1
|
Fiorello I, Liu Y, Kamare B, Meder F. Harnessing chemistry for plant-like machines: from soft robotics to energy harvesting in the phytosphere. Chem Commun (Camb) 2025; 61:6246-6259. [PMID: 40177903 PMCID: PMC11966601 DOI: 10.1039/d4cc06661h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025]
Abstract
Nature, especially plants, can inspire scientists and engineers in the development of bioinspired machines able to adapt and interact with complex unstructured environments. Advances in manufacturing techniques, such as 3D printing, have expanded the range of materials and structures that can be fabricated, enabling better adaptation to specific applications and closer mimicking of natural systems. Furthermore, biohybrid systems-integrating plant-based or living materials-are getting attention for their ability to introduce functionalities not possible with purely synthetic materials. This joint feature article reviews and highlights recent works of two groups in microfabrication and plant-inspired robotics as well as plant-hybrid systems for energy conversion with applications in soft robotics to environmental sensing, reforestation, and autonomous drug-delivery in plant tissue.
Collapse
Affiliation(s)
- Isabella Fiorello
- Cluster of Excellence livMatS@FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110, Freiburg, Germany.
| | - Yuanquan Liu
- Cluster of Excellence livMatS@FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, D-79110, Freiburg, Germany.
| | - Behnam Kamare
- Surface Phenomena and Integrated Systems, The BioRobotics Institute, Scuola Superiore Sant'Anna, Via C. Maffi 27, 56126, Pisa, Italy.
| | - Fabian Meder
- Surface Phenomena and Integrated Systems, The BioRobotics Institute, Scuola Superiore Sant'Anna, Via C. Maffi 27, 56126, Pisa, Italy.
| |
Collapse
|
2
|
Xie Z, Deng H, Ge X, Chi Z, Liu B. Mechanoluminescence from Amorphous Organic Luminogens. J Am Chem Soc 2025; 147:12722-12729. [PMID: 40023792 DOI: 10.1021/jacs.5c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The ability of mechanoluminescent (ML) materials to convert mechanical energy into visualizable patterns through light emission offers a wide range of applications in advanced stress sensing, human-machine interfaces, biomedical science, etc. However, the development remains in its infancy, and more importantly, the reliance on specific crystalline structures in most existing ML materials limits their processability and practical utility. Here, we introduce a series of purely organic amorphous ML materials incorporating flexible skeletons and twisted donor-acceptor-acceptor' structures designed to enhance dipole moment and flexibility. These materials exhibit multicolor ML in amorphous states and possess low glass transition temperatures, allowing facile and in situ regeneration and processing. The stress-induced short-range molecular ordering within the amorphous phase generates local piezoelectricity, enabling ML without crystallinity. This approach overcomes the limitations of traditional crystalline ML materials, facilitating the development of flexible ML films and expanding the practical utility of organic ML systems.
Collapse
Affiliation(s)
- Zongliang Xie
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
| | - Huangjun Deng
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Xiangyu Ge
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhenguo Chi
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Bin Liu
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
3
|
Yang X, Du M, Chu Z, Li C. Synchronizing Multicolor Changes and Shape Deformation Into Structurally Homogeneous Hydrogels via a Single Photochromophore. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500857. [PMID: 40059611 DOI: 10.1002/adma.202500857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/24/2025] [Indexed: 04/24/2025]
Abstract
The design of synthetic hydrogels that can mimic their biological counterparts in the simultaneous production of multicolor change and shape transformation in response to environmental stimuli is of great importance toward intelligent camouflage, encryption, and actuation. Previous efforts have focused primarily on developing heterogeneous hydrogels that highly rely on respective mechanisms to achieve color and shape changes separately, and synergistically synchronizing such two variations into structurally homogenous hydrogels via a single chromophore has been challenging. Here, the molecular design of a structurally homogenous hydrogel simultaneously exhibiting synchronized multicolor change and shape deformation triggered by a single stimulus of light is reported. The synchronization mechanism originates from a coupled alteration upon irradiation in the fluorescence emission and charge states of a spiropyran photochromophore covalently incorporated into the hydrogel network, thus leading to macroscale color change and shape variation in the hydrogel, respectively. Following this principle, both positive and negative phototropic deformation are obtained concomitantly with synchronized but flexibly tunable multicolor changes upon light illumination and demonstrated the ingenious application of biomimetic actuation, encryption, and camouflage by the rational combination of these two systems. This work represents an innovative molecular design strategy for developing bioinspired materials with synchronized functions via a single compound.
Collapse
Affiliation(s)
- Xuehan Yang
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mengqi Du
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhaomiao Chu
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chuang Li
- State Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
4
|
Kusama K, Oishi A, Ueno H, Yoshimi A, Nagase M, Shintake J. Electrically Driven, Bioluminescent Compliant Devices for Soft Robotics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11248-11258. [PMID: 39930615 PMCID: PMC11843531 DOI: 10.1021/acsami.4c18209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
Soft robotics, a research field wherein robots are fabricated from compliant materials, has sparked widespread research interest because of its potential applications in a variety of scenarios. In soft robots, luminescence is an important functionality for communication and information transmission, and it is typically achieved through electroluminescence, which relies on synthetic substances activated by external electric sources, such as batteries. This paper focuses on the use of luciferase, a biologically derived luminescent enzyme, as a luminescent material. Bioluminescence, which is triggered by the luciferin-luciferase reaction, is highly energy-efficient, nontoxic, and eco-friendly. In this regard, a mammalian cell-derived secreted luciferase bioluminescent liquid was developed. This bioluminescent liquid is strongly bright, stable, freezable, and scalable for use as a soft robotic material. To investigate the applicability of this bioluminescent liquid to soft robotics, it was incorporated as an electrode in electrically driven soft actuators, sensors, and robots. Specifically, dielectric elastomer sensors (DESs) and dielectric elastomer actuators (DEAs) were fabricated and characterized using established fabrication processes. The resistivity of the bioluminescent liquid was found to be 448.1 Ω·cm. When the DES was subjected to uniaxial strain, it exhibited a linear response and large deformation of up to 200% strain, with a simultaneous luminance change of 27%. The DEA displayed an areal strain of 46.0% and a luminance change of 31% at an applied voltage of 3.4 kV. The waterproof bending DEA generated a tip angle of 21.8° at 10 kV and was applied to a jellyfish robot that could swim in water at a speed of 2.1 mm/s. The experimental results demonstrated the successful operation of these devices, validating the concept of energy-efficient, safe, and environmentally friendly bioluminescent soft robots.
Collapse
Affiliation(s)
- Kengo Kusama
- Department
of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Tokyo 182-8585, Japan
| | - Atsuro Oishi
- Department
of Anatomy, Kyorin University School of
Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-0004, Japan
| | - Hitoshi Ueno
- Department
of Anatomy, Kyorin University School of
Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-0004, Japan
| | - Akihide Yoshimi
- Division
of Cancer RNA Research, National Cancer
Center Research Institute, 5-1-1 Tsukiji, Chuo, Tokyo 104-0045, Japan
| | - Miki Nagase
- Department
of Anatomy, Kyorin University School of
Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-0004, Japan
| | - Jun Shintake
- Department
of Mechanical and Intelligent Systems Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Tokyo 182-8585, Japan
| |
Collapse
|
5
|
Yin J, Cao Z, Zhou Y, Huo X, Wu Z. Luminescent Tactile Sensor System for Robots: Enhancing Human-Computer Interaction in Complex Dark Environments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410190. [PMID: 39692181 DOI: 10.1002/smll.202410190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Indexed: 12/19/2024]
Abstract
In order to achieve interaction and collaboration with humans, robots need to have the ability for tactile perception of simulating human. Traditional methods use electrically connected sensors with complex arrays, leading to intricate wiring, high manufacturing costs, and demanding current environments. A flexible sensor with simple structure, easy preparation process, and low cost based on triboluminescence effect is proposed in this paper, which avoids the complex array and wiring of traditional sensors. The study discusses the relationship between luminescent intensity and factors such as luminescent particle content, luminescent layer thickness, encapsulation layer thickness, and friction layer thickness. It also analyzes the mechanism of luminescence. A micro charge-coupled device is configured for the luminescent unit to collect optical information and is integrated with the robot's manipulator for testing. A simple sensing system is constructed to demonstrate environmental perception, acquiring, and feeding back shape and size information of contact objects in the dark. The system successfully identifies and judges target objects in complex dark environments, offering insights for applications such as unmanned assembly lines. It overcomes the challenge of intricate electrical connections, paving new avenues for intelligent object recognition research in human-computer interaction.
Collapse
Affiliation(s)
- Jiaxin Yin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhi Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing, 101400, China
| | - Yuxuan Zhou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Engineering Research Center of Mechanical Testing Technology and Equipment, Ministry of Education, Chongqing University of Technology, Chongqing, 400054, China
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoqing Huo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhiyi Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
6
|
Wang H, Zhao T, Li M, Li J, Liu K, Peng S, Liu X, Zhao B, Chen Y, An J, Chen X, Jiang S, Lin C, Yang W. Oscillatory mechanoluminescence of Mn 2+-doped SrZnOS in dynamic response to rapid compression. Nat Commun 2025; 16:548. [PMID: 39789031 PMCID: PMC11718179 DOI: 10.1038/s41467-025-55922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025] Open
Abstract
Photon emission may be continuously produced from mechanical work through self-recoverable mechanoluminescence (ML). Significant progress has been made in high-performance ML materials in the past decades, but the rate-dependent ML kinetics remains poorly understood. Here, we have conducted systematic studies on the self-recoverable ML of Mn2+-doped SrZnOS (SrZnOS: Mn2+) under rapid compression up to ~10 GPa. Rate-dependent distinct kinetics is revealed: a diffuse-like ML behavior below ~1.2 GPa/s, oscillatory emission with a series of ML peaks at critical rate of ~1.2-1.5 GPa/s, and suppression of ML above 1.5 GPa/s. Analysis from the rate-independent structural evolution and photoluminescence under high pressures show that the oscillatory ML emission at the critical rate corresponds to multi-cyclic piezoelectrically-induced excitation (PIE) and self-recoverable processes. Both characteristic time (τ) for the PIE and self-recoverable processes are minimized at the critical rate, indicating the time limit of ML in the dynamic response to rapid compression. High temperature is slightly favorable for PIE, but is unfavorable for the self-recoverable process. The present work uncovers the temporal characteristics of self-recoverable ML and provides insight into understanding the rate-dependent ML kinetics in the mechanical-photon energy conversion, conducive to the design of ML-based optoelectronic devices.
Collapse
Affiliation(s)
- Hao Wang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| | - Tingting Zhao
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| | - Mei Li
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| | - Junlong Li
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| | - Ke Liu
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| | - Shang Peng
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| | - Xuqiang Liu
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| | - Bohao Zhao
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| | - Yanlong Chen
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| | - Jiao An
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| | - Xiaohui Chen
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Sheng Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Chuanlong Lin
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China.
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| |
Collapse
|
7
|
Timilsina S, Jo CW, Lee KH, Sohn K, Kim JS. Dual-Modal Sensing Skin Adaptive to Daylight, Darkness, and Ultraviolet Light for Simultaneous Full-Field Deformation Measurement and Mechanoluminescence Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409384. [PMID: 39447093 PMCID: PMC11727239 DOI: 10.1002/advs.202409384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Indexed: 10/26/2024]
Abstract
Mechanoluminescence (ML) and digital image correlation (DIC) have emerged as promising optical methods to visualize and measure deformation fields. In this study, a dual-modal sensing skin, called the ML-DIC skin is introduced, that is capable of emitting ML and facilitating DIC measurements under various lighting conditions, including daylight, night or darkness, and UV irradiation. Four ML-DIC skins are fabricated with or without carbon nanotubes (CNTs) using a composite powder consisting of SrAl2O4: Eu,Dy (SAO), and acrylic resin, with CNT milling times of 48, 72, and 96 h for three of four skins, respectively. DIC measurements are performed under multiple lighting conditions for measuring photoluminescence, persistence luminescence, and reflection. Uniaxial tension tests demonstrate the superior performance of ML-DIC skins with CNTs compared with pristine SAO skins, with the skin subjected to 48 h of CNT dispersion exhibiting optimal performance. Further investigations focus on ML emission and DIC measurements near the crack-tip vicinity of static and propagating cracks as well as on surfaces above subsurface cracks. The integration of ML and DIC techniques offers a versatile approach for comprehensive deformation analysis applicable to diverse environments, with implications for materials science, engineering, and structural health monitoring.
Collapse
Affiliation(s)
- Suman Timilsina
- KNU Research Institute of Artificial Intelligent Diagnosis Technology of Multi‐scale Organic and Inorganic StructureKyungpook National UniversityKyeongbuk37224Republic of Korea
| | - Cheol Woo Jo
- School of Advanced Science and Technology ConvergenceKyungpook National UniversityKyeongbuk37224Republic of Korea
| | - Kwang Ho Lee
- Department of Automotive EngineeringKyungpook National UniversityKyeongbuk37224Republic of Korea
| | - Kee‐Sun Sohn
- Nanotechnology and Advanced Materials EngineeringSejong University209 Neungdong roGwangjin‐guSeoul143‐747Republic of Korea
| | - Ji Sik Kim
- School of Nano & Advanced Materials EngineeringKyungpook National UniversityKyeongbuk37224Republic of Korea
| |
Collapse
|
8
|
Li H, Yang Y, Li P, Peng D, Li L. Force-Induced Ultraviolet C Luminescence of Pr 3+-Doped Sr 2P 2O 7 for X-Ray Dosimetry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411804. [PMID: 39436098 DOI: 10.1002/adma.202411804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/22/2024] [Indexed: 10/23/2024]
Abstract
Mechanoluminescent materials have broad application prospects in advanced displays, stress imaging, and anti-counterfeiting owing to their ability to convert mechanical stimuli into light. However, most previous studies have focused on the visible and near-infrared regions. Although natural ultraviolet C (UVC) light is nearly absent on the Earth's surface, it plays an important role in many fields. Therefore, the development of smart materials capable of emitting UVC mechanoluminescence (ML) and expanding the application scenarios of UVC ML are significant but challenging. Here the ML property of Sr2P2O7:Pr3+ is examined, which stems from the 5d→4f transition of Pr3+ and is located over the UVC region. The peak wavelength of the UVC ML of Sr2P2O7:Pr3+ is ≈230 nm, which is, to the best of this knowledge, the shortest ML wavelength reported to date. It is further demonstrated that the UVC ML of Sr2P2O7:Pr3+ is associated with trapped charge carriers and can be conveniently regulated by adjusting the X-ray excitation time. Relying on this unique characteristic, the potential of the UVC ML of Sr2P2O7:Pr3+ as an indicator of the X-ray radiation dose is demonstrated. This study enriches the family of mechanoluminescent materials and expands the available wavelength of ML to the UVC region.
Collapse
Affiliation(s)
- Huimin Li
- College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Yanmin Yang
- College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Pei Li
- College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Dengfeng Peng
- Shenzhen Key Laboratory of Intelligent Optical Measurement and Detection, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Leipeng Li
- College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| |
Collapse
|
9
|
Li X, Cheng Y, Zhou Y, Shi L, Sun J, Ho GW, Wang R. Programmable Robotic Shape Shifting and Color Morphing Dynamics Through Magneto-Mechano-Chromic Coupling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406714. [PMID: 39520345 DOI: 10.1002/adma.202406714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Recreating natural organisms' dynamic shape-morphing and adaptive color-changing capabilities in a compact structure poses significant challenges but unlocks unprecedented hybridized robotic-visual applications. Overcoming programmability and predictability obstacles is key to achieving real-time, responsive changes in appearance and functionality, enhancing robot-environment-user interactions in ways previously unattainable. Herein, a Soft Magneto-Mechano-Chromic (SoMMeC) structure comprising a magnetic actuating and a synthetic photonic film, mirroring the intricate color-tuning mechanism of chameleons is devised. A model combining numerical simulation and a strain-dependent color evolution map enables precise predictions and controllable shape-color alterations across various geometrical and magnetization profiles. The SoMMeC exhibits rapid (0.1s), broad (full-visible spectrum), tether-free (remote magnetic manipulation), and programmable (model-guided control) color transformations, surpassing traditional limitations with its real-time response, broad and omnidirectional coloration for enhanced visibility, and robustness against external disturbances. The SoMMeC translates into dynamic advertising iridescence, adaptive camouflage, self-sensing, and multi-level encryption, and transcends traditional robotics by seamlessly blending dynamic movement with nuanced visual changes. It opens up a spectrum of applications that redefine robotic functionality through dynamic appearance modulation, making robotic systems more versatile, adaptive, and suitable for unexplored integrative functions.
Collapse
Affiliation(s)
- Xueling Li
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, China
- School of Microelectronics, Shanghai University, Shanghai, 200444, China
| | - Yin Cheng
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, China
| | - Yi Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Liangjing Shi
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, China
| | - Jing Sun
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ranran Wang
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
10
|
Yang W, Gong W, Chang B, Wang Y, Li K, Li Y, Zhang Q, Hou C, Wang H. Scale-Bridging Mechanics Transfer Enables Ultrabright Mechanoluminescent Fiber Electronics. ACS NANO 2024; 18:24404-24413. [PMID: 39163617 DOI: 10.1021/acsnano.4c07125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Mechanoluminescent (ML) fibers and textiles enable stress visualization without auxiliary power, showing great potential in wearable electronics, machine vision, and human-computer interaction. However, traditional ML devices suffer from inefficient stress transfer in soft-rigid material systems, leading to low luminescence brightness and short cycle life. Here, we propose a tendon-inspired scale-bridging mechanics transfer mechanism for ML composites, which employs molecular-scale copolymerized cross-linking and nanoscale inorganic nanoparticles as hierarchical stress transfer sites. This strategy effectively reduces the dissipation of stress in molecular chain segments and alleviates local stress concentration, increases luminescence by 9 times, and extends cycle life to more than 10,000 times. Furthermore, a scalable (kilometer-scale) anti-Plateau-Rayleigh instability manufacturing technology is developed for thermoset ML fibers, compatible with various existing textile techniques. We also demonstrate its system-level applications in motion capture, underwater interaction, etc., providing a feasible strategy for the next generation of smart visual textiles.
Collapse
Affiliation(s)
- Weifeng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
- Department of Health Science and Technology, ETH Zurich, Lengghalde 5, Zurich 8008, Switzerland
| | - Wei Gong
- Anhui Provincial Engineering Center for High Performance Biobased Nylons, Anhui Provincial Engineering Center for Automotive Highly Functional Fiber Products, School of Materials and Chemistry, Anhui Agricultural University, Hefei 230036, P. R. China
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Hefei, Anhui 230036, P.R. China
| | - Boya Chang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yue Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
11
|
Fan Q, Tang Y, Sun H, Guo D, Ma J, Guo J. Cluster-Triggered Self-Luminescence, Rapid Self-Healing, and Adaptive Reprogramming Liquid Crystal Elastomers Enabled by Dynamic Imine Bond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401315. [PMID: 38627335 DOI: 10.1002/adma.202401315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/02/2024] [Indexed: 04/26/2024]
Abstract
The integration of advanced functions and diverse practical applications calls for multifunctional liquid crystal elastomers (LCEs); however, the structure-intrinsic luminescence and excellent mechanical properties of LCEs have not yet been explored. In this study, clusteroluminescence (CL)-based LCEs (CL-LCEs) are successfully fabricated without depending on large conjugated structures, thereby avoiding redundant organic synthesis and aggregation-caused quenching. The experimental and theoretical results reveal that secondary amine (-NH-) and imine (-C = N-) groups play vital roles in determining the presence of fluorescence in CL-LCEs. Based on the above observation, the strategy universalization and a molecular library for constructing CL-LCEs are further demonstrated. Meanwhile, the dynamic bond of imine bonds endows the CL-LCE system with rapid self-healing under mild conditions (70 °C in 10 min), excellent stretchability, and adaptive programmable characteristics. Furthermore, the self-luminescent performance enables visual detection of the self-healing process. Finally, CL-based information storage and anticounterfeiting are successfully realized and their applications in fiber actuators and fluorescent textiles are demonstrated. The distinctive luminescence and dynamic chemistry presented in this work has significant implications in elucidating the mechanism of CL and providing new strategies for the rational design of novel multifunctional LCE materials.
Collapse
Affiliation(s)
- Qingyan Fan
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuting Tang
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haonan Sun
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dekang Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiawei Ma
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers, Ministry of Education, and College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
12
|
Wang W, Li Z, Wang Z, Xiang Z, Wang Z, Li S, Zhang M, Liu W. Achieving Tunable Mechanoluminescence in CaZnOS:Tb 3+, Sm 3+ for Multicolor Stress Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1279. [PMID: 39120384 PMCID: PMC11314236 DOI: 10.3390/nano14151279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
Mechanoluminescent (ML) materials can exhibit visible-to-near-infrared mechanoluminescence when responding to the fracture or deformation of a solid under mechanical stimulation. Transforming mechanical energy into light demonstrates promising applications in terms of visual mechanical sensing. In this work, we synthesized the phosphor CaZnOS:Tb3+, Sm3+, which exhibited intense and tunable multicolor mechanoluminescence without pre-irradiation. Intense green ML materials were obtained by doping Tb3+ with different concentrations. Tunable multicolor mechanoluminescence (such as green, yellow-green, and orange-red) could be realized by combining green emission (about 542 nm), attributed to Tb3+, and red emission (about 600 nm) generated from the Sm3+ in the CaZnOS substrate. The tunable multicolor ML materials CaZnOS:Tb3+, Sm3+ exhibited intense luminance and recoverable mechanoluminescence when responding to mechanical stimulation. Benefiting from the excellent ML performance and multicolor tunability in CaZnOS:Tb3+, Sm3+, we mixed the phosphor with PDMS and a curing agent to explore its practical application. An application for visual mechanical sensing was designed for handwriting identification. By taking a time-lapsed shot while writing, we easily obtained images of the writer's handwriting. The images of the ML intensity were acquired by using specific software to transform the shooting data. We could easily distinguish people's handwriting through analyzing the different ML performances.
Collapse
Affiliation(s)
- Wenqi Wang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
- Qinghai Key Laboratory of Advanced Technology and Application of Environmental Functional Materials, Xining 810016, China
| | - Zihui Li
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
- Qinghai Key Laboratory of Advanced Technology and Application of Environmental Functional Materials, Xining 810016, China
| | - Ziying Wang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
- Qinghai Key Laboratory of Advanced Technology and Application of Environmental Functional Materials, Xining 810016, China
| | - Zhizhi Xiang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
- Qinghai Key Laboratory of Advanced Technology and Application of Environmental Functional Materials, Xining 810016, China
| | - Zhenbin Wang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
- Qinghai Key Laboratory of Advanced Technology and Application of Environmental Functional Materials, Xining 810016, China
| | - Sixia Li
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
- Qinghai Key Laboratory of Advanced Technology and Application of Environmental Functional Materials, Xining 810016, China
| | - Mingjin Zhang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
- Qinghai Key Laboratory of Advanced Technology and Application of Environmental Functional Materials, Xining 810016, China
| | - Weisheng Liu
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
- Qinghai Key Laboratory of Advanced Technology and Application of Environmental Functional Materials, Xining 810016, China
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Yang H, Wei Y, Ju H, Huang X, Li J, Wang W, Peng D, Tu D, Li G. Microstrain-Stimulated Elastico-Mechanoluminescence with Dual-Mode Stress Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401296. [PMID: 38599208 DOI: 10.1002/adma.202401296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Elastico-mechanoluminescence technology has shown significant application prospects in stress sensing, artificial skin, remote interaction, and other research areas. Its progress mainly lies in realizing stress visualization and 2D or even 3D stress-sensing effects using a passive sensing mode. However, the widespread promotion of mechanoluminescence (ML) technology is hindered by issues such as high stress or strain thresholds and a single sensing mode based on luminous intensity. In this study, a highly efficient green-emitting ML with dual-mode stress-sensing characteristics driven by microscale strain is developed using LiTaO3:Tb3+. In addition to single-mode sensing based on the luminous intensity, the self-defined parameter (Q) is also introduced as a dual-mode factor for sensing the stress velocity. Impressively, the fabricated LiTaO3:Tb3+ film is capable of generating discernible ML signals even when supplied with strains as low as 500 µst. This is the current minimum strain value that can drive green-emitting ML. This study offers an ideal photonic platform for exploring the potential applications of rare-earth-doped elastico-ML materials in remote interaction devices, high-precision stress sensors, and single-molecule biological imaging.
Collapse
Affiliation(s)
- Hang Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Yi Wei
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Haonan Ju
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Xinru Huang
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Jun Li
- Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes, Fuyang Normal University, Fuyang, 236037, China
| | - Wei Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dong Tu
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
- Shenzhen Research Institute, Wuhan University, Shenzhen, 518057, China
| | - Guogang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| |
Collapse
|
14
|
Chen R, Zhang H, Du Y, Ma H, Ma X, Ji J, Wang X, Xue M. Photothermal Conversion of the Oleophilic PVDF/Ti 3C 2T x Porous Foam Enables Non-Aqueous Liquid System Applicable Actuator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309130. [PMID: 38247181 DOI: 10.1002/smll.202309130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Various physical and chemical reaction processes occur in non-aqueous liquid systems, particularly in oil phase systems. Therefore, achieving efficient, accurate, controllable, and cost-effective movement and transfer of substances in the oil phase is crucial. Liquid-phase photothermal actuators (LPAs) are commonly used for material transport in liquid-phase systems due to their remote operability and precise control. However, existing LPAs typically rely on materials like hydrogels and flexible polymers, commonly unsuitable for non-aqueous liquids. Herein, a 3D porous poly(vinylidene fluoride) (PVDF)/Ti3C2Tx actuator is developed using a solvent displacement method. It demonstrates directional movement and controlled material transport in non-aqueous liquid systems. When subject to infrared light irradiation (2.0 W cm-2), the actuator achieves motion velocities of 7.3 and 6 mm s-1 vertically and horizontally, respectively. The actuator's controllable motion capability is primarily attributed to the foam's oil-wettable properties, 3D porous oil transport network, and the excellent photothermal conversion performance of Ti3C2Tx, facilitating thermal diffusion and the Marangoni effect. Apart from multidimensional directions, the actuator enables material delivery and obstacle avoidance by transporting and releasing target objects to a predetermined position. Hence, the developed controllable actuator offers a viable solution for effective motion control and material handling in non-aqueous liquid environments.
Collapse
Affiliation(s)
- Ruoqi Chen
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huanrong Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhang Du
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinlei Ma
- Department of Chemistry, Renmin University of China, Beijing, 100872, China
| | - Junhui Ji
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xusheng Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mianqi Xue
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
15
|
Pan X, Zhuang Y, He W, Lin C, Mei L, Chen C, Xue H, Sun Z, Wang C, Peng D, Zheng Y, Pan C, Wang L, Xie RJ. Quantifying the interfacial triboelectricity in inorganic-organic composite mechanoluminescent materials. Nat Commun 2024; 15:2673. [PMID: 38531867 DOI: 10.1038/s41467-024-46900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Mechanoluminescence (ML) sensing technologies open up new opportunities for intelligent sensors, self-powered displays and wearable devices. However, the emission efficiency of ML materials reported so far still fails to meet the growing application requirements due to the insufficiently understood mechano-to-photon conversion mechanism. Herein, we propose to quantify the ability of different phases to gain or lose electrons under friction (defined as triboelectric series), and reveal that the inorganic-organic interfacial triboelectricity is a key factor in determining the ML in inorganic-organic composites. A positive correlation between the difference in triboelectric series and the ML intensity is established in a series of composites, and a 20-fold increase in ML intensity is finally obtained by selecting an appropriate inorganic-organic combination. The interfacial triboelectricity-regulated ML is further demonstrated in multi-interface systems that include an inorganic phosphor-organic matrix and organic matrix-force applicator interfaces, and again confirmed by self-oxidization and reduction of emission centers under continuous mechanical stimulus. This work not only gives direct experimental evidences for the underlying mechanism of ML, but also provides guidelines for rationally designing high-efficiency ML materials.
Collapse
Affiliation(s)
- Xin Pan
- School of Materials Sciences and Technology, China University of Geosciences Beijing, Beijing, China
- College of Materials, Xiamen University, Xiamen, China
| | - Yixi Zhuang
- College of Materials, Xiamen University, Xiamen, China.
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen University, Xiamen, China.
| | - Wei He
- College of Materials, Xiamen University, Xiamen, China
| | - Cunjian Lin
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Nomi, Japan
| | - Lefu Mei
- School of Materials Sciences and Technology, China University of Geosciences Beijing, Beijing, China
| | | | - Hao Xue
- College of Materials, Xiamen University, Xiamen, China
| | - Zhigang Sun
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Chunfeng Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Dengfeng Peng
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yanqing Zheng
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Caofeng Pan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, China
| | - Lixin Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Rong-Jun Xie
- College of Materials, Xiamen University, Xiamen, China.
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen University, Xiamen, China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen, China.
| |
Collapse
|
16
|
Wang W, Wang S, Gu Y, Zhou J, Zhang J. Contact-separation-induced self-recoverable mechanoluminescence of CaF 2:Tb 3+/PDMS elastomer. Nat Commun 2024; 15:2014. [PMID: 38443411 PMCID: PMC10914845 DOI: 10.1038/s41467-024-46432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Centrosymmetric-oxide/polydimethylsiloxane elastomers emit ultra-strong non-pre-irradiation mechanoluminescence under stress and are considered one of the most ideal mechanoluminescence materials. However, previous centrosymmetric-oxide/polydimethylsiloxane elastomers show severe mechanoluminescence degradation under stretching, which limits their use in applications. Here we show an elastomer based on centrosymmetric fluoride CaF2:Tb3+ and polydimethylsiloxane, with mechanoluminescence that can self-recover after each stretching. Experimentation indicates that the self-recoverable mechanoluminescence of the CaF2:Tb3+/polydimethylsiloxane elastomer occurs essentially due to contact electrification arising from contact-separation interactions between the centrosymmetric phosphors and the polydimethylsiloxane. Accordingly, a contact-separation cycle model of the phosphor-polydimethylsiloxane couple is established, and first-principles calculations are performed to model state energies in the contact-separation cycle. The results reveal that the fluoride-polydimethylsiloxane couple helps to induce contact electrification and maintain the contact-separation cycle at the interface, resulting in the self-recoverable mechanoluminescence of the CaF2:Tb3+/polydimethylsiloxane elastomer. Therefore, it would be a good strategy to develop self-recoverable mechanoluminescence elastomers based on centrosymmetric fluoride phosphors and polydimethylsiloxane.
Collapse
Affiliation(s)
- Wenxiang Wang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Shanwen Wang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Yan Gu
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Jinyu Zhou
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Jiachi Zhang
- National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou, P. R. China.
| |
Collapse
|
17
|
Xiong J, Li X, He Z, Shi Y, Pan T, Zhu G, Lu D, Xin H. Light-controlled soft bio-microrobot. LIGHT, SCIENCE & APPLICATIONS 2024; 13:55. [PMID: 38403642 PMCID: PMC10894875 DOI: 10.1038/s41377-024-01405-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Micro/nanorobots hold exciting prospects for biomedical and even clinical applications due to their small size and high controllability. However, it is still a big challenge to maneuver micro/nanorobots into narrow spaces with high deformability and adaptability to perform complicated biomedical tasks. Here, we report a light-controlled soft bio-microrobots (called "Ebot") based on Euglena gracilis that are capable of performing multiple tasks in narrow microenvironments including intestinal mucosa with high controllability, deformability and adaptability. The motion of the Ebot can be precisely navigated via light-controlled polygonal flagellum beating. Moreover, the Ebot shows highly controlled deformability with different light illumination duration, which allows it to pass through narrow and curved microchannels with high adaptability. With these features, Ebots are able to execute multiple tasks, such as targeted drug delivery, selective removal of diseased cells in intestinal mucosa, as well as photodynamic therapy. This light-controlled Ebot provides a new bio-microrobotic tool, with many new possibilities for biomedical task execution in narrow and complicated spaces where conventional tools are difficult to access due to the lack of deformability and bio-adaptability.
Collapse
Affiliation(s)
- Jianyun Xiong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Xing Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Ziyi He
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Yang Shi
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Ting Pan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Guoshuai Zhu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Dengyun Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China
| | - Hongbao Xin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, 511443, Guangzhou, China.
| |
Collapse
|
18
|
Luo J, Ren B, Zhang X, Zhu M, Liang T, Huang Z, Zheng Y, Li X, Li J, Zheng Z, Chen B, Fu Y, Tu D, Wang Y, Jia Y, Peng D. Modulating Smart Mechanoluminescent Phosphors for Multistimuli Responsive Optical Wood. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305066. [PMID: 37939290 PMCID: PMC10767394 DOI: 10.1002/advs.202305066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Indexed: 11/10/2023]
Abstract
Mechanoluminescence is a smart light-emitting phenomenon in which applied mechanical energy is directly converted into photon emissions. In particular, mechanoluminescent materials have shown considerable potential for applications in the fields of energy and sensing. This study thoroughly investigates the mechanoluminescence and long afterglow properties of singly doped and codoped Sr2 MgSi2 O7 (SMSO) with varying concentrations of Eu2+ and Dy3+ ions. Subsequently, a comprehensive analysis of its multimode luminescence properties, including photoluminescence, mechanoluminescence, long afterglow, and X-ray-induced luminescence, is conducted. In addition, the density of states mapping is acquired through first-principles calculations, confirming that the enhanced mechanoluminescence properties of SMSO primarily stem from the deep trap introduced by Dy3+ . In contrast to traditional mixing with Polydimethylsiloxane, in this study, the powders are incorporated into optically transparent wood to produce a multiresponse with mechanoluminescence, long afterglow, and X-ray-excited luminescence. This structure is achieved by pretreating natural wood, eliminating lignin, and subsequently modifying the wood to overall modification using various smart phosphors and epoxy resin composites. After natural drying, a multifunctional composite wood structure with diverse luminescence properties is obtained. Owing to its environmental friendliness, sustainability, self-power, and cost-effectiveness, this smart mechanoluminescence wood is anticipated to find extensive applications in construction materials and energy-efficient displays.
Collapse
Affiliation(s)
- Jiangcheng Luo
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Biyun Ren
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Xianhui Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Mingju Zhu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Tianlong Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Zefeng Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Yuantian Zheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Xu Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Jianwei Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Zitong Zheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Bing Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Yu Fu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Dong Tu
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Yu Wang
- SZU‐NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
- School of Physics and Information TechnologyShaanxi Normal UniversityXi'an710062China
| | - Yanmin Jia
- School of Physics and Information TechnologyShaanxi Normal UniversityXi'an710062China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
19
|
Li C, Schramma N, Wang Z, Qari NF, Jalaal M, Latz MI, Cai S. Ultrasensitive and robust mechanoluminescent living composites. SCIENCE ADVANCES 2023; 9:eadi8643. [PMID: 37862415 PMCID: PMC10588950 DOI: 10.1126/sciadv.adi8643] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
Mechanosensing, the transduction of extracellular mechanical stimuli into intracellular biochemical signals, is a fundamental property of living cells. However, endowing synthetic materials with mechanosensing capabilities comparable to biological levels is challenging. Here, we developed ultrasensitive and robust mechanoluminescent living composites using hydrogels embedded with dinoflagellates, unicellular microalgae with a near-instantaneous and ultrasensitive bioluminescent response to mechanical stress. Not only did embedded dinoflagellates retain their intrinsic mechanoluminescence, but with hydrophobic coatings, living composites had a lifetime of ~5 months under harsh conditions with minimal maintenance. We 3D-printed living composites into large-scale mechanoluminescent structures with high spatial resolution, and we also enhanced their mechanical properties with double-network hydrogels. We propose a counterpart mathematical model that captured experimental mechanoluminescent observations to predict mechanoluminescence based on deformation and applied stress. We also demonstrated the use of the mechanosensing composites for biomimetic soft actuators that emitted colored light upon magnetic actuation. These mechanosensing composites have substantial potential in biohybrid sensors and robotics.
Collapse
Affiliation(s)
- Chenghai Li
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nico Schramma
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, Amsterdam 1098XH, Netherlands
| | - Zijun Wang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nada F. Qari
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maziyar Jalaal
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, Amsterdam 1098XH, Netherlands
| | - Michael I. Latz
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Wang Y, Gao W, Yang S, Chen Q, Ye C, Wang H, Zhang Q, Ren J, Ning Z, Chen X, Shao Z, Li J, Liu Y, Ling S. Humanoid Intelligent Display Platform for Audiovisual Interaction and Sound Identification. NANO-MICRO LETTERS 2023; 15:221. [PMID: 37812331 PMCID: PMC10562358 DOI: 10.1007/s40820-023-01199-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023]
Abstract
This study proposes a rational strategy for the design, fabrication and system integration of the humanoid intelligent display platform (HIDP) to meet the requirements of highly humanized mechanical properties and intelligence for human-machine interfaces. The platform's sandwich structure comprises a middle light-emitting layer and surface electrodes, which consists of silicon elastomer embedded with phosphor and silk fibroin ionoelastomer, respectively. Both materials are highly stretchable and resilient, endowing the HIDP with skin-like mechanical properties and applicability in various extreme environments and complex mechanical stimulations. Furthermore, by establishing the numerical correlation between the amplitude change of animal sounds and the brightness variation, the HIDP realizes audiovisual interaction and successful identification of animal species with the aid of Internet of Things (IoT) and machine learning techniques. The accuracy of species identification reaches about 100% for 200 rounds of random testing. Additionally, the HIDP can recognize animal species and their corresponding frequencies by analyzing sound characteristics, displaying real-time results with an accuracy of approximately 99% and 93%, respectively. In sum, this study offers a rational route to designing intelligent display devices for audiovisual interaction, which can expedite the application of smart display devices in human-machine interaction, soft robotics, wearable sound-vision system and medical devices for hearing-impaired patients.
Collapse
Affiliation(s)
- Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
| | - Wenli Gao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
| | - Shuo Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
| | - Qiaolin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Chao Ye
- School of Textile and Clothing, Yancheng Institute of Technology, Jiangsu, 224051, People's Republic of China
| | - Hao Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
| | - Qiang Zhang
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, People's Republic of China
| | - Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
| | - Zhijun Ning
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- Shanghai Clinical Research and Trial Center, 201210, Shanghai, People's Republic of China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- Shanghai Clinical Research and Trial Center, 201210, Shanghai, People's Republic of China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China.
- Shanghai Clinical Research and Trial Center, 201210, Shanghai, People's Republic of China.
| |
Collapse
|
21
|
Zheng T, Runowski M, Martín IR, Soler-Carracedo K, Peng L, Skwierczyńska M, Sójka M, Barzowska J, Mahlik S, Hemmerich H, Rivera-López F, Kulpiński P, Lavín V, Alonso D, Peng D. Mechanoluminescence and Photoluminescence Heterojunction for Superior Multimode Sensing Platform of Friction, Force, Pressure, and Temperature in Fibers and 3D-Printed Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304140. [PMID: 37399662 DOI: 10.1002/adma.202304140] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Endowing a single material with various types of luminescence, that is, exhibiting a simultaneous optical response to different stimuli, is vital in various fields. A photoluminescence (PL)- and mechanoluminescence (ML)-based multifunctional sensing platform is built by combining heterojunctioned ZnS/CaZnOS:Mn2+ mechano-photonic materials using a 3D-printing technique and fiber spinning. ML-active particles are embedded in micrometer-sized cellulose fibers for flexible optical devices capable of emitting light driven by mechanical force. Individually modified 3D-printed hard units that exhibit intense ML in response to mechanical deformation, such as impact and friction, are also fabricated. Importantly, they also allow low-pressure sensing up to ≈100 bar, a range previously inaccessible by any other optical sensing technique. Moreover, the developed optical manometer based on the PL of the materials demonstrates a superior high-pressure sensitivity of ≈6.20 nm GPa-1 . Using this sensing platform, four modes of temperature detection can be achieved: excitation-band spectral shifts, emission-band spectral shifts, bandwidth broadening, and lifetime shortening. This work supports the possibility of mass production of ML-active mechanical and optoelectronic parts integrated with scientific and industrial tools and apparatus.
Collapse
Affiliation(s)
- Teng Zheng
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, 310015, China
| | - Marcin Runowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
- Departamento de Física, IUdEA, IMN and MALTA Consolider Team, Universidad de La Laguna, San Cristóbal de La Laguna, Apartado de Correos 456, Santa Cruz de Tenerife, E-38200, Spain
| | - Inocencio R Martín
- Departamento de Física, IUdEA, IMN and MALTA Consolider Team, Universidad de La Laguna, San Cristóbal de La Laguna, Apartado de Correos 456, Santa Cruz de Tenerife, E-38200, Spain
| | - Kevin Soler-Carracedo
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Liang Peng
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou, 310015, China
| | - Małgorzata Skwierczyńska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Małgorzata Sójka
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Justyna Barzowska
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdansk, Wita Stwosza 57, Gdansk, 80-308, Poland
| | - Sebastian Mahlik
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdansk, Wita Stwosza 57, Gdansk, 80-308, Poland
| | - Hanoch Hemmerich
- Departamento de Física, IUdEA, IMN and MALTA Consolider Team, Universidad de La Laguna, San Cristóbal de La Laguna, Apartado de Correos 456, Santa Cruz de Tenerife, E-38200, Spain
| | - Fernando Rivera-López
- Departamento de Ingeniería Industrial, Escuela Superior de Ingeniería y Tecnología, Universidad de La Laguna, San Cristóbal de La Laguna, Apdo. 456, Santa Cruz de Tenerife, E-38200, Spain
| | - Piotr Kulpiński
- Faculty of Material Technologies and Textile Design, Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland
| | - Víctor Lavín
- Departamento de Física, IUdEA, IMN and MALTA Consolider Team, Universidad de La Laguna, San Cristóbal de La Laguna, Apartado de Correos 456, Santa Cruz de Tenerife, E-38200, Spain
| | - Daniel Alonso
- Departamento de Física, IUdEA, IMN and MALTA Consolider Team, Universidad de La Laguna, San Cristóbal de La Laguna, Apartado de Correos 456, Santa Cruz de Tenerife, E-38200, Spain
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
22
|
Hegde C, Su J, Tan JMR, He K, Chen X, Magdassi S. Sensing in Soft Robotics. ACS NANO 2023; 17:15277-15307. [PMID: 37530475 PMCID: PMC10448757 DOI: 10.1021/acsnano.3c04089] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Soft robotics is an exciting field of science and technology that enables robots to manipulate objects with human-like dexterity. Soft robots can handle delicate objects with care, access remote areas, and offer realistic feedback on their handling performance. However, increased dexterity and mechanical compliance of soft robots come with the need for accurate control of the position and shape of these robots. Therefore, soft robots must be equipped with sensors for better perception of their surroundings, location, force, temperature, shape, and other stimuli for effective usage. This review highlights recent progress in sensing feedback technologies for soft robotic applications. It begins with an introduction to actuation technologies and material selection in soft robotics, followed by an in-depth exploration of various types of sensors, their integration methods, and the benefits of multimodal sensing, signal processing, and control strategies. A short description of current market leaders in soft robotics is also included in the review to illustrate the growing demands of this technology. By examining the latest advancements in sensing feedback technologies for soft robots, this review aims to highlight the potential of soft robotics and inspire innovation in the field.
Collapse
Affiliation(s)
- Chidanand Hegde
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Jiangtao Su
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Joel Ming Rui Tan
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Ke He
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Xiaodong Chen
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Shlomo Magdassi
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
- Casali
Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
23
|
Zhao C, Li Y, Zhao J, Li H, Xu J, Gao Z, Ding C, Song YY. A "Test-to-Treat" Pad for Real-Time Visual Monitoring of Bacterial Infection and On-Site Performing Smart Therapy Strategies. ACS NANO 2023. [PMID: 37399243 DOI: 10.1021/acsnano.3c01158] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Skin infections are major threats to human health, causing ∼500 incidences per 10 000 person-year. In patients with diabetes mellitus, particularly, skin infections are often accompanied by a slow healing process, amputation, and even death. Timely diagnosis of skin infection strains and on-site therapy are vital in human health and safety. Herein, a double-layered "test-to-treat" pad is developed for the visual monitoring and selective treatment of drug-sensitive (DS)/drug-resistant (DR) bacterial infections. The inner layer (using carrageenan hydrogel as a scaffold) is loaded with bacteria indicators and an acid-responsive drug (Fe-carbenicillin frameworks) for infection detection and DS bacteria inactivation. The outer layer is a mechanoluminescence material (ML, CaZnOS:Mn2+) and visible-light responsive photocatalyst (Pt@TiO2) incorporated elastic polydimethylsiloxane (PDMS). On the basis of the colorimetric sensing result (yellow for DS-bacterial infection and red for DR-bacterial infection), a suitable antibacterial strategy is guided and then performed. Two available bactericidal routes provided by double pad layers reflect the advantage. The controllable and effective killing of DR bacteria is realized by in situ generated reactive oxygen species (ROSs) from the combination of Pt@TiO2 and ML under mechanical force, avoiding physical light sources and alleviating off-target side effects of ROS in biomedical therapy. As a proof-of-concept, the "test-to-treat" pad is applied as a wearable wound dressing for sensing and selectively dealing with DS/DR bacterial infections in vitro and in vivo. This multifunctional design effectively reduces antibiotic abuse and accelerates wound healing, providing an innovative and promising Band-Aid strategy in point-of-care diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Hailong Li
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang 110001, P. R. China
| | | | | | | | | |
Collapse
|
24
|
Li P, Li L, Li T, Han Y, Cai C, Wang C, Peng D, Kang H, Yang Y. Mechanically induced photons from ultraviolet-C to near-infrared in Tm 3+-doped MgF 2. OPTICS EXPRESS 2023; 31:22396-22404. [PMID: 37475351 DOI: 10.1364/oe.494175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023]
Abstract
Mechanoluminescence (ML) plays a vital role in various fields, and has gained increasing popularity over the past two decades. The widely studied materials that are capable of generating ML can be classified into two groups, self-powered and trap-controlled. Here, we demonstrate that both self-powered ML and trap-controlled ML can be achieved simultaneously in MgF2:Tm3+. Upon stimulation of external force, the 1I6→3H6 and 3H4→3H6 transitions of Tm3+ are observed, ranging from the ultraviolet-C to near-infrared. After exposure to X-rays, MgF2:Tm3+ presents a stronger ML than the uncharged sample. After cleaning up at high temperatures, the ML returns to the initial level, which is a typical characteristic of trap-controlled ML. In the end, we demonstrate the potential applications of MgF2:Tm3+ in dynamic anti-counterfeiting, and structure inspection.
Collapse
|
25
|
Zhou B, Liu J, Huang X, Qiu X, Yang X, Shao H, Tang C, Zhang X. Mechanoluminescent-Triboelectric Bimodal Sensors for Self-Powered Sensing and Intelligent Control. NANO-MICRO LETTERS 2023; 15:72. [PMID: 36964430 PMCID: PMC10039194 DOI: 10.1007/s40820-023-01054-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Self-powered flexible devices with skin-like multiple sensing ability have attracted great attentions due to their broad applications in the Internet of Things (IoT). Various methods have been proposed to enhance mechano-optic or electric performance of the flexible devices; however, it remains challenging to realize the display and accurate recognition of motion trajectories for intelligent control. Here, we present a fully self-powered mechanoluminescent-triboelectric bimodal sensor based on micro-nanostructured mechanoluminescent elastomer, which can patterned-display the force trajectories. The deformable liquid metals used as stretchable electrode make the stress transfer stable through overall device to achieve outstanding mechanoluminescence (with a gray value of 107 under a stimulus force as low as 0.3 N and more than 2000 cycles reproducibility). Moreover, a microstructured surface is constructed which endows the resulted composite with significantly improved triboelectric performances (voltage increases from 8 to 24 V). Based on the excellent bimodal sensing performances and durability of the obtained composite, a highly reliable intelligent control system by machine learning has been developed for controlling trolley, providing an approach for advanced visual interaction devices and smart wearable electronics in the future IoT era.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xin Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Hong Shao
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, People's Republic of China
| | - Changyu Tang
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu, 610200, People's Republic of China.
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
26
|
Su L, Wang Z, Lu C, Ding W, Zhao Y, Zi Y. Persistent triboelectrification-induced electroluminescence for self-powered all-optical wireless user identification and multi-mode anti-counterfeiting. MATERIALS HORIZONS 2023. [PMID: 36940131 DOI: 10.1039/d3mh00172e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Persistent triboelectrification-induced electroluminescence (TIEL) is highly desirable to break the constraints in the transient-emitting behavior of existing TIEL technologies as it addresses the hindrance caused by incomplete information in optical communication. In this work, a novel self-powered persistent TIEL material (SP-PTM) has been created for the first time, by incorporating the long-afterglow phosphors SrAl2O4:Eu2+, Dy3+ (SAOED) in the material design. It was found that the blue-green transient TIEL derived from ZnS:Cu, Al serves as a reliable excitation source to trigger the persistent photoluminescence (PL) of SAOED. Notably, the aligned dipole moment formed along the vertical direction in the bottom ferroelectric ceramics layer acts as an "optical antenna" to promote variation in the electric field of the upper luminescent layer. Accordingly, the SP-PTM exhibits intense and persistent TIEL for about 10 s in the absence of a continuous power supply. Due to such unique TIEL afterglow behavior, the SP-PTM is applicable in many fields, such as user identification and multi-mode anti-counterfeiting. The SP-PTM proposed in this work not only represents a breakthrough in TIEL materials due to its recording capability and versatile responsivity but also contributes a new strategy to the development of high-performance mechanical-light energy-conversion systems, which may inspire various functional applications.
Collapse
Affiliation(s)
- Li Su
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei 066004, China
| | - Zihan Wang
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chengyue Lu
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wenbo Ding
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yong Zhao
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei 066004, China
| | - Yunlong Zi
- Thrust of Sustainable Energy and Environment, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China.
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong 518048, China
| |
Collapse
|
27
|
Xu B, Wang H, Luo Z, Yang J, Wang Z. Multi-material 3D Printing of Mechanochromic Double Network Hydrogels for On-Demand Patterning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11122-11130. [PMID: 36802464 DOI: 10.1021/acsami.2c22564] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cephalopods can change their color and patterns by activating the skin chromatophores for camouflage. However, in the man-made soft material systems, it is greatly challenging to fabricate the color-change structure in the desired patterns and shapes. Herein, we employ a multi-material microgel direct ink writing (DIW) printing method to make mechanochromic double network hydrogels in arbitrary shapes. We prepare the microparticles by grinding the freeze-dried polyelectrolyte hydrogel and immobilize the microparticles in the precursor solution to produce the printing ink. The polyelectrolyte microgels contain mechanophores as the cross-linkers. We adjust the rheological and printing properties of the microgel ink by tailoring the grinding time of freeze-dried hydrogels and microgel concentration. The multi-material DIW 3D printing technique is utilized to fabricate various 3D hydrogel structures which could change into a colorful pattern in response to applied force. The microgel printing strategy shows great potential in the fabrication of the mechanochromic device with arbitrary patterns and shapes.
Collapse
Affiliation(s)
- Bo Xu
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Hezhen Wang
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zixiong Luo
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Jiping Yang
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhijian Wang
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
28
|
Mu Q, Wang J, Kuang X. Modeling the resistive viscoelasticity of conductive polymer composites for sensor usage. SOFT MATTER 2023; 19:1025-1033. [PMID: 36648093 DOI: 10.1039/d2sm01463g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the development of fully printed electronics, soft sensors are in demand in various fields, such as wearable electronics, soft machines, etc. Most soft resistive sensors are made of conductive elements dispersed in a viscoelastic polymer binder, exhibiting resistive viscoelastic behavior. The resistance of soft resistive sensors is time-dependent due to the viscoelastic response of polymer binder and structural rearrangement of the conductive pathway. In this paper, experiments and theoretical modeling are used to study the resistive viscoelastic behavior of printed silver wires. The printed silver wire belongs to conductive polymer composites (CPCs) consisting of conductive silver-nanoparticle pathways in an elastic polymer binder. Based on tunneling theory, a multi-branch model is developed to capture the resistance variation of the printed silver wire under mechanical loading. Our experiment-validated model uses only a single set of parameters to predict the resistive relaxation behaviors of CPCs under different strain and different loading rates. Moreover, we demonstrated this numerical model could describe the resistance response under complex loading conditions, such as cyclic loading, similar to the sensor's working condition. The multi-branch model can be extended to any other soft resistive sensor, such as a strain sensor, and provide a new avenue to calibrate these soft sensors.
Collapse
Affiliation(s)
- Quanyi Mu
- Ningxia Key Laboratory of Intelligent Sensing for Desert Information, School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, People's Republic of China.
- State Key Lab for Strength and Vibration of Mechanical Structures, School of Aerospace Science, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Jikun Wang
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Xiao Kuang
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
29
|
Huang Z, Chen B, Ren B, Tu D, Wang Z, Wang C, Zheng Y, Li X, Wang D, Ren Z, Qu S, Chen Z, Xu C, Fu Y, Peng D. Smart Mechanoluminescent Phosphors: A Review of Strontium-Aluminate-Based Materials, Properties, and Their Advanced Application Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204925. [PMID: 36372543 PMCID: PMC9875687 DOI: 10.1002/advs.202204925] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/30/2022] [Indexed: 05/19/2023]
Abstract
Mechanoluminescence, a smart luminescence phenomenon in which light energy is directly produced by a mechanical force, has recently received significant attention because of its important applications in fields such as visible strain sensing and structural health monitoring. Up to present, hundreds of inorganic and organic mechanoluminescent smart materials have been discovered and studied. Among them, strontium-aluminate-based materials are an important class of inorganic mechanoluminescent materials for fundamental research and practical applications attributed to their extremely low force/pressure threshold of mechanoluminescence, efficient photoluminescence, persistent afterglow, and a relatively low synthesis cost. This paper presents a systematic and comprehensive review of strontium-aluminate-based luminescent materials' mechanoluminescence phenomena, mechanisms, material synthesis techniques, and related applications. Besides of summarizing the early and the latest research on this material system, an outlook is provided on its environmental, energy issue and future applications in smart wearable devices, advanced energy-saving lighting and displays.
Collapse
Affiliation(s)
- Zefeng Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Bing Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Biyun Ren
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Dong Tu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of EducationSchool of Physics and TechnologyWuhan UniversityWuhan430072China
| | - Zhaofeng Wang
- State Key Laboratory of Solid LubricationLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000P. R. China
| | - Chunfeng Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Yuantian Zheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Xu Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Dong Wang
- College of Physical EducationShenzhen UniversityShenzhen518060China
| | - Zhanbing Ren
- College of Physical EducationShenzhen UniversityShenzhen518060China
| | - Sicen Qu
- College of Physical EducationShenzhen UniversityShenzhen518060China
| | - Zhuyang Chen
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhen518055China
| | - Chen Xu
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhen518055China
| | - Yu Fu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
30
|
Fu J, Li P, Lin Y, Du H, Liu H, Zhu W, Ren H. Fight for carbon neutrality with state-of-the-art negative carbon emission technologies. ECO-ENVIRONMENT & HEALTH 2022; 1:259-279. [PMID: 38077253 PMCID: PMC10702919 DOI: 10.1016/j.eehl.2022.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 06/22/2024]
Abstract
After the Industrial Revolution, the ever-increasing atmospheric CO2 concentration has resulted in significant problems for human beings. Nearly all countries in the world are actively taking measures to fight for carbon neutrality. In recent years, negative carbon emission technologies have attracted much attention due to their ability to reduce or recycle excess CO2 in the atmosphere. This review summarizes the state-of-the-art negative carbon emission technologies, from the artificial enhancement of natural carbon sink technology to the physical, chemical, or biological methods for carbon capture, as well as CO2 utilization and conversion. Finally, we expound on the challenges and outlook for improving negative carbon emission technology to accelerate the pace of achieving carbon neutrality.
Collapse
Affiliation(s)
- Jiaju Fu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Pan Li
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuan Lin
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huitong Du
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongzhi Liu
- Chinese Society for Environmental Sciences, Beijing 100082, China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|