1
|
Liu Q, Zhou BM, Wang LJ, Zhang CY. Construction of a hierarchical DNA circuit for single-molecule profiling of locus-specific N 6-methyladenosine-MALAT1 in clinical tissues. Biosens Bioelectron 2025; 274:117198. [PMID: 39893948 DOI: 10.1016/j.bios.2025.117198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
N6-methyladenosine (m6A) is the most important internal methylation in eukaryotic RNAs, and it is critically implicated in diverse RNA metabolisms for cancer development. Because epigenetic modifications do not interfere with Watson-Crick base pairing and m6A modification is not susceptible to chemical decorations, standard hybridization-based techniques cannot be applied for sensing m6A in RNAs. Consequently, the development of new methods for accurate and sensitive profiling of locus-specific m6A in RNAs remains a great challenge. Herein, we demonstrate for the first time the construction of a hierarchical DNA circuit for single-molecule profiling of locus-specific m6A-metastasis-associated lung adenocarcinoma transcript 1 (m6A-MALAT1) in clinical tissues. Taking advantage of high discrimination of VMC10-DNAzyme between m6A and A, exponential efficiency of hierarchical DNA circuit, and ultrahigh signal-to-noise ratio of single-molecule detection, this nanodevice exhibits attomolar sensitivity with a limit of detection (LOD) of 1.8 aM for m6A-MALAT1 in vitro and a dynamic range of 7 orders of magnitude. Moreover, it can discriminate 0.001% m6A-MALAT1 from excess A-MALAT1, quantify m6A-MALAT1 in diverse cancer cells at single-cell level, distinguish m6A-MALAT1 expressions in breast cancer patients and healthy individuals, and monitor cellular m6A-MALAT1 for gene therapy, offering a promising platform for epitranscriptomic research and clinical diagnostics.
Collapse
Affiliation(s)
- Qian Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Bao-Mei Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Li-Juan Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
2
|
Mortazavi Farsani SS, Soni J, Jin L, Yadav AK, Bansal S, Mi T, Hilakivi-Clarke L, Clarke R, Youngblood B, Cheema A, Verma V. Pyruvate kinase M2 activation reprograms mitochondria in CD8 T cells, enhancing effector functions and efficacy of anti-PD1 therapy. Cell Metab 2025:S1550-4131(25)00106-8. [PMID: 40199327 DOI: 10.1016/j.cmet.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2024] [Accepted: 03/06/2025] [Indexed: 04/10/2025]
Abstract
Mitochondria regulate T cell functions and response to immunotherapy. We show that pyruvate kinase M2 (PKM2) activation enhances mitochondria-dependent effector functions in CD8 and chimeric antigen receptor (CAR)-T cells. Multi-omics and 13C-glucose tracer studies showed that PKM2 agonism alters one-carbon metabolism, decreasing methionine levels, resulting in hypomethylated nuclear and mitochondrial DNA and enhancing mitochondrial biogenesis and functions. PKM2 activation increased the recall responses and anti-tumor functions of CD8 T cells, enhancing adoptive cell therapy. In preclinical models, the PKM2 agonist induced CD8 T cell-dependent anti-tumor responses that synergized with anti-programmed death 1 (PD1) therapy. Immunologically, PKM2 agonists boosted the activation of effector T cells while reducing FoxP3+ T regulatory (Treg) cells in the tumors. The anti-PD1 combination enhanced the frequency of tumor-specific activated CD8 T cells. Together, PKM2 agonism increased mitochondrial functions supporting cell cytotoxicity. Hence, pharmacological targeting of PKM2 can be a clinically viable strategy for enhancement of adoptive cell therapy, in situ anti-tumor immune responses, and immune checkpoint blockade therapy. VIDEO ABSTRACT.
Collapse
Affiliation(s)
| | - Jignesh Soni
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lu Jin
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Anil Kumar Yadav
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Shivani Bansal
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Tian Mi
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Robert Clarke
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Benjamin Youngblood
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amrita Cheema
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Vivek Verma
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
3
|
Qiang J, Yu S, Li J, Rong Y, Wang X, Zhu Y, Wang F. Single-cell landscape of alternative polyadenylation in human lymphoid hematopoiesis. J Mol Cell Biol 2024; 16:mjae027. [PMID: 38982223 PMCID: PMC11736434 DOI: 10.1093/jmcb/mjae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/01/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
Alternative polyadenylation (APA) is an essential post-transcriptional process that produces mature mRNA isoforms by regulating the usage of polyadenylation sites (PASs). APA is involved in lymphocyte activation; however, its role throughout the entire differentiation trajectory remains elusive. Here, we analyzed single-cell 3'-end transcriptome data from healthy subjects to construct a dynamic-APA landscape from hematopoietic stem and progenitor cells (HSPCs) to terminally differentiated lymphocytes. This analysis covered 19973 cells of 12 clusters from five lineages (B cells, CD4+ T cells, CD8+ T cells, natural killer cells, and plasmacytoid dendritic cells). A total of 2364 genes exhibited differential 3'-untranslated region (3'UTR) PAS usage, and 3021 genes displayed differential intronic cleavage during lymphoid differentiation. We observed a global trend of 3'UTR shortening during lymphoid differentiation. Nevertheless, specific events of both 3'UTR shortening and lengthening were also identified within each cluster. The APA patterns delineated three differentiation stages: HSPCs, precursor cells, and mature cells. Moreover, we demonstrated that the conversion of naïve T cells to memory T cells was accompanied by dynamic APA in transcription factor-encoding genes (TCF7 and NFATC2IP), immune function-related genes (BCL2, CD5, CD28, GOLT1B, and TMEM59), and protein ubiquitination-related genes (UBE2G1, YPEL5, and SUMO3). These findings expand our understanding of the underlying molecular mechanisms of APA and facilitate studies on the regulatory role of APA in lymphoid hematopoiesis.
Collapse
Affiliation(s)
- Jiaqi Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
- Eight-Year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Shan Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou 310030, China
| | - Jun Li
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Yu Rong
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Yong Zhu
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
- The Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
4
|
Herrmann C, Zaldana K, Agostino EL, Koralov SB, Cadwell K. Stress from environmental change drives clearance of a persistent enteric virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622373. [PMID: 39574746 PMCID: PMC11580998 DOI: 10.1101/2024.11.06.622373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Persistent viral infections are associated with long-term health issues and prolonged transmission. How external perturbations after initial exposure affect the duration of infection is unclear. We discovered that murine astrovirus, an enteric RNA virus, persists indefinitely when mice remain unperturbed but is cleared rapidly after cage change. Besides eliminating the external viral reservoir, cage change also induced a transcriptional defense response in the intestinal epithelium. We further identified that displacing infected animals initially caused a temporary period of immune suppression through the stress hormone corticosterone, which was followed by an immune rebound characterized by an increase in CD8 T cells responsible for the epithelial antiviral responses. Our findings show how viral persistence can be disrupted by preventing re-exposure and activating immunity upon stress recovery, indicating that external factors can be manipulated to shorten the duration of a viral infection.
Collapse
|
5
|
Karginov TA, Ménoret A, Leclair NK, Harrison AG, Chandiran K, Suarez-Ramirez JE, Yurieva M, Karlinsey K, Wang P, O’Neill RJ, Murphy PA, Adler AJ, Cauley LS, Anczuków O, Zhou B, Vella AT. Autoregulated splicing of TRA2β programs T cell fate in response to antigen-receptor stimulation. Science 2024; 385:eadj1979. [PMID: 39265028 PMCID: PMC11697694 DOI: 10.1126/science.adj1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/13/2024] [Accepted: 07/09/2024] [Indexed: 09/14/2024]
Abstract
T cell receptor (TCR) sensitivity to peptide-major histocompatibility complex (MHC) dictates T cell fate. Canonical models of TCR sensitivity cannot be fully explained by transcriptional regulation. In this work, we identify a posttranscriptional regulatory mechanism of TCR sensitivity that guides alternative splicing of TCR signaling transcripts through an evolutionarily ultraconserved poison exon (PE) in the RNA-binding protein (RBP) TRA2β in mouse and human. TRA2β-PE splicing, seen during cancer and infection, was required for TCR-induced effector T cell expansion and function. Tra2β-PE skipping enhanced T cell response to antigen by increasing TCR sensitivity. As antigen levels decreased, Tra2β-PE reinclusion allowed T cell survival. Finally, we found that TRA2β-PE was first included in the genome of jawed vertebrates that were capable of TCR gene rearrangements. We propose that TRA2β-PE splicing acts as a gatekeeper of TCR sensitivity to shape T cell fate.
Collapse
Affiliation(s)
- Timofey A. Karginov
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Antoine Ménoret
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Nathan K. Leclair
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- Center for Vascular Biology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Andrew G. Harrison
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Karthik Chandiran
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Jenny E. Suarez-Ramirez
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Marina Yurieva
- Center for Vascular Biology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Keaton Karlinsey
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Rachel J. O’Neill
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Patrick A. Murphy
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Adam J. Adler
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Linda S. Cauley
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Olga Anczuków
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- Center for Vascular Biology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Anthony T. Vella
- Department of Immunology, School of Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| |
Collapse
|
6
|
Lee CS, Chen S, Berry CT, Kelly AR, Herman PJ, Oh S, O'Connor RS, Payne AS, Ellebrecht CT. Fate induction in CD8 CAR T cells through asymmetric cell division. Nature 2024; 633:670-677. [PMID: 39198645 PMCID: PMC11410665 DOI: 10.1038/s41586-024-07862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Early expansion and long-term persistence predict efficacy of chimeric antigen receptor T cells (CARTs)1-7, but mechanisms governing effector versus memory CART differentiation and whether asymmetric cell division induces differential fates in human CARTs remain unclear. Here we show that target-induced proximity labelling enables isolation of first-division proximal-daughter and distal-daughter CD8 CARTs that asymmetrically distribute their surface proteome and transcriptome, resulting in divergent fates. Target-engaged CARs remain on proximal daughters, which inherit a surface proteome resembling activated-undivided CARTs, whereas the endogenous T cell receptor and CD8 enrich on distal daughters, whose surface proteome resembles resting CARTs, correlating with glycolytic and oxidative metabolism, respectively. Despite memory-precursor phenotype and in vivo longevity, distal daughters demonstrate transient potent cytolytic activity similar to proximal daughters, uncovering an effector-like state in distal daughters destined to become memory CARTs. Both partitioning of pre-existing transcripts and changes in RNA velocity contribute to asymmetry of fate-determining factors, resulting in diametrically opposed transcriptional trajectories. Independent of naive, memory or effector surface immunophenotype, proximal-daughter CARTs use core sets of transcription factors known to support proliferation and effector function. Conversely, transcription factors enriched in distal daughters restrain differentiation and promote longevity, evidenced by diminished long-term in vivo persistence and function of distal-daughter CARTs after IKZF1 disruption. These studies establish asymmetric cell division as a framework for understanding mechanisms of CART differentiation and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Casey S Lee
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sisi Chen
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corbett T Berry
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andre R Kelly
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick J Herman
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sangwook Oh
- Department of Biomedical Science, Hallym University, Chuncheon, Republic of Korea
| | - Roddy S O'Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aimee S Payne
- Department of Dermatology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Christoph T Ellebrecht
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Salz R, Vorsteveld EE, van der Made CI, Kersten S, Stemerdink M, Riepe TV, Hsieh TH, Mhlanga M, Netea MG, Volders PJ, Hoischen A, ’t Hoen PA. Multi-omic profiling of pathogen-stimulated primary immune cells. iScience 2024; 27:110471. [PMID: 39091463 PMCID: PMC11293528 DOI: 10.1016/j.isci.2024.110471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/23/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
We performed long-read transcriptome and proteome profiling of pathogen-stimulated peripheral blood mononuclear cells (PBMCs) from healthy donors to discover new transcript and protein isoforms expressed during immune responses to diverse pathogens. Long-read transcriptome profiling reveals novel sequences and isoform switching induced upon pathogen stimulation, including transcripts that are difficult to detect using traditional short-read sequencing. Widespread loss of intron retention occurs as a common result of all pathogen stimulations. We highlight novel transcripts of NFKB1 and CASP1 that may indicate novel immunological mechanisms. RNA expression differences did not result in differences in the amounts of secreted proteins. Clustering analysis of secreted proteins revealed a correlation between chemokine (receptor) expression on the RNA and protein levels in C. albicans- and poly(I:C)-stimulated PBMCs. Isoform aware long-read sequencing of pathogen-stimulated immune cells highlights the potential of these methods to identify novel transcripts, revealing a more complex transcriptome landscape than previously appreciated.
Collapse
Affiliation(s)
- Renee Salz
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Emil E. Vorsteveld
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Caspar I. van der Made
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Simone Kersten
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Merel Stemerdink
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Tabea V. Riepe
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Tsung-han Hsieh
- Department of Cell Biology, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Musa Mhlanga
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Cell Biology, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Mihai G. Netea
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Pieter-Jan Volders
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Laboratory of Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, 3500 Hasselt, Belgium
| | - Alexander Hoischen
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Peter A.C. ’t Hoen
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
8
|
Sinha IR, Sandal PS, Burns GD, Mallika AP, Irwin KE, Cruz ALF, Wang V, Rodríguez JL, Wong PC, Ling JP. Large-scale RNA-seq mining reveals ciclopirox triggers TDP-43 cryptic exons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587011. [PMID: 38585725 PMCID: PMC10996699 DOI: 10.1101/2024.03.27.587011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Nuclear clearance and cytoplasmic aggregation of TDP-43 in neurons, initially identified in ALS-FTD, are hallmark pathological features observed across a spectrum of neurodegenerative diseases. We previously found that TDP-43 loss-of-function leads to the transcriptome-wide inclusion of deleterious cryptic exons in brains and biofluids post-mortem as well as during the presymptomatic stage of ALS-FTD, but upstream mechanisms that lead to TDP-43 dysregulation remain unclear. Here, we developed a web-based resource (SnapMine) to determine the levels of TDP-43 cryptic exon inclusion across hundreds of thousands of publicly available RNA sequencing datasets. We established cryptic exon inclusion across a variety of human cells and tissues to provide ground truth references for future studies on TDP-43 dysregulation. We then explored studies that were entirely unrelated to TDP-43 or neurodegeneration and found that ciclopirox olamine (CPX), an FDA-approved antifungal, can trigger the inclusion of TDP-43-associated cryptic exons in a variety of mouse and human primary cells. CPX induction of cryptic exon occurs via heavy metal toxicity and oxidative stress, suggesting that similar vulnerabilities could play a role in neurodegeneration. Our work demonstrates how diverse datasets can be linked through common biological features and underscores that public archives of sequencing data represent a vastly underutilized resource with tremendous potential for uncovering novel insights into complex biological mechanisms and diseases.
Collapse
Affiliation(s)
- Irika R Sinha
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Parker S Sandal
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Grace D Burns
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | - Katherine E Irwin
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Anna Lourdes F Cruz
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Vania Wang
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Philip C Wong
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jonathan P Ling
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
9
|
Seyres D, Gorka O, Schmidt R, Marone R, Zavolan M, Jeker LT. T helper cells exhibit a dynamic and reversible 3'-UTR landscape. RNA (NEW YORK, N.Y.) 2024; 30:418-434. [PMID: 38302256 PMCID: PMC10946431 DOI: 10.1261/rna.079897.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024]
Abstract
3' untranslated regions (3' UTRs) are critical elements of messenger RNAs, as they contain binding sites for RNA-binding proteins (RBPs) and microRNAs that affect various aspects of the RNA life cycle including transcript stability and cellular localization. In response to T cell receptor activation, T cells undergo massive expansion during the effector phase of the immune response and dynamically modify their 3' UTRs. Whether this serves to directly regulate the abundance of specific mRNAs or is a secondary effect of proliferation remains unclear. To study 3'-UTR dynamics in T helper cells, we investigated division-dependent alternative polyadenylation (APA). In addition, we generated 3' end UTR sequencing data from naive, activated, memory, and regulatory CD4+ T cells. 3'-UTR length changes were estimated using a nonnegative matrix factorization approach and were compared with those inferred from long-read PacBio sequencing. We found that APA events were transient and reverted after effector phase expansion. Using an orthogonal bulk RNA-seq data set, we did not find evidence of APA association with differential gene expression or transcript usage, indicating that APA has only a marginal effect on transcript abundance. 3'-UTR sequence analysis revealed conserved binding sites for T cell-relevant microRNAs and RBPs in the alternative 3' UTRs. These results indicate that poly(A) site usage could play an important role in the control of cell fate decisions and homeostasis.
Collapse
Affiliation(s)
- Denis Seyres
- Department of Biomedicine, Basel University Hospital and University of Basel, CH-4031 Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, CH-4031 Basel, Switzerland
| | - Oliver Gorka
- Department of Biomedicine, Basel University Hospital and University of Basel, CH-4031 Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, CH-4031 Basel, Switzerland
| | - Ralf Schmidt
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Romina Marone
- Department of Biomedicine, Basel University Hospital and University of Basel, CH-4031 Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, CH-4031 Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, 4056 Basel, Switzerland
- Swiss Institute of Bioinformatics, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Lukas T Jeker
- Department of Biomedicine, Basel University Hospital and University of Basel, CH-4031 Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, CH-4031 Basel, Switzerland
| |
Collapse
|
10
|
Zhu WS, Wheeler BD, Ansel KM. RNA circuits and RNA-binding proteins in T cells. Trends Immunol 2023; 44:792-806. [PMID: 37599172 PMCID: PMC10890840 DOI: 10.1016/j.it.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
RNA is integral to the regulatory circuits that control cell identity and behavior. Cis-regulatory elements in mRNAs interact with RNA-binding proteins (RBPs) that can alter RNA sequence, stability, and translation into protein. Similarly, long noncoding RNAs (lncRNAs) scaffold ribonucleoprotein complexes that mediate transcriptional and post-transcriptional regulation of gene expression. Indeed, cell programming is fundamental to multicellular life and, in this era of cellular therapies, it is of particular interest in T cells. Here, we review key concepts and recent advances in our understanding of the RNA circuits and RBPs that govern mammalian T cell differentiation and immune function.
Collapse
Affiliation(s)
- Wandi S Zhu
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Benjamin D Wheeler
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - K Mark Ansel
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
11
|
Bechara R, Vagner S, Mariette X. Post-transcriptional checkpoints in autoimmunity. Nat Rev Rheumatol 2023; 19:486-502. [PMID: 37311941 DOI: 10.1038/s41584-023-00980-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/15/2023]
Abstract
Post-transcriptional regulation is a fundamental process in gene expression that has a role in diverse cellular processes, including immune responses. A core concept underlying post-transcriptional regulation is that protein abundance is not solely determined by transcript abundance. Indeed, transcription and translation are not directly coupled, and intervening steps occur between these processes, including the regulation of mRNA stability, localization and alternative splicing, which can impact protein abundance. These steps are controlled by various post-transcription factors such as RNA-binding proteins and non-coding RNAs, including microRNAs, and aberrant post-transcriptional regulation has been implicated in various pathological conditions. Indeed, studies on the pathogenesis of autoimmune and inflammatory diseases have identified various post-transcription factors as important regulators of immune cell-mediated and target effector cell-mediated pathological conditions. This Review summarizes current knowledge regarding the roles of post-transcriptional checkpoints in autoimmunity, as evidenced by studies in both haematopoietic and non-haematopoietic cells, and discusses the relevance of these findings for developing new anti-inflammatory therapies.
Collapse
Affiliation(s)
- Rami Bechara
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Le Kremlin Bicêtre, France.
| | - Stephan Vagner
- Institut Curie, CNRS UMR3348, INSERM U1278, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Xavier Mariette
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), Le Kremlin Bicêtre, France
- Assistance Publique - Hôpitaux de Paris, Hôpital Bicêtre, Department of Rheumatology, Le Kremlin Bicêtre, France
| |
Collapse
|
12
|
Piper M, Hoen M, Darragh LB, Knitz MW, Nguyen D, Gadwa J, Durini G, Karakoc I, Grier A, Neupert B, Van Court B, Abdelazeem KNM, Yu J, Olimpo NA, Corbo S, Ross RB, Pham TT, Joshi M, Kedl RM, Saviola AJ, Amann M, Umaña P, Codarri Deak L, Klein C, D'Alessandro A, Karam SD. Simultaneous targeting of PD-1 and IL-2Rβγ with radiation therapy inhibits pancreatic cancer growth and metastasis. Cancer Cell 2023; 41:950-969.e6. [PMID: 37116489 PMCID: PMC10246400 DOI: 10.1016/j.ccell.2023.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/05/2023] [Accepted: 03/31/2023] [Indexed: 04/30/2023]
Abstract
In pancreatic ductal adenocarcinoma (PDAC) patients, we show that response to radiation therapy (RT) is characterized by increased IL-2Rβ and IL-2Rγ along with decreased IL-2Rα expression. The bispecific PD1-IL2v is a PD-1-targeted IL-2 variant (IL-2v) immunocytokine with engineered IL-2 cis targeted to PD-1 and abolished IL-2Rα binding, which enhances tumor-antigen-specific T cell activation while reducing regulatory T cell (Treg) suppression. Using PD1-IL2v in orthotopic PDAC KPC-driven tumor models, we show marked improvement in local and metastatic survival, along with a profound increase in tumor-infiltrating CD8+ T cell subsets with a transcriptionally and metabolically active phenotype and preferential activation of antigen-specific CD8+ T cells. In combination with single-dose RT, PD1-IL2v treatment results in a robust, durable expansion of polyfunctional CD8+ T cells, T cell stemness, tumor-specific memory immune response, natural killer (NK) cell activation, and decreased Tregs. These data show that PD1-IL2v leads to profound local and distant response in PDAC.
Collapse
Affiliation(s)
- Miles Piper
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Maureen Hoen
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Greta Durini
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Idil Karakoc
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Abby Grier
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Khalid N M Abdelazeem
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin Yu
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicholas A Olimpo
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Blake Ross
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tiffany T Pham
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ross M Kedl
- Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Maria Amann
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Pablo Umaña
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Laura Codarri Deak
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
13
|
Ménoret A, Agliano F, Karginov TA, Karlinsey KS, Zhou B, Vella AT. Antigen-specific downregulation of miR-150 in CD4 T cells promotes cell survival. Front Immunol 2023; 14:1102403. [PMID: 36817480 PMCID: PMC9936563 DOI: 10.3389/fimmu.2023.1102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
MicroRNA-150 (miR-150) has been shown to play a general role in the immune system, but very little is known about its role on CD4+ T cell responses. During T cell responses against superantigen Staphylococcal Enterotoxin A, miR-150 expression was down-regulated in antigen-specific CD4+ T cells but up-regulated in CD8+ T cells. CD4+ and CD8+ T cell clonal expansion was greater in miR-150-KO mice than in WT mice, but miR-150 selectively repressed IL-2 production in CD4+ T cells. Transcriptome analysis of CD4+ T cells demonstrated that apoptosis and mTOR pathways were highly enriched in the absence of miR-150. Mechanistic studies confirmed that miR-150 promoted apoptosis specifically in antigen-specific CD4+ T cells, but not in bystander CD4+ nor in CD8+ T cells. Furthermore, inhibition of mTOR-linked mitochondrial superoxidedismutase-2 increased apoptosis in miR-150-/- antigen-specific CD4+ T. Thus, miR-150 impacts CD4+ T cell helper activity by attenuating IL-2 production along with clonal expansion, and suppresses superoxidedismutase to promote apoptosis.
Collapse
Affiliation(s)
- Antoine Ménoret
- Department of Immunology, UConn Health, Farmington, CT, United States
| | | | | | | | | | - Anthony T. Vella
- Department of Immunology, UConn Health, Farmington, CT, United States
| |
Collapse
|
14
|
Roles of RNA-binding proteins in neurological disorders, COVID-19, and cancer. Hum Cell 2023; 36:493-514. [PMID: 36528839 PMCID: PMC9760055 DOI: 10.1007/s13577-022-00843-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
RNA-binding proteins (RBPs) have emerged as important players in multiple biological processes including transcription regulation, splicing, R-loop homeostasis, DNA rearrangement, miRNA function, biogenesis, and ribosome biogenesis. A large number of RBPs had already been identified by different approaches in various organisms and exhibited regulatory functions on RNAs' fate. RBPs can either directly or indirectly interact with their target RNAs or mRNAs to assume a key biological function whose outcome may trigger disease or normal biological events. They also exert distinct functions related to their canonical and non-canonical forms. This review summarizes the current understanding of a wide range of RBPs' functions and highlights their emerging roles in the regulation of diverse pathways, different physiological processes, and their molecular links with diseases. Various types of diseases, encompassing colorectal carcinoma, non-small cell lung carcinoma, amyotrophic lateral sclerosis, and Severe acute respiratory syndrome coronavirus 2, aberrantly express RBPs. We also highlight some recent advances in the field that could prompt the development of RBPs-based therapeutic interventions.
Collapse
|