1
|
Fu X, Si L, Zhang Z, Yang T, Feng Q, Song J, Zhu S, Ye D. Gradient all-nanostructured aerogel fibers for enhanced thermal insulation and mechanical properties. Nat Commun 2025; 16:2357. [PMID: 40064924 PMCID: PMC11893758 DOI: 10.1038/s41467-025-57646-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Lightweight, nanoporous aerogel fibers are crucial for personal thermal management and specialized heat protection. However, wet-spinning methods, exemplified by aramid aerogels, inevitably form a dense outer layer, significantly reducing the volume fraction of efficient thermal barrier nanovoids and limiting the development of ultimate thermal resistance in fibers. Herein, we develop a microfluidic spinning method to prepare gradient all-nanostructure aramid aerogel fibers (GAFs). Benefiting from the simultaneous shear alignment and diffusion dilution of a good solvent within the channels, the precursor gel fibers assemble into a structure with a sparse exterior and dense interior, which reverses during supercritical drying to form sheath and core layers with average pore diameters of 150 nm and 600 nm, respectively. Experiments and simulations reveal that the gradient nanostructure creates high interfacial thermal resistance at heat transfer interfaces, resulting in a radial thermal conductivity as low as 0.0228 W m-1 K-1, far below that of air and wet-spun aerogel fibers. Moreover, GAF's unique nano-entangled network efficiently dissipates stress, achieving exceptionally high tensile strength (29.5 MPa) and fracture strain (39.2%). This work establishes a correlation between multiscale nanostructures and superlative performance, thereby expanding the scope of aerogel applications in intricate environments.
Collapse
Affiliation(s)
- Xiaotong Fu
- School of Materials and Chemistry, Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Lianmeng Si
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaoxin Zhang
- Department of Engineering Mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou, 310000, China
| | - Tingting Yang
- School of Materials and Chemistry, Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Qichun Feng
- School of Materials and Chemistry, Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, Anhui Agricultural University, Hefei, Anhui Province, 230036, China
| | - Jianwei Song
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Shuze Zhu
- Department of Engineering Mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou, 310000, China.
| | - Dongdong Ye
- School of Materials and Chemistry, Anhui Provincial Engineering Center for High-Performance Biobased Nylons, Anhui Engineering Research Center for Highly Functional Fiber Products for Automobiles, Anhui Agricultural University, Hefei, Anhui Province, 230036, China.
| |
Collapse
|
2
|
Yang B, Wang Y, Yang R, Feng R, Zhang M. Innovations Progress in Emerging Multifunctional Aramid Nanofiber Aerogels. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39970018 DOI: 10.1021/acsami.4c22206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Aerogels have attracted great attention in the academic and industrial fields due to their intrinsic low density, high porosity, and high specific surface area. As an ideal nanobuilding block for advanced aerogels, the research community has shown a strong interest in aramid nanofiber (ANF) aerogel materials and their applications in frontier fields. However, there is a lack of a comprehensive review of the basic development and practical applications of pure ANF aerogels regarding these latest achievements in the past decade. This review aims to fill this gap by comprehensively exploring the preparation, properties, application progress, challenges, and prospects of ANF aerogels. We begin with a summary of the rheological principles of ANF dispersions, different preparation strategies, and drying methods of ANF aerogels. Then, the unique properties of ANF aerogels of various morphologies and outstanding advantages based on these properties are critically reviewed. Besides, the progress of multifunctional applications in the fields of flexible thermal insulation, environmental protection, energy storage, and other fields is summarized. Finally, we explore the main challenges and prospects of ANF aerogels to give insights for further development promotion from lab-scale to industry-scale.
Collapse
Affiliation(s)
- Bin Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| | - Yifan Wang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| | - Ruiting Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| | - Ronghua Feng
- Zhejiang Rongsheng Environmental Protection Paper Co., LTD., Pinghu, 314213, China
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| |
Collapse
|
3
|
Zhang X, Yu J, Si Y. Programmable Shape-Morphing Enables Ceramic Meta-Aerogel Highly Stretchable for Thermal Protection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412962. [PMID: 39538986 DOI: 10.1002/adma.202412962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Ceramic aerogels hold significant potential for thermal insulation, yet their mechanical stretchability and thermal stability fall short in extreme environments. Here, the study presents a programmable shape-morphing strategy aimed at engineering a binary network topology structure within ceramic aerogels to effectively dissipate stress and block heat transfer. The special topology design, which includes kirigami lamellated aerogels for bearing loading stress and randomly assembled aerogels for mechanical energy pre-storage to transfer tensile stress, effectively achieves unexpected mechanical tensile properties and thermal stability. The resulting robust meta-aerogels demonstrate remarkable structural stability with topology-derived mechanical tensile of up to 85% strain, excellent resilience to 500 cycles of 50% tensile strain, 1000 cycles of 60% buckling strain, and 500 cycles of 50% compressive strain, temperature-invariant tensile recovery capability; simultaneously, low thermal conductivity of 33.01 mW m-1 K-1 and tensile-invariant thermal insulation makes the ceramic meta-aerogels an ideal substitute material for various applications.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
4
|
Dong J, Hou J, Peng Y, Zhang Y, Liu H, Long J, Park S, Liu T, Huang Y. Breathable and Stretchable Epidermal Electronics for Health Management: Recent Advances and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409071. [PMID: 39420650 DOI: 10.1002/adma.202409071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/07/2024] [Indexed: 10/19/2024]
Abstract
Advanced epidermal electronic devices, capable of real-time monitoring of physical, physiological, and biochemical signals and administering appropriate therapeutics, are revolutionizing personalized healthcare technology. However, conventional portable electronic devices are predominantly constructed from impermeable and rigid materials, which thus leads to the mechanical and biochemical disparities between the devices and human tissues, resulting in skin irritation, tissue damage, compromised signal-to-noise ratio (SNR), and limited operational lifespans. To address these limitations, a new generation of wearable on-skin electronics built on stretchable and porous substrates has emerged. These substrates offer significant advantages including breathability, conformability, biocompatibility, and mechanical robustness, thus providing solutions for the aforementioned challenges. However, given their diverse nature and varying application scenarios, the careful selection and engineering of suitable substrates is paramount when developing high-performance on-skin electronics tailored to specific applications. This comprehensive review begins with an overview of various stretchable porous substrates, specifically focusing on their fundamental design principles, fabrication processes, and practical applications. Subsequently, a concise comparison of various methods is offered to fabricate epidermal electronics by applying these porous substrates. Following these, the latest advancements and applications of these electronics are highlighted. Finally, the current challenges are summarized and potential future directions in this dynamic field are explored.
Collapse
Affiliation(s)
- Jiancheng Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiayu Hou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yidong Peng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuxi Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Haoran Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jiayan Long
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yunpeng Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
5
|
Zhang X, Yu J, Zhao C, Si Y. Elastic SiC Aerogel for Thermal Insulation: A Systematic Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311464. [PMID: 38511588 DOI: 10.1002/smll.202311464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/19/2024] [Indexed: 03/22/2024]
Abstract
SiC aerogels with their lightweight nature and exceptional thermal insulation properties have emerged as the most ideal materials for thermal protection in hypersonic vehicles; However, conventional SiC aerogels are prone to brittleness and mechanical degradation when exposed to complex loads such as shock and mechanical vibration. Hence, preserving the structural integrity of aerogels under the combined influence of thermal and mechanical external forces is crucial not only for stabling their thermal insulation performance but also for determining their practicality in harsh environments. This review focuses on the optimization of design based on the structure-performance of SiC aerogels, providing a comprehensive review of the inherent correlations among structural stability, mechanical properties, and insulation performance. First, the thermal transfer mechanism of aerogels from a microstructural perspective is studied, followed by the relationship between the building blocks of SiC aerogels (0D particles, 1D nanowires/nanofibers) and their compression performance (including compressive resilience, compressive strength, and fatigue resistance). Moreover, the strategy to improve the high-temperature oxidation resistance and insulation performance of SiC aerogels is explored. Lastly, the challenges and future breakthrough directions for SiC aerogels are presented.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Cunyi Zhao
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
6
|
Ji H, Feng S, Yang M. Controlled Structural Relaxation of Aramid Nanofibers for Superstretchable Polymer Fibers with High Toughness and Heat Resistance. ACS NANO 2024; 18:18548-18559. [PMID: 38968387 DOI: 10.1021/acsnano.4c04388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Polymer fibers that combine high toughness and heat resistance are hard to achieve, which, however, hold tremendous promise in demanding applications such as aerospace and military. This prohibitive design task exists due to the opposing property dependencies on chain dynamics because traditional heat-resistant materials with rigid molecular structures typically lack the mechanism of energy dissipation. Aramid nanofibers have received great attention as high-performance nanoscale building units due to their intriguing mechanical and thermal properties, but their distinct structural features are yet to be fully captured. We show that aramid nanofibers form nanoscale crimps during the removal of water, which primarily resides at the defect planes of pleated sheets, where the folding can occur. The precise control of such a structural relaxation can be realized by exerting axial loadings on hydrogel fibers, which allows the emergence of aramid fibers with varying angles of crimps. These crimped fibers integrate high toughness with heat resistance, thanks to the extensible nature of nanoscale crimps with rigid molecular structures of poly(p-phenylene terephthalamide), promising as a template for stable stretchable electronics. The tensile strength/modulus (392-944 MPa/11-29 GPa), stretchability (25-163%), and toughness (154-445 MJ/cm3) are achieved according to the degree of crimping. Intriguingly, a toughness of around 430 MJ/m3 can be maintained after calcination below the relaxation temperature (259 °C) for 50 h. Even after calcination at 300 °C for 10 h, a toughness of 310 MJ/m3 is kept, outperforming existing polymer materials. Our multiscale design strategy based on water-bearing aramid nanofibers provides a potent pathway for tackling the challenge for achieving conflicting property combinations.
Collapse
Affiliation(s)
- He Ji
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Ming Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Wang S, Zhao Z, Yu Q, Li P, Zhou F, Xu C, Zhao X, Teng Y. Superdurable Full-Life Superhydrophobic Composite Block. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403853. [PMID: 38718418 DOI: 10.1002/adma.202403853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Superhydrophobic materials are attractive for industrial development but plagued by poor mechanical stability. Herein, a superdurable full-life superhydrophobic composite block is designed and fabricated by embedding near-zero contractive superhydrophobic silica aerogel into a rigid iron-nickel foam structured similarly to a regular dodecahedron. The synergistic protection afforded by these materials ensures superrobust mechanical stability for the composite block, which features a high compressive strength of up to ≈7.4 MPa, and ultralow Taber abrasion of down to ≈0.567 mm after withstanding 50 000 cycles, and highly efficient water harvesting capability of up to ≈3114.3 mg min-1 cm-2 at a supercooling degree of 40 K. This robust material system provides a novel strategy to design superhydrophobic materials capable of withstanding extreme conditions, including high temperature, humidity, pressure, and abrasion.
Collapse
Affiliation(s)
- Shanlin Wang
- State Key Laboratory for Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Zhimeng Zhao
- State Key Laboratory for Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Qiang Yu
- State Key Laboratory for Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Pengfei Li
- State Key Laboratory for Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Fei Zhou
- State Key Laboratory for Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Chao Xu
- Center for Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaofeng Zhao
- State Key Laboratory for Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Yuancheng Teng
- State Key Laboratory for Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| |
Collapse
|
8
|
Wang Y, Wang Y, Xue Y, Li X, Geng Y, Zhao J, Ge L, He H, Li F, Liu X. Portable and Flexible Hydrogel Sensor for On-Site Atrazine Assay on Agricultural Products. Anal Chem 2024; 96:7772-7779. [PMID: 38698542 DOI: 10.1021/acs.analchem.4c01579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
There is growing attention focused toward the problems of ecological sustainability and food safety raised from the abuse of herbicides, which underscores the need for the development of a portable and reliable sensor for simple, rapid, and user-friendly on-site analysis of herbicide residues. Herein, a novel multifunctional hydrogel composite is explored to serve as a portable and flexible sensor for the facile and efficient analysis of atrazine (ATZ) residues. The hydrogel electrode is fabricated by doping graphite-phase carbon nitride (g-C3N4) into the aramid nanofiber reinforced poly(vinyl alcohol) hydrogel via a simple solution-casting procedure. Benefiting from the excellent electroactivity and large specific surface area of the solid nanoscale component, the prepared hydrogel sensor is capable of simple, rapid, and sensitive detection of ATZ with a detection limit down to 0.002 ng/mL and per test time less than 1 min. After combination with a smartphone-controlled portable electrochemical analyzer, the flexible sensor exhibited satisfactory analytical performance for the ATZ assay. We further demonstrated the applications of the sensor in the evaluation of the ATZ residues in real water and soil samples as well as the user-friendly on-site point-of-need detection of ATZ residues on various agricultural products. We envision that this flexible and portable sensor will open a new avenue on the development of next-generation analytical tools for herbicide monitoring in the environment and agricultural products.
Collapse
Affiliation(s)
- Yuying Wang
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yue Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yang Xue
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xiao Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yue Geng
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Jiahui Zhao
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Lei Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Huimin He
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
9
|
Parale VG, Kim T, Choi H, Phadtare VD, Dhavale RP, Kanamori K, Park HH. Mechanically Strengthened Aerogels through Multiscale, Multicompositional, and Multidimensional Approaches: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307772. [PMID: 37916304 DOI: 10.1002/adma.202307772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/29/2023] [Indexed: 11/03/2023]
Abstract
In recent decades, aerogels have attracted tremendous attention in academia and industry as a class of lightweight and porous multifunctional nanomaterial. Despite their wide application range, the low mechanical durability hinders their processing and handling, particularly in applications requiring complex physical structures. "Mechanically strengthened aerogels" have emerged as a potential solution to address this drawback. Since the first report on aerogels in 1931, various modified synthesis processes have been introduced in the last few decades to enhance the aerogel mechanical strength, further advancing their multifunctional scope. This review summarizes the state-of-the-art developments of mechanically strengthened aerogels through multicompositional and multidimensional approaches. Furthermore, new trends and future directions for as prevailed commercialization of aerogels as plastic materials are discussed.
Collapse
Affiliation(s)
- Vinayak G Parale
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Taehee Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Haryeong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Varsha D Phadtare
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Rushikesh P Dhavale
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Kazuyoshi Kanamori
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hyung-Ho Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
10
|
Sun H, Zheng D, Zhu Y, Zhu P, Ye Y, Zhang Y, Yu Z, Yang P, Sun X, Jiang F. Multiscale Design for Robust, Thermal Insulating, and Flame Self-Extinguishing Cellulose Foam. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306942. [PMID: 37939315 DOI: 10.1002/smll.202306942] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/16/2023] [Indexed: 11/10/2023]
Abstract
Cellulose foams are in high demand in an era of prioritizing environmental consciousness. Yet, transferring the exceptional mechanical properties of cellulose fibers into a cellulose network remains a significant challenge. To address this challenge, an innovative multiscale design is developed for producing cellulose foam with exceptional network integrity. Specifically, this design relies on a combination of physical cross-linking of the microfibrillated cellulose (MFC) networks by cellulose nanofibril (CNF) and aluminum ion (Al3+), as well as self-densification of the cellulose induced by ice-crystal templating, physical cross-linking, solvent exchange, and evaporation. The resultant cellulose foam demonstrates a low density of 40.7 mg cm-3, a high porosity of 97.3%, and a robust network with high compressive modulus of 1211.5 ± 60.6 kPa and energy absorption of 77.8 ± 1.9 kJ m-3. The introduction of CNF network and Al3+ cross-linking into foam also confers excellent wet stability and flame self-extinguish ability. Furthermore, the foam can be easily biodegraded in natural environments , re-entering the ecosystem's carbon cycle. This strategy yields a cellulose foam with a robust network and outstanding environmental durability, opening new possibilities for the advancement of high-performance foam materials.
Collapse
Affiliation(s)
- Hao Sun
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British of Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Dingyuan Zheng
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British of Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yeling Zhu
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British of Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Penghui Zhu
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British of Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yuhang Ye
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British of Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yifan Zhang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British of Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Zhengyang Yu
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British of Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Pu Yang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British of Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xia Sun
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British of Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, The University of British of Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
11
|
Xu M, Zhu J, Xie J, Mao Y, Hu W. Dynamically Cross-Linked, Self-Healable, and Stretchable All-Hydrogel Supercapacitor with Extraordinary Energy Density and Real-Time Pressure Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305448. [PMID: 37880904 DOI: 10.1002/smll.202305448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Indexed: 10/27/2023]
Abstract
Wearable electronics with flexible, integrated, and self-powered multi-functions are becoming increasingly attractive, but their basic energy storage units are challenged in simultaneously high energy density, self-healing, and real-time sensing capability. To achieve this, a fully flexible and omni-healable all-hydrogel, that is dynamically crosslinked PVA@PANI hydrogel, is rationally designed and constructed via aniline/DMSO-emulsion-templated in situ freezing-polymerization strategy. The PVA@PANI sheet, not only possesses a honeycombed porous conductive mesh configuration with superior flexibility that provides numerous channels for unimpeded ions/electron transport and maximizes the utilization efficiency of pseudocapacitive PANI, but also can conform to complicated body surface, enabling effective detection and discrimination of body movements. As a consequence, the fabricated flexible PVA@PANI sheet electrode demonstrates an unprecedented specific capacitance (936.8 F g-1 ) and the assembled symmetric flexible all-solid-state supercapacitor delivers an extraordinary energy density of 40.98 Wh kg-1 , outperforming the previously highest-reported values of stretchable PVA@PANI hydrogel-based supercapacitors. What is more, such a flexible supercapacitor electrode enables precisely monitoring the full-range human activities in real-time, and fulfilling a quick response and excellent self-recovery. These outstanding flexible sensing and energy storage performances render this emerging PVA@PANI hydrogel highly promising for the next-generation wearable self-powered sensing electronics.
Collapse
Affiliation(s)
- Muchun Xu
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Jiajun Zhu
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Jiyang Xie
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
- Electron Microscopy Center, Yunnan University, Kunming, 650091, P. R. China
| | - Yongyun Mao
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
- Electron Microscopy Center, Yunnan University, Kunming, 650091, P. R. China
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming, 650091, P. R. China
| | - Wanbiao Hu
- Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
- Electron Microscopy Center, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
12
|
Gao Y, Xu Z, Ren X, Gao G. Hierarchical Porous Aerogels With Multiple Adsorptive Interactions for Dye Wastewater Purification. Chemistry 2024; 30:e202302762. [PMID: 37870384 DOI: 10.1002/chem.202302762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
Aerogels present a huge potential for removing organic dyes from printing and dyeing wastewater (PDW). However, the preparation of aerogels with multiple dye adsorption capabilities remains a challenge, as many existing aerogels are limited to adsorbing only a single type of dye. Herein, a composite aerogel (CG/T-rGO) with the addition of carboxymethyl chitosan, gelatin and tannic acid reduced graphene oxide (T-rGO) was synthesized by freeze-drying technology. The electrostatic interactions between dye molecular and GEL/CMCS (CG) networks, as well as the supramolecular interactions (H-bonds, electrostatic interactions and π-π stacks) between T-rGO, have endowed the aerogel with the ability to adsorb multiple types of dye, such as methylene blue (MB) and methyl orange (MO). Results exhibited that the prepared CG/T-rGO aerogel possessed strong mechanical strength and a porous 3D network structure with a porosity of 96.33 %. Using MB and MO as adsorbates, the adsorption capacity (88.2 mg/g and 66.6 mg/g, respectively) and the mechanism of the CG/T-rGO aerogel were investigated. The adsorption processes of aerogel for MB and MO were shown to follow the pseudo-second-order kinetic model and Langmuir isotherm model, indicating the chemical adsorption of a monolayer. The proposed aerogel in this work has promising prospects for dye removal from PDW.
Collapse
Affiliation(s)
- Yang Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Zikai Xu
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Xiuyan Ren
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Guanghui Gao
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| |
Collapse
|
13
|
Hu Y, Lin Y, Craig SL. Mechanically Triggered Polymer Deconstruction through Mechanoacid Generation and Catalytic Enol Ether Hydrolysis. J Am Chem Soc 2024; 146:2876-2881. [PMID: 38265762 DOI: 10.1021/jacs.3c10153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Polymers that amplify a transient external stimulus into changes in their morphology, physical state, or properties continue to be desirable targets for a range of applications. Here, we report a polymer comprising an acid-sensitive, hydrolytically unstable enol ether backbone onto which is embedded gem-dichlorocyclopropane (gDCC) mechanophores through a single postsynthetic modification. The gDCC mechanophore releases HCl in response to large forces of tension along the polymer backbone, and the acid subsequently catalyzes polymer deconstruction at the enol ether sites. Pulsed sonication of a 61 kDa PDHF with 77% gDCC on the backbone in THF with 100 mM H2O for 10 min triggers the subsequent degradation of the polymer to a final molecular weight of less than 3 kDa after 24 h of standing, whereas controls lacking either the gDCC or the enol ether reach final molecular weights of 38 and 27 kDa, respectively. The process of sonication, along with the presence of water and the existence of gDCC on the backbone, significantly accelerates the rate of polymer chain deconstruction. Both acid generation and the resulting triggered polymer deconstruction are translated to bulk, cross-linked polymer networks. Networks formed via thiol-ene cross-linking and subjected to unconstrained quasi-static uniaxial compression dissolve on time scales that are at least 3 times faster than controls where the mechanophore is not covalently coupled to the network. We anticipate that this concept can be extended to other acid-sensitive polymer networks for the stress-responsive deconstruction of gels and solvent-free elastomers.
Collapse
Affiliation(s)
- Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yangju Lin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
14
|
Li C, Zhang M, Li P, Ren HR, Wu X, Piao Z, Xiao X, Zhang M, Liang X, Wu X, Chen B, Li H, Han Z, Liu J, Qiu L, Zhou G, Cheng HM. Self-Assembly of Ultrathin, Ultrastrong Layered Membranes by Protic Solvent Penetration. J Am Chem Soc 2024; 146:3553-3563. [PMID: 38285529 DOI: 10.1021/jacs.3c14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Flexible membranes with ultrathin thickness and excellent mechanical properties have shown great potential for broad uses in solid polymer electrolytes (SPEs), on-skin electronics, etc. However, an ultrathin membrane (<5 μm) is rarely reported in the above applications due to the inherent trade-off between thickness and antifailure ability. We discover a protic solvent penetration strategy to prepare ultrathin, ultrastrong layered films through a continuous interweaving of aramid nanofibers (ANFs) with the assistance of simultaneous protonation and penetration of a protic solvent. The thickness of a pure ANF film can be controlled below 5 μm, with a tensile strength of 556.6 MPa, allowing us to produce the thinnest SPE (3.4 μm). The resultant SPEs enable Li-S batteries to cycle over a thousand times at a high rate of 1C due to the small ionic impedance conferred by the ultrathin characteristic and regulated ionic transportation. Besides, a high loading of the sulfur cathode (4 mg cm-2) with good sulfur utilization was achieved at a mild temperature (35 °C), which is difficult to realize in previously reported solid-state Li-S batteries. Through a simple laminating process at the wet state, the thicker film (tens of micrometers) obtained exhibits mechanical properties comparable to those of thin films and possesses the capability to withstand high-velocity projectile impacts, indicating that our technique features a high degree of thickness controllability. We believe that it can serve as a valuable tool to assemble nanomaterials into ultrathin, ultrastrong membranes for various applications.
Collapse
Affiliation(s)
- Chuang Li
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Mengtian Zhang
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Peixuan Li
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hong-Rui Ren
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xian Wu
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhihong Piao
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiao Xiao
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Mingxin Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Xiangyu Liang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Xinru Wu
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Hong Li
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhiyuan Han
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ling Qiu
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
15
|
Shahriar SMS, McCarthy AD, Andrabi SM, Su Y, Polavoram NS, John JV, Matis MP, Zhu W, Xie J. Mechanically resilient hybrid aerogels containing fibers of dual-scale sizes and knotty networks for tissue regeneration. Nat Commun 2024; 15:1080. [PMID: 38316777 PMCID: PMC10844217 DOI: 10.1038/s41467-024-45458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
The structure and design flexibility of aerogels make them promising for soft tissue engineering, though they tend to come with brittleness and low elasticity. While increasing crosslinking density may improve mechanics, it also imparts brittleness. In soft tissue engineering, resilience against mechanical loads from mobile tissues is paramount. We report a hybrid aerogel that consists of self-reinforcing networks of micro- and nanofibers. Nanofiber segments physically entangle microfiber pillars, allowing efficient stress distribution through the intertwined fiber networks. We show that optimized hybrid aerogels have high specific tensile moduli (~1961.3 MPa cm3 g-1) and fracture energies (~7448.8 J m-2), while exhibiting super-elastic properties with rapid shape recovery (~1.8 s). We demonstrate that these aerogels induce rapid tissue ingrowth, extracellular matrix deposition, and neovascularization after subcutaneous implants in rats. Furthermore, we can apply them for engineering soft tissues via minimally invasive procedures, and hybrid aerogels can extend their versatility to become magnetically responsive or electrically conductive, enabling pressure sensing and actuation.
Collapse
Affiliation(s)
- S M Shatil Shahriar
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Alec D McCarthy
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Syed Muntazir Andrabi
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Navatha Shree Polavoram
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Johnson V John
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mitchell P Matis
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Department of Mechanical and Materials Engineering, University of Nebraska Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
16
|
Yang X, Xu L, Xiong S, Rao H, Tan F, Yan J, Bao Y, Albanese A, Camposeo A, Pisignano D, Li B. Light-Emitting Microfibers from Lotus Root for Eco-Friendly Optical Waveguides and Biosensing. NANO LETTERS 2024; 24:566-575. [PMID: 37962055 DOI: 10.1021/acs.nanolett.3c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Optical biosensors based on micro/nanofibers are highly valuable for probing and monitoring liquid environments and bioactivity. Most current optical biosensors, however, are still based on glass, semiconductors, or metallic materials, which might not be fully suitable for biologically relevant environments. Here, we introduce biocompatible and flexible microfibers from lotus silk as microenvironmental monitors that exhibit waveguiding of intrinsic fluorescence as well as of coupled light. These features make single-filament monitors excellent building blocks for a variety of sensing functions, including pH probing and detection of bacterial activity. These results pave the way for the development of new and entirely eco-friendly, potentially multiplexed biosensing platforms.
Collapse
Affiliation(s)
- Xianguang Yang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Liping Xu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Shijie Xiong
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Hao Rao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Fangchang Tan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Jiahao Yan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yanjun Bao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Annachiara Albanese
- Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - Andrea Camposeo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy
| | - Dario Pisignano
- Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| |
Collapse
|
17
|
Zhang X, Sun Q, Liang X, Gu P, Hu Z, Yang X, Liu M, Sun Z, Huang J, Wu G, Zu G. Stretchable and negative-Poisson-ratio porous metamaterials. Nat Commun 2024; 15:392. [PMID: 38195718 PMCID: PMC10776607 DOI: 10.1038/s41467-024-44707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
Highly stretchable porous materials are promising for flexible electronics but their fabrication is a great challenge. Herein, several kinds of highly stretchable conductive porous elastomers with low or negative Poisson's ratios are achieved by uniaxial, biaxial, and triaxial hot-pressing strategies. The reduced graphene oxide/polymer nanocomposite elastomers with folded porous structures obtained by uniaxial hot pressing exhibit high stretchability up to 1200% strain. Furthermore, the meta-elastomers with reentrant porous structures combining high biaxial (or triaxial) stretchability and negative Poisson's ratios are achieved by biaxial (or triaxial) hot pressing. The resulting elastomer-based wearable strain sensors exhibit an ultrawide response range (0-1200%). The materials can be applied for smart thermal management and electromagnetic interference shielding, which are achieved by regulating the porous microstructures via stretching. This work provides a versatile strategy to highly stretchable and negative-Poisson-ratio porous materials with promising features for various applications such as flexible electronics, thermal management, electromagnetic shielding, and energy storage.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Qi Sun
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Xing Liang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Puzhong Gu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Zhenyu Hu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Xiao Yang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Muxiang Liu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Zejun Sun
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Jia Huang
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China
| | - Guangming Wu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Guoqing Zu
- Interdisciplinary Materials Research Center, Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, PR China.
| |
Collapse
|
18
|
Zhao S, Zhao Y, Li C, Wang W, Liu HY, Cui L, Li X, Yang Z, Zhang A, Wang Y, Lin Y, Hao T, Yin J, Kang J, Zhu J. Aramid Nanodielectrics for Ultraconformal Transparent Electronic Skins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305479. [PMID: 37705254 DOI: 10.1002/adma.202305479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/09/2023] [Indexed: 09/15/2023]
Abstract
On-skin electronics require minimal thicknesses and decent transparency for conformal contact, imperceptible wearing, and visual aesthetics. It is challenging to search for advanced ultrathin dielectrics capable of supporting the active components while maintaining bending softness, easy handling, and wafer-scale processability. Here, self-delaminated aramid nanodielectrics (ANDs) are demonstrated, enabling any skin-like electronics easily exfoliated from the processing substrates after complicated nanofabrication. In addition, ANDs are mechanically strong, chemically and thermally stable, transparent and breathable, therefore are ideal substrates for soft electronics. As demonstrated, compliant epidermal electrodes comprising silver nanowires and ANDs can successfully record high-quality electromyogram signals with low motion artifacts and satisfying sweat and water resistance. Furthermore, ANDs can serve as both substrates and dielectrics in single-walled carbon nanotube field-effect transistors (FETs) with a merely 160-nm thickness, which can be operated within 4 V with on/off ratios of 1.4 ± 0.5 × 105 , mobilities of 39.9 ± 2.2 cm2 V-1 s-1 , and negligible hysteresis. The ultraconformal FETs can function properly when wrapped around human hair without any degradation in performance.
Collapse
Affiliation(s)
- Sanchuan Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Yingtao Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Chenning Li
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Wei Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Hai-Yang Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Lei Cui
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Xiang Li
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Zhenhua Yang
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Anni Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Yurou Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Yuxuan Lin
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Tailang Hao
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Jun Yin
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| | - Joohoon Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jian Zhu
- School of Materials Science and Engineering, National Institute for Advanced Materials Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
19
|
Li L, Yang G, Lyu J, Sheng Z, Ma F, Zhang X. Folk arts-inspired twice-coagulated configuration-editable tough aerogels enabled by transformable gel precursors. Nat Commun 2023; 14:8450. [PMID: 38114508 PMCID: PMC10730912 DOI: 10.1038/s41467-023-44156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Aerogels, as famous lightweight and porous nanomaterials, have attracted considerable attention in various emerging fields in recent decades, however, both low density and weak mechanical performance make their configuration-editing capability challenging. Inspired by folk arts, herein we establish a highly efficient twice-coagulated (TC) strategy to fabricate configuration-editable tough aerogels enabled by transformable gel precursors. As a proof of concept, aramid nanofibers (ANFs) and polyvinyl alcohol (PVA) are selected as the main components of aerogel, among which PVA forms a flexible configuration-editing gel network in the first coagulation process, and ANF forms a configuration-locking gel network in the second coagulation process. TC strategy guarantees the resulting aerogels with both high toughness and feasible configuration editing capability individually or simultaneously. Altogether, the resulting tough aerogels with special configuration through soft to hard modulation provide great opportunities to break through the performance limits of the aerogels and expand application areas of aerogels.
Collapse
Affiliation(s)
- Lishan Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
| | - Guandu Yang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
- Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, PR China
| | - Jing Lyu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
| | - Zhizhi Sheng
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China
| | - Fengguo Ma
- Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, PR China
| | - Xuetong Zhang
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, PR China.
- Division of Surgery & Interventional Science, University College London, London, UK.
| |
Collapse
|
20
|
Xue T, Zhu C, Yu D, Zhang X, Lai F, Zhang L, Zhang C, Fan W, Liu T. Fast and scalable production of crosslinked polyimide aerogel fibers for ultrathin thermoregulating clothes. Nat Commun 2023; 14:8378. [PMID: 38104160 PMCID: PMC10725485 DOI: 10.1038/s41467-023-43663-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Polyimide aerogel fibers hold promise for intelligent thermal management fabrics, but their scalable production faces challenges due to the sluggish gelation kinetics and the weak backbone strength. Herein, a strategy is developed for fast and scalable fabrication of crosslinked polyimide (CPI) aerogel fibers by wet-spinning and ambient pressure drying via UV-enhanced dynamic gelation strategy. This strategy enables fast sol-gel transition of photosensitive polyimide, resulting in a strongly-crosslinked gel skeleton that effectively maintains the fiber shape and porous nanostructure. Continuous production of CPI aerogel fibers (length of hundreds of meters) with high specific modulus (390.9 kN m kg-1) can be achieved within 7 h, more efficiently than previous methods (>48 h). Moreover, the CPI aerogel fabric demonstrates almost the same thermal insulating performance as down, but is about 1/8 the thickness of down. The strategy opens a promisingly wide-space for fast and scalable fabrication of ultrathin fabrics for personal thermal management.
Collapse
Affiliation(s)
- Tiantian Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Chenyu Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Dingyi Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xu Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Feili Lai
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Longsheng Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Wei Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Tianxi Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| |
Collapse
|
21
|
Zhang Z, Luo Y, Li Y, Ding S, Liu K, Luo B. Flexible Hybrid Wearable Sensors for Pressure and Thermal Sensing Based on a Double-Network Hydrogel. ACS APPLIED BIO MATERIALS 2023; 6:5114-5123. [PMID: 37941091 DOI: 10.1021/acsabm.3c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Flexible sensors have attracted great attention due to their wide applications in various fields such as motion monitoring and medical health. It is reasonable to develop a sensor with good flexibility, sensitivity, and biocompatibility for wearable device applications. In this study, a double-network hydrogel was obtained by blending poly(vinyl alcohol) (PVA) with poly(ethylene glycol) diacrylate (PEGDA), which combines the flexibility of the PVA network and the fast photocuring ability of PEGDA. Subsequently, polydopamine-coated carbon nanotubes were used as conductive fillers of the PVA-PEG hydrogel matrix to prepare a flexible sensor that exhibits an effective mechanical response and significant stability in mechanics and conductivity. More importantly, the resistance of the sensor is very sensitive to pressure and thermal changes due to the optimized conductive network in the hydrogel. A motion monitoring test showed that the flexible sensor not only responds quickly to the motion of different joints but also keeps the output signal stable after many cycles. In addition, the excellent cell affinity of the hybrid hydrogel also encourages its application in health monitoring and motion sensors.
Collapse
Affiliation(s)
- Zhaoyu Zhang
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Yiting Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Yizhi Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Shan Ding
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| |
Collapse
|
22
|
Chen H, Wei P, Qi Y, Xie Y, Huang X. Water-Induced Cellulose Nanofibers/Poly(vinyl alcohol) Hydrogels Regulated by Hydrogen Bonding for In Situ Water Shutoff. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39883-39895. [PMID: 37578297 DOI: 10.1021/acsami.3c07989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Hydrogels have been widely applied to the water shutoff in oilfields due to their excellent three-dimensional network and thermal and physicochemical stability, and it is still a huge challenge to develop new hydrogels with simple preparation, low cost, and high mechanical performance that can meet the requirements of practical applications. Herein, we devised a simple and universal manufacturing method for regulating the hydrogen bonds between poly(vinyl alcohol) (PVA) and cellulose nanofibers (CNF) via the water-diffusion action, thus fabricating a physically tough PVA-CNF hydrogel for the in situ water shutoff. This method allowed the polymer chains to strengthen the molecular interactions between polymers upon replacing with water (a poor solvent) to regulate the cross-linking structure, characterizing by the nano-crystallinity domains and fibrillar segments, which also accounted for the thermal stability, extraordinary elasticity, high stretchability, and toughness of PVA-CNF hydrogel. Further, the obtained PVA-CNF hydrogel exhibited superb plugging performance, that is, the breakthrough pressure gradient could reach 71.56 MPa·m-1, surpassing all currently reported gelling water shutoff agents. This water-induced in situ hydrogelation made it well suited as a water shutoff agent in oilfields and may provide a promising strategy to fabricate mechanically robust smart materials for the water shutoff projects with low cost, simple processing, and high efficiency.
Collapse
Affiliation(s)
- Hongjie Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Peng Wei
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Ying Qi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Yahong Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Xueli Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources & MOE Key Laboratory of Oil and Gas Fine Chemicals, College of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
23
|
Meng X, Zhu C, Wang X, Liu Z, Zhu M, Yin K, Long R, Gu L, Shao X, Sun L, Sun Y, Dai Y, Xiong Y. Hierarchical triphase diffusion photoelectrodes for photoelectrochemical gas/liquid flow conversion. Nat Commun 2023; 14:2643. [PMID: 37156784 PMCID: PMC10167308 DOI: 10.1038/s41467-023-38138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
Photoelectrochemical device is a versatile platform for achieving various chemical transformations with solar energy. However, a grand challenge, originating from mass and electron transfer of triphase-reagents/products in gas phase, water/electrolyte/products in liquid phase and catalyst/photoelectrode in solid phase, largely limits its practical application. Here, we report the simulation-guided development of hierarchical triphase diffusion photoelectrodes, to improve mass transfer and ensure electron transfer for photoelectrochemical gas/liquid flow conversion. Semiconductor nanocrystals are controllably integrated within electrospun nanofiber-derived mat, overcoming inherent brittleness of semiconductors. The mechanically strong skeleton of free-standing mat, together with satisfactory photon absorption, electrical conductivity and hierarchical pores, enables the design of triphase diffusion photoelectrodes. Such a design allows photoelectrochemical gas/liquid conversion to be performed continuously in a flow cell. As a proof of concept, 16.6- and 4.0-fold enhancements are achieved for the production rate and product selectivity of methane conversion, respectively, with remarkable durability.
Collapse
Affiliation(s)
- Xiangyu Meng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Chuntong Zhu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Xin Wang
- Anhui Engineering Research Center of Carbon Neutrality, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Zehua Liu
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mengmeng Zhu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Kuibo Yin
- School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Ran Long
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Liuning Gu
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Xinxing Shao
- School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Litao Sun
- School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Yueming Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China.
| | - Yujie Xiong
- Anhui Engineering Research Center of Carbon Neutrality, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, China.
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
24
|
Wang Z, Zhu H, Li H, Wang Z, Sun M, Yang B, Wang Y, Wang L, Xu L. High-Strength Magnetic Hydrogels with Photoweldability Made by Stepwise Assembly of Magnetic-Nanoparticle-Integrated Aramid Nanofiber Composites. ACS NANO 2023; 17:9622-9632. [PMID: 37134301 DOI: 10.1021/acsnano.3c03156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hydrogels capable of transforming in response to a magnetic field hold great promise for applications in soft actuators and biomedical robots. However, achieving high mechanical strength and good manufacturability in magnetic hydrogels remains challenging. Here, inspired by natural load-bearing soft tissues, a class of composite magnetic hydrogels is developed with tissue-mimetic mechanical properties and photothermal welding/healing capability. In these hydrogels, a hybrid network involving aramid nanofibers, Fe3O4 nanoparticles, and poly(vinyl alcohol) is accomplished by a stepwise assembly of the functional components. The engineered interactions between nanoscale constituents enable facile materials processing and confer a combination of excellent mechanical properties, magnetism, water content, and porosity. Furthermore, the photothermal property of Fe3O4 nanoparticles organized around the nanofiber network allows near-infrared welding of the hydrogels, providing a versatile means to fabricate heterogeneous structures with custom designs. Complex modes of magnetic actuation are made possible with the manufactured heterogeneous hydrogel structures, suggesting opportunities for further applications in implantable soft robots, drug delivery systems, human-machine interactions, and other technologies.
Collapse
Affiliation(s)
- Zuochen Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR 999077, China
| | - Hengjia Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Hegeng Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhisheng Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Mingze Sun
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Bin Yang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR 999077, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR 999077, China
| |
Collapse
|
25
|
Wu J, Sang M, Zhang J, Sun Y, Wang X, Zhang J, Pang H, Luo T, Pan S, Xuan S, Gong X. Ultra-Stretchable Spiral Hybrid Conductive Fiber with 500%-Strain Electric Stability and Deformation-Independent Linear Temperature Response. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207454. [PMID: 36808686 DOI: 10.1002/smll.202207454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/02/2023] [Indexed: 05/11/2023]
Abstract
Stretchable configuration occupies priority in devising flexible conductors used in intelligent electronics and implantable sensors. While most conductive configurations cannot suppress electrical variations against extreme deformation and ignore inherent material characteristics. Herein, a spiral hybrid conductive fiber (SHCF) composed of aramid polymeric matrix and silver nanowires (AgNWs) coating is fabricated through shaping and dipping processes. The homochiral coiled configuration mimicked by plant tendrils not only enables its high elongation (958%), but also generates a superior deformation-insensitive effect to existing stretchable conductors. The resistance of SHCF maintains remarkable stability against extreme strain (500%), impact damage, air exposure (90 days), and cyclic bending (150 000 times). Moreover, the thermal-induced densification of AgNWs on SHCF achieves precise and linear temperature response toward a broad range (-20 to 100 °C). Its sensitivity further manifests high independence to tensile strain (0%-500%), allowing for flexible temperature monitoring of curved objects. Such unique strain-tolerant electrical stability and thermosensation hold broad prospects for SHCF in lossless power transferring and expeditious thermal analysis.
Collapse
Affiliation(s)
- Jianpeng Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Min Sang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Jingyi Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Yuxi Sun
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Xinyi Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Junshuo Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Haoming Pang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Shaoshan Pan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, P. R. China
| | - Xinglong Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China (USTC), Hefei, Anhui, 230027, P. R. China
- State Key Laboratory of Fire Science, University of Science and Technology of China (USTC), Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
26
|
Sheng Z, Liu Z, Hou Y, Jiang H, Li Y, Li G, Zhang X. The Rising Aerogel Fibers: Status, Challenges, and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205762. [PMID: 36658735 PMCID: PMC10037991 DOI: 10.1002/advs.202205762] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Aerogel fibers garner tremendous scientific interest due to their unique properties such as ultrahigh porosity, large specific surface area, and ultralow thermal conductivity, enabling diverse potential applications in textile, environment, energy conversion and storage, and high-tech areas. Here, the fabrication methodologies to construct the aerogel fibers starting from nanoscale building blocks are overviewed, and the spinning thermodynamics and spinning kinetics associated with each technology are revealed. The huge pool of material choices that can be assembled into aerogel fibers is discussed. Furthermore, the fascinating properties of aerogel fibers, including mechanical, thermal, sorptive, optical, and fire-retardant properties are elaborated on. Next, the nano-confining functionalization strategy for aerogel fibers is particularly highlighted, touching upon the driving force for liquid encapsulation, solid-liquid interface adhesion, and interfacial stability. In addition, emerging applications in thermal management, smart wearable fabrics, water harvest, shielding, heat transfer devices, artificial muscles, and information storage, are discussed. Last, the existing challenges in the development of aerogel fibers are pointed out and light is shed on the opportunities in this burgeoning field.
Collapse
Affiliation(s)
- Zhizhi Sheng
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Zengwei Liu
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Yinglai Hou
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Haotian Jiang
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Yuzhen Li
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Guangyong Li
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
| | - Xuetong Zhang
- Suzhou Institute of Nano‐Tech and Nano BionicsChinese Academy of SciencesSuzhou215123China
- Division of Surgery & Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| |
Collapse
|
27
|
Wei X, Li J, Hu Z, Wang C, Gao Z, Cao Y, Han J, Li Y. Carbon Quantum Dot/Chitosan-Derived Hydrogels with Photo-stress-pH Multiresponsiveness for Wearable Sensors. Macromol Rapid Commun 2023; 44:e2200928. [PMID: 36786588 DOI: 10.1002/marc.202200928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Indexed: 02/15/2023]
Abstract
In recent years, hydrogels have attracted extensive attention in smart sensing owing to their biocompatibility and high elasticity. However, it is still a challenge to develop hydrogels with excellent multiple responsiveness for smart wearable sensors. In this paper, a facile synthesis of carbon quantum dots (CQDs)-doped cross-linked chitosan quaternary/carboxymethylcellulose hydrogels (CCCDs) is presented. Designing of dual network hydrogels decorated with CQDs provides abundant crosslinking and improves the mechanical properties of the hydrogels. The hydrogel-based strain sensor exhibits excellent sensitivity (gauge factor: 9.88), linearity (R2 : 0.97), stretchable ability (stress: 0.67 MPa; strain: 404%), good cyclicity, and durability. The luminescent properties are endowed by the CQDs further broaden the application of hydrogels for realizing flexible electronics. More interestingly, the strain sensor based on CCCDs hydrogel demonstrates photo responsiveness (ΔR/R0 ≈20%) and pH responsiveness (pH range ≈4-7) performance. CCCDs hydrogels can be used for gesture recognition and light sensing switch. As a proof-of-concept, a smart wearable sensor is designed for monitoring human activities and detecting pH variation in human sweat during exercise. This study reveals new possibilities for further applications in wearable health monitoring.
Collapse
Affiliation(s)
- Xiaotong Wei
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Jie Li
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Zhirui Hu
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Chen Wang
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Zhiqiang Gao
- School of Mechatronic Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Yang Cao
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Jing Han
- School of Mechatronic Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Yingchun Li
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| |
Collapse
|
28
|
He H, Li H, Pu A, Li W, Ban K, Xu L. Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels. Nat Commun 2023; 14:759. [PMID: 36765072 PMCID: PMC9918487 DOI: 10.1038/s41467-023-36438-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Electroconductive hydrogels have been applied in implantable bioelectronics, tissue engineering platforms, soft actuators, and other emerging technologies. However, achieving high conductivity and mechanical robustness remains challenging. Here we report an approach to fabricating electroconductive hydrogels based on the hybrid assembly of polymeric nanofiber networks. In these hydrogels, conducting polymers self-organize into highly connected three dimensional nanostructures with an ultralow threshold (~1 wt%) for electrical percolation, assisted by templating effects from aramid nanofibers, to achieve high electronic conductivity and structural robustness without sacrificing porosity or water content. We show that a hydrogel composed of polypyrrole, aramid nanofibers and polyvinyl alcohol achieves conductivity of ~80 S cm-1, mechanical strength of ~9.4 MPa and stretchability of ~36%. We show that patterned conductive nanofiber hydrogels can be used as electrodes and interconnects with favorable electrochemical impedance and charge injection capacity for electrophysiological applications. In addition, we demonstrate that cardiomyocytes cultured on soft and conductive nanofiber hydrogel substrates exhibit spontaneous and synchronous beating, suggesting opportunities for the development of advanced implantable devices and tissue engineering technologies.
Collapse
Affiliation(s)
- Huimin He
- grid.194645.b0000000121742757Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Hao Li
- grid.194645.b0000000121742757Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Aoyang Pu
- grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Wenxiu Li
- grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Kiwon Ban
- grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China. .,Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR, China.
| |
Collapse
|
29
|
Zhou J, Liu X, He X, Wang H, Ma D, Lu X. Bio-Inspired Aramid Fibers@silica Binary Synergistic Aerogels with High Thermal Insulation and Fire-Retardant Performance. Polymers (Basel) 2022; 15:polym15010141. [PMID: 36616490 PMCID: PMC9824314 DOI: 10.3390/polym15010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Flame-retardant, thermal insulation, mechanically robust, and comprehensive protection against extreme environmental threats aerogels are highly desirable for protective equipment. Herein, inspired by the core (organic)-shell (inorganic) structure of lobster antenna, fire-retardant and mechanically robust aramid fibers@silica nanocomposite aerogels with core-shell structures are fabricated via the sol-gel-film transformation and chemical vapor deposition process. The thickness of silica coating can be well-defined and controlled by the CVD time. Aramid fibers@silica nanocomposite aerogels show high heat resistance (530 °C), low thermal conductivity of 0.030 W·m-1·K-1, high tensile strength of 7.5 MPa and good flexibility. More importantly, aramid fibers@silica aerogels have high flame retardancy with limiting oxygen index 36.5. In addition, this material fabricated by the simple preparation process is believed to have potential application value in the field of aerospace or high-temperature thermal protection.
Collapse
Affiliation(s)
- Jinman Zhou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xianyuan Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xiaojiang He
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Haoxin Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Dongli Ma
- Beijing Huateng Rubber Plastic & Latex Products Co., Ltd., Beijing 101100, China
| | - Xianyong Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- Correspondence:
| |
Collapse
|