1
|
Shatskiy D, Sivan A, Wedlich-Söldner R, Belyy A. Structure of the F-tractin-F-actin complex. J Cell Biol 2025; 224:e202409192. [PMID: 39928047 PMCID: PMC11809415 DOI: 10.1083/jcb.202409192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/19/2024] [Accepted: 01/28/2025] [Indexed: 02/11/2025] Open
Abstract
F-tractin is a peptide widely used to visualize the actin cytoskeleton in live eukaryotic cells but has been reported to impair cell migration and induce actin bundling at high expression levels. To elucidate these effects, we determined the cryo-EM structure of the F-tractin-F-actin complex, revealing that F-tractin consists of a flexible N-terminal region and an amphipathic C-terminal helix. The N-terminal part is dispensable for F-actin binding but responsible for the bundling effect. Based on these insights, we developed an optimized F-tractin, which eliminates the N-terminal region and minimizes bundling while retaining strong actin labeling. The C-terminal helix interacts with a hydrophobic pocket formed by two neighboring actin subunits, an interaction region shared by many actin-binding polypeptides, including the popular actin-binding probe Lifeact. Thus, rather than contrasting F-tractin and Lifeact, our data indicate that these peptides have analogous modes of interaction with F-actin. Our study dissects the structural elements of F-tractin and provides a foundation for developing future actin probes.
Collapse
Affiliation(s)
- Dmitry Shatskiy
- Membrane Enzymology Group, Groningen Institute of Biomolecular Sciences and Biotechnology (GBB), Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Athul Sivan
- Institute of Cell Dynamics and Imaging, and Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, Münster, Germany
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, and Cells-in-Motion Interfaculty Center (CiMIC), University of Münster, Münster, Germany
| | - Alexander Belyy
- Membrane Enzymology Group, Groningen Institute of Biomolecular Sciences and Biotechnology (GBB), Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Ng’ang’a PN, Folz J, Kucher S, Roderer D, Xu Y, Sitsel O, Belyy A, Prumbaum D, Kühnemuth R, Assafa TE, Dong M, Seidel CAM, Bordignon E, Raunser S. Multistate kinetics of the syringe-like injection mechanism of Tc toxins. SCIENCE ADVANCES 2025; 11:eadr2019. [PMID: 39752508 PMCID: PMC11698121 DOI: 10.1126/sciadv.adr2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/12/2024] [Indexed: 01/06/2025]
Abstract
Tc toxins are pore-forming virulence factors of many pathogenic bacteria. Following pH-induced conformational changes, they perforate the target membrane like a syringe to translocate toxic enzymes into a cell. Although this complex transformation has been structurally well studied, the reaction pathway and the resulting temporal evolution have remained elusive. We used an integrated biophysical approach to monitor prepore-to-pore transition and found a reaction time of ~30 hours for a complete transition. We show two asynchronous general steps of the process, shell opening and channel ejection, with the overall reaction pathway being a slow multistep process involving three intermediates. Liposomes, an increasingly high pH, or receptors facilitate shell opening, which is directly correlated with an increased rate of the prepore-to-pore transition. Channel ejection is a near-instantaneous process which occurs with a transition time of <60 milliseconds. Understanding the mechanism of action of Tc toxins and unveiling modulators of the kinetics are key steps toward their application as biomedical devices or biopesticides.
Collapse
Affiliation(s)
- Peter Njenga Ng’ang’a
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Julian Folz
- Chair of Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Svetlana Kucher
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Daniel Roderer
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Ying Xu
- Department of Urology, Boston Children’s Hospital, Boston, MA, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Oleg Sitsel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Alexander Belyy
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Ralf Kühnemuth
- Chair of Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tufa E. Assafa
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Claus A. M. Seidel
- Chair of Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| |
Collapse
|
3
|
Heisler DB, Kudryashova E, Hitt R, Williams B, Dziejman M, Gunn J, Kudryashov DS. Antagonistic Effects of Actin-Specific Toxins on Salmonella Typhimurium Invasion into Mammalian Cells. Biomolecules 2024; 14:1428. [PMID: 39595604 PMCID: PMC11591686 DOI: 10.3390/biom14111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Competition between bacterial species is a major factor shaping microbial communities. It is possible but remains largely unexplored that competition between bacterial pathogens can be mediated through antagonistic effects of bacterial effector proteins on host systems, particularly the actin cytoskeleton. Using Salmonella Typhimurium invasion into cells as a model, we demonstrate that invasion is inhibited if the host actin cytoskeleton is disturbed by actin-specific toxins, namely, Vibrio cholerae MARTX actin crosslinking (ACD) and Rho GTPase inactivation (RID) domains, Photorhabdus luminescens TccC3, and Salmonella's own SpvB. We noticed that ACD, being an effective inhibitor of tandem G-actin-binding assembly factors, is likely to inhibit the activity of another Vibrio effector, VopF. In reconstituted actin polymerization assays and by live-cell microscopy, we confirmed that ACD potently halted the actin nucleation and pointed-end elongation activities of VopF, revealing competition between these two V. cholerae effectors. These results suggest that bacterial effectors from different species that target the same host machinery or proteins may represent an effective but largely overlooked mechanism of indirect bacterial competition in host-associated microbial communities. Whether the proposed inhibition mechanism involves the actin cytoskeleton or other host cell compartments, such inhibition deserves investigation and may contribute to a documented scarcity of human enteric co-infections by different pathogenic bacteria.
Collapse
Affiliation(s)
- David B. Heisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (D.B.H.); (E.K.); (B.W.)
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (D.B.H.); (E.K.); (B.W.)
| | - Regan Hitt
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.H.); (J.G.)
| | - Blake Williams
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (D.B.H.); (E.K.); (B.W.)
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA;
| | - John Gunn
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (R.H.); (J.G.)
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (D.B.H.); (E.K.); (B.W.)
| |
Collapse
|
4
|
Martin CL, Hill JH, Aller SG. Host Tropism and Structural Biology of ABC Toxin Complexes. Toxins (Basel) 2024; 16:406. [PMID: 39330864 PMCID: PMC11435725 DOI: 10.3390/toxins16090406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
ABC toxin complexes are a class of protein toxin translocases comprised of a multimeric assembly of protein subunits. Each subunit displays a unique composition, contributing to the formation of a syringe-like nano-machine with natural cargo carrying, targeting, and translocation capabilities. Many of these toxins are insecticidal, drawing increasing interest in agriculture for use as biological pesticides. The A subunit (TcA) is the largest subunit of the complex and contains domains associated with membrane permeation and targeting. The B and C subunits, TcB and TcC, respectively, package into a cocoon-like structure that contains a toxic peptide and are coupled to TcA to form a continuous channel upon final assembly. In this review, we outline the current understanding and gaps in the knowledge pertaining to ABC toxins, highlighting seven published structures of TcAs and how these structures have led to a better understanding of the mechanism of host tropism and toxin translocation. We also highlight similarities and differences between homologues that contribute to variations in host specificity and conformational change. Lastly, we review the biotechnological potential of ABC toxins as both pesticides and cargo-carrying shuttles that enable the transport of peptides into cells.
Collapse
Affiliation(s)
- Cole L. Martin
- Graduate Biomedical Sciences Pathobiology, Physiology and Pharmacology Theme, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - John H. Hill
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Stephen G. Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
5
|
Heisler DB, Kudryashova E, Hitt R, Williams B, Dziejman M, Gunn J, Kudryashov DS. Antagonistic effects of actin-specific toxins on Salmonella Typhimurium invasion into mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601609. [PMID: 39005411 PMCID: PMC11245040 DOI: 10.1101/2024.07.01.601609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Competition between bacterial species is a major factor shaping microbial communities. In this work, we explored the hypothesis that competition between bacterial pathogens can be mediated through antagonistic effects of bacterial effector proteins on host systems, particularly the actin cytoskeleton. Using Salmonella Typhimurium invasion into cells as a model, we demonstrate that invasion is inhibited if the host actin cytoskeleton is disturbed by any of the four tested actin-specific toxins: Vibrio cholerae MARTX actin crosslinking and Rho GTPase inactivation domains (ACD and RID, respectively), TccC3 from Photorhabdus luminescens, and Salmonella's own SpvB. We noticed that ACD, being an effective inhibitor of tandem G-actin binding assembly factors, is likely to inhibit the activity of another Vibrio effector, VopF. In reconstituted actin polymerization assays confirmed by live-cell microscopy, we confirmed that ACD potently halted the actin nucleation and pointed-end elongation activities of VopF, revealing competition between these two V. cholerae effectors. Together, the results suggest bacterial effectors from different species that target the same host machinery or proteins may represent an effective but largely overlooked mechanism of indirect bacterial competition in host-associated microbial communities. Whether the proposed inhibition mechanism involves the actin cytoskeleton or other host cell compartments, such inhibition deserves investigation and may contribute to a documented scarcity of human enteric co-infections by different pathogenic bacteria.
Collapse
Affiliation(s)
- David B. Heisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Regan Hitt
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Blake Williams
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Michelle Dziejman
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - John Gunn
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Zheng D, Zhou S, Chen L, Pang G, Yang J. A deep learning method to predict bacterial ADP-ribosyltransferase toxins. Bioinformatics 2024; 40:btae378. [PMID: 38885365 PMCID: PMC11219481 DOI: 10.1093/bioinformatics/btae378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
MOTIVATION ADP-ribosylation is a critical modification involved in regulating diverse cellular processes, including chromatin structure regulation, RNA transcription, and cell death. Bacterial ADP-ribosyltransferase toxins (bARTTs) serve as potent virulence factors that orchestrate the manipulation of host cell functions to facilitate bacterial pathogenesis. Despite their pivotal role, the bioinformatic identification of novel bARTTs poses a formidable challenge due to limited verified data and the inherent sequence diversity among bARTT members. RESULTS We proposed a deep learning-based model, ARTNet, specifically engineered to predict bARTTs from bacterial genomes. Initially, we introduced an effective data augmentation method to address the issue of data scarcity in training ARTNet. Subsequently, we employed a data optimization strategy by utilizing ART-related domain subsequences instead of the primary full sequences, thereby significantly enhancing the performance of ARTNet. ARTNet achieved a Matthew's correlation coefficient (MCC) of 0.9351 and an F1-score (macro) of 0.9666 on repeated independent test datasets, outperforming three other deep learning models and six traditional machine learning models in terms of time efficiency and accuracy. Furthermore, we empirically demonstrated the ability of ARTNet to predict novel bARTTs across domain superfamilies without sequence similarity. We anticipate that ARTNet will greatly facilitate the screening and identification of novel bARTTs from bacterial genomes. AVAILABILITY AND IMPLEMENTATION ARTNet is publicly accessible at http://www.mgc.ac.cn/ARTNet/. The source code of ARTNet is freely available at https://github.com/zhengdd0422/ARTNet/.
Collapse
Affiliation(s)
- Dandan Zheng
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| | - Guansong Pang
- School of Computing and Information Systems, Singapore Management University, Singapore 178902, Singapore
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102629, China
| |
Collapse
|
7
|
Busby JN, Trevelyan S, Pegg CL, Kerr ED, Schulz BL, Chassagnon I, Landsberg MJ, Weston MK, Hurst MRH, Lott JS. The ABC toxin complex from Yersinia entomophaga can package three different cytotoxic components expressed from distinct genetic loci in an unfolded state: the structures of both shell and cargo. IUCRJ 2024; 11:299-308. [PMID: 38512773 PMCID: PMC11067744 DOI: 10.1107/s2052252524001969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Bacterial ABC toxin complexes (Tcs) comprise three core proteins: TcA, TcB and TcC. The TcA protein forms a pentameric assembly that attaches to the surface of target cells and penetrates the cell membrane. The TcB and TcC proteins assemble as a heterodimeric TcB-TcC subcomplex that makes a hollow shell. This TcB-TcC subcomplex self-cleaves and encapsulates within the shell a cytotoxic `cargo' encoded by the C-terminal region of the TcC protein. Here, we describe the structure of a previously uncharacterized TcC protein from Yersinia entomophaga, encoded by a gene at a distant genomic location from the genes encoding the rest of the toxin complex, in complex with the TcB protein. When encapsulated within the TcB-TcC shell, the C-terminal toxin adopts an unfolded and disordered state, with limited areas of local order stabilized by the chaperone-like inner surface of the shell. We also determined the structure of the toxin cargo alone and show that when not encapsulated within the shell, it adopts an ADP-ribosyltransferase fold most similar to the catalytic domain of the SpvB toxin from Salmonella typhimurium. Our structural analysis points to a likely mechanism whereby the toxin acts directly on actin, modifying it in a way that prevents normal polymerization.
Collapse
Affiliation(s)
- Jason N. Busby
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Sarah Trevelyan
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Cassandra L. Pegg
- School of Chemistry and Molecular Biosciences, University of Central Queensland, Brisbane, Queensland 4072, Australia
| | - Edward D. Kerr
- School of Chemistry and Molecular Biosciences, University of Central Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin L. Schulz
- School of Chemistry and Molecular Biosciences, University of Central Queensland, Brisbane, Queensland 4072, Australia
| | - Irene Chassagnon
- School of Chemistry and Molecular Biosciences, University of Central Queensland, Brisbane, Queensland 4072, Australia
| | - Michael J. Landsberg
- School of Chemistry and Molecular Biosciences, University of Central Queensland, Brisbane, Queensland 4072, Australia
| | - Mitchell K. Weston
- Resilient Agriculture, AgResearch, Lincoln Research Centre, Christchurch 8140, New Zealand
| | - Mark R. H. Hurst
- Resilient Agriculture, AgResearch, Lincoln Research Centre, Christchurch 8140, New Zealand
| | - J. Shaun Lott
- School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
8
|
Tan J, Xu Y, Wang X, Yan F, Xian W, Liu X, Chen Y, Zhu Y, Zhou Y. Molecular basis of threonine ADP-ribosylation of ubiquitin by bacterial ARTs. Nat Chem Biol 2024; 20:463-472. [PMID: 37945894 DOI: 10.1038/s41589-023-01475-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/08/2023] [Indexed: 11/12/2023]
Abstract
Ubiquitination plays essential roles in eukaryotic cellular processes. The effector protein CteC from Chromobacterium violaceum blocks host ubiquitination by mono-ADP-ribosylation of ubiquitin (Ub) at residue T66. However, the structural basis for this modification is unknown. Here we report three crystal structures of CteC in complexes with Ub, NAD+ or ADP-ribosylated Ub, which represent different catalytic states of CteC in the modification. CteC adopts a special 'D-E' catalytic motif for catalysis and binds NAD+ in a half-ligand binding mode. The specific recognition of Ub by CteC is determined by a relatively separate Ub-targeting domain and a long loop L6, not the classic ADP-ribosylating turn-turn loop. Structural analyses with biochemical results reveal that CteC represents a large family of poly (ADP-ribose) polymerase (PARP)-like ADP-ribosyltransferases, which harbors chimeric features from the R-S-E and H-Y-E classes of ADP-ribosyltransferases. The family of CteC-like ADP-ribosyltransferases has a common 'D-E' catalytic consensus and exists extensively in bacteria and eukaryotic microorganisms.
Collapse
Affiliation(s)
- Jiaxing Tan
- The MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan Xu
- The MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaofei Wang
- The MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- The MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wei Xian
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Chen
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongqun Zhu
- The MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan Zhou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Department of Infectious Diseases, Sir Run Run Shaw Hospital School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Feldmüller M, Ericson CF, Afanasyev P, Lien YW, Weiss GL, Wollweber F, Schoof M, Hurst M, Pilhofer M. Stepwise assembly and release of Tc toxins from Yersinia entomophaga. Nat Microbiol 2024; 9:405-420. [PMID: 38316932 PMCID: PMC10847046 DOI: 10.1038/s41564-024-01611-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Tc toxins are virulence factors of bacterial pathogens. Although their structure and intoxication mechanism are well understood, it remains elusive where this large macromolecular complex is assembled and how it is released. Here we show by an integrative multiscale imaging approach that Yersinia entomophaga Tc (YenTc) toxin components are expressed only in a subpopulation of cells that are 'primed' with several other potential virulence factors, including filaments of the protease M66/StcE. A phage-like lysis cassette is required for YenTc release; however, before resulting in complete cell lysis, the lysis cassette generates intermediate 'ghost' cells, which may serve as assembly compartments and become packed with assembled YenTc holotoxins. We hypothesize that this stepwise mechanism evolved to minimize the number of cells that need to be killed. The occurrence of similar lysis cassettes in diverse organisms indicates a conserved mechanism for Tc toxin release that may apply to other extracellular macromolecular machines.
Collapse
Affiliation(s)
- Miki Feldmüller
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Charles F Ericson
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | | | - Yun-Wei Lien
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Gregor L Weiss
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Florian Wollweber
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Marion Schoof
- Bio-Protection Research Centre, Lincoln University, Lincoln, Christchurch, New Zealand
- AgResearch, Resilient Agriculture, Lincoln Research Centre, Christchurch, New Zealand
| | - Mark Hurst
- Bio-Protection Research Centre, Lincoln University, Lincoln, Christchurch, New Zealand
- AgResearch, Resilient Agriculture, Lincoln Research Centre, Christchurch, New Zealand
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland.
| |
Collapse
|
10
|
Sitsel O, Wang Z, Janning P, Kroczek L, Wagner T, Raunser S. Yersinia entomophaga Tc toxin is released by T10SS-dependent lysis of specialized cell subpopulations. Nat Microbiol 2024; 9:390-404. [PMID: 38238469 PMCID: PMC10847048 DOI: 10.1038/s41564-023-01571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/29/2023] [Indexed: 02/04/2024]
Abstract
Disease-causing bacteria secrete numerous toxins to invade and subjugate their hosts. Unlike many smaller toxins, the secretion machinery of most large toxins remains enigmatic. By combining genomic editing, proteomic profiling and cryo-electron tomography of the insect pathogen Yersinia entomophaga, we demonstrate that a specialized subset of these cells produces a complex toxin cocktail, including the nearly ribosome-sized Tc toxin YenTc, which is subsequently exported by controlled cell lysis using a transcriptionally coupled, pH-dependent type 10 secretion system (T10SS). Our results dissect the Tc toxin export process by a T10SS, identifying that T10SSs operate via a previously unknown lytic mode of action and establishing them as crucial players in the size-insensitive release of cytoplasmically folded toxins. With T10SSs directly embedded in Tc toxin operons of major pathogens, we anticipate that our findings may model an important aspect of pathogenesis in bacteria with substantial impact on agriculture and healthcare.
Collapse
Affiliation(s)
- Oleg Sitsel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Zhexin Wang
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Petra Janning
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Lara Kroczek
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Thorsten Wagner
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
11
|
Zhang Z, Rondon-Cordero HM, Das C. Crystal structure of bacterial ubiquitin ADP-ribosyltransferase CteC reveals a substrate-recruiting insertion. J Biol Chem 2024; 300:105604. [PMID: 38159861 PMCID: PMC10810742 DOI: 10.1016/j.jbc.2023.105604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
ADP-ribosylation is a post-translational modification involved in regulation of diverse cellular pathways. Interestingly, many pathogens have been identified to utilize ADP-ribosylation as a way for host manipulation. A recent study found that CteC, an effector from the bacterial pathogen Chromobacterium violaceum, hinders host ubiquitin (Ub) signaling pathways via installing mono-ADP-ribosylation on threonine 66 of Ub. However, the molecular basis of substrate recognition by CteC is not well understood. In this article, we probed the substrate specificity of this effector at protein and residue levels. We also determined the crystal structure of CteC in complex with NAD+, which revealed a canonical mono-ADP-ribosyltransferase fold with an additional insertion domain. The AlphaFold-predicted model differed significantly from the experimentally determined structure, even in regions not used in crystal packing. Biochemical and biophysical studies indicated unique features of the NAD+ binding pocket, while showing selectivity distinction between Ub and structurally close Ub-like modifiers and the role of the insertion domain in substrate recognition. Together, this study provides insights into the enzymatic specificities and the key structural features of a novel bacterial ADP-ribosyltransferase involved in host-pathogen interaction.
Collapse
Affiliation(s)
- Zhengrui Zhang
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
12
|
Belyy A, Heilen P, Hagel P, Hofnagel O, Raunser S. Structure and activation mechanism of the Makes caterpillars floppy 1 toxin. Nat Commun 2023; 14:8226. [PMID: 38086871 PMCID: PMC10716152 DOI: 10.1038/s41467-023-44069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
The bacterial Makes caterpillars floppy 1 (Mcf1) toxin promotes apoptosis in insects, leading to loss of body turgor and death. The molecular mechanism underlying Mcf1 intoxication is poorly understood. Here, we present the cryo-EM structure of Mcf1 from Photorhabdus luminescens, revealing a seahorse-like shape with a head and tail. While the three head domains contain two effectors, as well as an activator-binding domain (ABD) and an autoprotease, the tail consists of two putative translocation and three putative receptor-binding domains. Rearrangement of the tail moves the C-terminus away from the ABD and allows binding of the host cell ADP-ribosylation factor 3, inducing conformational changes that position the cleavage site closer to the protease. This distinct activation mechanism that is based on a hook-loop interaction results in three autocleavage reactions and the release of two toxic effectors. Unexpectedly, the BH3-like domain containing ABD is not an active effector. Our findings allow us to understand key steps of Mcf1 intoxication at the molecular level.
Collapse
Affiliation(s)
- Alexander Belyy
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Philipp Heilen
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Philine Hagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Oliver Hofnagel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227, Dortmund, Germany.
| |
Collapse
|
13
|
Martin CL, Chester DW, Radka CD, Pan L, Yang Z, Hart RC, Binshtein EM, Wang Z, Nagy L, DeLucas LJ, Aller SG. Structures of the Insecticidal Toxin Complex Subunit XptA2 Highlight Roles for Flexible Domains. Int J Mol Sci 2023; 24:13221. [PMID: 37686027 PMCID: PMC10487846 DOI: 10.3390/ijms241713221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
The Toxin Complex (Tc) superfamily consists of toxin translocases that contribute to the targeting, delivery, and cytotoxicity of certain pathogenic Gram-negative bacteria. Membrane receptor targeting is driven by the A-subunit (TcA), which comprises IgG-like receptor binding domains (RBDs) at the surface. To better understand XptA2, an insect specific TcA secreted by the symbiont X. nematophilus from the intestine of entomopathogenic nematodes, we determined structures by X-ray crystallography and cryo-EM. Contrary to a previous report, XptA2 is pentameric. RBD-B exhibits an indentation from crystal packing that indicates loose association with the shell and a hotspot for possible receptor binding or a trigger for conformational dynamics. A two-fragment XptA2 lacking an intact linker achieved the folded pre-pore state like wild type (wt), revealing no requirement of the linker for protein folding. The linker is disordered in all structures, and we propose it plays a role in dynamics downstream of the initial pre-pore state.
Collapse
Affiliation(s)
- Cole L. Martin
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.L.M.); (D.W.C.); (C.D.R.); (L.P.)
| | - David W. Chester
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.L.M.); (D.W.C.); (C.D.R.); (L.P.)
| | - Christopher D. Radka
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.L.M.); (D.W.C.); (C.D.R.); (L.P.)
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | - Lurong Pan
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.L.M.); (D.W.C.); (C.D.R.); (L.P.)
| | - Zhengrong Yang
- Department of Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Rachel C. Hart
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (R.C.H.); (E.M.B.)
| | - Elad M. Binshtein
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (R.C.H.); (E.M.B.)
| | - Zhao Wang
- Biochemistry & Molecular Pharmacology, Cryo-Electron Microscopy and Tomography Core, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Lisa Nagy
- Department of Mathematics, Engineering & Physical Sciences, Jefferson State Community College, Jefferson Campus, Birmingham, AL 35215, USA;
| | - Lawrence J. DeLucas
- Predictive Oncology Inc., 200 Riverhills Business Park, Suite 250, Birmingham, AL 35242, USA;
| | - Stephen G. Aller
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL 35205, USA; (C.L.M.); (D.W.C.); (C.D.R.); (L.P.)
| |
Collapse
|
14
|
The DarT/DarG Toxin-Antitoxin ADP-Ribosylation System as a Novel Target for a Rational Design of Innovative Antimicrobial Strategies. Pathogens 2023; 12:pathogens12020240. [PMID: 36839512 PMCID: PMC9967889 DOI: 10.3390/pathogens12020240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The chemical modification of cellular macromolecules by the transfer of ADP-ribose unit(s), known as ADP-ribosylation, is an ancient homeostatic and stress response control system. Highly conserved across the evolution, ADP-ribosyltransferases and ADP-ribosylhydrolases control ADP-ribosylation signalling and cellular responses. In addition to proteins, both prokaryotic and eukaryotic transferases can covalently link ADP-ribosylation to different conformations of nucleic acids, thus highlighting the evolutionary conservation of archaic stress response mechanisms. Here, we report several structural and functional aspects of DNA ADP-ribosylation modification controlled by the prototype DarT and DarG pair, which show ADP-ribosyltransferase and hydrolase activity, respectively. DarT/DarG is a toxin-antitoxin system conserved in many bacterial pathogens, for example in Mycobacterium tuberculosis, which regulates two clinically important processes for human health, namely, growth control and the anti-phage response. The chemical modulation of the DarT/DarG system by selective inhibitors may thus represent an exciting strategy to tackle resistance to current antimicrobial therapies.
Collapse
|