1
|
Bao YF, Zhu MY, Zhao XJ, Chen HX, Wang X, Ren B. Nanoscale chemical characterization of materials and interfaces by tip-enhanced Raman spectroscopy. Chem Soc Rev 2024; 53:10044-10079. [PMID: 39229965 DOI: 10.1039/d4cs00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Materials and their interfaces are the core for the development of a large variety of fields, including catalysis, energy storage and conversion. In this case, tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with plasmon-enhanced Raman spectroscopy, is a powerful technique that can simultaneously obtain the morphological information and chemical fingerprint of target samples at nanometer spatial resolution. It is an ideal tool for the nanoscale chemical characterization of materials and interfaces, correlating their structures with chemical performances. In this review, we begin with a brief introduction to the nanoscale characterization of materials and interfaces, followed by a detailed discussion on the recent theoretical understanding and technical improvements of TERS, including the origin of enhancement, TERS instruments, TERS tips and the application of algorithms in TERS. Subsequently, we list the key experimental issues that need to be addressed to conduct successful TERS measurements. Next, we focus on the recent progress of TERS in the study of various materials, especially the novel low-dimensional materials, and the progresses of TERS in studying different interfaces, including both solid-gas and solid-liquid interfaces. Finally, we provide an outlook on the future developments of TERS in the study of materials and interfaces.
Collapse
Affiliation(s)
- Yi-Fan Bao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Meng-Yuan Zhu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiao-Jiao Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hong-Xuan Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Bin Ren
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
2
|
Chaudhry I, Hu G, Ye H, Jensen L. Toward Modeling the Complexity of the Chemical Mechanism in SERS. ACS NANO 2024. [PMID: 39087679 DOI: 10.1021/acsnano.4c07198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Surface-enhanced Raman scattering (SERS) provides detailed information about the binding of molecules at interfaces and their interactions with the local environment due to the large enhancement of Raman scattering. This enhancement arises from a combination of the electromagnetic mechanism (EM) and chemical mechanism (CM). While it is commonly accepted that EM gives rise to most of the enhancement, large spectral changes originate from CM. To elucidate the rich information contained in SERS spectra about molecules at interfaces, a comprehensive understanding of the enhancement mechanisms is necessary. In this Perspective, we discuss the current understanding of the enhancement mechanisms and highlight their interplay in complex local environments. We will also discuss emerging areas where the development of computational and theoretical models is needed with specific attention given to how the CM contributes to the spectral changes. Future efforts in modeling should focus on overcoming the challenges presented in this review in order to capture the complexity of CM in SERS.
Collapse
Affiliation(s)
- Imran Chaudhry
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Gaohe Hu
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Hepeng Ye
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Chen YT, Liu Q, Schneider F, Brecht M, Meixner AJ, Zhang D. Photoluminescence emission and Raman enhancement in TERS: an experimental and analytic revisiting. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1039-1047. [PMID: 39634012 PMCID: PMC11502108 DOI: 10.1515/nanoph-2023-0882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/19/2024] [Indexed: 12/07/2024]
Abstract
An analytic model is used to calculate the Raman and fluorescence enhancement of a molecule in between two closely spaced gold nanospheres. Instead of using the conventional approach that only the dipolar plasmonic mode is considered, we calculate the electric field enhancement in the nanometre sized gap, by taking account of the higher order modes in one gold sphere, which couples to the dipolar mode of the other sphere. The experimental confirmation is performed by gap-dependent tip-enhanced Raman spectroscopy (TERS) measurements. The photoluminescence and Raman enhancement are both observed with different growing trends as the gap width decreases. Red-shift of the background spectra is observed and implies the increasing coupling between the nanospheres. This analytic model is shown to be able to interpret the enhancement mechanisms underlying gap-dependent TERS experimental results.
Collapse
Affiliation(s)
- Yu-Ting Chen
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, 72076Tübingen, Germany
| | - Quan Liu
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, 72076Tübingen, Germany
| | - Felix Schneider
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, 72076Tübingen, Germany
| | - Marc Brecht
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, 72076Tübingen, Germany
- Process Analysis and Technology (PA&T), Reutlingen University, 72762Reutlingen, Germany
| | - Alfred J. Meixner
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, 72076Tübingen, Germany
| | - Dai Zhang
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, 72076Tübingen, Germany
| |
Collapse
|
4
|
Kim DH, Lee C, Kim SH, Jeong BG, Yun SJ, Suh HC, Lee D, Kim KK, Jeong MS. Probing the multi-disordered nanoscale alloy at the interface of lateral heterostructure of MoS 2-WS 2. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1069-1077. [PMID: 39633998 PMCID: PMC11501852 DOI: 10.1515/nanoph-2023-0826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/22/2023] [Indexed: 12/07/2024]
Abstract
Transition metal dichalcogenide (TMDs) heterostructure, particularly the lateral heterostructure of two different TMDs, is gaining attention as ultrathin photonic devices based on the charge transfer (CT) excitons generated at the junction. However, the characteristics of the interface of the lateral heterostructure, determining the electronic band structure and alignment at the heterojunction region, have rarely been studied due to the limited spatial resolution of nondestructive analysis systems. In this study, we investigated the confined phonons resulting from the phonon-disorder scattering process involving multiple disorders at the lateral heterostructure interface of MoS2-WS2 to prove the consequences of disorder-mediated deformation in the band structure. Moreover, we directly observed variations in the metal composition of the multi-disordered nanoscale alloy Mo1-x W x S2, consisting of atomic vacancies, crystal edges, and distinct nanocrystallites. Our findings through tip-enhanced Raman spectroscopy (TERS) imply that a tens of nanometer area of continuous TMDs alloy forms the multi-disordered interface of the lateral heterostructure. The results of this study could present the way for the evaluation of the TMDs lateral heterostructure for excitonic applications.
Collapse
Affiliation(s)
- Dong Hyeon Kim
- Department of Physics, Hanyang University, Seoul04763, Korea
- Department of Energy Science, Sungkyunkwan University, Suwon16419, Korea
| | - Chanwoo Lee
- Department of Energy Science, Sungkyunkwan University, Suwon16419, Korea
| | - Sung Hyuk Kim
- Department of Physics, Hanyang University, Seoul04763, Korea
- Department of Energy Science, Sungkyunkwan University, Suwon16419, Korea
| | - Byeong Geun Jeong
- Department of Energy Science, Sungkyunkwan University, Suwon16419, Korea
| | - Seok Joon Yun
- Department of Semiconductor, University of Ulsan, Ulsan44610, Republic of Korea
| | - Hyeong Chan Suh
- Department of Physics, Hanyang University, Seoul04763, Korea
| | - Dongki Lee
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul05006, Korea
| | - Ki Kang Kim
- Department of Energy Science, Sungkyunkwan University, Suwon16419, Korea
| | - Mun Seok Jeong
- Department of Physics, Hanyang University, Seoul04763, Korea
| |
Collapse
|
5
|
Koo Y, Moon T, Kang M, Joo H, Lee C, Lee H, Kravtsov V, Park KD. Dynamical control of nanoscale light-matter interactions in low-dimensional quantum materials. LIGHT, SCIENCE & APPLICATIONS 2024; 13:30. [PMID: 38272869 PMCID: PMC10810844 DOI: 10.1038/s41377-024-01380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/26/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Tip-enhanced nano-spectroscopy and -imaging have significantly advanced our understanding of low-dimensional quantum materials and their interactions with light, providing a rich insight into the underlying physics at their natural length scale. Recently, various functionalities of the plasmonic tip expand the capabilities of the nanoscopy, enabling dynamic manipulation of light-matter interactions at the nanoscale. In this review, we focus on a new paradigm of the nanoscopy, shifting from the conventional role of imaging and spectroscopy to the dynamical control approach of the tip-induced light-matter interactions. We present three different approaches of tip-induced control of light-matter interactions, such as cavity-gap control, pressure control, and near-field polarization control. Specifically, we discuss the nanoscale modifications of radiative emissions for various emitters from weak to strong coupling regime, achieved by the precise engineering of the cavity-gap. Furthermore, we introduce recent works on light-matter interactions controlled by tip-pressure and near-field polarization, especially tunability of the bandgap, crystal structure, photoluminescence quantum yield, exciton density, and energy transfer in a wide range of quantum materials. We envision that this comprehensive review not only contributes to a deeper understanding of the physics of nanoscale light-matter interactions but also offers a valuable resource to nanophotonics, plasmonics, and materials science for future technological advancements.
Collapse
Affiliation(s)
- Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Taeyoung Moon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Mingu Kang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Huitae Joo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Changjoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Vasily Kravtsov
- School of Physics and Engineering, ITMO University, Saint Petersburg, 197101, Russia
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
6
|
Lee H, Kim YB, Ryu JW, Kim S, Bae J, Koo Y, Jang D, Park KD. Recent progress of exciton transport in two-dimensional semiconductors. NANO CONVERGENCE 2023; 10:57. [PMID: 38102309 PMCID: PMC10724105 DOI: 10.1186/s40580-023-00404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
Spatial manipulation of excitonic quasiparticles, such as neutral excitons, charged excitons, and interlayer excitons, in two-dimensional semiconductors offers unique capabilities for a broad range of optoelectronic applications, encompassing photovoltaics, exciton-integrated circuits, and quantum light-emitting systems. Nonetheless, their practical implementation is significantly restricted by the absence of electrical controllability for neutral excitons, short lifetime of charged excitons, and low exciton funneling efficiency at room temperature, which remain a challenge in exciton transport. In this comprehensive review, we present the latest advancements in controlling exciton currents by harnessing the advanced techniques and the unique properties of various excitonic quasiparticles. We primarily focus on four distinct control parameters inducing the exciton current: electric fields, strain gradients, surface plasmon polaritons, and photonic cavities. For each approach, the underlying principles are introduced in conjunction with its progression through recent studies, gradually expanding their accessibility, efficiency, and functionality. Finally, we outline the prevailing challenges to fully harness the potential of excitonic quasiparticles and implement practical exciton-based optoelectronic devices.
Collapse
Affiliation(s)
- Hyeongwoo Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yong Bin Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jae Won Ryu
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sujeong Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jinhyuk Bae
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yeonjeong Koo
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Donghoon Jang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kyoung-Duck Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
7
|
Fu W, Chi H, Dai X, Zhu H, Mesias VSD, Liu W, Huang J. Efficient optical plasmonic tweezer-controlled single-molecule SERS characterization of pH-dependent amylin species in aqueous milieus. Nat Commun 2023; 14:6996. [PMID: 37914718 PMCID: PMC10620188 DOI: 10.1038/s41467-023-42812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/21/2023] [Indexed: 11/03/2023] Open
Abstract
It is challenging to characterize single or a few biomolecules in physiological milieus without excluding the influences of surrounding environment. Here we utilize optical plasmonic trapping to construct a dynamic nanocavity, which reduces the diffraction-limited detection volume and provides reproducible electromagnetic field enhancements to achieve high-throughput single-molecule surface-enhanced Raman spectroscopy (SERS) characterizations in aqueous environments. Specifically, we study human Islet Amyloid Polypeptide (amylin, hIAPP) under different physiological pH conditions by combining spectroscopic experiments and molecular dynamics (MD) simulations. Based on a statistically significant amount of time-dependent SERS spectra, two types of low-populated transient species of hIAPP containing either turn or β-sheet structure among its predominant helix-coil monomers are characterized during the early-stage incubation at neutral condition, which play a crucial role in driving irreversible amyloid fibril developments even after a subsequent adjustment of pH to continue the prolonged incubation at acidic condition. Our results might provide profound mechanistic insight into the pH-regulated amyloidogenesis and introduce an alternative approach for investigating complex biological processes at the single-molecule level.
Collapse
Affiliation(s)
- Wenhao Fu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Huanyu Chi
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xin Dai
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Laboratory for Synthetic Chemistry and Chemical Biology, Health@InnoHK, Hong Kong Science Park, Hong Kong, China
| | - Hongni Zhu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Vince St Dollente Mesias
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Wei Liu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
8
|
Yan W, Chen S, Li P, Dong R, Shin HH, Yang L. Real-Time Monitoring of a Single Molecule in Sub-nanometer Space by Dynamic Surface-Enhanced Raman Spectroscopy. J Phys Chem Lett 2023; 14:8726-8733. [PMID: 37737102 DOI: 10.1021/acs.jpclett.3c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In biology and chemistry, the ultimate goal is to monitor single molecules without labels. However, long-term monitoring of label-free molecules remains a challenge. Here, on the basis of the photothermal effect of gold nanorods (GNRs), we developed a platform for monitoring of a single molecule employing surface-enhanced Raman spectroscopy (SERS). Laser re-irradiation forms 1.0 nm gaps between GNRs, allowing us to observe single crystal violet (CV) molecules blinking for up to 4 min with dynamic surface-enhanced Raman spectroscopy (D-SERS). Bianalyte experiments confirm single-molecule features at CV concentrations of 10-14 M. Combining density functional theory (DFT) calculations with a free CV molecule observed in millisecond D-SERS, we propose that CV molecules can be confined to sub-nanometer space and the orientation of an individual CV moving in the range of 50-90° can be dynamically captured by D-SERS. This will provide a novel idea for effective exploration of the temporal and spatial dynamic processes of different reactions.
Collapse
Affiliation(s)
- Wuwen Yan
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- University of Science & Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Siyu Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- University of Science & Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Ronglu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Hyun-Hang Shin
- Department of Chemistry, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- University of Science & Technology of China, Hefei, Anhui 230026, People's Republic of China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|