA. In this study, we introduced the eDNA Integrity Index (eDI) to adjust eDNA concentration for the purpose of estimating carp biomass. The adjusted eDNA concentration is designated as the Biomass Index (BI). We investigated the degradation rate of eDNA through a series of simulation experiments, followed by experiments conducted in tanks and ponds. In all experimental setups, eDNA concentration exhibited a gradual decline, while eDI demonstrated rapid fluctuations following the removal of fish species. Notably, the eDI decreased to nearly zero within two days, whereas eDNA remained detectable for over a month. In experiments involving multiple species raised in conjunction, we observed no significant mutual interference among different species concerning eDI. Furthermore, temperature was determined to have a minimal impact on eDI. Although both eDNA concentration and BI were positively correlated with carp biomass across all experiments, BI exhibited a stronger correlation (R2 > 0.95), was more sensitive to variations in biomass, and provided a more accurate estimate of carp biomass. We successfully applied this methodology to estimate the biomass of carp in a fishpond, demonstrating that precise biomass data can reflect the potential distribution of common carp in natural environments. We present a non-invasive, straightforward, rapid, and accurate method for biomass estimation. SYNOPSIS: We developed an environmental DNA integrity-based method which can estimate species biomass sensitively for species distribution and resource investigations.
Collapse
Affiliation(s)
- Qinyu Ge
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yanyan Piao
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhihui Li
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuwei Yang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China
| | - Min Pan
- School of Medicine, Southeast University, Nanjing 210097, China
| | - Yunfei Bai
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
3
|
Cantera I, Giachello S, Münkemüller T, Caccianiga M, Gobbi M, Losapio G, Marta S, Valle B, Zawierucha K, Thuiller W, Ficetola GF. Describing functional diversity of communities from environmental DNA. Trends Ecol Evol 2025; 40:170-179. [PMID: 39572353 DOI: 10.1016/j.tree.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 02/07/2025]
Abstract
Comprehensive assessments of functional diversity are needed to understand ecosystem alterations under global changes. The 'Fun-eDNA' approach characterises functional diversity by assigning traits to taxonomic units obtained through environmental DNA (eDNA) sampling. By simultaneously analysing an unprecedented number of taxa over broad spatial scales, the approach provides a whole-ecosystem perspective of functional diversity. Fun-eDNA is increasingly used to tackle multiple questions, but aligning eDNA with traits poses several conceptual and technical challenges. Enhancing trait databases, improving the annotation of eDNA-based taxonomic inventories, interdisciplinary collaboration, and conceptual harmonisation of traits are key steps to achieve a comprehensive assessment of diverse taxa. Overcoming these challenges can unlock the full potential of eDNA in leveraging measures of ecosystem functions from multi-taxa assessments.
Collapse
Affiliation(s)
- Isabel Cantera
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy.
| | - Simone Giachello
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy; Department of Sciences, Technologies and Society, University School for Advanced Studies IUSS Pavia, Pavia, Italy
| | - Tamara Münkemüller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Marco Caccianiga
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Mauro Gobbi
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE-Science Museum of Trento, Trento, Italy
| | - Gianalberto Losapio
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Silvio Marta
- Institute of Geosciences and Earth Resources, CNR, Via Moruzzi 1, 56124, Pisa, Italy
| | - Barbara Valle
- Università degli Studi di Siena, Siena, Italy; NBFC- Nature Biodiversity Future Center, Palermo, Italy
| | - Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland
| | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy; Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
4
|
Mouillot D, Velez L, Albouy C, Casajus N, Claudet J, Delbar V, Devillers R, Letessier TB, Loiseau N, Manel S, Mannocci L, Meeuwig J, Mouquet N, Nuno A, O'Connor L, Parravicini V, Renaud J, Seguin R, Troussellier M, Thuiller W. The socioeconomic and environmental niche of protected areas reveals global conservation gaps and opportunities. Nat Commun 2024; 15:9007. [PMID: 39424792 PMCID: PMC11489723 DOI: 10.1038/s41467-024-53241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/11/2024] [Indexed: 10/21/2024] Open
Abstract
The global network of protected areas has rapidly expanded in the past decade and is expected to cover at least 30% of land and sea by 2030 to halt biodiversity erosion. Yet, the distribution of protected areas is highly heterogeneous on Earth and the social-environmental preconditions enabling or hindering protected area establishment remain poorly understood. Here, using fourteen socioeconomic and environmental factors, we characterize the multidimensional niche of terrestrial and marine protected areas, which we use to accurately establish, at the global scale, whether a particular location has preconditions favourable for paestablishment. We reveal that protected areas, particularly the most restrictive ones, over-aggregate where human development and the number of non-governmental organizations are high. Based on the spatial distribution of vertebrates and the likelihood to convert non-protected areas into strictly protected areas, we identify 'potential' versus 'unrealistic' conservation gains on land and sea, which we define as areas of high vertebrate diversity that are, respectively, favourable and unfavourable to protected area establishment. Where protected areas are unrealistic, alternative strategies such as other effective area-based conservation measures or privately protected areas, could deliver conservation outcomes.
Collapse
Affiliation(s)
- David Mouillot
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France.
- Institut Universitaire de France, IUF, Paris, France.
| | - Laure Velez
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | | | | | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, CNRS-EPHE-UPVD, Maison de l'Océan, 195 rue Saint-Jacques, 75005, Paris, France
| | - Vincent Delbar
- La TeleScop, Maison de la Télédétection, Montpellier, France
| | | | - Tom B Letessier
- Institute of Zoology, Zoological Society of London, London, UK
- Marine Futures Laboratory and Oceans Institute, University of Western Australia, Crawley, WA, Australia
- School of Biological and Marine Sciences Portland Square B304 Drake Circus, University of Plymouth, Devon PL4 8AA, Plymouth, United Kingdom
| | - Nicolas Loiseau
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Stéphanie Manel
- Institut Universitaire de France, IUF, Paris, France
- CEFE, Univ Montpellier, CNRS, IRD, EPHE, Univ Paul Valéry, Montpellier, France
| | - Laura Mannocci
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- FRB - CESAB, 34000, Montpellier, France
| | - Jessica Meeuwig
- Marine Futures Laboratory and Oceans Institute, University of Western Australia, Crawley, WA, Australia
| | - Nicolas Mouquet
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
- FRB - CESAB, 34000, Montpellier, France
| | - Ana Nuno
- Interdisciplinary Centre of Social Sciences, School of Social Sciences and Humanities, NOVA University Lisbon, Lisbon, Portugal
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn, United Kingdom
| | - Louise O'Connor
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, F-38000, Grenoble, France
| | - Valeriano Parravicini
- PSL Université Paris, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | - Julien Renaud
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, F-38000, Grenoble, France
| | - Raphael Seguin
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | | | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Ecologie Alpine, F-38000, Grenoble, France
| |
Collapse
|
5
|
Villalobo-Lopez A, Peña CM, Varas-Myrik A, Pillet M, Jahnsen P, Pliscoff P, Goettsch B, Guerrero PC. Effects of trade and poaching pressure on extinction risk for cacti in the Atacama Desert. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14353. [PMID: 39248738 DOI: 10.1111/cobi.14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 09/10/2024]
Abstract
In this era of a global biodiversity crisis, vascular plants are facing unprecedented extinction rates. We conducted an assessment of the extinction risk of 32 species and 7 subspecies of Copiapoa, a genus endemic to Chile's fog-dependent coastal Atacama Desert. We applied the International Union for Conservation of Nature Red List Categories and Criteria enhanced by expert insights and knowledge. Our primary aim was to analyze the impact of trade and poaching on their extinction risk. We employed machine learning models, including multinomial logistic regression (MLR), decision tree (DT), and random forest (RF), to analyze the relationships between conservation status and various factors. These factors encompassed trade and poaching activities, landscape condition, human footprint, monthly cloud frequency, and biological traits such as evolutionary distinctiveness and maximum diameter. Seven taxa had an area of occupancy (AOO) of <10 km2, 10 additional taxa had an AOO of <20 km2, and 16 taxa had an AOO of ≤100 km2. This reassessment exposed a critical level of extinction risk for the genus; 92% of the taxa were classified as threatened, 41% as critically endangered, 41% as endangered, and 10% as vulnerable. MLR, DT, and RF exhibited accuracies of 0.784, 0.730, and 0.598, respectively, and identified trade and poaching pressure and landscape condition as the primary drivers of extinction risk. Our assessment of Copiapoa showed trade, poaching, habitat degradation, and their synergic impacts as the main drivers of the genus' extinction risk. Our results highlight the urgent need for nations to develop and enforce strategies to monitor and control trade and poaching pressure because these factors are crucial for the long-term persistence of desert plants.
Collapse
Affiliation(s)
- Angelica Villalobo-Lopez
- Departamento de Botánica, Facultad de Ciencias Naturales & Oceanográficas, Universidad de Concepción, Concepción, Chile
- Institute of Ecology and Biodiversity (IEB), Concepción, Chile
| | - Carol M Peña
- Departamento de Ciencias y Tecnología Vegetal, Escuela de Ciencias y Tecnologías, Universidad de Concepción, Los Ángeles, Chile
| | - Antonio Varas-Myrik
- Centro Intihuasi, Instituto de Investigaciones Agropecuarias, La Serena, Chile
| | - Michiel Pillet
- International Union for Conservation of Nature, Species Survival Commission, Cactus and Succulent Plants Specialist Group, Cambridge, UK
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
| | - Paulina Jahnsen
- Departamento de Ciencias y Tecnología Vegetal, Escuela de Ciencias y Tecnologías, Universidad de Concepción, Los Ángeles, Chile
| | - Patricio Pliscoff
- Institute of Ecology and Biodiversity (IEB), Concepción, Chile
- Centro de Estudios Territoriales, Universidad de Los Andes, Santiago, Chile
- Millennium Institute Biodiversity of Antarctic and Sub-Antarctic Ecosystems, Santiago, Chile
| | - Bárbara Goettsch
- International Union for Conservation of Nature, Species Survival Commission, Cactus and Succulent Plants Specialist Group, Cambridge, UK
| | - Pablo C Guerrero
- Departamento de Botánica, Facultad de Ciencias Naturales & Oceanográficas, Universidad de Concepción, Concepción, Chile
- Institute of Ecology and Biodiversity (IEB), Concepción, Chile
- International Union for Conservation of Nature, Species Survival Commission, Cactus and Succulent Plants Specialist Group, Cambridge, UK
- Millennium Institute Biodiversity of Antarctic and Sub-Antarctic Ecosystems, Santiago, Chile
| |
Collapse
|
6
|
Guo Y, Sun F, Wang J, Wang Z, Yang H, Wu F. Application of Synchronous Evaluation-Diagnosis Model with Quantitative Stressor-Response Analysis (SED-QSR) to Urban Lake Ecological Status: A Proposed Multiple-Level System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16028-16039. [PMID: 39207301 DOI: 10.1021/acs.est.4c04901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ecological integrity assessment and degradation diagnosis are used globally to evaluate the health of water bodies and pinpoint critical stressors. However, current studies mainly focus on separate evaluation or diagnosis, leading to an inadequate exploration of the relationship between stressors and responses. Here, based on multiple data sets in an urban lake system, a synchronous evaluation-diagnosis model with quantitative stressor-response analysis was advanced, aiming to improve the accuracy of evaluation and diagnosis. The weights for key physicochemical stressors were quantitatively determined in the sequence of NDAVIadj > CODMn > TP > NH4+-N by the combination of generalized additive model and structural equation modeling, clarifying the most significant effects of aquatic vegetation on the degradation of fish assemblages. Then, sensitive biological metrics were screened by considering the distinct contributions of four key stressors to alleviate the possible deviation caused by common methods. Finally, ecological integrity was evaluated by summing the key physicochemical stressors and sensitive biological metrics according to the model-deduced weights instead of empirical weights. Our system's diagnosis and evaluation results achieved an accuracy of over 80% when predicting anthropogenic stress and biological status, which highlights the great potential of our multiple-level system for ecosystem management.
Collapse
Affiliation(s)
- Yiding Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Fuhong Sun
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ziteng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Hao Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
7
|
Li X, Xu Q, Xia R, Zhang N, Wang S, Ding S, Gao X, Jia X, Shang G, Chen X. Stochastic process is main factor to affect plateau river fish community assembly. ENVIRONMENTAL RESEARCH 2024; 254:119083. [PMID: 38735377 DOI: 10.1016/j.envres.2024.119083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Plateau river ecosystems are often highly vulnerable and responsive to environmental change. The driving mechanism of fish diversity and community assembly in plateau rivers under changing environments presents a significant complexity to the interdisciplinary study of ecology and environment. This study integrated molecular biological techniques and mathematical models to identify the mechanisms influencing spatial heterogeneity of freshwater fish diversity and driving fish community assembly in plateau rivers. By utilizing environmental-DNA metabarcoding and the null model, this study revealed the impact of the stochastic process on fish diversity variations and community assembly in the Huangshui Plateau River of the Yellow River Basin (YRB) in China. This research identified 30 operational taxonomic units (OTUs), which correspond to 20 different fish species. The findings of this study revealed that the fish α-diversity in the upstream region of Xining is significantly higher than in the middle-lower reach (Shannon index: P = 0.017 and Simpson: P = 0.035). This pattern was not found to be related to any other environmental factors besides altitude (P = 0.023) that we measured. Further, the study indicated that the assembly of fish communities in the Huangshui River primarily depends on stochastic ecological processes. These findings suggested that elevation was not the primary factor impacting the biodiversity patterns of fish in plateau rivers. In plateau rivers, spatial heterogeneity of fish community on elevation is mainly determined by stochastic processes under habitat fragmentation, rather than any other physicochemical environmental factors. The limitations of connectivity in the downstream channel of the river could be taken the mainly responsibility for stochastic processes of fish community in Huangshui River. Incorporating ecological processes in the eDNA approach holds great potential for future monitoring and evaluation of fish biodiversity and community assembly in plateau rivers.
Collapse
Affiliation(s)
- Xiaoxuan Li
- State Environmental Protection Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Science, Beijing, China
| | - Qigong Xu
- State Environmental Protection Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Science, Beijing, China
| | - Rui Xia
- State Environmental Protection Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Nan Zhang
- College of Water Science, Beijing Normal University, Beijing, China
| | - Shuping Wang
- State Environmental Protection Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Science, Beijing, China
| | - Sen Ding
- State Environmental Protection Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Science, Beijing, China
| | - Xin Gao
- State Environmental Protection Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Science, Beijing, China
| | - Xiaobo Jia
- State Environmental Protection Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Science, Beijing, China
| | - Guangxia Shang
- State Environmental Protection Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Science, Beijing, China
| | - Xiaofei Chen
- State Environmental Protection Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Science, Beijing, China
| |
Collapse
|
8
|
Boivin S, Bourceret A, Maurice K, Laurent-Webb L, Figura T, Bourillon J, Nespoulous J, Domergue O, Chaintreuil C, Boukcim H, Selosse MA, Fiema Z, Botte E, Nehme L, Ducousso M. Revealing human impact on natural ecosystems through soil bacterial DNA sampled from an archaeological site. Environ Microbiol 2024; 26:e16546. [PMID: 38086774 DOI: 10.1111/1462-2920.16546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/17/2023] [Indexed: 01/30/2024]
Abstract
Human activities have affected the surrounding natural ecosystems, including belowground microorganisms, for millennia. Their short- and medium-term effects on the diversity and the composition of soil microbial communities are well-documented, but their lasting effects remain unknown. When unoccupied for centuries, archaeological sites are appropriate for studying the long-term effects of past human occupancy on natural ecosystems, including the soil compartment. In this work, the soil chemical and bacterial compositions were compared between the Roman fort of Hegra (Saudi Arabia) abandoned for 1500 years, and a preserved area located at 120 m of the southern wall of the Roman fort where no human occupancy was detected. We show that the four centuries of human occupancy have deeply and lastingly modified both the soil chemical and bacterial compositions inside the Roman fort. We also highlight different bacterial putative functions between the two areas, notably associated with human occupancy. Finally, this work shows that the use of soils from archaeological sites causes little disruption and can bring relevant information, at a large scale, during the initial surveys of archaeological sites.
Collapse
Affiliation(s)
- Stéphane Boivin
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), CIRAD, IRD, INRAE, University of Montpellier, Montpellier SupAgro, Montpellier, France
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
- Valorhiz, Montferrier sur Lez, France
| | - Amélia Bourceret
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Kenji Maurice
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), CIRAD, IRD, INRAE, University of Montpellier, Montpellier SupAgro, Montpellier, France
| | - Liam Laurent-Webb
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Tomáš Figura
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
- Faculty of Science, Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | - Julie Bourillon
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), CIRAD, IRD, INRAE, University of Montpellier, Montpellier SupAgro, Montpellier, France
| | | | - Odile Domergue
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), CIRAD, IRD, INRAE, University of Montpellier, Montpellier SupAgro, Montpellier, France
| | - Clémence Chaintreuil
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), CIRAD, IRD, INRAE, University of Montpellier, Montpellier SupAgro, Montpellier, France
| | | | - Marc-André Selosse
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
- Institut Universitaire de France, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Gdańsk, Poland
| | - Zbigniew Fiema
- Department of Culture, Faculty of Art, University of Helsinki, Helsinki, Finland
| | - Emmanuel Botte
- Centre Camille Julian, CNRS, Université Aix-Marseille, Aix en Provence, France
| | - Laila Nehme
- CNRS, Orient et Méditerranée: Textes, Archéologie, Histoire, Paris, France
| | - Marc Ducousso
- Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), CIRAD, IRD, INRAE, University of Montpellier, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
9
|
Cantera I, Jézéquel C, Dejean T, Murienne J, Vigouroux R, Valentini A, Brosse S. Deforestation strengthens environmental filtering and competitive exclusion in Neotropical streams and rivers. Proc Biol Sci 2023; 290:20231130. [PMID: 37700645 PMCID: PMC10498049 DOI: 10.1098/rspb.2023.1130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Understanding how anthropization impacts the assembly of species onto communities is pivotal to go beyond the observation of biodiversity changes and reveal how disturbances affect the environmental and biotic processes shaping biodiversity. Here, we propose a simple framework to measure the assembly processes underpinning functional convergence/divergence patterns. We applied this framework to northern Amazonian fish communities inventoried using environmental DNA in 35 stream sites and 64 river sites. We found that the harsh and unstable environmental conditions characterizing streams conveyed communities towards functional convergence, by filtering traits related to food acquisition and, to a lower extent, dispersal. Such environmental filtering also strengthened competition by excluding species having less competitive food acquisition traits. Instead, random species assembly was more marked in river communities, which may be explained by the downstream position of rivers facilitating the dispersion of species. Although fish assembly rules differed between streams and river fish communities, anthropogenic disturbances reduced functional divergence in both ecosystems, with a reinforcement of both environmental filtering and weaker competitor exclusion. This may explain the substantial biodiversity alterations observed under slight deforestation levels in Neotropical freshwater ecosystems and underlines their vulnerability to anthropic disturbances that not only affect species persistence but also modify community assembly rules.
Collapse
Affiliation(s)
- Isabel Cantera
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Paul Sabatier, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| | - Céline Jézéquel
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Paul Sabatier, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| | - Tony Dejean
- SPYGEN, 17 rue du Lac Saint-André Savoie Technolac, BP 274, 73375 Le Bourget-du-Lac, France
| | - Jérôme Murienne
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Paul Sabatier, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| | - Régis Vigouroux
- HYDRECO, Laboratoire Environnement de Petit Saut, BP 823, 97388 Kourou Cedex, French Guiana
| | - Alice Valentini
- SPYGEN, 17 rue du Lac Saint-André Savoie Technolac, BP 274, 73375 Le Bourget-du-Lac, France
| | - Sébastien Brosse
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Paul Sabatier, CNRS, IRD, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
10
|
Su G, Mertel A, Brosse S, Calabrese JM. Species invasiveness and community invasibility of North American freshwater fish fauna revealed via trait-based analysis. Nat Commun 2023; 14:2332. [PMID: 37087448 PMCID: PMC10122662 DOI: 10.1038/s41467-023-38107-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/14/2023] [Indexed: 04/24/2023] Open
Abstract
While biological invasions are recognized as a major threat to global biodiversity, determining non-native species' abilities to establish in new areas (species invasiveness) and the vulnerability of those areas to invasions (community invasibility) is challenging. Here, we use trait-based analysis to profile invasive species and quantify the community invasibility for >1,800 North American freshwater fish communities. We show that, in addition to effects attributed to propagule pressure caused by human intervention, species with higher fecundity, longer lifespan and larger size tend to be more invasive. Community invasibility peaks when the functional distance among native species was high, leaving unoccupied functional space for the establishment of potential invaders. Our findings illustrate how the functional traits of non-native species determining their invasiveness, and the functional characteristics of the invaded community determining its invasibility, may be identified. Considering those two determinants together will enable better predictions of invasions.
Collapse
Affiliation(s)
- Guohuan Su
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Görlitz, Germany.
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Adam Mertel
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Görlitz, Germany
| | - Sébastien Brosse
- Laboratoire Evolution et Diversité Biologique (EDB), Université de Toulouse, CNRS, IRD, UPS, Toulouse, France
| | - Justin M Calabrese
- Center for Advanced Systems Understanding (CASUS), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Görlitz, Germany
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|