1
|
Raza W, Jiang G, Eisenhauer N, Huang Y, Wei Z, Shen Q, Kowalchuk GA, Jousset A. Microbe-induced phenotypic variation leads to overyielding in clonal plant populations. Nat Ecol Evol 2024; 8:392-399. [PMID: 38195997 DOI: 10.1038/s41559-023-02297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Overyielding, the high productivity of multispecies plant communities, is commonly seen as the result of plant genetic diversity. Here we demonstrate that biodiversity-ecosystem functioning relationships can emerge in clonal plant populations through interaction with microorganisms. Using a model clonal plant species, we found that exposure to volatiles of certain microorganisms led to divergent plant phenotypes. Assembling communities out of plants associated with different microorganisms led to transgressive overyielding in both biomass and seed yield. Our results highlight the importance of belowground microbial diversity in plant biodiversity research and open new avenues for precision ecosystem management.
Collapse
Affiliation(s)
- Waseem Raza
- College of Resources and Environmental Science, Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, the Netherlands
| | - Gaofei Jiang
- College of Resources and Environmental Science, Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Yishuo Huang
- College of Resources and Environmental Science, Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zhong Wei
- College of Resources and Environmental Science, Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.
| | - Qirong Shen
- College of Resources and Environmental Science, Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - George A Kowalchuk
- Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, the Netherlands
| | - Alexandre Jousset
- College of Resources and Environmental Science, Key Lab of Organic-Based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
2
|
Zi X, Wang W, Zhou S, Zhou F, Rao D, Shen P, Fang S, Wu B. Prolonged drought regulates the silage quality of maize ( Zea mays L.): Alterations in fermentation microecology. FRONTIERS IN PLANT SCIENCE 2022; 13:1075407. [PMID: 36570957 PMCID: PMC9780442 DOI: 10.3389/fpls.2022.1075407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Prolonged drought stress caused by global warming poses a tremendous challenge to silage production of maize. Drought during maize growth and development resulted in altered micro-environment for silage fermentation. How fermentation of silage maize responds to moisture scales remains uncharted territory. In this research, Maize water control trials were conducted and the silage quality and microbial community of drought-affected maize were determined. The results showed that drought stress significantly reduced the dry matter but increased root-to-shoot ratio, soluble sugar and malonaldehyde content in maize. Before fermentation, the crude protein, crude ash and acid detergent fiber contents were significantly increased but the ether extract content was decreased under drought. The crude protein and acid detergent fiber were significantly decreased in the drought affected group after fermentation. Furthermore, water stress at maize maturity stage greatly reduced the number of total bacteria in silage fermentation but increased the proportion of the lactobacillus and lactic acid content of silage. Drought stress alters the microbial ecosystem of the fermentation process and reconstitutes the diversity of the bacterial community and its metabolites. This study provides a theoretical basis for the study of changes in silage fermentation as affected by abiotic stresses.
Collapse
Affiliation(s)
- Xuejing Zi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wan Wang
- Kunming Seed Management Station, Kunming, Yunnan, China
| | - Shiyong Zhou
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Feng Zhou
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dongyun Rao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Peng Shen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Siyang Fang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bozhi Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Zhou H, Hou L, Lv X, Yang G, Wang Y, Wang X. Compensatory growth as a response to post-drought in grassland. FRONTIERS IN PLANT SCIENCE 2022; 13:1004553. [PMID: 36531403 PMCID: PMC9752846 DOI: 10.3389/fpls.2022.1004553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Grasslands are structurally and functionally controlled by water availability. Ongoing global change is threatening the sustainability of grassland ecosystems through chronic alterations in climate patterns and resource availability, as well as by the increasing frequency and intensity of anthropogenic perturbations. Compared with many studies on how grassland ecosystems respond during drought, there are far fewer studies focused on grassland dynamics after drought. Compensatory growth, as the ability of plants to offset the adverse effects of environmental or anthropogenic perturbations, is a common phenomenon in grassland. However, compensatory growth induced by drought and its underlying mechanism across grasslands remains not clear. In this review, we provide examples of analogous compensatory growth from different grassland types across drought characteristics (intensity, timing, and duration) and explain the effect of resource availability on compensatory growth and their underlying mechanisms. Based on our review of the literature, a hypothetic framework for integrating plant, root, and microbial responses is also proposed to increase our understanding of compensatory growth after drought. This research will advance our understanding of the mechanisms of grassland ecosystem functioning in response to climate change.
Collapse
Affiliation(s)
- Huailin Zhou
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
| | - Lulu Hou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaomin Lv
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China
| | - Guang Yang
- College of Teacher Education, Capital Normal University, Beijing, China
| | - Yuhui Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xu Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Wang Y, Wang S, Zhao L, Liang C, Miao B, Zhang Q, Niu X, Ma W, Schmid B. Stability and asynchrony of local communities but less so diversity increase regional stability of Inner Mongolian grassland. eLife 2022; 11:74881. [PMID: 36206306 PMCID: PMC9545536 DOI: 10.7554/elife.74881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/26/2022] [Indexed: 01/10/2023] Open
Abstract
Extending knowledge on ecosystem stability to larger spatial scales is urgently needed because present local-scale studies are generally ineffective in guiding management and conservation decisions of an entire region with diverse plant communities. We investigated stability of plant productivity across spatial scales and hierarchical levels of organization and analyzed impacts of dominant species, species diversity, and climatic factors using a multisite survey of Inner Mongolian grassland. We found that regional stability across distant local communities was related to stability and asynchrony of local communities. Using only dominant instead of all-species dynamics explained regional stability almost equally well. The diversity of all or only dominant species had comparatively weak effects on stability and synchrony, whereas a lower mean and higher variation of precipitation destabilized regional and local communities by reducing population stability and synchronizing species dynamics. We demonstrate that, for semi-arid temperate grassland with highly uneven species abundances, the stability of regional communities is increased by stability and asynchrony of local communities and these are more affected by climate rather than species diversity. Reduced amounts and increased variation of precipitation in the future may compromise the sustainable provision of ecosystem services to human well-being in this region.
Collapse
Affiliation(s)
- Yonghui Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University
| | - Liqing Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Cunzhu Liang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Bailing Miao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Qing Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Xiaxia Niu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Wenhong Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University
| | - Bernhard Schmid
- Department of Geography, Remote Sensing Laboratories, University of Zürich
| |
Collapse
|